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Plasmonic light trapping leads to responsivity increase in colloidal quantum
dot photodetectors

F. Pelayo Garcı́a de Arquer, Fiona J. Beck, Marı́a Bernechea, and Gerasimos Konstantatosa)

ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain

(Received 4 November 2011; accepted 22 December 2011; published online 23 January 2012)

We report broadband responsivity enhancement in PbS colloidal quantum dot (CQDs)

photoconductive photodetectors due to absorption increase offered by a plasmonic scattering layer

of Ag metal nanoparticles. Responsivity enhancements are observed in the near infrared with a

maximum 2.4-fold increase near the absorption band edge of �1 lm for �400 nm thick devices.

Additionally, we study the effect of the mode structure on the efficiency of light trapping provided

by random nanoparticle scattering in CQD films and provide insights for plasmonic scattering

enhancement in CQD thin films. VC 2012 American Institute of Physics. [doi:10.1063/1.3678039]

Quantum dot photodetectors have emerged as a promis-

ing top-surface photodetector technology readily integrated

on complementary metal–oxide–semiconductors platforms

for low-cost near infrared sensing.1–4 Colloidal quantum dots

(CQDs) have attracted significant attention in view of their

solution-processability and bandgap tunability extended

from the visible to the infrared in the case of PbS CQDs.

Colloidal quantum dot photoconductive detectors4,5 and pho-

todiodes6 with very high sensitivities have been reported and

CQD solar cells7–9 with efficiencies over 6% demonstrate

the potential of this emerging technology.10 PbS CQDs offer

high absorption coefficients �105 cm�1 in the visible yet

their absorption coefficient near their band edge is

�104 cm�1. Therefore, films of �1 lm are required to fully

absorb incident light. However, carrier lifetime and mobility

in these films pose a restriction in thickness for efficient car-

rier extraction on the order of 400-500 nm.11 In photocon-

ductive detectors, further enhancement in sensitivity can be

achieved by employing thinner absorbing layers in view of

the dark current reduction and reduced generation-

recombination noise.12 Light trapping schemes to increase

absorption in the active layer can offer the possibility to

overcome these challenges towards more efficient QD solar

cells and more sensitive photodetectors.

Plasmonics provide effective light trapping for a variety

of semiconductor devices.13,14 Light trapping schemes based

on far-field scattering from metal nanostructures15,16 on sili-

con solar cells and on near field enhancements from embed-

ded metal nanoparticles (MNPs) in polymer solar cells,17

have been reported. In particular, islandised Ag films have

shown to effectively scatter and couple light into trapped

modes in underlying thick silicon semiconductor films.15

However, this mechanism of light trapping based on plas-

monic MNPs has not yet been explored in thin film devices

based on colloidal quantum dots.

In this paper, we employ a plasmonic scattering layer to

demonstrate the benefits of light trapping for colloidal quan-

tum dot optoelectronics. The MNP films have scattering

resonances near the exciton peak when embedded in the

PbS-CQD layer, and are located on the rear of the device in

order maximize the scattering of light18 and to avoid losses

associated with Fano interference.19 We demonstrate broad-

band responsivity enhancements at wavelengths beyond

600 nm with a maximum 2.4-fold increase near the absorp-

tion band edge of PbS quantum dots with first exciton peak

at 950 nm. Furthermore, we investigate the importance of the

device thickness in utilizing plasmonic light trapping from

random MNP arrays due to reduced mode density in thin

CQD PbS films.

Figure 1(a) shows the device structure under study.

Inter-digitated Au electrodes define a device area of 10 lm

by 3 mm, with an electrode height of 300 nm. The islandised

Ag films were fabricated on the glass substrates with pre-

patterned Au electrodes by evaporation of 15 nm of Ag, fol-

lowed by a 1 h annealing at 250 �C in a N2 atmosphere.

Upon heating, the film coalesces into discrete MNPs between

FIG. 1. (Color online) (a) Schematic of the photodetector device structure

showing embedded nanoparticles. (b) Absorption and extinction spectra of

nanoparticles on glass and micrographs of Ag islandised films formed

between the Au contacts before CQD PbS deposition, showing the size and

shape distribution of the Ag nanoparticles (inset).a)Electronic mail: gerasimos.konstantatos@icfo.es.

0003-6951/2012/100(4)/043101/4/$30.00 VC 2012 American Institute of Physics100, 043101-1
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the contacts, as shown in Fig. 1(b) (inset). The films were

characterized by scanning electron microscopy (SEM) and

atomic force microscopy (AFM). The MNPs were found to

have a “flattened” hemispherical shape, an average diameter

of 100 nm, a height of 30 nm, and a surface coverage of

31%. The measured absorption and extinction of the MNPs

on glass is shown in Fig. 1(b), clearly showing the broad

localized surface plasmon resonance peak at a wavelength of

460 nm. PbS CQD films were deposited over the electrodes

in ambient conditions using a layer by layer (LbL) proce-

dure.20 Air stability as well as surface passivation of the QDs

are provided by ethanedithiol, a cross-linking ligand which

leads to robustly passivated PbS QD surfaces.21,22

When embedded in CQD PbS films, the optical proper-

ties of the Ag MNPs change due to the relatively high refrac-

tive index of the semiconductor. To characterize the

scattering behavior of the MNP films once embedded in the

PbS CQD films, finite-difference time domain (FDTD) simu-

lations were performed. Simulations of single particles allow

the calculation of the scattering cross-section (Qscat)
23 and

have been shown to compare well to experimentally meas-

ured results for Ag islandised films.19 Single Ag nanopar-

ticles with a “flattened” hemispherical shape, a height of

30 nm and a diameter of 100 nm were modeled embedded in

a semi-infinite PbS film on a glass substrate, corresponding

to the average size and geometry of the nanoparticles

observed experimentally. Dielectric constants for CQD PbS

films were modeled using an effective medium method.24

For Ag, the dielectric constants were modeled using data

from Johnson and Christy. Clear peaks in the scattering

cross-section spectra occur at the surface plasmon resonance

kSPR¼ 840 nm, with a maximum value of Qscat¼ 8.20 This

suggests that, for a surface coverage of 31%, a large fraction

of the incident light should be scattered by the particles at

wavelengths close to the exciton peak of the CQDs, at

k¼ 950 nm. For the experimental MNP films under study,

which have a roughly Gaussian size distribution about the

average diameter of 100 nm, much broader scattering and

absorption cross section peaks would be expected, extending

to wavelengths near the band-edge of the PbS QDs.

Three different CQD PbS film thicknesses were studied

with and without embedded Ag MNPs. The thicknesses for

the two classes of devices (with and without MNP) were

found to be, t¼ 190 nm, 330 nm, and 420 nm 6 10 nm. Fig-

ure 2(a) shows the measured responsivity, with and without

embedded MNP films, for different device thicknesses. For

samples without MNPs, the responsivity increases with

thickness due to an increase in absorption. The introduction

of embedded MNPs reduces the responsivity for k< 700 nm

for the thinnest device (t¼ 190 nm). Figure 2(b) shows the

responsivity (R) enhancement, defined as the ratio of R with

MNPs over R without MNP for samples of the same thick-

ness, calculated from the data of Fig. 2(a). Responsivity is

significantly enhanced around k¼ 800 nm, and beyond

k> 1000 nm due to the presence of the MNPs. For the thin-

nest device (t¼ 190 nm), the enhancement is as high as 50%

for k> 1000 nm, as the absorption in the CQD PbS films

reduces and light trapping becomes more critical. For thicker

devices, significant enhancement occurs at shorter wave-

lengths, which reaches 40% for t¼ 420 nm at k¼ 800 nm,

near the scattering resonance of the MNP films, as estimated

from FDTD simulations. For k> 1000 nm, larger enhance-

ments of up to 130% and 140% are observed for t¼ 330 nm

and t¼ 420 nm, respectively.

Using the same procedure, CQD films were spin casted

on 20 mm � 20 mm glass slides for reflection and transmis-

sion measurements to monitor the absorption enhancement

in the presence of Ag MNPs at different thickness of PbS

layers. Figure 3(a) shows the absorption and (b) the absorp-

tion enhancement (defined as the ratio of absorption with

MNPs over the absorption in neat PbS-CQDs films) for dif-

ferent film thicknesses on glass. The spectra of the MNPs

embedded in the PbS-CQD include absorption in both the

semiconductor and the MNPs themselves. At long wave-

lengths, near the band edge of the PbS-CQD where the

absorption in the semiconductor is very low, the measured

absorption occurs mainly in the nanoparticle film, which has

a broad extinction resonance. Additionally, light scattered

into guided modes in the PbS-CQD film that is not absorbed

at long wavelengths can be guided to the edge of the sample

and lost. This can also occur for the thicker reference sam-

ples as the large area optical samples become increasingly

rough with increasing thickness, over the large area samples

considered in this measurement.

Absorption enhancements show similar spectral behavior

compared to responsivity enhancements, peaking at wave-

lengths near the MNPs resonance and increasing for longer

wavelengths. However, a different trend appears with thick-

ness, as enhancements in absorption decreases with increas-

ing film thickness, while responsivity enhancements increase

FIG. 2. (Color online) Responsivity (a) and responsivity enhancement (b) of

the three different thicknesses photoconductive detectors at 10 V(10 kV/cm).

Spectra are shown for samples with (solid lines) and without (dashed lines)

embedded Ag MNPs.
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with thickness. To investigate the differences in the enhance-

ment of absorption and responsivity trends with thickness, we

consider the mode structure in the PbS film. In order to esti-

mate how efficiently light is coupled into trapped modes

propagating in the PbS-CQD films by scattering from the Ag

MNPs, we compare the scattering distribution of the MNPs

with the propagation angles of modes in the PbS-CQD film.

The scattering distribution of a single hemispherical Ag MNP

(d¼ 100 nm, h¼ 30 nm), embedded in a semi-infinite PbS

CQD film is calculated from FDTD simulations, as described

in Ref. 23. Additionally, the waveguide modes of thin

PbS-CQD films in air were calculated in a simple manner by

finding solutions to the self-consistency condition.25

Figure 3(c) shows the number of TE modes that exist in

the PbS-CQD film at each wavelength, calculated as

M _¼ 2t
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nPbS�CQD � nair
p

, for different film thicknesses. An

equivalent calculation can be performed for TM modes,

yielding similar results. For k> 800 nm, the t¼ 200 nm PbS-

CQD film is in single mode operation (i.e., only one TE and

one TM mode exists), but for thicker films of t¼ 300 nm and

400 nm, higher order waveguide modes can propagate at

these wavelengths. The angular distribution of light scattered

by the MNP at resonance (kSPR¼ 840 nm) is plotted in the

insets (solid lines) and compared to the propagation angles

of the modes that exist at the same wavelength for films with

t¼ 200 nm, 300 nm, and 400 nm (broken lines). The loss

cone for an air/PbS-CQD interface is also shown with a

dashed grey line. For t¼ 200 nm, only one TE and one TM

mode exist, and these are propagating at high angles, reduc-

ing the efficiency of coupling to these modes with Ag MNP

scattering and, therefore, reducing the amount of light

trapped in the waveguide for this film thickness. For t¼ 300

and t¼ 400 nm, there are two possible TE and two possible

TM modes, some which propagate at smaller angles, allow-

ing more efficient coupling of light scattered by the

Ag MNP. These modeling results agree qualitatively with

the experimentally measured responsivity enhancements at

k> 800 nm shown in Fig. 2(b), which demonstrate a signifi-

cantly lower enhancement for the t¼ 190 nm case (in single

mode operation), compared to the thicker films (with propa-

gating higher order modes). Additionally, for films with

t¼ 300 nm and 400 nm, the mode distributions shown in the

insets in Fig. 3 are similar at k¼ 840 nm, implying that simi-

lar enhancements in absorption would be expected, in agree-

ment with measured responsivity enhancements.

We now compare our plasmonic light trapping with the

enhancement offered by a back-reflector to show further per-

formance improvement offered by efficient plasmonic light

trapping in the presence of a mirror. Figure 4 shows the

measured responsivity of the device with t¼ 420 nm with

and without embedded MNPs, in the presence of a back-

reflector. A glass slide coated with 200 nm of Ag was used

as a reflector, with a measured reflection of above 90% in the

400-1200 nm region. Responsivity enhancement of 92% is

achieved by employing back-reflector, whereas an over 84%

extra enhancement is achieved by the synergism of the back-

reflector with plasmonic MNPs due to enhanced an increase

in the fraction of the light scattered by the MNPs scattered

into the PbS-CQD film,26 and two-fold increase on the num-

ber of modes in the presence of the mirror.

In conclusion, we have demonstrated that scattering by

embedded Ag MNPs offers broadband responsivity enhance-

ments in thin CQDs PbS photoconductive photodetectors. A

maximum 2.4-fold enhancement factor was obtained near

PbS-QDs bandgap, increased to a 3.6-fold when combined

with a back reflector. We attribute this photocurrent increase

to increased absorption due to scattering from MNPs into

trapped modes inside the CQDs PbS film. We demonstrate

that the mode structure of the film has to be taken into account

in maximizing the coupling between the light scattered by the

MNP and propagating modes inside the active layer. Applying

FIG. 3. (Color online) Absorption (a) and absorption enhancement (b) of

PbS-CQD films on glass for three different thicknesses. Spectra are shown

for samples with (solid lines) and without (dashed lines) embedded Ag

MNPs. (c) Number of TE modes in a planar PbS-CQD film in air, calculated

at each wavelength for different film thicknesses (an equivalent calculation

can be performed for TM modes, giving similar results). (Inset) The calcu-

lated angular distribution of light scattered at resonance (kSPR¼ 840 nm) by

a single, flattened Ag hemisphere with d¼ 100 nm and h¼ 30 nm (solid

lines), compared to the propagation angles for allowed TE and TM modes in

the PbS-CQD waveguide for different thicknesses (broken lines), at the

same wavelength. The loss cone for a PbS-CQD/air interface is also shown

(dotted lines).
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a reflector underneath the MNPs increases the responsivity

enhancements further, due to an increase in both the number

of modes at long wavelengths and the efficiency of light scat-

tering into the active layer. The narrow radiation pattern of

Ag MNPs embedded in PbS CQDs film limits the light that

can be coupled into the film as only a fraction of the scattered

light is traveling at high angles capable of coupling efficiently

to trapped waveguide modes.27 The absorption enhancement

demonstrated here could be significantly improved by design-

ing periodic nanostructures that couple preferentially to wave-

guide modes in the active region.
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