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Abstract

Head injury severity is dependent on the loading and accelerations experienced during, and immediately after, impact. In England and Wales
alone, for example, 700,000 head injury cases are reported annually within Emergency Departments; however, there remains a lack of data that
quantifies the fundamental interaction of the head with an impacting surface. The consequence of impact depends upon a precise understanding of
the head–surface interaction; hence, there is a need to appreciate the magnitude of, and variation in, frictional coefficient between the head and a
range of possible surfaces. This study develops and validates a novel protocol for quantifying friction between the forehead skin and some
potential surfaces. Thirteen participants were recruited and four materials tested, with the lowest (0.11) and highest (1.64) dynamic frictional
coefficients measured between skin, and expanded polystyrene and laminate flooring, respectively. Preliminary computational simulation
identified that a modest variation in head–surface frictional coefficient (0.6 & 0.7) increases rotational accelerations by 23–33%. Hence, this study
highlights the significance of the head–surface interaction, whilst providing some data that will assist investigators evaluating head impacts within
both a domestic and sporting environment.
& 2016 Southwest Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Head injuries represent a significant national and interna-
tional health risk. Approximately 700,000 head injury cases
are annually reported at Emergency Departments within
England and Wales [1]. Injury causation is broad, though
common contributors include road traffic collisions, physical
assault and sporting accidents [2]. Automotive, forensic and
biomechanical engineers are proactively investigating head
biomechanics as they seek to simulate the extent of injury
severity and efficacy of prevention strategies throughout a
wide range of scenarios.

Biomechanical engineers have long been exploring head injury
mechanics via both numerical and experimental simulations,
generating data that provides insight into the cause and prevention
10.1016/j.bsbt.2016.07.001
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of head/brain trauma. Such simulations have investigated the
unprotected head striking, or being struck by, an object (e.g.
driver/dashboard interaction in road traffic collisions, civil
disputes) [3], whilst other studies have considered similar
scenarios with a protected (typically helmeted) head, typically
considering motorcyclists and sportspersons respectively [4].
Whilst the complexity of such simulations continues to increase
with ever-evolving manufacturing capabilities and computational
power, the current literature poorly describes the frictional
interaction between the skin and a range of materials. This is
particularly true of the forehead, which is of importance, given
the propensity for being the primary impact site.
Sivamani et al. [5] describe how skin friction is influenced by a

series of inter-linked tribological variables including topology,
hydration, underlying material properties, gender and ethnicity,
meaning that significant variation exists in data generated from
similar studies. Skin water absorption is considered the most
influential variable [6,7], with osmosis through to the stratum
corneum subsequently influencing the skin topology. This
vier B.V. This is an open access article under the CC BY-NC-ND license
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principle underpins the functionality of moisturising lotions and
cosmetics used to remove age-associated wrinkles. Forehead skin
is, though, recognised to be relatively smooth (12–15 μm) [8],
whilst comprising a covering of naturally-produced oil-emulsion
liquid including water, sweat and sebum. Despite these apparently
positive tribological attributes, however, the forehead skin is
reported to have a relatively high frictional coefficient [9].

This study aims to quantify the extent and variation of
forehead skin friction, during contact with a series of materials
that represent some potential impact surfaces. It is hypothe-
sised that the frictional coefficients will vary across the
different materials. This result will be highly relevant, both
to engineers designing environments that represent a risk of
head impact, and to researchers simulating head impact
scenarios to deduce, and reduce, injury severity.

2. Materials and methods

Thirteen adult participants were recruited to investigate the
frictional coefficient between the forehead and a range of
materials. All participants provided informed written consent,
following approval by the local ethics board.

2.1. Skin preparation

Participants were asked to refrain from washing their fore-
head on the morning of testing, nor to apply any creams or face
Fig. 1. Schematic summa

Table 1
The materials selected to investigate a range of forehead–surface frictional coeffici
sample was used only on the forearm, to validate the experimental protocol versus

Material Preparation

Laminate The upper layer that had been carefully removed from a
curved around the forehead.

Varnished hardwood
('wood')

Planing a hardwood beam achieved a shaving �1 mm th
varnished and adhered to the inextensible band.

Carpet A short-pile nylon carpet was cut to size and adhered to
Expanded polystyrene
(EPS)

An appropriately sized section (5 mm thickness) was ha
already appropriately curved to forehead geometry.

Stainless steel Sheet steel (1 mm thickness) was cut to size and filleted
curved to the approximate forehead curvature.
products during the preceding 24 h. The forehead skin was
hydrated before each test by the application of saline-soaked
filter paper (Chromatography 17, Whatman plc, England),
overlaid with a waterproof Nylon layer, a thin polyester foam
and then an elasticated headband. The Nylon prevented the
saline from being absorbed by the foam, which in turn, ensured
an even application of pressure to the forehead by the
headband. A pressure of approximately 2 kPa was applied to
the forehead for 20 min, which has previously been deemed
appropriate to saturate the skin [10]. Dry filter paper was then
applied for 20 s to remove any surface moisture.
2.2. Material selection

Each participant was subjected to four materials that
individually traversed the forehead, measuring the resisting
force to calculate the frictional coefficient of the skin-material
interaction. This approach, described schematically in
Fig. 1, was determined to best approximate head–surface
interaction on impact. Material selection was governed by a
desire to investigate a range of characteristics, whilst ensuring
that each could be shaped to conform to the forehead
curvature. Material selection and preparation is described in
Table 1, with each sample flexibly adhered to a 450� 40 mm
inextensible belt. The testing room had an average temperature
of 15.6 1C and 43.5% in humidity.
ry of novel protocol.

ents, with each sample measuring 100� 30 mm (71 mm). The stainless steel
published data.

laminated flooring surface. The thickness (�1 mm) ensured that it naturally

ickness. A sample with an appropriate curvature was identified, before this was

the inelastic band.
rvested from the frontal region of an adult cycle helmet. The specimen was

at each corner. The material was then machined to achieve Ra¼0.21 urn, and



Fig. 2. Schematic representation to describe the derivation of Eq. (7) (a) and
8 (b).

Fig. 3. The static frictional coefficient describing the forehead–surface contact,
across 13 participants.
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2.3. Experimental analysis

Each subject was positioned prone on a bed, with their chin
supported on a rest adjusted such that the forehead was
approximately horizontal. The surrounding equipment was
then adjusted to achieve the setup described in Fig. 1, with
an extensometer used to measure the resistance to sliding. The
material sample, attached to the belt, was then positioned on
the forehead approximately 15 mm below the hairline. The belt
was preloaded to achieve static friction (i.e. ‘stiction’) at the
forehead–surface interface, with the load increased to ulti-
mately achieve dynamic friction. Both this load and the
equivalent extensometer load, was recorded to ultimately
calculate the dynamic frictional coefficient.

The dynamic frictional coefficient (μ) can be deduced by
applying first principles to Fig. 1, in a manner similar to
previous authors [10–12]. Here,T1 is the tension in the taut
(TþdT) side, T2 is tension in the slack side (T), μ is the co-
efficient of dynamic friction and θ is the angle subtended by
the belt measured from the horizontal portion of the forehead
and testing material:

Resolving the forces in Fig. 2(a) in the X-direction:

T cos ∂θ� Tþ∂Tð Þ cos ∂θþμ∂N ¼ 0 ð1Þ
And then in the Y-direction:

∂N�T sin ∂θ� Tþ∂Tð Þ sin ∂θ¼ 0 ð2Þ
Substituting Eq. (2) into Eq. (1):

T cos ∂θ� Tþ∂Tð Þ cos ∂θ¼ μðT sin ∂θþ TþδTð Þ sin ∂θ¼ 0

ð3Þ
Using small angle approximation where cosδθ-1, and

sinδθ-δθ, Eq. (3) becomes:

δTþ 2μTþμ∂Tð Þ∂θ¼ 0 and
Z T2

T1

1
T
∂T ¼ �

Z 0

θ
2μ∂θ ð4Þ

Integrating Eq. (4) between the limits:

lnT2� lnT1 ¼ 2μθ ð5Þ
Thus:

T1

T2
¼ eμθ ð6Þ
Or:

μ¼ 1
θ
ln
T1

T2
ð7Þ

Fig. 2(b) denotes θ is equal to π/4, T1 is equal to the
maximum force to overcome the static friction (Fmax), and T2
is equal to the applied load. Thus, Eq. (7) becomes:

μ¼ 4
π
ln
Fmax

mg
ð8Þ

Data was then statistically assessed using the Students T-test
(MS Excel) to determine whether the frictional coefficient
varied across the different skin-material interactions.

2.4. Experimental validation

Eleven participants were subjected to a further test, using
identical principles to quantify the frictional coefficient of
forearm skin versus a stainless steel surface. This protocol was
similar to Veijgen [13], allowing assessment of data compar-
ability and thus experimental validity.

2.5. Numerical analysis

A preliminary numerical analysis was performed to inves-
tigate the potential consequence of any frictional coefficient
variation on head injury severity. A ‘headform’ (i.e. a
geometric, mass appropriate representation of the human head)
was developed (circumference¼531 mm; mass¼3.66 kg) in
the ADAMS multi-body simulation software. The impact
characteristics were parametrically iterated until the simulation
produced valid headform acceleration data versus Mertz et al.
[14]. An exemplar impact scenario was then devised with an
impact velocity of 8.2 m/s on to a steel surface, angled 151 to
the vertical plane, to induce head rotation. Impacts were then
performed in configurations of: (i) ‘nose down’, with initial
contact on the vertex; (ii) ‘nose down’, with initial contact on
the temporal bone; (iii) ‘ear down’ with initial contact on the
vertex. These scenarios produced rotational accelerations about
the sagittal, coronal and frontal planes, respectively. Each



Fig. 4. Box and whisker plots describing the median, first and third quartile of
each dataset.

Fig. 5. Data describing the static frictional coefficient between the forearm and
a steel surface.

Fig. 6. Rotational head acceleration data when considering impact with an
inclined steel plane, with two frictional coefficients.
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scenario was then investigated considering a modest difference
in head–surface frictional coefficients (0.6 and 0.7).

3. Results

3.1. Experimental analysis

Experimental data was collected from all participants
(n¼13) for the carpet and EPS foam materials, though for
only 12 participants when testing the wood and laminate
materials. The frictional coefficient of forehead skin ranged
from 0.11–1.64 across all tests, with little consistency evident
in frictional coefficient across the population. Participant 1, for
example, exhibited the highest coefficient when exposed to
wood, though the lowest for carpet (Fig. 3).

The frictional coefficients differed statistically when con-
sidering each material (i.e. po0.05), with the polymer veneer
representing the greatest resistance when being slid across the
forehead (mean m¼1.27), being approximately 2-fold greater
than the EPS foam (mean m¼0.68). Mean frictional coeffi-
cients of 0.97 and 0.85 were recorded for wood and carpet
surfaces, respectively. The extent of variation evident in the
data presented in Fig. 4 provides an indication of the multi-
factorial contribution to measuring the skin frictional coeffi-
cient, with the skin–wood coefficients ranging from the lowest
(0.18) to the near-highest (1.49) of all recorded data. The
experiments relying upon the synthetic materials produced less
varied data, with the carpet ranging from 0.36 to 1.22.

3.2. Experimental validation

The mean, dynamic frictional coefficient for the forearm–
steel interaction (0.71) was measured to assist in determining
the validity of this experimental technique versus previous
studies. The interquartile range equalled 0.45, whilst Fig. 5
provides further data that describes the median and data
distribution across the 11 participants. The surface roughness
of the stainless steel was measured using a Talysurf profilo-
metry machine (average Ra¼0.21 μm).
3.3. Numerical analysis

Acceleration data was generated for each head impact onto a
steel plane, inclined 151 to the vertical (Fig. 6). The ‘nose
down, vertex’ impact produced 12,790 rad s�2 about the
sagittal plane when investigating with the lower frictional
coefficient. The rotational acceleration increased by 23% when
the dynamic friction was defined at 0.7. During the ‘nose
down, temporal’ impact, a reduced rotational acceleration was
measured (10,583 rad s�2) in the coronal plane, when apply-
ing the conservative frictional conditions. Rotational accelera-
tion increased by 33% at the higher frictional coefficient. The
‘ear down, vertex’ impact generated 12,774 rad s�2 about the
frontal plane, with a 25% increase with a frictional coefficient
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equal to 0.7. All data was collected during simulation runs for
0.9 s, over 1000 calculation steps.
4. Discussion

This study developed a novel technique that allowed
measurement of the frictional coefficient at the interface of
the forehead and an opposing surface. The data presented here
not only highlights the variation that exists when considering
such interactions, but also demonstrates the importance of
precisely modelling this interaction given the consequent effect
on post-impact head dynamics. Hence, such data is valuable to
researchers investigating the cause of, and strategies mitigating
against, head injury through impact.

The validity of this new technique was evaluated by
performing a series of investigations quantifying the frictional
coefficient between the forearm and a stainless steel surface.
The mean frictional coefficient described in Fig. 5 (0.71),
compared favourably to comparable data reported by Veijgen
(0.62) [13]. Further validation is provided by the similar
interquartile ranges reported in this study (0.45), versus
Veijgen (0.62) [13].

The frictional coefficient of forehead skin ranged from 0.18
to 1.64 across all tests, with little consistency evident in
frictional coefficient across the population. Participant 1, for
example, exhibited the highest coefficient when exposed to
wood, though the lowest for carpet (Fig. 3). The importance of
considering the impacting surface is highlighted when noting
the statistical significant evident between each material. The
laminate surface presented the greatest resistance for the
majority of participants (Figs. 3 and 4); however, it also
demonstrated how the precise behaviour is participant–depen-
dant, given the approximately 3-fold difference between the
minimum (m¼0.63; Participant 12) and maximum values
(m¼1.64; Participant 10). The laminate mean frictional coeffi-
cient (m¼1.27) was approximately 2-fold greater than the
lowest mean value (EPS foam; mean m¼0.68). Indeed, a 2-
fold difference is noted throughout the majority of this data,
assuming that Participant 7 (m¼0.11) represents anomalous
data. The EPS foam data is significant given that this material
serves as the primary load-bearing structure in protective
cycling and motorcycling helmets. This low frictional coeffi-
cient would indicate that there is a propensity for slippage
between this surface and the skin on impact, potentially
preventing transfer of some impact energy to the head and
potentially reducing injury severity.

Mean frictional coefficients of 0.97 and 0.85 were recorded
for wood and carpet surfaces, respectively. The extent of
variation evident in the presented data provides further
evidence of the multi-factorial influences when measuring skin
friction, with the skin–wood coefficients ranging from the
lowest (0.18) to the near-highest (1.49) of all recorded data.
The experiments relying upon the synthetic materials typically
produced less variation, with the carpet data ranging from 0.36
to 1.22.
Fig. 6 describes the importance of assigning accurate contact

parameters to the skin-impact material interaction. A modest
increase in frictional coefficient (from 0.6 to 0.7) produced a
23% increase in rotational acceleration of the head when
considering an impact in the sagittal plane. Greater differences
were noted when examining an impact from the frontal plane
(25% increase) and coronal plane (33%). This preliminary
analysis highlights the risk associated with using inaccurate
frictional data, as engineers may reach inaccurate conclusions
when evaluating the effectiveness of head protection system,
the outcome of crash scenarios, or the cause of sports injuries.

5. Conclusions

This investigation has evaluated some forehead–surface
interactions, quantifying the frictional coefficient variation.
Additionally, the intra-population variability has been high-
lighted. A preliminary study has also demonstrated how the
frictional coefficient can influence head dynamics post-impact,
which is likely to directly influence injury severity. It is
anticipated that this data will be of interest to researchers
exploring head injury biomechanics across a range of sectors.
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