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Weighted norms in subspace-based methods for time series
analysis
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SUMMARY

Many modern approaches of time series analysis belong to the class of methods based on approximating
high-dimensional spaces by low-dimensional subspaces. A typical method would embed a given time series
into a structured matrix and find a low-dimensional approximation to this structured matrix. The purpose
of this paper is two-fold: (i) to establish a correspondence between a class of SVD-compatible matrix
norms on the space of Hankel matrices and weighted vector norms (and provide methods to construct this
correspondence), and (ii) to motivate the importance of this for problems in time series analysis. Examples
are provided to demonstrate the merits of judiciously selecting weights on imputing missing data and
forecasting in time series.
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1. INTRODUCTION

Subspace-based methods of time series analysis use the techniques of low-rank approximation of

structured matrices. These methods assume that a matrix formed from the time series is of full rank,

perhaps due to measurement error or unaccounted effects. This matrix is a perturbation of a ‘true’

matrix of low rank. The aim of low-rank approximation is to modify the data as little as possible so

that the matrix constructed from the modified data has some specified rank. Typical applications are

diverse and include dimensionality reduction, feature extraction, and classification, see [1].

In this paper we focus on the so-called Hankel structured low-rank approximation (HSLRA)

problem. We form a Hankel structured matrix from a given vector of observations. The rank of

this Hankel matrix constructed from the time series corresponds to the complexity of a linear

recurrence that fits the time series exactly. The rank of an approximation to this matrix can be

considered as a user-choice which allows the user to trade-off accuracy versus complexity. From

another perspective we may consider an observed time series to be the sum of a deterministic series

plus noise. When embedded into a structured matrix the deterministic series is of low-complexity

(small rank), however the structured matrix of the observed series (which has been perturbed by

noise) is typically of full rank. Consequently to attempt to separate the noise from the deterministic

series we find a lower rank approximation of the observed structured matrix. HSLRA is an important

problem and has been applied in a number of areas. In some applications the true rank may be known

in advance. Examples include applications in time series analysis, systems and control, computer

algebra, signal processing, machine learning and computer vision, see [2], [3], [4], [5], and [6].
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2 J. W. GILLARD AND A. A. ZHIGLJAVSKY

There has been little work done which shows how to use weights in HSLRA. We wish to consider

time series where each observation has an allocated weight. This weight can be used for example

to denote an observation as ‘missing’, or to denote an observation as ‘important’ (representing

‘confidence’ in this observation) and warrants additional leverage upon the fitted model. We may

even wish to classify an observation as ‘exact’. For forecasting, we may wish to down-weigh points

at the start of the time series, and up-weigh the more recent observations towards the end of a time

series. The weighting may also be used as a tool for correcting an unintentional weighting which

has arisen from embedding the time series into a structured matrix. For example, suppose we embed

the time series of three observations (a, b, c) into the 2× 2 Hankel matrix

(
a b
b c

)
. Observations a

and c appear once whilst observation b appears twice, see Section 2 for the general case. This issue

has already been noted as a problem, the unintended consequences of which have been described in

[7], [8], [9], and [10].

The paper has the following structure. We formally introduce the problem considered in this paper

in Section 2 and also state the main result. Low-rank approximations of matrices are described

in Section 3. In Section 4 we describe how to relate vector and matrix norms and we provide a

numerical algorithm in Section 5. An example of how the material developed in Sections 4 and 5

can be used to develop methodology for modelling in time series, namely for imputing missing

values and forecasting is given in Section 6. A number of examples are given in Section 7.

2. NOTATION, PROBLEM STATEMENT, AND THE MAIN RESULT

2.1. Notation

The following list contains the main notation used in this paper.

N,L,K, r Positive integers with 1≤r≤L≤K<N, N=L+K
R

N+1 Set of vectors Y = (y0, y1, . . . , yN )T of length N + 1
R

u×v Set of all real-valued u× v matrices, for some positive u and v
M

>
u Set of all symmetric positive definite matrices of size u× u

H Set of all Hankel matrices of size (L+1)×(K+1)
Mr Set of all (L+1)×(K+1) matrices of rank ≤ r
L≤r ⊂ R

N+1 The set of vectors in R
N+1 satisfying a linear recurrence relation of order ≤ r

A = Mr ∩H Set of all (L+1)×(K+1) Hankel matrices of rank ≤ r
Y = (y0, . . . , yN )T Given vector in R

N+1

X = H(Y ) ∈ H Hankel matrix associated with Y

2.2. Problem statement

Assume we are given a vector Y = (y0, . . . , yN )T ∈ R
N+1. The problem we consider is

ρ(S, Y ) → min
S∈L≤r

(1)

where ρ(·, ·) is a distance on R
(N+1) × R

(N+1) and L≤r ⊂ R
N+1 is the set of vectors in R

N+1 which

satisfy a linear recurrence relation (LRR) of order ≤ r; we say that a vector S = (s0, . . . , sN )T

satisfies an LRR of order ≤ r if

sn = a1sn−1 + . . .+ arsn−r, for all n = r, r + 1, . . . , N , (2)

where a1, . . . , ar are some real numbers with ar ̸= 0. The model (2) includes, as a special case, the

model of a sum of exponentially damped sinusoids:

sn =

q∑

ℓ=1

aℓ exp (dℓn) sin (2πωℓn+ ϕℓ), n = 0, . . . , N , (3)

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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WEIGHTED NORMS IN SUBSPACE-BASED METHODS FOR TIME SERIES ANALYSIS 3

where typically q = r/2, see for example [11], [12] or [13] .

A solution to problem (1) would yield a representation of the observed data Y = (y0, . . . , yN )T

in the form

yn = sn + εn, n = 0, . . . , N,

where S = (s0, s1, . . . , sN )T ∈ R
N+1 is an unobserved signal satisfying the model (2) and

(ε0, ε1, . . . , εN )T is a vector of noise, where εn are not necessarily i.i.d.r.v.

The optimization problem (1) can be equivalently formulated as a matrix optimization problem,

where vectors in (1) are represented by (L+1)×(K+1) Hankel matrices. With a vector

Z = (z0, z1, . . . , zN )T of size N + 1 and given L < N we associate an (L+1)×(K+1) Hankel

matrix

XZ =




z0 z1 · · · zK
z1 z2 · · · zK+1

...
...

...
...

zL zL+1 · · · zN


 ∈ H ,

where K = N − L. We also write this matrix as XZ = H(Z) and note that H makes a one-to-one

correspondence between the spaces R
N+1 and H so that for any matrix X ∈ H we may uniquely

define Z = H
−1(X) with X = H(Z).

The matrix version of the optimization problem (1) can now be written as

d(X,XY ) → min
X∈A

(4)

where d(·, ·) is a distance on R
(L+1)×(K+1) × R

(L+1)×(K+1) and A is the set of all (L+1)×(K+1)
Hankel matrices of rank ≤ r. The optimization problem (4) is the general problem of Hankel

structured low-rank approximation (HSLRA).

The optimization problems (1) and (4) are equivalent if the distance functions ρ(·, ·) in (1) and

d(·, ·) in (4) are such that

ρ(Z,Z ′) = c · d(H(Z),H(Z ′)) (5)

for Z,Z ′ ∈ R
N+1, where c > 0 is arbitrary. It can be assumed that c = 1 without loss of generality.

Natural approaches for solving the initial optimization problem (4) would use global optimization

techniques for optimizing parameters in either representation (2) or (3). In the case of (2), the

parameters are the coefficients of the LRR: a1, . . . , ar, and the initial values s0, . . . , sr−1. If we

were to use (3) then the set of parameters is {(aℓ, dℓ, ωℓ, ϕℓ), ℓ = 1, . . . , q}. In both cases, the

parametric optimization problem is extremely difficult with multi-extremality and large Lipschitz

constants of the objective functions [14]. The number of local minima is known to increase linearly

with the number of observations. Many of the existing algorithms depend on local optimization

based algorithms and do not move significantly from a starting point, see [12], [15], and [16].

The difficulty of solving parametric versions of (1) is well understood and that is the reason why

HSLRA described by (4), the equivalent matrix formulation of (1), is almost always considered

instead of (1). As already stated, there is little work in the literature describing how to use weights

in HSLRA. However, some recent work has commented that even unstructured weighted low-rank

approximation is difficult, see [9].

The standard choice of the distance d(·, ·) in the HSLRA problem (4) is d(X,X′) = ∥X−X′∥F ,

where ∥ · ∥F is the Frobenius norm. The primary reason for this choice is the availability of the

singular value decomposition (SVD) which is considered in Section 3 and constitutes the essential

part of many algorithms attempting to solve the HSLRA problem (4). One of the most popular

methods is given in Section 6 (see (24)).

However, if the distance d(X,X′) in (4) is d(X,X′) = ∥X−X′∥F then the distance ρ in (1)

takes a particular form. In this case,

d2(H(Z),H(Z ′)) = ∥XZ −XZ′∥2F =

N∑

n=0

κn(zn − z′n)
2 , (6)

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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4 J. W. GILLARD AND A. A. ZHIGLJAVSKY

where

κn =





n+ 1, if 0 ≤ n < L ,
L+ 1, if L ≤ n ≤ N − L ,
N + 1− n, if N − L < n ≤ N .

(7)

One would prefer to define the distance function ρ(·, ·) in (1) and acquire the distance d(·, ·) for

(4) from (5), rather than vice-versa, which is a common practice. Different distances ρ(·, ·) can be

used and may be desired. There is one serious problem, however, related to the complexity of the

resulting HSLRA problem (4). If d(·, ·) is defined by the Frobenius norm then the HSLRA problem

(4), despite being difficult, is still considered as solvable since there is a very special tool available

at intermediate stages, the SVD. If d(·, ·) does not allow the use of SVD or similar tools then the

HSLRA problem (4) becomes practically unsolvable (except, of course, for some very simple cases).

The purpose of this paper is to extend the choice of the norms that define distances in (4) and (1)

preserving the availability of the SVD. These norms allow the construction of exactly the same

algorithms that can be constructed for the Frobenius norm and, since the family of the norms

considered is rather wide, we will be able to exactly or approximately match any given distance in

(1). More precisely, we will consider the class of distances in (1) of the form ρ(Z,Z ′) = ∥Z − Z ′∥W
with

∥Z∥2W = ZTWZ =

N∑

n=0

wnz
2
n , (8)

where Z = (z0, . . . , zN )T ∈ R
N+1 and W = diag(W ) ∈ M

>
N+1 with diagonal W =

(w0, w1, . . . , wN )T , wn > 0 for all n = 0, 1, . . . , N . The class of distances in (4) considered

in this paper has the form d(X,X′) = ||X−X′||Q,R with

||X||2Q,R = TraceQXRXT , (9)

where Q ∈ M
>
L+1 and R ∈ M

>
K+1 are diagonal positive definite matrices. That is Q = diag(Q),

R = diag(R) where Q = (q0, q1, . . . , qL)
T , and R = (r0, r1, . . . , rK)T . We will call this norm the

(Q,R)-norm. Note that if Q and R are identity matrices then (9) defines the Frobenius norm.

In Section 3 we will show that low-rank approximation problem in the (Q,R)-norm can be

reduced to the low-rank approximation problem in the Frobenius norm which is solved by applying

the SVD.

2.3. Relation between the weighted vector norm and the (Q,R)-norm

Theorem 1. Consider the matrix norm (9) for a Hankel matrix XZ = H(Z), where Z ∈ R
N+1

is arbitrary. Assume that the matrices Q and R in (9) are diagonal; that is, Q = diag(Q) and

R = diag(R), where Q = (q0, q1, . . . , qL)
T ∈ R

L+1 and R = (r0, r1, . . . , rK)T ∈ R
K+1. Then

||XZ ||2Q,R = ||Z||2W = ZTWZ , (10)

where W = diag(W ) and the vector W = (w0, . . . , wN )T ∈ R
N+1 is the convolution of the vectors

Q and R; that is,

W = Q ⋆ R (11)

or, equivalently,

wn =

min{n,L}∑

l=max{0,n−K}

qlrn−l =

min{n,K}∑

k=max{0,n−L}

qn−krk ; n = 0, 1, . . . , N . (12)

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
Prepared using nlaauth.cls DOI: 10.1002/nla



WEIGHTED NORMS IN SUBSPACE-BASED METHODS FOR TIME SERIES ANALYSIS 5

Proof. Consider the norm ||XZ ||2Q,R with XZ = H(Z) (so that xl,k = zl+k for l = 0, . . . , L and

k = 0, . . . ,K), Q = diag(Q) and R = diag(R). We have

||XZ ||2Q,R = TraceQXZRXT
Z =

L∑

l=0

K∑

k=0

qlxl,krkxl,k =

L∑

l=0

K∑

k=0

qlrkz
2
l+k (13)

If in the rhs of (13) we set n = k + l, change the summation index k to n, change the order of

summation (with respect to l and n) and equate the coefficients with z2n in the rhs of (13) and the

rhs of (8), then we obtain the first equality in (12). Similarly, we obtain the second equality in (12)

if we change the summation index l to n in the rhs of (13). ✷

Equations (12) and (5) imply the following relation between the distances associated with the

norms (8) and (9) which respectively appear in (1) and (4) for diagonal Q, R and W:

ρW(S, Y ) = ||S − Y ||W = ∥XS −XY ||Q,R = dQ,R(XS ,XY ) .

2.4. Different forms for computing the convolution Q ⋆ R

We now give two different forms for expressing the convolution Q ⋆ R in Theorem 1 and provide a

generating function based expression for the convolution equation W = Q ⋆ R.

• Let CQ ∈ R
(N+1)×(K+1) and CR ∈ R

(N+1)×(L+1) be two matrices defined by

CQ =




q0 0 · · · 0
... q0

. . .
...

qL
...

. . . 0
0 qL q0
...

. . .
. . .

...

0 · · · 0 qL




, CR =




r0 0 · · · 0
... r0

. . .
...

rK
...

. . . 0
0 rK r0
...

. . .
. . .

...

0 · · · 0 rK




. (14)

Then it follows from (12) that

W = CQR = CRQ . (15)

• Define ql = 0 for l = −1,−2, . . . and l = L+ 1, L+ 2, . . .. Also, define rk = 0 for k =
−1,−2, . . . and k = K + 1,K + 2, . . .. Then the convolution equations (12) can be written

simpler as

wn =
∑L

l=0
qlrn−l =

∑K

k=0
qn−krk , n = 0, 1, . . . , N . (16)

• Define the generating functions of the sequences Q, R and W :

Q(t) =

L∑

l=0

qlt
l , R(t) =

K∑

k=0

rkt
k , W (t) =

N∑

n=0

wnt
n . (17)

Then the convolution equation W = Q ⋆ R is equivalent to the equality

W (t) = Q(t)R(t) for all t ∈ R. (18)

3. LOW-RANK APPROXIMATIONS

In Section 3.1 below we describe a classic result of finding optimal rank r approximations to given

matrices in the Frobenius norm, which is the unstructured low-rank approximation problem. Then

in Section 3.2 we show how to construct optimal rank r approximations in the (Q,R) norm.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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6 J. W. GILLARD AND A. A. ZHIGLJAVSKY

3.1. Low-rank approximation in the Frobenius norm.

Let A be a real matrix of size (L+ 1)× (K + 1) with L ≤ K. The singular value decomposition

(SVD) of A is a factorization of the form A = UΣVT , where U and V are real matrices of sizes

(L+ 1)× (L+ 1) and (K + 1)× (K + 1) respectively and Σ is a (L+ 1)× (K + 1) matrix with

real numbers on the diagonal. The numbers Σi,i = σi (i = 0, . . . , L) are called the singular values

of A and are assumed to be arranged in the order of descent so that σ0 ≥ σ1 ≥ . . . ≥ σL.

Lemma 1. (Low-rank approximation of A in the Frobenius norm [17]) Let A ∈ R
(L+1)×(K+1)

be a given matrix and let Σ(r) be a matrix of size (L+ 1)× (K + 1) with elements

Σ
(r)
i,j =

{
σi if 0 ≤ i ≤ r and j = i
0 otherwise.

Then the solution to the low-rank approximation problem

||A−B||2F → min
B:rank(B)≤r

is given by the matrix

A(r) = UΣ(r)VT = argmin
B:rank(B)≤r

||A−B||2F .

3.2. Low-rank approximation in the (Q,R)-norm.

Lemma 2. (Low-rank approximation of A in the (Q,R)-norm.) Consider the squared matrix norm

(9) for some given matrices A ∈ R
(L+1)×(K+1), Q ∈ M

>
L+1 and R ∈ M

>
K+1.

Then the low-rank approximation problem

||A−B||2Q,R → min
B:rank(B)=r

(19)

is equivalent to the low-rank approximation problem

||Q1/2(A−B)R1/2||2F → min
B:rank(B)=r

. (20)

Proof. By the definition of the (Q,R) norm (9),

||A−B||2Q,R = TraceQ(A−B)R(A−B)T = TraceQ1/2(A−B)R1/2(Q1/2(A−B)R1/2)T

= ||Q1/2(A−B)R1/2||2F .

✷

Theorem 2. (Solution of the low-rank approximation problem (19)) Consider the squared

matrix norm (9) for some given matrices A ∈ R
(L+1)×(K+1), Q ∈ M

>
L+1 and R ∈ M

>
K+1. Let

Ã = Q1/2AR1/2 and let Ã = ŨΣ̃(r)ṼT be the rank r approximation of Ã as given by Lemma

1. Then the (globally optimal) solution to (20) is given by Â = ÛΣ̂(r)V̂T where Û = (Q1/2)−1Ũ,

V̂ = (R1/2)−1Ṽ, and Σ̂(r) = Σ̃(r).
Proof. Follows directly from Lemmas 1 and 2, see also [18]. ✷

Note that as Q and R are assumed to be symmetric positive definite matrices then Q1/2 and R1/2

always exist, as do their inverses.

4. CONSTRUCTING Q AND R SUCH THAT W = Q ⋆ R

In view of the equivalence of (10) and (11) and the fact that the weight vector W of the vector norm√
Y TWY is assumed to be given, the main problem now is to find vectors Q and R such that the

convolution W = Q ⋆ R holds either exactly or approximately.

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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WEIGHTED NORMS IN SUBSPACE-BASED METHODS FOR TIME SERIES ANALYSIS 7

4.1. Solving W = Q ⋆ R exactly

In this section, we assume that the vector W = (w0, w1, . . . , wN )T with non-negative entries wn is

given and we need to find conditions on W , L and K so that we can decompose W as a convolution

W = Q ⋆ R, where Q ∈ R
L+1 and R ∈ R

K+1. Ideally, both vectors, Q and R, should have positive

entries in which case the expression (9) defines a proper norm.

Our key reference point will be equation (18) for the generating functions W (t), Q(t) and R(t).
These generating functions defined in (17) are polynomials of degrees N , L and K = N − L
correspondingly.

If we would allow negative entries for the vectors Q and R, then the answer to the main

question of the existence of Q and R so that W = Q ⋆ R is very simple for any W . If the function

W (t) =
∏N

n=0(t− tn) has at least one real root, then the decomposition W (t) = Q(t)R(t) can be

done in a number of different ways for any L < N . If, however, N is even and all the roots of

W (t) are complex then L (and hence K) must be even (in this case, for odd L the decomposition

W = Q ⋆ R is impossible).

To extend this simple observation, the answer to the main question of the existence of Q and

R so that W = Q ⋆ R, remains to be generally positive if we only allow one of the two vectors

(either Q or R) to have negative entries. The answer depends on how many real roots the generating

function W (t) has. More precisely, according to [1], if a polynomial has non-negative coefficients

and some complex roots, then one can always find a pair of conjugate complex roots so that after

factoring the corresponding second-degree polynomial out of the original one, the coefficients

of the remaining polynomial stay non-negative. In our notation this reads as follows. If W (t)
has non-negative coefficients and p pairs of conjugate complex roots, then we can always find a

representation W (t) = Q(t)R(t), where Q(t) has even degree L ≤ 2p and all the coefficients of

R(t) are non-negative.

4.2. Assumption of non-negativity for all components of Q and R

It is more difficult to answer the question of whether Q and R exist such that W = Q ⋆ R if we

require the non-negativity for all components of Q and R.

4.2.1. W = (1, 1, . . . , 1)T In this section we assume W = (1, 1, . . . , 1)T so that

W (t) = 1 + t+ t2 + . . .+ tN = (1− tN+1)/(1− t) .

The n-th cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial

with integer coefficients, which is a divisor of 1− xn and is not a divisor of 1− xk for any k < n.
Its roots are the n-th primitive roots of unity e2iπk/n, where k runs over the integers smaller than n
and co-prime to n. In other words, the n-th cyclotomic polynomial is equal to

Φn(x) =
∏

1≤k≤n, gcd(k,n)=1

(
x− e2iπk/n

)

If W (t) = Q(t)R(t), where Q(t) and R(t) are polynomials with non-negative coefficients of

degree L and K correspondingly, then we can always assume that L ≤ K,

Q(t) = 1 + a1t+ a2t
2 + . . .+ aL−1t

L−1 + tL and R(t) = 1 + b1t+ . . .+ bK−1t
K−1 + tK ,

where al, bk ∈ {0, 1}, for l = 1, . . . , L and bk ∈ {0, 1} for k = 1, . . . ,K.

Since al, bk ∈ {0, 1} and for 1 < L ≤ K not all these coefficients are 1, we deduce that there

are no solutions of the equation W (t) = Q(t)R(t) where all coefficients are positive. There are,

however, many combinations of N and L when there are solutions of the equation W (t) = Q(t)R(t)
where all coefficients are non-negative.

All cyclotomic polynomials are palindromic and hence the polynomials Q(t) and R(t) are

palindromic too; this means al = aL−l for all l = 1, . . . , L and bk = bK−k for all k = 1, . . . ,K.
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If N is not very large then with the help of these relations we can enumerate all solutions of the

equation W (t) = Q(t)R(t), if these solutions exist.

In general, it does not seem to be possible to enumerate all combinations of N and L where

solutions to the equation W (t) = Q(t)R(t) exist, where all coefficients of the polynomials are non-

negative. In the examples below we consider some particular cases where the existence of solutions

of the equation W (t) = Q(t)R(t) can be established easily. At the end of this section we provide a

table of all combinations of L and N (with N < 50) such that this solution exists.

Example 1. Assume that N + 1 is divisible by L+ 1. In this case, A = (N + 1)/(L+ 1)− 1 is

an integer which gives us K = N − L = A(L+ 1) and

1 + t+ t2 + . . .+ tN = (1 + t+ t2 + . . .+ tL) · (1 + tL+1 + t2(L+1) + . . .+ tA(L+1))

This corresponds to the equality W = Q ⋆ R with Q = (1, 1, . . . , 1)T ∈ R
L+1 and R =

(r1, . . . , rK)T such that

rk =

{
1, if k = j(L+ 1); j = 0, 1, . . . , A,
0, otherwise .

Similarly, let N + 1 be divisible by K + 1 and set B = (N + 1)/(K + 1)− 1. In this case,

L = B(K + 1) and

1 + t+ t2 + . . .+ tN = (1 + t+ t2 + . . .+ tK) · (1 + tK+1 + t2(K+1) + . . .+ tB(K+1)) .

This corresponds to the equality W = Q ⋆ R with R = (1, 1, . . . , 1)T ∈ R
K+1 and Q =

(q1, . . . , qL)
T such that

ql =

{
1, if l = j(K + 1); j = 0, 1, . . . , B,
0, otherwise .

Example 2. For some particular values of N , L and K there are several choices of Q and

R with non-negative coefficients so that W = Q ⋆ R. Indeed, let N = 11, L = 3, K = 8, W =
(1, 1, . . . , 1)T . We have

1 + t+ t2 + . . .+ t11 = (1 + t+ t2 + t3)(1 + t4 + t8) = (1 + t3)(1 + t+ t2 + t6 + t7 + t8) .

This implies that W = Q ⋆ R with

{QT , RT } =





{(1, 1, 1, 1), (1, 0, 0, 0, 1, 0, 0, 0, 1)}
or

{(1, 0, 0, 1), (1, 1, 1, 0, 0, 0, 1, 1, 1)}

From Example 1 we observe that if N + 1 is composite then we can always find vectors Q and

R with non-negative coefficients providing the convolution W = Q ⋆ R. On the contrary, if N + 1
is prime then, as we see in the next example, there are no vectors Q and R providing W = Q ⋆ R.

Example 3. If L > 1, K > 1 and N + 1 = p is prime then there are no vectors Q and R with

non-negative coefficients providing the convolution W = Q ⋆ R.

The roots of W (t) are

tm,N = exp{2πmI/p} = cos(2πm/p) + I sin(2πm/p) , m = 1, 2, . . . , N .

All roots are complex and there are N/2 pairs of conjugate roots {tm,N , tp−m,N} (m = 1, . . . , N/2)

so that W (t) =
∏N/2

m=1 Pm(t), where

Pm(t) = (t− tm,N )(t− tp−m,N ) = 1− 2t cos(2πm/p) + t2 .
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Prepared using nlaauth.cls DOI: 10.1002/nla



WEIGHTED NORMS IN SUBSPACE-BASED METHODS FOR TIME SERIES ANALYSIS 9

The polynomial Q(t), therefore, is a product of L/2 polynomials Pm(t), where m belongs to

IL = {m1, . . . ,mL/2}, a subset of {1, . . . , N/2} containing L/2 different numbers ≤ N/2.

It is known that Q(t) has the form Q(t) = 1 + a1t+ . . .+ tL, where a1 ∈ {0, 1}. The term t in

the product Q(t) =
∏

m∈IL
Pm(t) has the coefficient

A1 = −2
∑

mi∈IL

cos(2πmi/p) .

Since p is a prime number, all numbers cos(2πm/p) (m = 1, . . . , N/2) are irrational and are linearly

independent over the set of rational numbers. This implies that A1 cannot possibly be any rational

number, including 0 and 1/2. This makes a contradiction with the existence of the vectors Q and R
with non-negative coefficients providing the convolution W = Q ⋆ R.

The pairs [L,N ] such that the solution to W = Q ⋆ R exists Below we provide all the pairs

[L+ 1, N + 1] with N < 50 so that the solution to W = Q ⋆ R exists for some Q and R. We provide

the pairs [L+ 1, N + 1] rather than [L,N ] as it is easier to see the divisibility properties of N + 1.

The list of these pairs (ordered with respect to the value of L) is:

[2, 4], [2, 6], [2, 8], [2, 10], [2, 12], [2, 14], [2, 16], [2, 18], [2, 20], [2, 22], [2, 24], [2, 26], [2, 28], [2, 30],
[2, 32], [2, 34], [2, 36], [2, 38], [2, 40], [2, 42], [2, 44], [2, 46], [2, 48], [2, 50], [3, 6], [3, 8], [3, 9], [3, 12],
[3, 15], [3, 16], [3, 18], [3, 20], [3, 21], [3, 24], [3, 27], [3, 28], [3, 30], [3, 32], [3, 33], [3, 36], [3, 39], [3, 40],
[3, 42], [3, 44], [3, 45], [3, 48], [4, 8], [4, 12], [4, 16], [4, 18], [4, 20], [4, 24], [4, 28], [4, 30], [4, 32], [4, 36],
[4, 40], [4, 42], [4, 44], [4, 48], [5, 10], [5, 12], [5, 15], [5, 16], [5, 18], [5, 20], [5, 24], [5, 25], [5, 30], [5, 32],
[5, 35], [5, 36], [5, 40], [5, 42], [5, 45], [5, 48], [5, 50], [6, 12], [6, 16], [6, 18], [6, 20], [6, 24], [6, 30], [6, 32],
[6, 36], [6, 40], [6, 42], [6, 48], [6, 50], [7, 14], [7, 16], [7, 18], [7, 21], [7, 24], [7, 27], [7, 28], [7, 32], [7, 35],
[7, 36], [7, 40], [7, 42], [7, 45], [7, 48], [7, 49], [8, 16], [8, 24], [8, 28], [8, 32], [8, 36], [8, 40], [8, 42], [8, 48],
[9, 18], [9, 20], [9, 24], [9, 27], [9, 30], [9, 32], [9, 36], [9, 40], [9, 45], [9, 48], [9, 50], [10, 20], [10, 24], [10, 30],
[10, 32], [10, 36], [10, 40], [10, 48], [10, 50], [11, 22], [11, 24], [11, 30], [11, 32], [11, 33], [11, 36], [11, 40],
[11, 44], [11, 45], [11, 48], [12, 24], [12, 32], [12, 36], [12, 40], [12, 44], [12, 48], [13, 26], [13, 28], [13, 30],
[13, 32], [13, 36], [13, 39], [13, 42], [13, 45], [13, 48], [14, 28], [14, 32], [14, 36], [14, 42], [14, 48], [15, 30],
[15, 32], [15, 36], [15, 40], [15, 42], [15, 45], [15, 48], [16, 32], [16, 36], [16, 40], [16, 48], [17, 34], [17, 36],
[17, 40], [17, 48], [18, 36], [18, 40], [18, 48], [19, 38], [19, 40], [19, 42], [19, 48], [20, 40], [20, 48], [21, 42],
[21, 44], [21, 48], [21, 50], [22, 44], [22, 48], [23, 46], [23, 48], [24, 48], [25, 50].

4.2.2. W = (1, β, . . . , βN )T with β ̸= 0 This case is very similar to the case when W is the

vector (1, 1, . . . , 1)T ; the case considered in the previous subsection. In this case, the generating

function of W = (1, β, . . . , βN )T is W (t) =
∑N

n=0 β
ntn = W̃ (βt), where W̃ (t) =

∑N
n=0 t

n is

the generating function of W̃ = (1, 1, . . . , 1)T ∈ R
N+1. Consequently, if W̃ = (1, 1, . . . , 1)T =

Q̃ ⋆ R̃ for some Q̃ = (q̃0, q̃1, . . . , q̃L)
T and R̃ = (r̃0, r̃1, . . . , r̃K)T then W = Q ⋆ R for Q =

(q̃0, βq̃1, . . . , β
Lq̃L)

T and R = (r̃0, βr̃1, . . . , β
K r̃K)T . The practical application of the weight vector

W = (1, β, . . . , βN )T can be related to long time series which we wish to forecast, putting more

weight on the latest observations.

5. NUMERICAL METHODS FOR SOLVING W ≃ Q ⋆ R

As mentioned above, the equation W ≃ Q ⋆ R with respect to Q and R can easily be solved if there

are no constraints on the elements of Q and R. However, as Q and R have to define the norm (9),

all elements of Q and R have to be positive. Let α (the lower bound on the values of elements of Q
and R) be fixed, 0 < α < 1, and we will seek for Q̂ and R̂ such that

(Q̂α, R̂α) = argmin
Q∈Qα, R∈Rα

∥W −Q ⋆ R∥22 = argmin
Q∈Qα, R∈Rα

N∑

n=0


wn −

min{n,L}∑

l=max{0,n−K}

qlrn−l




2

.

(21)
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where

Qα =
{
Q = (q0, . . . , qL)

T ∈ R
L+1 such that qi ≥ α for all i = 0, . . . , L and q0 = 1

}
,

Rα =
{
R = (r0, . . . , rK)T ∈ R

K+1 such that ri ≥ α for all i = 0, . . . ,K
}
.

For fixed Q (or R) the optimization problem (21) is an example of a quadratic program with linear

constraints. Hence to solve (21) we suggest the following iterative algorithm:

{
Rs = argminR∈Rα

∥W −Qs−1 ⋆ R∥22
Qs = argminQ∈Qα

∥W −Q ⋆ Rs∥22
(22)

where s = 1, 2, . . . and Q0 ∈ Qα is an arbitrary starting vector. This algorithm is monotonic,

but the limiting point is not necessarily the global minimizer of (21). Repeated application of

(22) from a number of different starting points is recommended. Algorithm (22) stops if either

∥Qn−1 −Qn∥2
≤ ε for some n or the total number of iterations reaches some prescribed value.

Here ε > 0 is a small given tolerance. There are a number of possible solution methods for each

minimization in (22), and solvers exist in many popular programs. To solve (21) we use CVX, a

package for specifying and solving convex problems [19, 20].

5.1. Example A

We now consider a number of examples considering the performance of (22) and the complexity of

the optimization problem (21). In these examples considering (22) we will often report the quantities

Dist = ∥W − Q̂α ⋆ R̂α∥22 and Dev = max |W − Q̂α ⋆ R̂α| at the point of convergence (Q̂α, R̂α).
In all the examples that follow we run the algorithm (22) to solve (21) starting from 1000 random

Q0 until convergence. Each Q0 is independently sampled from a uniform distribution on [0, 1]L+1

normalized so that q0 = 1.

5.1.1. Examples where exact solutions to W = Q ⋆ R with non-negative Q and R exist

Example A1. Here we revisit Example 2 considered in Section 4.2. Let N = 11, L = 3, K = 8,

W = (1, 1, . . . , 1)T and α = 0. Table I contains the two solutions that were converged to from 1000

random starting points. Half of the runs of the algorithm converged to the first solution given in

Example 2 whilst the other half converged to the second solution. The problem becomes much

more difficult for larger N . This is demonstrated in the next example.

QT RT %
(1, 1, 1, 1) (1, 0, 0, 0, 1, 0, 0, 0, 1) 50%

(1, 0, 0, 1) (1, 1, 1, 0, 0, 0, 1, 1, 1) 50%

Table I. Two solutions converged to using (22) for example described with N = 11, L = 3, K = 8, W =

(1, 1, . . . , 1)T

Example A2. Let N = 143, L = 15, K = 128, W = (1, 1, . . . , 1)T and α = 0. There are four

possible (Q,R)-pairs providing the equality Q ⋆ R = W with non-negative Q and R. For brevity,

we only report the possible solutions for Q:

QT
(1) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

QT
(2) = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1),

QT
(3) = (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1),

QT
(4) = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1) .
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In this instance, the algorithm converges to QT
(1) for approximately 20% of the 1000 starting values.

It does not converge to any of the other solutions presented above, unless the algorithm is started

very ‘close’ to one of them. This suggests that the optimization problem given by (21) may be

multi-extremal and of complex structure. This issue is further discussed in the next example.

Figure 1 contains a plot of the distances ∥W −Qs ⋆ Rs∥22 against iteration s for six chosen starting

values. A histogram of Dist at the point of convergence for each of the 1000 random starting values

is also given. It can be seen that for the six randomly chosen starting values algorithm (22) converges

monotonically. Likewise, the majority of the solutions of (22) provide ‘small’ values of Dist.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Plot of distances by iteration for six starting values (b) Histogram

Figure 1. Plot of ∥W −Qs ⋆ Rs∥2
against iteration s for six randomly chosen starting values and histogram
of Dist at the point of convergence.

5.1.2. Minimization of ∥W −Q ⋆ R∥2 In the next three examples we assume α = 10−6. The

solution to W = Q ⋆ R with non-negative Q ∈ Qα and R ∈ Rα does not exist and we are seeking

for a solution to the minimization problem (21) which minimizes ∥W −Q ⋆ R∥2 .

Example A3. Let N = 5, L = 1 and W = (1, 1, 1, 1, 1)T . We use this simple example to consider

the complexity of the optimization problem (21). Figure 2 contains a three-dimensional plot and

contour plot of ∥W −Q ⋆ R∥
2

against Q = (q0, q1)
T for fixed R. The optimization problem (21) can

be seen to have many local minima with narrow region of attraction. Consequently we recommend

starting the algorithm (22) from a number of starting points. From experiments conducted, as L, K
and N increase, then so do the number of local minima of (21).

Example A4. Suppose N = 12, L = 3 and W = (1, 1, . . . , 1)T . Table II contains the two solutions

that were converged to from the 1000 random starting points. For most starting points used (95%)

of them, the algorithm converged to the first solution given. For the remaining starting values the

algorithm converged to the second solution. Also given in the table is the value Dist at the point of

convergence.

QT RT % Dist

(1, 0.7795, 0.7795, 1) (0.9233, 0.3571, α, α, 0.6763, 0.6763, α, α, 0.3571, 0.9233) 95% 0.1930

(1, 1.5481, 1.5481, 1) (0.9212, α, 0.2575, 0.5844, α, α, 0.5844, 0.2575, α, 0.9212) 5% 3.2110

Table II. Two solutions converged to for example with N = 12, L = 3, K = 9, W = (1, 1, . . . , 1)T

Example A5. Assume N = 59, L = 9. In this example we consider two weighting schemes

(Scheme 1 and Scheme 2), by which we mean we consider two possible selections of the vector W .
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Figure 2. Complexity of the optimization problem (21) with N = 5, L = 1, K = 4, W = (1, 1, . . . , 1)T .

Scheme 1: W = W1 = (w1,0, w1,1, . . . , w1,N )T such that w1,i = 1, i = 0, . . . , 51, and

w1,i = 0.2, i = 52, . . . , 59,

Scheme 2: W = W2 = (w2,0, w2,1, . . . , w2,N )T such that w2,i = 1.01i, i = 0, . . . , 51, and

w2,i = 0.2, i = 52, . . . , 59.

Similar weighting schemes will be used in subsequent sections.

Figure 3 plots Q̂α ⋆ R̂α obtained from solving (21) using (22) as described. Also plotted are the

weights given by Scheme 1 and Scheme 2. Given under each figure is the value Dist at the point of

convergence. For this example it can be seen that the algorithm (22) is able to adapt to non-standard

forms of the vector W . Similar forms will be investigated in examples that follow.
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(a) Scheme 1, W = W1. Dist = 0.0361.
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0

0.5

1
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2

(b) Scheme 2, W = W2. Dist = 0.1106.

Figure 3. Plot of Q̂α ⋆ R̂α obtained from solving (21) using (22). Approximation given by cross (×) and
original weights W given in solid line.

Example A6. In this example we fix W = (1, 1, . . . , 1)T , α = 0 and consider a number of different

L and K. Table III gives the values Dist, and Dev at the point of convergence from running

algorithm (22) as already described. Here it can be seen that if W = Q ⋆ R can be solved exactly,

then running the algorithm (22) from a number of starting points will routinely find the exact

solution. There are a number of cases where exact solutions do not exist, but the algorithm (22)

appears to provide a robust method of finding good approximations.
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L K Dist Dev
3 3 0.3333 0.3333

3 4 0.0000 0.0000

3 5 0.1295 0.1710

3 6 0.1691 0.2184

3 7 0.1149 0.1429

3 8 0.0000 0.0000

3 9 0.0960 0.1395

3 14 0.0000 0.0000

3 19 0.0542 0.0739

3 49 0.0231 0.0332

3 99 0.0148 0.0254

L K Dist Dev
4 4 0.3333 0.3333

4 9 0.1280 0.1609

4 19 0.0000 0.0000

4 49 0.0000 0.0000

4 99 0.0180 0.0318

9 9 0.3333 0.3333

9 49 0.0656 0.0903

9 99 0.0363 0.0589

19 49 0.1253 0.1169

19 99 0.0723 0.1071

49 99 0.1762 0.2160

Table III. Distances and maximum deviances of solutions to (21) obtained using (22) for different L and K

6. METHODOLOGY FOR TIME SERIES ANALYSIS

As an example of how we may use our results for the analysis of time series, consider the following

example of an algorithm which may be used for modelling time series. We expect that there are

other algorithms and application areas which could use the result of Theorem 1.

Let Y = (y0, . . . , yN )T ∈ R
N+1 be a given time series. We do not make any formal distinctions

between the problems of imputing missing data or forecasting. Informally we consider the problem

of forecasting to be imputing missing data located at the end of the time series. Hence we allow for

the possibility of Y to contain missing values which we would like to impute. In this case we set

the missing values to some initial values (such as the mean of the time series) and account for our

uncertainty of our initial values in our vector of weights W = (w0, w1, . . . , wN )T ∈ R
N+1.

The methodology we use in this paper consists of the following components:

Approximating the vector norm by the matrix norm Suppose we are given a vector of

weights W = (w0, w1, . . . , wN )T ∈ R
N+1. In order to find Q = diag(q0, q1, . . . , qL)

T and R =
diag(r0, r1, . . . , rK)T , so that we may approximate the vector norm (8) by (9), we solve the

optimization problem (21) as described in the previous section.

Low-rank approximation in the (Q,R) norm Suppose we have a given (L+ 1)× (K + 1)
matrix X = XY = H(Y ) and an integer r < L+ 1. Suppose that the matrices Q, R corresponding

to the given vector of weights W are known, as described in the previous paragraph.

Denote

π
(r)
(Q,R)(X) = argmin

B:rank(B)=r

||X−B||2Q,R .

The projection π
(r)
(Q,R)(X) may be computed by the use of Theorem 2 as given in Section 3.

Projection to the space of Hankel matrices in the (Q,R) norm Denote

πH
(Q,R)(X) = argmin

B:B∈H
||X−B||2Q,R . (23)

We can numerically solve the optimization problem (23) using standard convex optimization

routines. For some (Q,R) it is possible to write explicit solutions to (23).

For example, the closest Hankel matrix in Frobenius norm to any given matrix is obtained by using

the diagonal averaging procedure, see [21, Sect. 6.2]. Recall that every (L+ 1)× (K + 1) Hankel

matrix X ∈ H is in a one-to-one correspondence with some vector Y = (y0, . . . , yN )T . We associate

this one-to-one correspondence with the function H : R(N+1) → H(L+1)×(K+1). Each element of

the vector Y is repeated in X = H(Y ) several times. From (7) it can be seen that the value κn is the
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number of times the element yn of the vector Y is repeated in the Hankel matrix X = XY = H(Y ).
Let πH

(Q,R)(X) = πH(X) = denote the projection in Frobenius norm of X ∈ R
L×K onto the space

H. The element x̃ij of πH(X) is given by

x̃ij = κ−1
i+j−1

∑

l+k=i+j

xlk .

Other choices of (Q,R) which yield explicit solutions to (23) are described in [22] and [23].

These papers also consider the use of weights in similar problems to that considered in this paper.

We are now able to state our algorithm which we use in the next section.

Algorithm Set X0 = X = H(Y ). For n = 1, 2, . . .

Xn = πH
(Q,R)(π

(r)
(Q,R)(Xn−1)) . (24)

We make the following remarks. Iterations of (24) are known as the so-called Cadzow iterations

[24] if Q and R are identity matrices of dimension (L+ 1) and (K + 1) respectively. If these

iterations are performed until the matrix Xn is of rank r, then they are known to linearly converge

to a solution which can be renormalized to become a local optimum of (4), see [16].

By starting these iterations from a number of different starting points (akin to the multistart

approach used in global optimization, see for example [25]) then under some conditions these

iterations converge to the global optimum of (4), see [16]. One Cadzow iteration corresponds to

the basic version of the technique known as singular spectrum analysis (SSA), see [13, 21, 26] for

further discussion. These techniques (as well as some other classical techniques) are considered in

the next section.

7. EXAMPLES

In this section we first solely consider the optimization problem (21) described in Section 5. We

then consider two ‘real-life’ applications of algorithm (24) and compare our results to those which

have been published previously.

7.1. Example B: Missing data and fortified wine

To demonstrate the methods of filling in missing data, we consider a real-life time series which is

the monthly volumes of fortified wine sales observed in Australia from January 1980 until January

1990. The data can be found in a number of popular time series repositories, as well as [27]. A plot

of the time series is given in Figure 4(a). In this example we removed 12 known values, starting at

the 61st point, that is, we assume that the values for one year (January 1985 - December 1985) are

unknown. Also, to perform a forecast we add 12 missing data points at the end of the series.

The complete data, and the data with the missing sections is shown in Figure 4(b). This time

series was also studied in [21] where the authors recommend the selection of the parameters L = 36
and r = 11. Hence these are the parameters that will be used in this example.

We will investigate the following selection of the vector W . Let the vector of weights W be

constructed so that the missing values received a weight of 0.3, and all other values received a

weight of 1. We estimate Q and R using (22) with ε = 10−6, and then proceed to impute missing

data (and construct the forecast) using (24). We run algorithm (22) starting from 1000 random Q0

and set α = 0.1. We need an initial imputation for the missing values, and this is described later.

Table IV contains the square root of the mean square error (MSE) of our approximations from

the true values of the time series. The table gives these values separately for the missing middle

section of the data, the forecasted end section of the data, and for the entire time series for weighing

schemes W . Our algorithm requires the missing data to be initially imputed using some starting

values. Table IV contains the square root of the MSEs when the starting values are (i) the mean of
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Figure 4. Monthly volumes of fortified wine sales in Australia from January 1980 until January 1990

the entire observed series, (ii) the output from one iteration of our algorithm (22) obtained using the

mean as the starting values and so on. Here we repeatedly update the starting values based on the

previous approximation. We stop after five updates of the starting values as no significant subsequent

improvement was found. These results are an improvement over those reported in [21], who give the

values 221.2, 333.0 and 282.7 for the middle section of the data, the forecasted end section of the

data and for the entire time series, respectively, using the same choice of L and r. Figure 5 contains

Starting values Middle End Total

Mean 416.0 550.5 303.7

One iteration 281.4 377.4 242.3

Two iterations 236.7 301.7 222.9

Five iterations 220.3 287.4 217.7

Table IV. Square root of the MSEs of our approximations from the true values of the time series, using
different starting values.

plots of the observed data with approximations found from different starting values, corresponding

to those described in Table IV for weighting scheme W .

7.2. Example C: Simulated example

We now consider a simulated example. Suppose we observe Y = (y0, . . . , yN )T in the form

yn = sn + εn, n = 0, . . . , N with N = 99 (that is, we consider 100 observations) where elements

of S = (s0, . . . , sN )T are such that sn = sin(0.04n) sin(0.4πn). We take {εn} to be a series of

normally distributed i.i.d. random variables with standard deviation selected to be 0.25. Figure 6

contains a plot of S and Y for one realization of {εn}.

In this example we suppose that we wish to forecast the final ten observations of Y . We do this

by truncating the series to the first 90 observations and forecast the remaining ten observations. The

aim of this study is to improve the result of an initial forecast (in a sense defined below). Specifically

we conduct the following exercise with L+ 1 = 20 and r = 4:

• We generate 100 realizations of the time series Y . For each realization we produce an

initial forecast of the remaining ten observations from the truncated series (y0, . . . , yN−10)
T ,

using one iteration of (24) with Q and R taken to be identity matrices. Specifically, we

construct the forecast using SSA which was described in Section 6. Denote the forecast by

(ỹN−9, . . . , ỹN )T
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Figure 5. Monthly volumes of fortified wine sales in Australia from January 1980 until January 1990,
observed data in dashed line, approximation in solid line for weighting scheme W .
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Figure 6. Plot of S and Y for one realization of {εn} with sn = sin(0.04n) sin(0.4πn).

• For each realization we form X = H(y0, . . . , yN−10, ỹN−9, . . . , ỹN ) and use algorithm (24)

with Q and R computed using (22) corresponding to a given W (described below) with

ε = 10−6, starting from 1000 random Q0 and set α = 0.1.

We consider two versions of the vector W :
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W1: Take W = W1 = (w1,0, w1,1, . . . , w1,N )T such that w1,i = 1 for i = 0, . . . , N − 10, and

w1,i = a+ bi for i = N − 9, . . . , N where a and b define the line such that w1,N−10 = 1 and

w1,N+1 = 0. A figure of this weighting scheme is given in Figure 7(a).

W2: Take W = W2 = (w2,0, w2,1, . . . , w2,N )T such that w2,i = βi, i = 0, . . . , N − 10 with β =
1.01, and w2,i = a+ bi for i = N − 9, . . . , N where a and b define the line such that

w2,N−10 = βN−10 and w2,N+1 = 0. A figure of this weighting scheme is given in Figure

7(b).
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(d) W = W2 with example fit

Figure 7. Plot of W1 and W2 with example fits.

Table V contains the mean absolute errors (MAE) and mean square errors (MSE) of the ten

forecasted observations averaged over the 100 simulated realizations of Y , for the two possible

vectors W1 and W2. Results are given for the forecasts generated by (i) taking the initial forecasts

from SSA (as described above), (ii) performing one iteration of algorithm (24) with Q and R

computed using (22) using the initial forecast from SSA, and (iii) performing iterations of algorithm

(24) with Q and R computed using (22) using the initial forecast from SSA until the solution is of

rank r.

In summary, we note the following. Use of weights always improved the initial forecasts

generated. It appears that weights given by W = W2 has resulted in better forecasts (in the sense of

smaller MAE and MSE). Additionally for this example the forecast from the rank r solution (found

by performing iterations of algorithm (24) until the solution is of rank r) has resulted in better

forecasts. This is likely to be due to the fact that the rank of the matrix obtained from the noise-free

vector S is of rank 4, and in this case, where there is a clear model of this rank, methods which

yield matrices which approximate this rank more closely are likely to be more accurate. In most

real, practical examples however, the rank is unknown. This was the case in the previous example

as well as in the next example that follows. To give an idea of the size of the MAE and MSE values
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MAE (i) MSE (i) MAE (ii) MSE (ii) MAE (iii) MSE (iii)

W1 0.245 (0.133) 0.282 (0.152) 0.233 (0.106) 0.270 (0.121) 0.242 (0.075) 0.262 (0.085)

W2 0.245 (0.133) 0.282 (0.152) 0.222 (0.128) 0.256 (0.122) 0.190 (0.038) 0.215 (0.044)

Table V. Mean absolute errors (MAE) and mean square errors (MSE) of the ten forecasted observations
averaged over the 100 simulated realizations of Y . Standard deviations given in brackets. Results for
forecasts generated by (i) taking the initial forecasts from SSA, (ii) performing one iteration of algorithm
(24) with Q and R computed using (22) corresponding to the given W using the initial forecast from (i),
and (iii) performing iterations of algorithm (24) with Q and R computed using (22) corresponding to the

given W using the initial forecast from (i) until the solution is of rank r.

reported, they are 0.26011 and 0.28914 averaged over 100 simulations, if the forecast was set to be

the mean of the series. A dependent samples t-test suggests that the forecasts obtained by taking

W = W2 are superior to those obtained by taking W = W1, with p-value p < 0.01.

7.3. Example D: Forecasting deaths

In this section we consider forecasting the famous ‘death’ series recording the monthly accidental

deaths in the USA between 1973 and 1978. This data has been studied by many authors (such as

[21]) and can be found in a number of time series data libraries. We use the same parameters as

those given by [28]. We wish to replicate the exercise given in [29] which aimed to forecast the

final six values of this series. The time series contains a total of N = 78 observations. We truncate

the series to the first 72 observations and will forecast the remaining six observations. In a similar

manner to the previous example, we will take an initial forecast and aim to improve it.

Table VI contains forecasts of the final six data points of the data series by several methods along

with the square root of the mean square error (MSE) and mean absolute error (MAE). These results

are taken from [29] and full details of the fitted models can be found within. In summary Model I

and Model II are examples of SARIMA models as described by [30]. Model I is given by

yn − yn−12 = 28.831 + (1− 0.478B)(1− 0.588B12)Zn ,

and Model II is given by

(1−B)(1−B12)yn = 28.831 + Zn − 0.596Zn−1 − 0.407Zn−6 − 0.685Zn−12 + 0.460Zn−13 ,

where Zn is a realisation of white noise with zero mean and variance 0.9439 and B is the backward

shift operator defined as: BjZn = Zn−j . HWS represents the model as fitted by the Holt-Winter

seasonal algorithm. ARAR represents the model as fitted by transforming the data prior to fitting an

autoregressive model. Additionally from [28] is the SSA forecast with L = 24 and r = 12. These are

the parameter values we also select for (24), further details are given later. SSA has been described

briefly in Section 6.

1 2 3 4 5 6
√
MSE MAE

Original data 7798 7406 8363 8460 9217 9316

Model I 8441 7704 8549 8885 9843 10279 582.63 524

Model II 8345 7619 8356 8742 9795 10179 500.50 415

HWS 8039 7077 7750 7941 8824 9329 401.26 351

ARAR 8168 7196 7982 8284 9144 9465 253.20 227

SSA 7782 7428 7804 8081 9302 9333 278.20 180

Table VI. Forecasted data using four different models, along with the square root of the mean square error
(MSE) and mean absolute error (MAE) of the forecast.

As a demonstration of the potential of the methodology described in previous sections, we

consider the following set-up. Let us suppose that we wish to forecast ahead 6 data points akin

to the exercise described in [29]. Specifically we would like to improve the forecasts given in Table

VI. We consider the following two weighting schemes, that is, values for W :
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W1: Take W = W1 = (w1,0, w1,1, . . . , w1,N )T such that w1,i = 1 for i = 0, . . . , N − 6, and w1,i =
a+ bi for i = N − 6, . . . , N where a and b define the line such that w1,N−6 = 1 and w1,N+1 =
0.

W2: Take W = W2 = (w2,0, w2,1, . . . , w2,N )T such that w2,i = βi, i = 0, . . . , N − 6 with β =
1.01, and w2,i = a+ bi for i = N − 9, . . . , N where a and b define the line such that

w2,N−6 = βN−6 and w1,N+1 = 0.

Tables VII and VIII contain the forecasted data using different sets of starting values provided by

Table VI (in an identical manner to that as described in the previous example) for each of the two

weighting schemes considered. We run algorithm (22) starting from 1000 random Q0 with ε = 10−6

and set α = 0.1. It can be seen that in all cases, we arrive at an improved forecast from the initial

starting value. As the rank of the true underlying model is not clear, we perform one iteration of

(24).

1 2 3 4 5 6
√
MSE MAE

Original data 7798 7406 8363 8460 9217 9316

Model I 8410 7698 8467 8781 9940 10341 582.20 512.92

Model II 8300 7632 8310 8657 9823 10156 486.03 403.85

HWS 8021 7101 7729 7914 9005 9387 385.81 331.82

ARAR 8132 7228 7965 8280 9135 9479 247.56 222.63

SSA 7778 7422 7809 8080 9284 9349 276.28 178.62

Table VII. Forecasted data using five different starting values, along with the square root of the MSE and
MAE of the forecast for W = W1.

1 2 3 4 5 6
√
MSE MAE

Original data 7798 7406 8363 8460 9217 9316

Model I 8395 7686 8469 8828 9849 10264 559.55 488.46

Model II 8308 7606 8302 8692 9798 10152 481.91 403.19

HWS 8012 7105 7749 7955 8898 9326 380.79 327.10

ARAR 8125 7228 7965 8288 9130 9471 244.61 219.78

SSA 7789 7427 7804 8094 9301 9348 275.45 178.68

Table VIII. Forecasted data using five different starting values, along with the square root of the MSE and
MAE of the forecast for W = W2.

Tables VII and VIII show that the use of weights has led to significantly improved forecasts.

It appears that taking W = W2 leads to marginally better forecasts than taking W = W1. In this

example, the underlying model was unclear, and so we used only one iteration of (24). This is

a popular approach in many subspace-based methods where r is used to control the precision

of the approximation to the observed data rather than as a ‘hard constraint’ for the rank of the

approximation (see [13]).

8. CONCLUSION

When fitting a time series with a vector satisfying a LRR of order r, a standard approach is to

consider an equivalent but larger problem of fitting a Hankel matrix of rank r. Traditional approaches

to fitting the Hankel matrix use the Frobenius norm out of convenience. This however can be a bad

choice, as this yields a particular form for the corresponding norm on the time series.

In this paper we have shown how a matrix norm on Hankel matrices can be selected to either

match exactly, or approximate, a weighted vector norm. We have shown that the accuracy of time

series forecasting and imputing missing values can be significantly improved if the weights are

chosen appropriately.
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