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Abstract. Atomic Force Microscope (AFM) tip-based nanomachining is currently the object of 

intense research investigations. Values of the load applied to the tip at the free end of the AFM 

cantilever probe used for nanomachining are always large enough to induce plastic deformation on the 

specimen surface contrary to the small load values used for the conventional contact mode AFM 

imaging. This study describes an important phenomenon specific for AFM nanomachining in the 

forward direction: under certain processing conditions, the deformed shape of the cantilever probe 

may change from a convex to a concave orientation. The phenomenon can principally change the 

depth and width of grooves machined, e.g. the grooves machined on a single crystal copper specimen 

may increase by 50% on average following such a change in the deformed shape of the cantilever. It is 

argued that this phenomenon can take place even when the AFM-based tool is operated in the so-

called force-controlled mode. The study involves the refined theoretical analysis of cantilever probe 

bending, the analysis of experimental signals monitored during the backward and forward AFM tip-

based machining and the inspection of the topography of produced grooves. 

 

1. Introduction 

We deal with theoretical and experimental studies of specific features of the AFM tip-based nanomachining. 

This type of nanomachining is based on the direct contact between the sharp tip of an AFM probe and the 

surface of a sample in order to induce material removal or modification at very small scales. The AFM tip-

based nanomachining process, which is also referred to as AFM scratching or scribing, is currently the object 

of intense research investigations (see, e.g. reviews in [1-3]). Compared to other nanofabrication methods, 

which are essentially based on vacuum and mask-based processes [4-5], AFM tip-based nanomachining has 

a number of advantages. In particular, it generally requires less capital-intensive equipment, it is not 

restricted to the fabrication of planar features and it is not constrained to the processing of a limited set of 

materials [2,3,6]. 

 

It is known that the relative displacement of the tip over the material surface during the AFM scratching may 

be implemented along different processing directions (see, e.g. [7]);  usually these are the backward and 

forward directions, which are illustrated in Figure 1a. It is obvious that the AFM cantilever working in the 

backward direction has always a convex deflection [7,8]. Let us consider the “forward direction”. It is 

generally assumed (see, e.g. [9-12]) that during forward direction scratching, the bending of the cantilever is 

concave (see Figure 1b). However, from a theoretical point of view, there is no a priori reason to make this 

assumption. Indeed, the deformed shape of the cantilever during AFM tip-based nanomachining should 

depend on the particular loading conditions acting on the tip.  
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Figure 1. The backward and forward AFM tip-based machining directions: (a) the top view perspective and 

(b) side view of the concave cantilever deflection. 

 
The paper is organised as follows. In Section 2, we present a theoretical analysis of the bending orientation 

of a cantilever that takes into account the specific tilt angle at which the probe is mounted within an AFM 

device. This analysis allows us to specify the actual directions of forces acting on the tip during a 

nanomachining operation. It is shown that under certain processing conditions, the deformed shape of the 

AFM cantilever probe working in the forward direction may change from a convex to a concave orientation. 

In Section 3, we describe the experimental methodology used in our studies including a description of the 

original AFM tip-based nanomachining set-up. We present the experimental cutting conditions used and 

explain the meaning of the cutting process steps reflected in the analysis of a typical output signal when 

monitoring the motions of the piezoelectric actuator on which the AFM probe is mounted. In Section 4, we 

present the experimental results when nanoscratching in different directions for varying loads. Note that one 

cannot observe directly whether the cantilever has convex or concave bending. Hence, one needs to interpret 

correctly the signals obtained. Because the deflected shape of the cantilever in backward and inclined 

backward directions is always convex, this can be used for the understanding of obtained signals. In turn, this 

knowledge is used to identify if concave bending is observed. It has been found that during actual AFM tip-

based nanomachining tests in the forward direction, both convex and concave bending may be observed. The 

studies on a single crystal copper specimen have shown that the change of the cantilever bending from a 

convex to a concave shape may cause an increase of the depth and width of grooves machined up to 65% (in 

average about 50%), hence the change of the bending orientation affects drastically the depth and width of 

grooves machined.   

 

2. Theoretical analysis of the deformed shape of the cantilever  

The theoretical development reported in this section is based on the classic differential equation of the 

deflection curve of a beam [13]. The principal difference between the usual schemes for a tip-based 

nanomachining cantilever and the refined scheme of the present paper is that the inclination angle, α, 

between the cantilever and the surface of a sample is also considered in order to take into account the actual 

configuration of AFM systems. To the best of our knowledge, similar refined schemes were used only for 

lateral force analysis in the case of the frictional force AFM [14,15], while the aim of our analysis is to 

identify loading conditions on the tip during the AFM nanomachining process that determine the sign of the 

slope of the deflected cantilever at its free end. 

 

A schematic illustration of the forces acting on the tip during nanomachining in the forward direction is 

given in Figure 2a and the corresponding free-body diagram is shown in Figure 2b. According to the 

literature for AFM machining, the y axis is directed along the beam and it is positive to the right; the z axis 

and the corresponding deflection w are positive downward; the bending moment is positive when it causes 
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compression in the upper part of the cantilever; and the curvature is positive when the cantilever is bent 

concave downward. 

 

  

 

 

 

 

Figure 2. (a) Schematic representation of the AFM probe during nanomachining in the forward direction 

and (b) corresponding free body diagram. 

 

Here Ft and Fa represent respectively the vertical and the horizontal forces acting at the pyramid tip, i.e. the 

force needed to keep the tip in the workpiece (the thrust), and the cutting force acting on the tip in the 

direction of cutting. These notations and terminology are adopted here to be consistent with notations used in 

the literature for conventional machining [16,17]. Because the forces Ft and Fa are shifted from the axis of 

the cantilever beam, they produce a moment at the free end of the cantilever Maxial, i.e. Maxial is generated by 

components of the forces of interaction between the probe pyramid tip and material of the sample. This is 

shown in the free body diagram (Figure 2b).  

 

Due to the inclination angle, α, between the horizontal axis and the axis y of the cantilever, both Ft and Fa 

contribute to Maxial as follows: 

 𝑀𝑎𝑥𝑖𝑎𝑙 = (ℎ + 𝑡/2). 𝐹𝑎cos𝛼 + (ℎ + 𝑡/2). 𝐹𝑡sin𝛼 (1) 

where h is the height of the tip and t is the thickness of the cantilever. Considering the equations of 

equilibrium, one can find the reaction moment MA and reaction forces  𝑃𝐴
𝑧 and 𝑃𝐴

𝑦
 at the built-in end of the 

cantilever 

 {

𝑃𝐴
𝑦

= 𝐹𝑎cos𝛼 + 𝐹𝑡sin𝛼

𝑃𝐴
𝑧 = 𝐹𝑎sin𝛼 − 𝐹𝑡cos𝛼

𝑀𝐴 = 𝑀𝑎𝑥𝑖𝑎𝑙 + 𝐿(𝐹𝑎sin𝛼 − 𝐹𝑡cos𝛼)

 (2) 

where L is the length of the cantilever. Let us calculate now the bending moment, M(y), at a distance, y, from 

the cantilever fixed end  

 𝑀(𝑦) = −𝑀𝐴 + 𝑦𝑃𝐴
𝑧. (3) 

Combining equations (1), (2) and (3), one gets 

 𝑀(𝑦) = − (ℎ +
𝑡

2
) . 𝐹𝑎cos𝛼 − (ℎ + 𝑡/2). 𝐹𝑡sin𝛼 + (𝑦 − 𝐿)(𝐹𝑎sin𝛼 − 𝐹𝑡cos𝛼) (4) 

The sign in the differential equation of the elastic (deformed) curve of the beam must be chosen to be 

consistent with the choice of coordinate directions and with the existing definition of positive bending 

[13,18] as that which produces curvature concave downward (hogging). Based on the coordinate directions 

used in Figure 2b and the fact that the angle of rotation of the cantilever, θ, is considered positive when 

clockwise with respect to the positive y axis, the basic differential equation of the deflection curve of the 

cantilever is expressed as  

    
EI

M

dy

wd


2

2

                      (5) 

Its solution z = w(y) defines the shape of the deflection curve. By combining equations (4) and (5), it 

follows:  

(b) 
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 𝐸𝐼
𝑑2𝑤

𝑑𝑦2 = (ℎ + 𝑡/2)(𝐹𝑎cos𝛼 + 𝐹𝑡sin𝛼) + (𝐿 − 𝑦)(𝐹𝑎sin𝛼 − 𝐹𝑡cos𝛼) (6) 

Let us assume that the AFM probe is rectangular, and hence the flexural rigidity EI is fixed. This case 

represents the majority of probe designs. Then, the slope of the deflection curve may be found by integration 

of equation (6): 

 𝐸𝐼
𝑑𝑤

𝑑𝑦
= 𝑦(ℎ + 𝑡/2)(𝐹𝑎cos𝛼 + 𝐹𝑡sin𝛼) + (𝐹𝑎sin𝛼 − 𝐹𝑡cos𝛼)(𝑦𝐿 − 𝑦2 2⁄ ) + 𝐶 (7) 

where C is a constant of integration. It follows from the boundary condition that the cantilever is built-in at 

the fixed end A, i.e. the slope is zero, that C=0.  By substituting y= L in equation (7), one obtains the slope at 

the free end of the deformed cantilever  

 
𝑑𝑤

𝑑𝑦
(𝐿) =

𝐿

𝐸𝐼
[(ℎ + 𝑡/2)(𝐹𝑎cos𝛼 + 𝐹𝑡sin𝛼) + (𝐹𝑎sin𝛼 − 𝐹𝑡cos𝛼)(𝐿 2⁄ )] (8) 

Note that the thickness of the cantilever, t, is generally much smaller than its length, L, and the tip height, h. 

Hence, the above equation can also be simplified to: 

 
𝑑𝑤

𝑑𝑦
(𝐿) = (𝐿 𝐸𝐼⁄ )[ℎ(𝐹𝑎cos𝛼 + 𝐹𝑡sin𝛼) + (𝐹𝑎sin𝛼 − 𝐹𝑡cos𝛼) (𝐿/2)⁄ ] (9) 

Let us denote the moment generated at the fixed end of the probe by the force components acting on the tip 

and oriented in a direction perpendicular to the long axis of the cantilever as Mnormal, i.e. Mnormal =
 𝐿(𝐹𝑡cos𝛼−𝐹𝑎sin𝛼). Because 𝑀𝑎𝑥𝑖𝑎𝑙 ≈ ℎ(𝐹𝑎cos𝛼 + 𝐹𝑡sin𝛼), one gets 

𝑑𝑤

𝑑𝑦
(𝐿) = (𝐿 𝐸𝐼⁄ )[𝑀𝑎𝑥𝑖𝑎𝑙 − 𝑀𝑛𝑜𝑟𝑚𝑎𝑙 2⁄ ]                                       (10) 

It follows from equation (10) and  the sign convention of the slope of the deflected cantilever that 

 {

If 𝑀𝑎𝑥𝑖𝑎𝑙 > (𝑀𝑛𝑜𝑟𝑚𝑎𝑙 2)⁄ then 𝜃 > 0;  the cantilever shape at the tip end is concave

If 𝑀𝑎𝑥𝑖𝑎𝑙 < (𝑀𝑛𝑜𝑟𝑚𝑎𝑙 2)⁄ then 𝜃 < 0;  the cantilever shape at the tip end is convex
 (11) 

 

One can see from equation (9) that in the general case the orientation of the deformed shape of the cantilever 

depends on three geometric parameters, namely, α, h, and L and two processing parameters, Ft and Fa. As a 

first approximation, it can be considered that the angle α is rather small, i.e. sin 𝛼 ≈ 0 and cos 𝛼 ≈ 1. 

Indeed, it is about 12° for actual AFM instruments. Putting  sin 𝛼 = 0 and cos 𝛼 = 1, the equations (9) may 

be simplified further as 

 (𝐸𝐼 𝐿⁄ )
𝑑𝑤

𝑑𝑦
(𝐿) ≅ ℎ𝐹𝑎 − (𝐿 2⁄ )𝐹𝑡 (12) 

 

Based on these coarse assumptions, it can generally be said that the bending of the cantilever during 

nanomachining in the forward direction is likely to be concave for increased values of axial cutting force, Fa, 

relatively to the thurst force, Ft.  

 

Thus, it has been shown above that contrary to the assumption normally made in the AFM tip-based 

nanomachining literature, the deformed cantilever shape may be convex, especially for values of Fa that are 

small relatively to Ft. In the remainder of this paper, experiments are reported to verify whether both bending 

orientations can be observed in practice. Using both SEM micrographs of the grooves and AFM topography 

studies, it will be demonstrated further that this change of the convex to concave bending shape is 

accompanied by a drastic modification of the groove topography.  

 

3. Experimental methodology  

Let us describe the experimental methodology used in our studies including a description of the employed 

AFM instrument, the data acquisition system and the processing conditions implemented in the experiments. 

It is known (see, e.g. [19]) that most contemporary AFM devices are based on the use of the optical lever 

technique: a laser beam is focused on the free end of the AFM cantilever and the reflected beam is detected 

by a photodiode; it is also referred to as a Position Sensitive Photo Detector (PSPD). In practice, the PSPD of 
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an AFM instrument may consist of either two or four cells. The detection of vertical displacements of the 

reflected laser spot is obtained from the signal difference between the upper half and the lower half of the 

PSPD. This difference is commonly referred to as the “A-B” signal regardless of the number of cells. This is 

also the terminology adopted here. Thus, the difference in voltage output A-B gives a measure of the 

cantilever deflection. Here, we propose a new experimental set-up for determining the actual deflection of 

the cantilever during AFM nanomachining through monitoring and analysing the A-B and other voltages as 

explained in the next section.  

3.1. Instrumentation 

A commercial AFM instrument, the Park Systems XE-100, was employed. It was proposed to record three 

voltages in order to investigate the cantilever shape during AFM based nanomachining. These voltages are 

the following:  

 

(i) the A-B signal that corresponds to the vertical motion of the free end of the cantilever,  

(ii) the Y scanner signal that corresponds to the lateral stage motion of the X-Y stage, and  

(iii) the monitoring of the Z-detector signal that provides information about the vertical motion of 

the cantilever at its built-in end.  

 

To clarify the meaning of the above signal outputs, we describe their physical interpretation: (i) variations of 

the A-B signal detected by the PSPD is used by the feedback loop of the AFM instrument to monitor the 

vertical deflection of the free end of the cantilever; (ii) variations of the Z-detector signal (it is provided by a 

strain gauge sensor mounted on the piezo-electric actuator, referred to as Z scanner in Figure 3) is also an 

essential part of the AFM feedback loop as the Z scanner drives the vertical displacement of the probe at its 

fixed end; and (iii) monitoring of variations of the Y stage signal (sent by the AFM controller to a lateral 

piezo-electric actuator, which is used to drive the in-plane motions of the AFM stage) enables the accurate 

time determination of the beginning and end of the nanomachining operations realised in this study. 

 

A data acquisition (DAQ) set-up was utilised to capture these three specific output signals during the 

nanomachining operations. This setup includes a Signal Access Module (SAM) from Park Systems, the NI 

9223 module from National Instrument, and the LabVIEW software connected to the SAM. A schematic 

description of the AFM set-up utilised for tip-based nanomachining is shown in Figure 3. 

 

 

Figure 3. Schematic description of the AFM tip-based nanomachining set-up. 

The majority of the experiments were performed on a single crystal copper sample. The probe used for 

conducting the machining operations on the copper sample was the DNISP type from Bruker. Such a probe 
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is typically utilised for nanoindentation and nanoscratching tests since it is designed with a relatively high 

spring constant. This probe had a rectangular cantilever made of stainless steel while its tip was a 3-sided 

diamond pyramid formed by 3 right angle planes. The tip apex may be reasonably approximated by a sphere. 

In this way, it was determined to have a radius of 70 nm using Scanning Electron Microscopy (SEM) 

imaging.   

 

Another specimen made of polycarbonate (PC) was also employed to confirm the results observed with the 

copper workpiece. For the PC specimen, the nanomachining operations were conducted with a different 

probe - the TESPD type from Bruker. The TESPD type is coated with a diamond-like carbon layer for 

increased tip lifetime. The particular TESPD probe utilised had a nominal tip radius of 15 nm.  

 

The accurate knowledge of the interaction force between the tip and sample requires the calibration of both 

the optical lever sensitivity and spring constant of the cantilever. Thus, the spring constant of the TESPD 

probe was determined using the Sader method [20] and found to be 56 N/m, while, for the DNISP probe, it 

was provided by manufacture and given as 221 N/m. The calibration of the normal sensitivity was done 

through fitting the slope of the force-distance curve, which is obtained by pressing the probe tips against a 

hard surface (fused silica in our case). 

 

After completion of the machining process, another AFM probe, namely the CSG model from NT-MDT, 

was utilised for the purpose of recording the topography of the obtained grooves. 

 

3.2. Experimental cutting conditions  

The machining tests were conducted along different orientations, namely in the forward and backward 

directions as well as at inclined angles with respect to the main axis of the cantilever, as illustrated in Figure 

4.  

 
Figure 4. Considered cutting directions with respect to the cantilever orientation and tip geometry. 

 

For each direction, several tests were carried out and between each of them, the normal force set by the user 

was gradually increased. In this way, the range of applied normal loads was comprised between 13 µN and 

39 µN and 3.1 µN and 4.4 µN for the Cu and PC sample, respectively. The cutting parameters that were 

adopted during the experimental trials are summarised in Tables 1 and 2.  

 

Table 1. Machining conditions for the copper sample 

Probe type DNISP 

Groove length (μm) 15  

Machining speed (μm/s) 5  

Set normal 

force (µN) 

Forward direction 20, 23, 24, 26, 27, 30, 31, 34, 36, 39 

Backward direction 13, 20, 27, 34  
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Table 2. Machining conditions for the PC sample 

Probe type TESPD 

Groove length (μm) 15  

Machining speed (μm/s) 3  

Set normal 

force (µN) 

Inclined forward (22.5°) 3.1, 3.4, 3.8, 4.1, 4.4 

Inclined backward (22.5°) 3.1, 3.4, 3.8, 4.1, 4.4 

 

The cutting speed along the length of a processed groove was kept constant for all experiments at 5 µm/s and 

3 µm/s for the Cu and PC specimen, respectively. Machined grooves were separated by a distance of 

approximately 20 µm to avoid any influence of a previous cut on the current groove being machined, such as 

the presence of material pile-ups or residual stress. SEM inspections were used for the qualitative 

observation of the grooves, while quantitative measurements (i.e. the depth and width of the grooves) were 

conducted on the same AFM instrument using CSG probes in contact mode. All experiments were conducted 

in a temperature-controlled laboratory, which was set at 21 ˚C ± 0.5 ˚C. 

 

3.3. Analysis of the Z-detector output signal  

Let us analyse in detail a typical Z-detector output signal (Figure 5). The signal was recorded during cutting 

of a groove in the PC sample along the backward direction. As noted in Figure 5, it is divided into five 

consecutive steps, which correspond to the regions “A”, “B”, “C”, “D” and “E”. The physical interpretation 

of each of them is given below.   

 

First step (region A): This step takes place after the initial approach of the tip onto the surface of a specimen. 

In this case, the tip is in static contact with the sample but the applied normal force is very low. More 

specifically, it is typically in a range between a few nN to a few tens of nN as defined by the AFM user. 

Based on the knowledge of the normal spring constant of the probe and the sensitivity of the PSPD, this load 

corresponds to a given A-B output voltage, V0, as illustrated with Figure 6.  

 

Second step (region B): Between point 1 and point 2 in Figure 5, the normal load is increased to another 

user-defined value, which is sufficiently high to induce plastic deformation. In this example, it was set at 3.4 

μN. During this step, the tip penetrates into the processed material as the probe is moved down vertically 

towards the sample due to the extension of the Z scanner. During this step there is no lateral motion of the 

AFM. Therefore, this step also corresponds to the loading cycle of a nano indentation process. The vertical 

motion of the probe stops when the A-B signal of the PSPD reaches a new value, which is illustrated as V1 in 

Figure 6. As seen in the plot of Figure 5, the Z-detector signal increases sharply between point 1 and point 2. 

Thus, for the remainder of this paper, it is important to note that, when the Z scanner extends, and 

consequently the probe moves towards the sample surface, the Z-detector voltage increases. On the contrary, 

when the probe moves away from the sample, as a result of the contraction of the Z scanner, this signal 

decreases.   

 

Third step (region C): This may be referred to as a transition step. In particular, at point 2 in Figure 5, the 

motion between the sample and the probe starts. Thus, an axial cutting force, Fa, is now also applied on the 

tip in addition to the thrust force, Ft. As presented in Section 2, the resulting change in the moment Maxial on 

the free end of the cantilever also modifies its deflection angle, θ. Consequently, the generation of Fa also 

modifies the A-B signal on the PSPD as a result of the optical lever principle. For this reason, the vertical 

position of the probe is automatically adjusted through the feedback loop of the AFM system. In this 

example, contraction of the Z scanner takes place to raise the probe until the A-B output reaches a target 

value, which corresponds to the voltage attained prior to the start of the lateral motion of the step. Thus, this 

voltage value also corresponds to V1 as referenced in Figure 6. During this transition step, the Z-detector 

signal output varies until a steady-state configuration is reached, which is illustrated with point 3 in Figure 5.  
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Fourth step (region D): The time elapsed between points 3 and 4 corresponds to the actual machining of a 

groove as a result of the relative motion between the AFM tip and the surface of the sample along a pre-

defined path. 

 

Fifth step (region E): This step is reached when the lateral motion is stopped. The AFM tip contacts the 

bottom of the groove, however, the applied normal load reduces rapidly to the small value defined for the 

approach process (the first step).   

 

 

Figure 5. Example of Z-detector signal recorded in the backward direction. In this example, the data were 

acquired  when machining the PC sample with a set normal load of 3.4 μN.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. A sketch of the probe and the PSPD status corresponding to: (a) the approach process (the first 

step) and (b) the initial tip penetration into the specimen (the second step).  
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The observations reported in this paper rely significantly on the interpretation of the Z-detector output. 

Hence, the introduction of the above steps of a typical signal is given to avoid misunderstandings of the 

signal analysis. Figure 6 demonstrate the statuses of the AFM probe and the PSPD that correspond to the first 

step (the approach process) and the second step (the tip penetrates into the processed material sample).  

 

4. Experimental studies of nanomachining with different process directions  

Here we present the experimental results on nanomachining in the different directions for varying loads. 

Because one cannot observe directly whether the cantilever has convex or concave bending, one needs to 

interpret correctly the signals obtained. Because the deflected shape of the cantilever in backward and 

inclined backward directions is always convex, first, the Z-detector and PSPD (A-B) voltage signals in these 

directions are monitored and analysed. This analysis is performed mainly to help with an understanding of 

the physical meaning of these signals. Then, the knowledge about AFM outputs voltages gained is used to 

identify if concave bending is taking place during nanomachining in the forward direction. It is shown that 

during actual AFM tip-based nanomachining tests in the forward direction, both convex and concave 

bending are observed in the experiments.  

4.1. Nanomachining with backward and inclined backward directions 

Let us present several illustrative examples of data collected during machining of two material samples at 

varying loads. Figure 7 shows a selection of the Z-detector output signals for these samples. The signals in 

Figure 7a  and Figure 7b were collected  during machining of the Cu sample along the backward direction 

respectively with normal loads of 13 µN and 34 µN. The signals in Figure 7c  and Figure 7d were collected 

during machining of the PC sample along the inclined backward direction respectively with normal loads of 

3.1 µN and 4.4 µN. These four plots correspond to the Z-detector output voltage signals obtained for the 

smallest and the highest values of the normal loads for each material. 

 

 

Figure 7. The Z-detector output signals recorded during processing of the material samples: the  Cu sample 

machined along the backward direction with normal loads of (a) 13 µN and (b) 34 µN and the PC sample 

machined along the inclined backward direction with normal loads of (c) 3.1 µN and (d) 4.4 µN respectively. 

 
Figure 8 displays an example of a typical A-B voltage signal recorded when processing along these 

directions. The monitored Y stage signal is also superimposed in this figure in order to associate the 
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fluctuation of the A-B voltage at the start and the end of the lateral motion of the AFM stage. From the 

magnification shown with Figure 8, it is observed that the A-B signal increases as soon as the motion of the 

Y stage begins. As it has been discussed in section 3, this increase is the result of the change in the deflection 

angle of the cantilever at its free end following the generation of the axial force, Fa, on the tip. In particular, 

for the backward and inclined backward machining configurations, the direction of Fa is always pointing 

away from the fixed end of the probe. Consequently, the deflection angle of the cantilever increases upon the 

start of the stage motion.  

 

 

Figure 8. Typical voltage signals corresponding to the vertical (A-B) and Y axis motions recorded during 

processing in the backward and inclined backward directions. The inset plot shows the change in the A-B 

voltage as soon as the lateral motion of the stage starts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Illustration of the sequence of events leading to the observed output signals upon initiation of the Y 

stage motion for backward and inclined backward machining:  

 

As observed in Figure 8, and as explained in Figure 9, the increase of the deflection angle leads also to the 

increase of the A-B signal on the PSDP. As all the experimental plots in Figure 7 show, the Z scanner raises 
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the probe to return the A-B voltage to its set value. This can indeed be observed as the Z-detector signal 

decreases in all cases during the time interval referred to as “region C” in the previous section.  

 

Thus, the resulting shape of the deformed cantilever stays convex throughout machining in the backward and 

inclined backward directions due to the fact that Fa is pointing away from the fixed end of the cantilever 

along these cutting directions.  

4.2. Shape of the deflected cantilever during nanomachining in the forward direction 

Profiles of the Z-detector voltage corresponding to machining in the forward direction are reported and 

compared with these obtained in the backward direction. The results presented in this section are those 

obtained when processing the Cu sample in a pure forward direction. Depending on the load applied, three 

different types of voltage profiles may be observed corresponding to the quasi-static behaviour of the 

cantilever. These three types are associated with normal loads that are 1) relatively low (between 20 µN and 

23 µN), 2) intermediate (between 24 µN and 27 µN) and 3) high (between 31 µN and 39 µN). 

4.2.1 The deflection of the cantilever at low loads  

As the above theoretical analysis shows, it would be reasonable to expect that in the pure forward direction 

machining, the A-B voltage of the PSPD drop as soon as the motion of the Y stage begins. Indeed, the axial 

force Fa is pointing towards the fixed end of the probe in this case. As a result of this orientation, the 

deflection angle of the cantilever should decrease once the displacement of the stage is initiated. 

Consequently, it would also be expected that, the probe should be lowered towards the sample by the Z 

scanner in order to raise the PSPD voltage back to its set value. If this downward vertical motion of the probe 

takes place, then an increase in the Z-detector signal should be recorded with the data acquisition system. 

However, the opposite result was observed when processing with low normal loads.  

 

Let us present an illustrative example of data collected during machining of the Cu sample in this range of 

loads. Figure 10 shows the Y stage output signal and Z-detector output signal captured during machining 

along the pure forward direction for the applied load 20 µN. From this figure, it is observed that the profile 

of the Z-detector signal is similar to these obtained in the backward direction.  

 

 

Figure 10. Recorded Z-detector and Y stage output signals when processing the Cu sample along the forward 

direction for a set normal load of 20 µN. Note that for the inset higher magnification image, the Y stage 

signal was deliberately shifted up for clarity purpose. 

 

In particular, it can be seen with the magnified image in Figure 10 that the Z-detector decreases once the 

motion of the Y stage begins. This means that the probe was raised. A possible reason for such behaviour is 

that the initial stage displacement results in a sliding motion of the tip along the face of the indent formed 

during the previous time interval when the AFM stage was still static. This sliding motion results in the 

PSPD voltage to increase, as illustrated in Figure 11. Consequently, the Z scanner raises the probe until the 

PSPD voltage reduces back to its set value. Therefore, based on the fact that the probe is moved up at the 
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start of the groove and that the overall profile of the Z-detector signal is similar to that obtained in the 

backward direction, it is concluded that the deformed shape of the cantilever is convex during the machining 

process for this lower range of set normal forces. Thus, the value of the force Fa  was too small to change the 

cantilever shape (see equation (12)). 

 

 

Figure 11. Illustration of the tip sliding up the face of the initial indent and the subsequent series of events 

with respect to the A-B voltage variation on the PSPD and the associated response of the Z scanner via the 

force-controlled feedback loop. 

4.2.2 The deflection of the cantilever at medium loads   

In this range of loads, one can observe the different behaviour of the profiles of the Z-detector output voltage 

in comparison with the behaviour of these profiles recorded in the backward direction. The signals in Figure 

12 were captured during machining along the pure forward direction for an applied load 24 µN.  

 

It can be seen from this figure that the probe is brought down towards the sample as soon as the Y stage 

initiates its displacement. This is the opposite motion to that reported earlier in section 4.2.1 when 

conducting experiments with smaller loads. Indeed, the lowering of the probe via the feedback loop of the 

AFM at this particular stage of the process is realised in response to a reduction in the deflection angle at the 

free end of the cantilever. This decrease in the deflection angle at the start of the displacement of the stage is 

a consequence of the generated axial force, Fa, being induced on the tip while the tip is also sticking on the 

initial indent (as opposed to sliding along it).  

 

 
Figure 12. Recorded Z-detector and Y stage output signals when processing the Cu sample along the forward 

direction for a set normal load of 24 µN. 
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The sequence of events leading to the observed output signals upon initiation of the stage motion is 

illustrated with Figure 13. It should be noted that this observation could also be made when processing with a 

set normal load of 26 µN.  

 

 

Figure 13. Illustration of the probe being lowered upon the start of the lateral motion of the stage as a result 

of the tip sticking on the initial indent. 

 

 
Figure 14. Recorded Z-detector and Y stage output signals when processing the Cu sample along the forward 

direction for a set normal load of 27 µN.  

 

However, for 27 µN, it is the sliding motion of the tip, which was found to govern the response of the Z 

scanner motion upon the initiation of the lateral displacement of the stage (see Figure 14). Thus, it can be 

said that, in this intermediate range of set normal loads, a mix between tip sliding and tip sticking 

phenomena was obtained when initiating the machining operations. In addition, the cantilever shape also 

stayed convex during machining in this range of medium loads. Thus, the generated axial force Fa was not 

enough to change the cantilever deflected shape. 

4.2.3 The deflection of the cantilever at high loads  

In this third and highest range of set normal forces, the recorded data showed that the tip sticking effect 

consistently dominated the behaviour of the AFM probe during the initial motion of the stage. Most 

importantly, however, a significant phenomenon was observed during the subsequent groove machining 

process. This is illustrated by Figure 15 in the case of a set normal load of 31 μN. In particular, it can be seen 
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groove. This rapid and high increase in the Z-detector signal compared with these reported earlier with low 

and medium loads shows that the feedback loop of the AFM suddenly drove the probe down as the groove 

was being cut. This was realised to ensure the A-B voltage output of the PSPD was maintained to a set target 

value. At the same time point, the PSPD voltage also started displaying more pronounced oscillations around 

this target value. 

 
 

Figure 15. The recorded signals with the normal load of 31 µN during processing the Cu sample along the 

forward direction: (a) the Z-detector (the sudden signal increase means that the probe is moved down); and 

(b) the (A-B) PSPD voltage output signals. The blue and red lines correspond respectively to the convex and 

concave deflections of the cantilever. 

 

The hypothesis put forward to explain such observation during this particular short time interval is that the 

bending of the cantilever at its free end changes from a convex orientation to a concave one. To support this 

hypothesis, it is argued that the axial force, Fa, acting on the tip is gradually increasing along the length of a 

machined groove. Further investigations are required to elucidate in a comprehensive manner the reason 

behind this increase in Fa during the groove formation process itself. The hypothesis that may be put forward 

at this stage to explain such a change in the cutting force is that it could be the result of the combined effect 

of 1) the accumulation of piled-up material in front of the tip and 2) the strain hardening of the material 

ahead of the tip. In particular, the gradual accumulation of pile-up on the tip rake face augments the contact 

area between the tip and the material, which in turn, raises the force acting of the tip. Strain hardening of the 

material may also be considered as a possible effect. Indeed, when increasing the value of the set normal 

load, the resulting larger volume of material subjected to plastic deformation around the tip may also be 

expected to be associated with an augmentation of the dislocations density in this region. Consequently, 

when the tip moves across the surface of the sample, it can also be reasonably expected that the occurrence 

of dislocation entanglements should increase and thus, that the number of movable dislocations should 

reduce. Regardless of the specific physical phenomon at play, an increase in Fa results in a reduction of the 

deflection angle at the free end of the cantilever, which may eventually become negative and lead to the 

feedback loop observed reaction, as illustrated with Figure 16. 
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Figure 16. Illustration of the bending orientation of the cantilever changing from convex to concave during 

the machining of a groove and the associated Z scanner response.  

 

Based on the analysis of other recorded Z-detector signals, it can be reported that such transition from 

convex to concave bending during the actual groove formation process could also be observed when 

machining with all the other considered loads in this range. For example, Figure 17 displays the signals 

obtained for the highest load tested, which was 39 μN. The main comment that can be added when analysing 

this figure is that the occurrence of the change in the bending of the cantilever occurs sooner along the 

groove in this case.  

 

 
Figure 17. The recorded signals with the normal load of 39 µN: (a) Z-detector and (b) A-B signals. The  blue 

and red lines correspond respectively to the convex and concave deflections of the cantilever. 

 
In fact, the temporal dependence of the change in the deformed cantilever shape as a function of the set 

normal load is clearly illustrated with the SEM micrographs of the grooves shown in Figure 18. It is 

interesting to notice from these SEM observations that this change is accompanied by a drastic modification 

of the topography of the groove. This is an interesting phenomenon as it happens in spite of the fact that the 

force-controlled feedback loop was employed to maintain the A-B voltage constant around a mean value set 

by the user. In addition, AFM measurements indicate that the grooves became just over 50% deeper and 

wider on average following such shape transition in the deformed cantilever. This difference in the groove 

topography is also illustrated in Figure 19 when machining with a set normal load of 34 µN.  
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Figure 18. SEM micrographs of the grooves obtained on the Cu sample when machining in the forward 

direction with the higher range of set normal loads considered. Scale bar: 4 μm. 

 

 
Figure 19. AFM scan of the groove obtained for a set normal load of 34 µN in the forward direction 

accompanied with a plot of the considered cross sections. 

 

In the following section, a confirmation experiment was carried out on the PC specimen to demonstrate that 

this change in the cantilever shape may also happen when processing along an inclined forward direction or 

when machining a different substrate or with a different type of probe. 

4.3. Verification experiment 

In this final experimental run, the PC sample was machined along an inclined angle of 22.5˚ with respect to 

the pure forward direction (see Figure 4). The set normal forces applied were comprised between 3.1 μN and 

4.4 μN.  The probe employed was the TESPD type. Until 4.1 μN, the recorded data for the Z-detector signal 

indicated that the bending of the cantilever kept a convex orientation throughout. As an example, the data 

obtained with a load of 3.1 μN are given with Figure 20a. However, when the load was raised to 4.4 μN, a 

rapid increase in the Z-detector signal was recorded during the cutting of the groove as reported with Figure 

20b. In this case, the transition from convex to concave bending took place at the start of the groove. Thus, 

while the occurrence of the cantilever shape modification could be confirmed using a different set of 

experimental conditions compared to those reported in the previous section, it is interesting to note that, the 
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transition from convex to concave bending was very sensitive to a small increment in the set normal load 

applied.     

 

 
Figure 20. Recorded Z-detector signals obtained when machining the PC specimen along the inclined 

forward direction for a set normal applied load of (a) 3.1 μN and (b) 4.4 μN. 

 
5. Conclusions 

This paper describes an important phenomenon specific for AFM nanomachining in the forward direction: 

under certain processing conditions, the deformed shape of the cantilever probe may change from a convex 

to a concave orientation. It is argued that the assumption commonly adopted in the literature that the 

deformed shape of the AFM cantilever used for tip-based nanomachining along the forward cutting direction, 

is always concave, is wrong. To explain and justify this claim, a refined theoretical analysis of the work of an 

actual AFM probe is performed, along with the introduction of a new experimental set-up for the 

determination of the actual cantilever deflected shape during AFM nanomachining. Based on the theoretical 

analysis, it is shown that the bending of the cantilever during nanomachining in this direction can be convex, 

especially for small value of the cutting force acting on the tip in the direction of cutting Fa relative to the 

force needed to keep the tip in the workpiece Ft. 

 

The experimental evidence provided that both (concave and convex) bending orientations of the cantilever 

could be observed during actual machining tests. These results are based on the combined analyses of three 

different output signals monitored during processing in addition to the subsequent inspection of the 

machined topography by producing grooves.  

 

The results provided from both theoretical analysis and experimental work can add other interesting 

outcomes. Firstly, this study indicates that the analysis of the Z-detector signal is relatively rich and provides 

valuable data for understanding the mechanical behaviour of the cantilever deflected shape. Secondly, this 

research suggests that following the initial vertical engagement of the tip into the substrate material, the tip 

may subsequently slide upwards on the face of the created indent when the lateral motion of the AFM stage 

begins. This observation was made for the small values of set normal loads considered. For increased values, 

the tip was more likely to stick onto the face of the indent at this specific stage of the process. Thirdly, the 

analysis of the Z-detector voltage suggests that AFM nanomachining is achieved in a minimum of five steps, 

namely, approach, indentation, transition, scratching and reset step. This analysis may be used to gain an 

improved understanding of the hardware and physical considerations of AFM.  

 

Finally, this study provides an evidence that not only the applied load has an effect on the depth and width of 

the groove, but also the deflected shape of the AFM cantilever has a significant influence on the trench 

shape. The latter phenomenon may cause that the trench becomes deeper and larger. For example, it has been 

observed that the groove becomes over 50% deeper and wider on an average when the cantilever deflected 

shape changes from convex to concave.  

 

Thus, this research highlights the importance of considering the non-rigid nature of AFM probes when 

studying the AFM tip-based nanomachining process. 
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