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Abstract

Improvements in fabrication processes have yielded a steady reduction in the In-

ternal Optical Mode Loss, αi , of semiconductor laser devices in recent decades.

Hence, uncertainty in the determination of αi (roughly ±1.0 cm�1) has become

insu�cient. The aim of this work is to reduce the uncertainty within this method

to ±0.1 cm�1.

The modulated multisection method � in which the absorbing length within a

device is alternated rapidly compared with the timescales of systemic drift � was

introduced to combat errors associated with such drifts in the standard method.

Experimental data demonstrated that systemic drift correlates with substantial

systematic errors and that these errors are made negligible by application of this

modulated method.

A systematic error � due to divergence within the waveguide of broad area de-

vices � of 3.2 cm�1 was identi�ed and a method for its correction was developed.

Error associated with injection e�ciency of the multisection contact geometry was

identi�ed. This error is su�ciently small for drive currents greater than 22 mA at

device temperatures of 300 Kelvin and greater.

By characterising measurement precision, experimental conditions were estab-

lished in which drift-associated error and imprecision were small with respect to

the project uncertainty aim. In optimised conditions, repeated measurements of

optical loss below the absorption edge had an associated average deviation of

±0.017 cm�1.
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This low uncertainty was applied to a systematic investigation of optical loss

spectra in an InP Quantum Dot device as a function of device temperature. The

temperature dependence of αi was characterised with an uncertainty (approxi-

mately ±0.05 cm�1) that would be impossible using conventional methods. A

feature with a peak magnitude of 0.2 cm�1 was identi�ed and associated with the

occurrence of very large quantum dots. The improved uncertainty demonstrated

in this project presents an opportunity for more detailed study of αi .
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CHAPTER 1

Background Material

1.1 Introduction

Quantum heterostructure lasers have undergone steady development in recent

decades. As fabrication techniques have progressed, the electronic and optical

characteristics of commercial lasers have seen great improvements. However, as

the quality of devices improve, so must the experimental techniques through which

they are characterised. A quantity known as the Internal Optical Mode Loss (de-

noted αi ) describes the fractional loss of light intensity from a device waveguide

per unit length of propagation due to scattering of light out of the optical mode at

lattice imperfections and optical absorption due to various intraband mechanisms.

In a measured optical loss spectrum, contributions from interband transitions, de-

noted by A, are also present. Hence optical loss is commonly expressed in the form

(A+αi ). Internal loss can be measured in spectral regions in which interband op-

tical loss is negligible. An understanding of internal loss processes is crucial to the

development of devices with high operating e�ciency and is of particular interest

in the fabrication of high power laser diodes. The aim of this project is to measure

low values of internal loss using the method for optical loss spectra known as the

Multisection Method.
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Modern high-power semiconductor laser devices tend to have internal optical

mode loss values as low as a few cm�1 [1, 2]. In the past, uncertainties of ±1 cm�1

have been typical in Multisection Method measurements of internal optical mode

loss in typical Quantum Dot and Quantum Well structures with internal loss val-

ues in excess of 5 cm�1. Development of measurement techniques with reduced

uncertainty is clearly necessary. In light of this, uncertainty considerations in this

document are contrasted with a benchmark value of ±0.1 cm�1. Optical Loss

measurements are made using the multisection (or segmented-contact) electrically

pumped method which was developed within this research group [3]. A motivation

for continued development of this technique is that, unlike in other methods for

the determination of optical loss, all measurements are made on a single sample

and in the electrically pumped, front-facet emitted arrangement of a standard laser

structure (with the concession that longitudinal modes are suppressed).

1.2 Laser Structures and Operation

1.2.1 General Structure of a Semiconductor Laser Device

The main focus of this document is on the loss of light in propagation through quan-

tum dot and quantum well semiconductor laser structures. As such, descriptions

of these structures and some related conventions are warranted. Note that only

the theory that is necessary in understanding the presented work is given in this

document. Exhaustive descriptions of the principles of operation of laser diodes

can be found in many sources [4�9] . Figure 1.1 shows schematics of two typical

laser structures. Some key di�erences between these structures are emphasised.

Frequent reference will be made to speci�c orientations and optical polarizations

in this document. Orientations are clearly de�ned by the arrows to the right of the

structure diagrams with respect to which light propagation and polarisations are

de�ned . The concepts of Broad Area (BA) and Ridge Waveguide (RW) structures

are also introduced.
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To produce such structures, layers of varying composition are deposited accu-

mulatively onto a substrate wafer in the transverse direction by epitaxial growth.

Thus layers are formed in the lateral plane. This corresponds to growth in the

positive transverse direction as de�ned in Figure 1.1 . The role of these layers in

the structure is discussed in Section 1.2.6. The direction running along the length

of the device is de�ned as the Longitudinal orientation. In one dimensional models

of light propagation, this is the direction in which light travels out of the device

front facet and towards the detection system.

Figure 1.1: The upper �gure demonstrates a cross-section through a Broad Area and a
Ridge Waveguide device structure. The guiding action of the ridge is illustrated in the
lower �gures, which depict a plan view of the upper surface of a laser device (from above).
The upper edge of this lower pair of �gures indicate their front facets (the emitting surface
of a device in operation). Key orientations within the structure are given by the arrows
to the right of each pair of diagrams.

By etching into the top surface of the structure using a masked pattern before

deposition of the gold contact layer, devices with ridges of material centred in the

lateral orientation and running parallel to the optical axis of the device can be

formed. The etched space is �lled by a dielectric and the resultant discontinuity

in the e�ective refractive index introduces transverse optical con�nement. The

14



advantages demonstrated in such `Ridge Waveguide' (RW) devices are discussed

in the following section. The structures on the left of Figure 1.1 are known as

`Broad Area' (BA) devices.

Certain linear polarizations of emitted light are de�ned as follows. The Trans-

verse Electric (TE) polarization has an electric �eld vector parallel with the layers

of growth of the material, while the Transverse Magnetic (TM) polarization has an

electric �eld vector perpendicular to the layers of growth of the material. Stated

another way, the TE electric �eld vector is parallel with the lateral orientation and

TM electric �eld vector is parallel with the transverse orientation.

For experimental use, the lower gold contact of the device (shown in Figure 1.1)

is a�xed to a 3 mm long copper block using a silver epoxy which is, in turn, a�xed

to an 8-pin T0-39 header. Gold contacts on the upper surface of a device can be

individually connected to the pins of the header with gold wire and conductive

epoxy. This provides a method of applying electrical bias to any required contacts

and a standard connection to sample holding apparatus in all of the experimental

methods which follow. (The necessity for multiple electrical contacts is described

in Section 1.3.4). The copper block acts as a heat sink, conducting heat away from

the device and reducing the e�ect of `self-heating ' during pumping [10].

1.2.2 Electronic States in Semiconductors

The following is a basic outline of carrier behaviour in semiconductors. Full de-

scriptions of the underlying physics may be found in various textbooks [4, 11, 12].

Figure 1.2 shows the E (k) dispersion relation for a direct bandgap semicon-

ductor:
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Figure 1.2: The dispersion relation for a semiconductor is given. CB , VBhh , VBlh and
VBSO represent the conduction band, heavy-hole valence band, light-hole valence band
and split-o� band respectively. E�ective masses are related to this picture by Equation
1.2. (Bands are not precisely parabolic in this schematic.)

It has been observed that this behaviour is approximately parabolic for small

values of k . For example, the energy of a carrier within the conduction band (with

respect to the maximum energy of the valance band) can thereby be described by

equation 1.1:

E (k) = EG +
(	h2k2)

2m∗
(1.1)

where m∗ is the e�ective mass of a particular band and is related to band curva-

ture by Equation 1.2. 	h is the reduced Planck's constant and EG describes the

energy gap between the lowest energy state of the conduction band and the highest

energy state of the valence band.

m∗ =
	h2

δE2

δk2

(1.2)

E�ective mass describes the modi�cation of particle motion from its behaviour

in free space by the periodic potential of the crystal lattice.
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1.2.3 Interband Optical Transitions of a Laser Diode

The band-to-band optical gain and loss properties of a laser device are determined

by the choice of material in the active layer. In bulk semiconductors � due to an

approximately parabolic dispersion relation � the density of states is proportional

to the square root of the transition energy. Due to momentum conservation in op-

tical transitions, the optical absorption spectrum for bulk semiconductors follows

the form of the density of states. This relationship between dispersion and optical

absorption is examined in Figure 1.3:

Figure 1.3: A dispersion relation and optical absorption spectrum are given in Figures
1.3.a) and 1.3.b) respectively. The upper and lower curves in Figure 1.3.a) represent the
conduction and valence bands respectively.

In order to form a quantum well, relatively narrow bandgap material is grown

in a layer which is thin with respect to the de Broglie wavelength of electrons

(typically of the order of tens of nanometres). Accordingly, quantum con�nement

results in discrete carrier energy levels (for k aligned with the quantum con�ned

spatial dimension). Interband transitions are restricted by the orthogonality of

con�ned electron and hole wavefunctions and primarily occur between electron

and hole states of the same quantum number.
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Figure 1.4.a) provides a schematic description of quantum well energy bands

and con�ned states are depicted therein. Arrows between conduction band (elec-

tron) and valence band (hole) states represent allowed optical transitions (corre-

sponding to the �rst three energy levels). Figure 1.4.b) demonstrates the optical

absorption spectrum corresponding with such a structure. In order to understand

the change in energy levels due to con�nement in a quantum well, the simple ap-

proximation of an in�nite potential well is useful. An in�nite potential well with

an integer quantum number, n, has con�nement energies of carriers as given in

Equation 1.3 :

Figure 1.4: Figure 1.4.a) depicts an example of the energy band structure at a quantum
well. Quantum con�ned carrier wavefunctions are depicted at increasing energy levels
within the well. These are labelled with their En values, as introduced in Equation 1.3.
Corresponding energy levels can be seen on the optical absorption spectrum in Figure
1.4.b). These are compared with the bulk material optical absorption (the dashed line)
which was introduced in Figure 1.3. Note that this schematic depicts a �nite square well,
for which energy equations cannot be solved analytically.

En =
h2n2

8m∗d2
(1.3)

where h is Planck's constant, m∗ is the e�ective mass of the carrier and d is the

width of the well.

The minimum energy of a transition from a conduction to valence band state
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in a quantum well is equal to the sum of the band gap of the material, EG and

the con�nement energies of the electron and the hole, de�ned for the nth con�ned

state as given in Equation 1.4:

	hω = EG +
h2n2

8m∗ed2
+

h2n2

8m∗
h
d2

(1.4)

where m∗e and m∗h are e�ective masses for the electron and hole respectively and

	hω represents the photon energy associated with the transition. Kinetic energy of

the carriers within the plane of the quantum well acts to increase the energy of

the transition. This results in the `step-like' characteristics shown in Figure 1.4.b).

Unlike the case of the bulk material described in Figure 1.3.b), an increase in pho-

ton energy does not correspond to an increase in absorption coe�cient until the

energy reaches the next En and a new quantum well transition becomes available.

Quantum dots occur in the case where the dimensions of a narrow bandgap

material are small in comparison with the de Broglie wavelength of an electron

in all three spatial orientations. Quantum con�nement of carriers will then occur

for each spatial dimension and, consequently, quantum numbers exist for each di-

mension � nx , ny and nz . Unlike in the case of quantum wells, carriers within a

quantum dot are con�ned in all spatial directions and hence kinetic energy can-

not increase the transition energy above that de�ned by the con�nement energy.

Consequently, absorption peaks associated with the transitions of a quantum dot

take the form of delta functions which are broadened homogeneously (in contrast

with the step-like behaviour seen in Figure 1.4.b)).

Figure 1.5.a) depicts the band structure and Figure 1.5.b) depicts the optical

absorption spectrum of a quantum dot:
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Figure 1.5: Figures 1.5.a) and 1.5.b) show the band structure and optical absorption
spectra of a quantum dot structure respectively. In �gure 1.5.b), the step-like behaviour
of the quantum well is replaced by distinct peaks. Grey triangles in Figure 1.5.b) indicate
homogeneous broadening of the absorption peaks.

Using an in�nite potential well approximation, the energy corresponding to

con�ned carriers within a quantum dot can be de�ned as shown in Equation 1.5:

En =
h2(n2x + n2y + n2z )

8m∗d2
(1.5)

and Equation 1.4 can be established, as is shown in Equation 1.6:

	hω = EG +
h2(n2x + n2y + n2z )

8m∗ed2
+

h2(n2x + n2y + n2z )

8m∗
h
d2

(1.6)

Equation 1.6 demonstrates that a square well model results in quantum dot

states of di�ering separations. Equally spaced quantum dot state energies have

been experimentally observed and hence some, more sophisticated, models use

parabolic wells to represent the potential in the plane of the growth layers [13].
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1.2.4 Internal Optical Loss Mechanisms

Internal loss processes include scattering of light at irregularities in the crystal

structure (especially at interfaces between growth layers), inter-valence band ab-

sorption (IVBA) � wherein an electron in the split-o� band is promoted to a state

in the light or heavy hole valence bands, or from the light hole band to the heavy

hole band � and intraband absorption (also known as free-carrier absorption) �

wherein an electron is promoted from a low energy state to a higher energy state

within the same band [13]. In order for momentum to be conserved, interaction

with phonons (lattice vibrational states) is necessary.

Figure 1.6: The band structure introduced in Figure 1.2 is repeated. A free-carrier
absorption transition is demonstrated in the conduction band and two IVBA transitions
demonstrated from the split-o� band to the light and heavy valence bands. ∆EFCA,
∆ESO�hh

IVB and ∆ESO�lh
IVB are the respective energies of these transitions and ∆kFCA is the

momentum imparted by the crystal lattice during the free carrier absorption transition.

Assuming k conservation, IVBA occurs at an energy which is dependent upon

the separation of the involved bands as a function of k . The requirement that the

upper state contains a hole tends to limit the total number of states which con-

tribute to IVBA (in which k is conserved) and causes the distribution of carriers
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to be crucially important. Due to the requirement of the presence of a phonon for

transitions in which k is not conserved, such transitions are less probable and make

a smaller contribution. IVBA typically occurs at low photon energies with respect

to the bandgap due to the smaller relative separations of the valence bands. IVBA

is commonly managed in modern devices by manipulation of valence band o�sets

and dispersion via the introduction of strain into device structures [14, 15].

Free carrier absorption depends upon carrier density and upon photon energy

as described by the Drude Free Carrier equation, given in Equation 1.7 [16]:

αFCA =
Ne2

m∗ε0ηcτ
1

ωn
′ (1.7)

In Equation 1.7, ε0, η, e, τ and N represent the vacuum permittivity, the re-

fractive index of the material, the magnitude of the electric charge of an electron,

the momentum damping period of the carrier, and the carrier density respectively.

ω is the frequency of the absorbed photon.

The exponent of ω depends upon the interaction of electrons with phonons,

but is typically taken to be n ′ = 2. (The prime emphasises that n ′ is not the same

quantity as n, the quantum number associated with quantum well states).

1.2.5 The Fermi Function

The temperature-dependent probability of occupation of an electron state as a

function of state energy is de�ned by the Fermi function, fe(E ). The Fermi function

has the form demonstrated in Equation 1.8.

fe(E ) =
1

e
E�εf
kT + 1

(1.8)

T is the material temperature and k is Boltzmann's constant. The Fermi function

dictates that states with energies beneath a characteristic energy � known as the

Fermi level, εf , � are occupied with electrons at absolute zero and that states
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with energies greater than the Fermi level are unoccupied. At higher tempera-

tures, thermal energy excites carriers to energies above the Fermi level, leaving

states unoccupied below the Fermi level. This is demonstrated in Figure 1.7. Hole

occupation probability is de�ned to be the absence of an electron and is hence

described by Equation 1.9:

fh(E ) =

1 � 1

e
E�εf
kT + 1

 (1.9)

A single Fermi level is appropriate to describe a population of carriers in thermal

equilibrium. A displacement from equilibrium � either due to optical pumping

or the application of electrical bias � will cause the loss of equilibrium between

conduction band and valence band carriers. In this instance, a separate Fermi level

may be used for each band. In this case, these quantities are described as quasi

Fermi levels.

Figure 1.7: The behaviour of the Fermi function at and above absolute zero are demon-
strated by the dashed black and solid red lines respectively.
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1.2.6 Signi�cance of Internal Loss in High Power Laser Diodes

The signi�cance of internal loss on the performance of high power laser devices

is best understood through study of a Light-Current curve such as the diagram

shown in Figure 1.8 :

Internal loss in�uences the Light-Current performance of high power laser

diodes in two ways. Firstly, the threshold optical gain of a device is related to

internal loss by Equation 1.10.

Figure 1.8: A �gure representing the L-I characteristic of a laser device. Device light
output is plotted against ID , the device drive current. The threshold currents for both
curves, ITh1 and ITh2 are labelled on the x-axis. The dashed curve depicts a change in
extraction coe�cient caused by an increase in internal optical loss.

Gthreshold = αi + αm = αi +
1

2L
ln

(
1

R1R2

)
(1.10)
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in which, Gthreshold is the threshold modal gain, αm is the distributed mirror

loss, L is the longitudinal length of a device and R1 and R2 are the respective

re�ectivities of the front and rear facets. ID is the device drive current. Clearly,

a higher value of internal loss will increase the value of Gthreshold and, in turn,

threshold current. Secondly, internal loss a�ects the gradient above threshold of

the L-I curve shown in Figure 1.8 . This quantity is proportional to the extraction

e�ciency of the device Fex . Fex is de�ned to be the fraction of light which exists

within an optical mode in the laser cavity which is emitted through the facets

(rather than being lost to scattering processes). Fex is critical to the production

of high power devices. Due to the high currents at which such lasers are often

operated and the low values of ITh obtainable in modern devices, small changes in

this gradient can drastically a�ect device output. Equation 1.11 below describes

the relation between αi and Fex :

Fex =

(
αm

αm + αi

)
(1.11)

The form of Equation 1.11 dictates that small contributions from αi can signi�-

cantly reduce light output from the device at very high pumping currents, even for

modern devices in which the value of αm may signi�cantly exceed that of αi [17].

The e�ect of two di�erent values of Fex are shown in the two curves in Figure 1.8 .

The solid curve represents relatively high output due to a low αi (and hence large

Fex ). The dashed curve represents a lower light output due to a higher αi .

The red lines denote the current values (IHP1 and IHP2) required to achieve

a particular value of light intensity for the cases of the two Fex values. It can be

seen that an increase in internal loss will increase the pump current required to

reach a particular desired light output.

Decreasing Fex will both decrease device e�ciency and increase the waste heat

produced by a device in operation, causing maximum operating temperature to be

reached at lower values of light output power. This is especially signi�cant due to

the high operating currents in high power devices, typically around 10 times their

threshold current. A small change in Fex can drastically change the light output
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which a device can obtain. For this reason, this e�ect dominates over the internal

loss dependence of ITh .

1.2.7 Optical Con�nement

Emitted light is con�ned � in the plane of the growth layers � to some region

near to the active layer of a device by means of a slab waveguide [18]. This is

achieved by use of low refractive index cladding layers surrounding a relatively

high refractive index core layer. Light emitted with an emission angle below the

critical angle of total internal re�ection for the core-cladding interface is con�ned

in the core and certain modes in which light may propagate are formed. These

modes may be examined by solution of Maxwell's equations. Guiding by means of

a slab waveguide is illustrated schematically in Figure 1.9:

Figure 1.9: Guiding by refraction at the interface between layers of di�erent refractive
indices within a slab waveguide structure is shown. The refractive indices of the core
and cladding are denoted here as n2 and n1 respectively. For guiding to occur, n2 must
exceed n1. Θ denotes the angle of refraction associated with a particular optical mode.

Hence the properties of various optical modes in both TE and TM polarisations

may be examined via a set of transendental equations which depend on d , n1 and

n2. A common application of this analysis in laser device design is the improvement

of device performance by the suppression of higher order optical modes [1].
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1.2.8 The Double Heterostructure Laser

The concepts of optical and carrier con�nement are central to understanding the

generic structure of the Double-Heterostructure Laser (DHL). Optical con�nement

is achieved as described in Section 1.2.7 and the use of core layers with a lower

band-gap than the cladding material improves the con�nement of carriers in the

core [7]. The application of these e�ects in a real device structure can be seen in

Figure 1.10. The general structure of device type #1 (introduced in Figure 2.1)

is used for this explanation. The use of a relatively low band-gap active material

results in the emission of light with a photon energy lower than the band-gap

energy of the cladding. Hence, band-to-band absorption of light propagating in

the cladding material is small, further enhancing device performance.

Figure 1.10: The layer structure given in Figure 2.1 is demonstrated alongside quantities
relevant to carrier and optical con�nement. The unlabeled, vertical axis in each case
is a spatial axis representing the spatial distribution of each quantity through the layer
structure of the wafer. Figure 1.10.b) demonstrates the e�ect of a narrow band-gap active
region; additional structure within the active region (and the e�ect of con�nement) is
omitted in favour of simplicity.

In this example structure, thick layers of AlInP cladding on either side of the

core layers have a low refractive index compared with the core layers between

them. This refractive index step provides optical guiding by total-internal re�ec-

tion. This is shown in Figure 1.10.d).
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Comparison of the axes of Figure 1.10 demonstrate the advantages of the DHL.

Figure 1.10.b) shows the electronic band structure of the wafer. The labels 'VB'

and 'CB' denote the valence band and conduction bands respectively. The charac-

teristic curved bands of a P-N diode can be seen, with an additional potential well

due to the presence of low band-gap material in the centre of the structure. This

band structure will tend to lead to high concentrations of electrons in the conduc-

tion band potential well and holes in the valence band potential well, upon the

application of forward bias. This carrier distribution is shown in Figure 1.10.c).

Figure 1.10.d) shows the refractive index step at the interface between the waveg-

uide cladding and core layers. Figure 1.10.e) depicts the distribution of the optical

�eld brought about by total internal re�ection at these interfaces. This overlap

of optical and carrier con�nement results in low threshold currents in processed

devices.

Figure 1.10 is not to scale and doesn't account for the repeated layers of the

active region. It simply provides a basic introduction to the underlying concepts.

1.2.9 Optical Loss and Temperature dependence

Various temperature dependences of internal optical loss have been observed in

laser structures [19�21]. Certain key concepts must be covered in order to under-

stand temperature dependence in optical loss spectra.

Optical loss spectra typically become relatively �at at photon energies below

the band edge (for example, Figure 1.14). Unlike with interband transitions, the

lack of clearly de�ned features can act to complicate the identi�cation of the dom-

inant source of internal optical loss .

The Varshni Equation is a semi-empirical description of the temperature de-

pendence of the bandgap in a semiconductor and is de�ned by Equation 1.12 [22]:
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Eg (T ) = Eg (T = 0) �
αT 2

T + β
(1.12)

Eg (T ) is the bandgap of the material at absolute zero and α and β are material

dependent parameters. For example, in InP the given reference quotes the follow-

ing values for these parameters Eg (T = 0) = 1.4206 eV, α = 4.906x10�4 K eV�1

and β = 327 K [22]. (The Varshni �tting parameter, α is distinguished from in-

ternal optical loss by the lack of a subscript i in this document.)

Eg (T ) from Equation 1.12 has been calculated for illustrative purposes for InP

(using the stated values) in Figure 1.11. The temperature dependence described

by Equation 1.12 acts to rigidly red-shift transition energies in measured spectra

with increasing device temperature. Optical Loss coe�cients which are measured

at photon energies near to the absorption edge are particularly susceptible to dras-

tic changes in value with temperature as the photon energy of the absorption edge

changes. Hence, awareness of this temperature dependence is crucial for accurate

assessment of internal optical mode loss. This is particularly true in the instance of

systematic investigations with device temperature, such as that described in Chap-

ter 11. It is noted that the localisation of carriers caused by any spatial minima

in bandgap can cause a departure from the Varshni equation at low temperatures

[23]. In the temperature range examined in this thesis, no such departure is ob-

served.

Transitions associated with a quantum dot sample are broadened inhomoge-

neously � by the distribution of dot sizes within a particular sample � and dots

of each size are broadened homogeneously � due to the �nite duration of inter-

action between dots and light [24]. This broadening is shown in the schematic in

Figure 1.12. There is evidence of temperature dependence of homogeneous broad-

ening in quantum dot laser structures [25]. This e�ect must be considered both in

measuring the values of absorption peaks and of measuring values of optical loss

at photon energies in su�ciently close proximity to absorption peaks.
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Figure 1.11: The temperature dependence of the bandgap according to the Varshni
equation is plotted for InP.

Transitions associated with a quantum dot sample are broadened inhomoge-

neously � by the distribution of dot sizes within a particular sample � and dots

of each size are broadened homogeneously � due to the �nite duration of inter-

action between dots and light [24]. This broadening is shown in the schematic in

Figure 1.12. There is evidence of temperature dependence of homogeneous broad-

ening in quantum dot laser structures [25]. This e�ect must be considered both in

measuring the values of absorption peaks and of measuring values of optical loss

at photon energies in su�ciently close proximity to absorption peaks.

Other temperature dependent e�ects upon the optical loss in semiconductors

include the temperature dependent occupancy of states throughout the band struc-

ture due to the temperature dependence of the Fermi function. Carrier density is

calculated via the integral of the product of the density of states with the Fermi

function (for a particular carrier) as a function of energy. The resultant absorbing

processes depend heavily upon temperature and photon energy [26].
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Figure 1.12: Broadening mechanisms are shown for Quantum Dot samples. The red lines
represent homogeneous broadening of dots with varying associated photon energies. The
blue dashed line is an envelope function representing the inhomogeneous distribution of
emitted photon energies. This �gure is adapted from the reference [27].

1.3 The Multisection Method for Optical

Loss Spectra

1.3.1 Introduction

The Multi-section Method for Optical Loss Spectra was developed by Cardi� Uni-

versity's Optoelectronics group in 1999 [28] and the method and its applications

were more fully described in a 2003 paper [3]. In the latter paper the method is

described as `the Segmented Contact Method', but this document prefers the nam-

ing convention of the original reference. Both papers present a methodology for

the direct observation of gain and loss behaviour in pumped and passive regions of

an electrically pumped device respectively. As this project is primarily concerned

with Optical Loss, a description of the method for loss will be examined in Section

1.3.2. Gain measurement is not the focus of this document, but a brief descrip-

tion of the method is given in Section 2.6. It ought to be noted that internal
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loss can also be determined in an optical gain experiment. Similar electrically-

pumped segmented contact experiments have been conducted in the past for gain

by Oster et al. and Prince et al. and for gain and loss by McDougall et al. [29�31].

Alternative approaches to internal loss measurement include the Hakki�Paoli

technique for optical gain [32]. This method compares amplitude variation in

longitudinal modes of below-threshold emission of laser devices to determine gain

spectra. Measurement of this spectrum at a photon energy lower than the bandgap

of the gain medium provides an internal loss measurement. Past work has high-

lighted insu�cient accuracy of Hakki�Paoli internal loss measurements [33]. As the

value of loss measured by the Hakki�Paoli method includes mirror loss, uncertainty

in the estimation of mirror loss limits the method's accuracy in the determination

of internal loss. Accurate measurement of internal loss using the Hakki�Paoli

method additionally requires a high spectral resolution in emitted intensity mea-

surements and has inherent limitations on the Q-factor of the test device cavity [34]

Another common method for the determination of internal loss is the �external

di�erential e�ciency versus cavity length� method, in which, a value of internal loss

can be extrapolated from external di�erential e�ciency data measured in devices

of di�erent lengths [35]. This method assumes Fermi level pinning throughout the

device, which results in inaccuracy [36]. Additionally, internal loss and internal

di�erential e�ciency are assumed to be independent of cavity length. Experimen-

tal work has shown that this is not the case, with corresponding systematic errors

in measured values of internal loss of up to 10% [37].

There exist optically-pumped equivalents of the multi-section experiment such

as those of Shaklee et al. and Bakker et al. [38, 39]. The primary motivation in

use of an electrically-pumped multi-section optical loss measurement is to make

the conditions of the measurement match the conditions in which real commercial

devices tend to be operated. These methods don't require an electrical connection

to the device. As such, they are well suited for rapidly testing wafers in fabrica-

tion facilities. However, recent work by Rob Thomas in this research group has

demonstrated that systematic error due to charge accumulation in unpumped sec-
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tions will exceed the ±0.1 cm�1 uncertainty aim of this work, in the absence of

an earthing connection to these sections [40]. Furthermore, optically pumping re-

quires an additional optical alignment, potentially further decreasing the accuracy

of the measurement.

Re�nements of the multi-section method have been developed by Xin et al. and

Shahid et al., providing novel methods for compensation for the collection of par-

tially ampli�ed light and performance of the method at low carrier densities/light

levels respectively [41�43].

1.3.2 Fundamentals of the Multi-section Method

An Optical Loss Coe�cient is de�ned as the fractional loss in light intensity per

unit distance of propagation through a medium. In a waveguide, it is often ex-

pressed in the form (A + αi ). The optical loss coe�cient is separated into the

absorption of light due to excitation of carriers across the (conduction-valence)

band gap, A, and internal optical mode loss, αi .

It is common to attribute internal loss to the scattering of light from the optical

mode due to interaction with irregularities within the cavity. However, internal

loss has contributions from various sources (see Section 1.2.4). Indeed, internal

loss is � by the de�nition given here �- associated with any optical loss process

other than conduction-valence interband absorption.

Internal loss tends to have little spectral dependence within the bandgap of a

device. It is therefore common to associate internal loss with a single value for a

particular device.

Starting from an expression of the Beer-Lambert Law, consider a one dimen-

sional model in which light travels parallel with a z axis (corresponding to the

longitudinal axis described in Figure 1.1 in a real device) [16]. For a beam which

is incident on uniform, thin slices of absorbing material of length dz , which are
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perpendicular with the direction of the beam, and based on the premise that the

fraction of the total light intensity lost is proportional to dz , Equation 1.13 is de-

rived:

dI (z ) = �(A+ αi )Idz (1.13)

where dI (z ) is the small change in light intensity in passing through the thin slice

of structure of length dz and I is the light intensity.

In a real measurement of an optical loss spectrum, interband absorption, intra-

band absorption, free carrier- and exciton-related loss processes all contribute to

measured coe�cients [13, 16]. Additionally, transition properties are often modi-

�ed by quantum con�nement in modern devices. This leads to complex spectral

distributions of loss processes. As both A and αi have spectral dependences, Op-

tical Loss spectra are constructed using a spectrograph system (as discussed in

Section 2.2 ). Such spectra are commonly expressed as a function of wavelength

or photon energy. The latter will be favoured in this document.

It is worth noting that measurements of Optical Loss Spectra in the wider

literature do not necessarily discriminate between loss and absorption processes.

Consequently, what is commonly referred to as an `Absorption spectrum' may have

some contribution from non-absorptive loss processes (such as scattering).

The action of a loss mechanism in a waveguide is dependent upon the overlap

between the optical mode in which the light is propagating and the spatial distri-

bution of sources of loss. As such it is common to discuss Modal Optical Loss (see

Section 1.2.7 for discussion of optical modes). Similarly, depending on the device

structure, polarization dependence can be expected [4]. In the experiments out-

lined in this document, for consistency in results, the TE polarization is selected

using a polarizer in the optical path. (Unless a statement is made to the contrary).
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1.3.3 Mathematical Foundation of the Multisection Method

Equation 1.13 must be integrated in order to be practically applied. This results

in Equation 1.14, the inverse exponential power law which is commonly associated

with the Beer�Lambert Law:

I (z ) = Ioe
(�(A+αi )z ) (1.14)

Rearranging for the Optical Loss coe�cient, we obtain Equation 1.15:

(A+ αi ) =
�1

z
ln

(
I (z )

Io

)
(1.15)

This is a general expression for fractional change in light intensity through some

length of a lossy medium. It is worth noting that I , dI and (A + αi ) all have

spectral dependences. These have been omitted from the equation for clarity of

the derivation. In the following section, the speci�c device geometry of the Multi-

section Method is applied to this equation. Since αi is only weakly dependent on

photon energy, it can be measured through the application of Equation 1.15 at

photon energies su�ciently below the absorption edge that A becomes negligible.

1.3.4 The Multisection Method in Practice

This section will establish the device geometry of the Multisection Method and ap-

ply it to the exponential model of loss of optical intensity. Section 2.7 will address

further complexities in the acquisition of successful Multisection Method Optical

Loss spectra. Assuming two device sections (such as those shown in Figure 1.13

) are optically and electrically equivalent, the light intensity upon independently

pumping each section will be identical given identical pumping current. As such,

by changing the pumped section we are e�ectively changing the position of a light

source of �xed output power longitudinally within the device. Under a paraxial

approximation (i.e. one in which all of the light rays measured from a device

front facet are parallel with the longitudinal axis), this shift in position results in

a change in absorbing length of material in the optical path equal to the section
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length, Ls .

Using terms introduced in Equation 1.15 , this light source has an intensity of

I0 at the edge of the pumped section nearest to the front facet (i.e. when z=0).

By measuring the front-facet emitted light intensities from sections 1 and 2, I1 and

I2, one can determine how much of I1 is lost in traveling through Ls microns of

passive (unpumped) path length by which the two sections di�er. The following

equation substitutes the practical geometry of the experiment into Equation 1.15:

(A+ αi ) =
1

Ls
ln

(
I1
I2

)
(1.16)

Figure 1.13 demonstrates the use of etching of the metallic contact layer on the

top of a device to achieve the pumping geometry described in Equation 1.16.

Figure 1.13: Typical pumping geometry of a Multisection Method device viewed from
above. Bright yellow regions indicate intact contact layer whereas orange strips indicate
etched 6 µm contact breaks. The red arrow represents the emission of light from the
front facet of the device. Connections 1 and 2 allow electrical pumping of two of the 300
µm sections.

Figure 1.13 depicts the typical device geometry of the Multisection Method.

Due to their positions relative to the front facet, section 1 will be referred to as the

`front' section and section 2 as the `rear' section during further discussion. The

device section nearest to the front facet is not pumped so that there may always
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be earthed material on either side of a pumped section. Hence, it is ensured that

the pumping arrangement is symmetrical for each device section. (This is further

discussed in Section 2.7.) Edge emitted light is collected by a spectrometer from

the front facet of a laser structure as is described in Figure 2.4 . It is assumed that

emission from the facet and passage through the detection optics has an identical

fractional e�ect on light of a particular photon energy regardless of its section of

origin [3].

The metallic top contact layer and the underlying (highly conductive) p-doped

layer are etched away using a masked etching process to leave electrically isolated

sections. These `contact breaks ' are typically 6 µm in length. In the experiments

in this document, 300 µm long sections were used and a typical device consisted

of 6 sections. All sections are grounded while not being pumped. This, combined

with the presence of connected sections on either side of the two pumped sections,

ensures that the two pumped sections are in equivalent electrical environments.

This will be discussed further in the current spreading discussion in Section 2.7 .

Figure 1.14 demonstrates the combination of I1 and I2 spectra into a measured

Optical Loss spectrum using Equation 1.16. A polariser was used in this measure-

ment to select only TE polarised light.

The optical loss spectrum in the above �gure can be seen to have the char-

acteristic `step-like' structure of a Quantum-Well device. The absorption edge

corresponding to the bandgap of the active region material can be seen at roughly

1.34 eV. At some given photon energy, there will generally be a contribution to

optical loss from interband absorption as well as internal loss processes. However,

the �at region at the low photon energy end of the spectrum has a lower optical

loss coe�cient as this region corresponds to photon energies within the bandgap

of the material. As such, no interband absorption is occurring here and the A

component of (A+ αi ) tends to zero as the observed photon energy decreases. It

follows that a measured optical loss coe�cient in the low photon energy region of

the spectrum corresponds to Internal Optical Mode Loss. The optical loss coef-

�cient averaged in this region is taken as the internal optical loss for the device.
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The αi value taken for the data in Figure 1.14 is stated next to the dashed line.

Figure 1.14: The I1 and I2 spectra which are substituted into Equation 1.16 to derive a
measured Optical Loss spectrum are shown as red and blue markers respectively. The
resultant Optical Loss spectrum is indicated by green dots. This measurement was carried
out on a device of type #2RW (in the terms introduced in Section 2.1).

It is noteworthy that any light is collected at all for photon energies corre-

sponding to the device bandgap. Measured light is generated in a pumped region

of material. This region has a substantially higher carrier density than the pas-

sive, unpumped region in which the measured optical loss occurs. The presence of

charge carriers has a screening e�ect on the electric potential of the crystal lattice,

resulting in an e�ect known as Bandgap Narrowing. Hence high carrier densities

in the pumped sections shift the I1 and I2 spectra to lower energies relative to the

band structure in the absence of injected carriers [44]. The number of free carriers

is signi�cantly lower in the unpumped absorbing region, and loss processes occur-

ring in the unpumped regions of the device are assumed to correspond to unshifted

transition energies.
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A number of further conditions exist in ensuring high con�dence in the uncer-

tainty of a measurement of multisection optical loss. A full understanding of this

topic requires an understanding of the experimental apparatus used in order to

make the measurement. As such, these conditions will be described in Section 2.7,

following the description of the apparatus in Section 2.2 .

Precision in an internal optical loss measurement requires precise measurement

of I1 and I2 signals. Internal loss is measured at low photon energies, at which

the spectral intensity tends to be small. Experimental scatter in these intensity

measurements is fractionally high. The precise measurement of internal loss is

discussed in detail in Chapter 9.

1.3.5 Gain and Spontaneous Emission

While neither gain nor spontaneous emission is directly used in the analysis de-

scribed in this thesis, both quantities are useful in understanding the origin of the

I1 and I2 light intensities. This is addressed in Section 2.6.

As described in the 2003 paper on the segmented (multisection) method [3],

making a paraxial approximation and examining emission in the plane of the active

layer, the light which reaches the device front facet from an emitting element at a

distance x from the front facet and with a thickness of ∆x , is given in Equation

1.17:

I (x ) =
(
βIspon

) [
e(G�αi )x

]
∆x (1.17)

in which, β represents the fraction of spontaneous emission coupled into the waveg-

uide, Ispon describes the rate of spontaneous emission in all directions in the plane

of the active layer (per photon energy interval per unit area) in a particular po-

larization.

The light generated by a section composed of sources such as that described

in Equation 1.17 of length, `, is derived in Equation 1.18 by the integration of
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Equation 1.17 with respect to section length:

I (`) =
(
βIspon

) [e(G�αi )` � 1

(G � αi )

]
(1.18)

Assuming that the pumped section is adjacent to the device front facet (and hence

that the intensity de�ned in Equation 1.18 is not reduced by optical loss before

emission from the device), the light collected by a detection system is reduced

by mirror loss (re�ection at the facet) and some prefactor which depends on the

collection e�ciency of the optics. As these contributions remove an equal fraction

of measured light intensity regardless of its section of origin, they will not be ex-

plicitly described in this treatment.

Following the derivation given in the original paper [3], an equation for multi-

section optical gain over a pumped section of some length, L, may be de�ned as

follows:

(G � αi ) =
1

L
ln

(
I (` = 2L)

I (` = L)
� 1

)
(1.19)

in which, I2L and IL are de�ned to be the intensity described in Equation 1.18

in which ` = 2L and ` = L respectively. Experimentally, I2L corresponds with

pumping two adjacent device sections to the same current density.

Additionally, an expression for the measured spontaneous emission, Imeasspon , can

be de�ned as:

Imeasspon =
I 2L

I2L � 2IL

1

L
ln

[
I2L
IL

� 1

]
(1.20)

This de�nes the amount of the spontaneously emitted light that is coupled into

the optical mode and propagates towards the front device facet.
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CHAPTER 2

Experimental Techniques

2.1 Device Fabrication

The devices used for the experimental work found in this thesis are from two dif-

ferent sources. The �rst series of devices derive from a 710 nm emitting Quantum

Dot (QD) laser structure wafer, produced by Dr Andrey Krysa at the University

of She�eld for research by my colleagues in Cardi� University into the e�ect of

strain in con�nement layers on the performance of such devices [45] . This series is

labeled #1 in this work. The other series of devices were processed from a batch of

850nm emitting Quantum Well (QW) wafers supplied by the CASE award sponsor

for this project, Oclaro Inc. Devices of this wafer will be labeled #2 in this work.

As the technologies of the Oclaro wafer are commercially sensitive information,

few speci�cs were given regarding its structure. Accordingly, my description of

device fabrication will be based on the #1 wafer. BA devices of the Oclaro Wafer

were not used in these experiments. Table 2.1 summarises the above discussion

and assigns sample number designations to the devices used in this project.

As the main focus of this body of work is on the development of the under-

standing and application of experimental techniques, the following discussion of

device layer structure is a shallow overview of the technologies involved. A wealth

of resources is available for the development of further understanding of the pre-

41



Table 2.1: Sample Designation

Wafer Broad Ridge
Source Area Waveguide

She�eld #1BA #1RW
Oclaro - - #2RW

cise role of each layer and the processes and technologies involved. The following

references give some generic examples [4, 5, 7, 8].

Figure 2.1: The #1 wafer is given as an example of layer structure in a laser device.

In Figure 2.1 above, the left-hand table and diagram depict the layer composi-

tions and thicknesses for the structure of this speci�c device, while the right-hand

table and �gure give this information on the repeating structure of the wafer's

active region. The left-hand table additionally gives information on doping in the

structure (where `p', `ud' and `n' represent p-type, undoped and n-type semicon-

ductor material respectively). The layers were grown on a GaAs substrate using

MOVPE (Metalorganic Vapour Phase Epitaxy). InP Quantum Dots are grown in

the active region upon an AlGaInP layer and are covered by a layer of GaInP. The

core layers and neighbouring AlGaInP layers were all grown at 730◦C.

Electron con�nement is achieved as described surrounding Figure 1.10; core

layers with a lower band-gap than the surrounding material improves the con�ne-

ment of carriers in the active region [7]. The thick layers of AlInP cladding on

either side of the core layers have a low refractive index compared with the core
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layers between them, causing optical guiding by total-internal re�ection, as de-

scribed in Figure 1.10.d) . Devices used in this body of work have been designed

such that only one transverse optical mode exists.

2.1.1 Broad-Area and Ridge-Waveguide Devices

Processing of devices into either Broad-Area (BA) or Ridge-Waveguide (RW) de-

vices took place in the on-site clean room by skilled technical sta�.

Figure 2.2: Cross-sectional structure of a BA and RW device is given in Figures 2.2.a)
and 2.2.b) respectively. (Not to scale) .

A BA device is produced through growth of an oxide layer on the top surface

of the wafer, removing a 50 µm stripe by photolithography and �nally depositing a

metal contact layer to the top surface. This method of selectively pumping within

the surface area of a top contact is known as an oxide-isolated stripe. An example

of a BA structure is shown in Figure 2.2.a) . This structure limits the lateral

spread of a beam by gain-guiding. Gain-guiding is the process in which beam

divergence is reduced by spatially limiting its ampli�cation by the gain medium.

In this case, gain is limited to regions of the wafer below the stripe such that only

light propagating toward a device facet is fully ampli�ed). BA devices are uncom-

mon in commercial devices, as they have been superseded by more sophisticated

technologies for lateral optical con�nement. They are, however, commonly used

as test structures in characterization of the material properties of wafers.
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A RW device, such as the schematic shown in Figure 2.2.b) features improved

lateral optical guiding by introduction of a step in refractive index. By etching

to leave a mesa of material and then �lling with an insulating �ller substance, we

retrieve a �at top surface onto which a metal contact is deposited. The �lling sub-

stance is chosen to have a lower refractive index than the material it has replaced.

As such, a waveguide is formed, acting to con�ne light in the lateral orientation

(as introduced in Figure 1.1 ). This index-guiding e�ect is stronger than the gain-

guiding of the BA device, however it is expected that non-uniformity at the ridge

interface will add to optical loss in the cavity. As indicated in the �gure, the etch

doesn't reach the active region of the device. This achieves index-guiding of gener-

ated light while minimising compromise of device performance due to etch-related

defects in active material. The RW devices used in this body of work have 50 µ m

wide ridges.

Finally, the metal contact on the top surface is etched into the segmented struc-

ture described in Figure 1.13 .

For use in the experiments described in this document, devices are mounted

onto copper block (heat sink) upon a TO-39 header. The header is then soldered

into place within a cryostat during measurement to control and stabilise the device

temperature. Unless otherwise stated, all experiments noted in this body of work

were carried out with a set device temperature of 300 K.

2.2 Spectrograph System

Acquisition of light emitted from a laser device is carried out using an Andor

Spectrograph/ICCD (Intensi�ed Charge Coupled Device) system, allowing for si-

multaneous collection of data across the spectral region of interest. A boxcar

integration experiment is carried out, in which the output intensity from a device

is only measured within drive current pulses. This is achieved using the gating
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function of the intensi�er [46].

Figure 2.3: A schematic for the experimental apparatus used in the Multi-section Method
for Optical Loss spectra. This apparatus is used for measurement of spectral and spa-
tial distributions of emitted light. The function of each component is described in the
following text.

The ICCD system is triggered externally by the pulse generator which supplies

current to the device. A typical pulse frequency and current is 5 kHz and 80 mA

respectively. A standard pulse width of 1.5 µ s is used in these experiments. The

use of a delay generator allows a gate pulse to be generated within each current

pulse. By synchronising with this gate pulse, the ICCD only collects signal whilst

the device is emitting light. A full description of the nature of the triggering sys-

tem and detailed data acquisition process will later be described in reference to

Figure 2.5.

Light from the device is coupled into the detection system using the optics

described below in Figure 2.4. The detection system itself consists of a commer-

cial Czerny-Turner type spectrograph, which acts to spatially separate input light

of di�erent wavelengths in the horizontal orientation and focus this image onto

an array of CCD pixels. The ICCD system is calibrated such that each column

of CCD pixels collects light of a known wavelength. By reading out charge from

these columns sequentially, spectral data is obtained. Spectra are converted to be
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a function of photon energy during the data analysis process. A spectral resolu-

tion of around 1 nm is achieved using a 150 l/mm grating. A maximum measured

intensity of 8, 000 counts is collected on the CCD in any single exposure in this

body of work, based upon the limitations of the detector. This limit is crucially

important in Chapter 9.

The intensi�er acts to amplify the collected light signal, allowing for detection

of relatively low light intensities. When no voltage is applied across the vacuum

tube of the intensi�er, the transmission of light can be considered negligible. (The

apparatus documentation suggests a transmission of roughly 0.1%. This small sys-

tematic error in measured intensities is canceled out in the calculation of optical

loss coe�cients by the quotient in Equation 1.16.). As such, gating of the mea-

surement is achieved allowing boxcar integration. A more complete description

of the operation of the ICCD may be found in the manufacturer's manual and

accompanying documentation [47, 48] .

A delay generator is used to select a period of time within the current pulse

for light to be acquired by the CCD. Output from both the pulse generator and

delay generator are monitored on an oscilloscope to set the widths and phases of all

pulses and the magnitude of the current pulse to appropriate values. Further detail

is given on the timing of pulses in the discussion following Figure 2.5 . Synchroni-

sation of the delay generator and ICCD is carried out with a computer, on which

software controls various parameters of the ICCD and spectrograph operation.

This software also sets the temperature of a Peltier cooler at the photocathode

of the CCD (which reduces dark signal and associated shot noise). The CCD is

typically operated with a set photocathode temperature of �18 ◦C up to Chapter

9 and �30 ◦C henceforth upon acquisition of a water cooler.

Between the pulse generator and the laser device itself, a switching box is intro-

duced to allow current pulses to be directed to di�erent device sections (a concept

introduced in Section 1.3 ). Sections that are not pumped are earthed during a

measurement. A background signal is subtracted from the measured signal in each

acquisition. This is taken by physically blocking the light from the test device and
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acquiring the signal from the ICCD in the same conditions as the light intensity

signals are to be acquired.

By setting the spectrograph to collect light from the the 0th order of the grating

one may measure specular re�ection from the grating on the ICCD. As such spa-

tial, rather than spectral, information regarding device light emission is accessed.

This method is used to obtain the spatial distributions of emitted light that I will

go on to describe in Section 2.4 .

Figure 2.4: An overview of the optical components used in the collection of emitted light
into the spectrograph system. Front-emitted light is focused on the input plane of the
spectrometer. A polariser in the optical path allows selection of TE or TM polarised
light.

Light emitted from the front facet of the laser device is collected by a 4x mag-

ni�cation lens and imaged onto the input plane of the spectrograph. An input slit

in this plane selects the central portion of the incoming light (in the horizontal

plane), improving the resolution of the spectrograph. This causes spatial �ltering

of the light which is collected from the device. The signi�cance of this point is

discussed in Chapter 3. Spatial �ltering, achieved using a lens with a low collection

angle (5◦), ensures that the paraxial approximation of the Multisection Method

47



is appropriate [49]. The polariser in the optical path allows TE or TM light po-

larisations to be selected. This selection of polarisations is signi�cant as internal

loss may depend upon polarisation. Additionally, interband transitions involving

di�erent valance sub-bands are associated with di�erent transition strengths in

di�erent polarisations due to the symmetry of the Bloch functions of their asso-

ciated carriers [4]. This is signi�cant in the identi�cation of the cause of optical

loss processes, especially when attempting to characterise internal loss through

identifying spectral regions in which inter-band loss is negligigble.

Figure 2.5 demonstrates the timings and scale of the processes involved in the

acquisition of data using the spectrograph/ICCD system. The Ipump axis depicts

a 5 kHz pulse generator output into the laser device. The gate axis shows the

output from the delay generator on the same time scale. This gate signal is sent

to the ICCD via a computer interface and determines when voltage is applied to

the Intensi�er, and hence when signal will be accumulated. A measurement is

gated within each current pulse (during an exposure of the CCD). The exposures

are typically 0.1 second long and are separated by some readout time, the du-

ration of which depends upon the acquisition settings. The CCD has a readout

delay of 0.007 s. Longer exposure times are possible, but limited by the charge

capacity of the CCD. The exposure chosen in a particular experiment depends

on the light output of the tested device. To achieve acceptable Signal-to-Noise

Ratio, many exposures are accumulated in a particular measurement. There are

of the order of 500 current pulses (and hence gated measurements) within each 0.1

second exposure and 100 such exposures are taken in a typical accumulated light

measurement. Accounting for readout time for each exposure, such an accumu-

lation will take roughly 12.5 seconds. This is shown on the Acc. (Accumulated)

Signal axis. The light signal is physically blocked and a 100 exposure background

signal is acquired. At the marker 'A', the beam is unblocked, only device section

1 is pumped and a 100 exposure accumulation of light signal is collected. This

signal is I1. At marker 'B', only device section 2 is pumped and a 100 exposure

accumulation of light signal is collected. This signal is I2. The background signal

is automatically subtracted from the light signal by the software.
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Figure 2.5: A plot of the timings involved in a measurement of light signals using the
ICCD and spectrometer system. Note the di�erent scales on the time axes. The relative
pulse widths are not shown to scale on the �rst and last time axes for clarity. The
relation between these pulses and the apparatus described in Figure 2.3 is described in
the following text.

2.3 Emitted Light Spectra

Figure 2.6 shows a light intensity spectrum as measured by the spectrograph/ICCD

system:
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Figure 2.6: A measured light intensity spectrum as a function of photon energy. Sample
is of wafer #2RW and section 1 was pumped for this measurement.

Such spectra of edge-emitted light, measured whilst pumping di�erent device

sections provide us with I1 and I2 spectra. These can be combined to acquire

Optical Loss spectra, as described in Section 1.3. By calibrating the detector to

several spectral regions, broad spectra such as this can be assembled from mul-

tiple measurements. However, for investigation of internal loss, calibration in a

narrow, low photon energy spectral region is su�cient. The discontinuity at the

high photon energy end of the spectrum marks the edge of the intensi�er. A simi-

lar discontinuity exists at a low photon energy but is not discernible at this scale.

The units of the Intensity axis represent counts in the CCD readout, and can be

converted to standard units of Intensity by considering the spectral response of the

detector. However, the technique outlined in Figure 1.3.4 makes use of fractions

of intensities and fractional changes; arbitrary units are su�cient.
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2.4 Lateral Spatial Distribution of Emitted Light

The following �gure shows the spatial distribution of edge-emitted light collected

by the spectrograph/ICCD system:

Figure 2.7: A spatial distribution measurement of the emitted light. This device is of
wafer #1BA and section 1 was pumped.

By selecting the 0th order re�ection from the di�raction grating of the spec-

trograph, the spatial distribution of the emitted light can be measured. The mea-

surement is made by a lens focusing at the beam waist of the emitted light. This

quantity will be described as the `lateral spatial light distribution'. As in measure-

ments of the spectral distributions, a reading of the background light is taken and

automatically subtracted from measurements of spatial light distribution. With

the input aperture slits fully open, this results in imaging device emission from

across the facet to be focused onto the ICCD. Figure 2.7.a) shows the amount of

light collected by each CCD pixel in such a measurement.

The section under examination was pumped at 20 mA with current pulses of

2 kHz and a width of 1.0 µs. It is often more convenient to focus on the lateral

behaviour of this pro�le. The lateral spatial distribution of device emission may

be obtained by summing the intensity within each column of CCD pixels. The

result of this analysis is shown in the lateral pro�le in Figure 2.7.b).

Lateral spatial light distribution measurements are used for three purposes.
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Firstly, to check optical alignment of a device prior to making an spectral mea-

surement. Secondly, to check that the light emitted by each device section is

appropriately similar with no evidence of �lamentation (Further details will be

given on this point in Section 1.3.4). Thirdly, (as will be shown in Chapter 3 ) to

quantify and correct for the e�ect of divergence of generated light as it propagates

through a device on measured Optical Loss coe�cients.

2.5 I-V measurement

A measurement of the I-V characteristics of each device is carried out through

boxcar integration measurements of a pulsed current as a function of voltage using

the apparatus described in Figure 2.8.

Figure 2.8: Apparatus for boxcar measurement of device I-V characteristics is described.

The pulse generator produces 1 µs current pulses at a frequency of 1 kHz which
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pump a section of the device. The current controller allows a computer to incre-

ment the current applied to the device section under examination. The boxcar

integrator averages the current and voltage during current pulses. A program

written speci�cally for this apparatus [50] allows rapid measurement of I-V char-

acteristics for a range of currents.

Such I-V characteristics are shown for two device sections corresponding with

I1 and I2 in Figure 2.9. Comparison of I-V measurements between di�erent device

sections are used to check that sections possess similar electronic characteristics.

Poor connections and short circuits will be immediately apparent from this data.

Further details are given on this point in Section 2.7 .

Figure 2.9: Section 1 and 2 I-V characteristics for a device of type #1.
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2.6 Edge-Emitted Optical Intensities in the Multi-

section Method

The edge-emitted light generated by a multisection device can be understood by

considering an optical gain coe�cient in pumped regions, and an optical loss co-

e�cient in passive (unpumped) regions and the respective ampli�cation and at-

tenuation that these processes apply to spontaneous emission in a pumped device

section. The ampli�cation of spontaneously emitted light by stimulated emission

is known as Ampli�ed Spontaneous Emission (ASE).

Having de�ned optical mode loss in Equation 1.16 and modal gain and spon-

taneous emission in Section 1.3.5, these quantities are examined in a real device.

Imeasspon , (G �αi ) as well as (A+αi ) all have respective spectral dependences. These

have been omitted in their respective derivation for brevity, but are apparent in

experimental data. Figure 2.10 demonstrates spectral data for each quantity in a

sample of type #1BA:

Figure 2.10: Measurements of (G � αi ), (A + αi ) and Imeasspon are given for a sample of
type #1BA . The convention has been used in which optical loss in passive regions of
the device is depicted as negative optical gain.
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The blue series in Figure 2.10 is the negative optical mode loss spectrum,

(�A � αi )(hν). At low photon energies in this spectrum, such as around 1.65 eV,

interband absorption is negligible and optical loss is approximately constant. This

is where the value of αi is typically measured. At higher photon energies, inter-

band absorption increases and a peak is observed at 1.73 eV due to the transition

between conduction and valence band QD ground states. The red series is the

modal gain spectrum, (G � αi ), and is measured in a pumped section of the de-

vice. A state of a particular energy can only contribute to gain if the applied drive

current is su�ciently high to populate it with carriers. In this instance, pumping

is insu�cient to resolve the 1st gain peak. Additionally, the presence of carriers

in the pumped material results in bandgap narrowing [13]. This shifts features of

the gain spectrum to lower energies than those observed in the optical loss spec-

trum. The green series represents spontaneous emission. It plotted in arbitrary

units here, although methods do exist for its calibration [3]. While gain and spon-

taneous emission are not directly analysed in this thesis, an appreciation of the

interaction between these three processes is crucial to understanding how ASE is

generated in experiments described herein.

The raw data which these spectra are based on tend to zero at the edges of the

ICCD (as seen in Figure 2.11). This occurs due to both limitations of the ICCD

itself and, at relatively high photon energies, absorption of light within the device

(recall that there is absorbing unpumped material between the front facet and the

front-most pumped section). Depending upon the chosen wavelength calibration of

the spectrometer and on the dynamic range of the detection system, this results in

poor data quality at the extremes of the spectrum.The real spontaneous emission

within the device does not truly tend to zero nor does the gain become �at above

1.73 eV (as the measurement in Figure 2.10 suggests). This is simply where the

ASE signals start to become negligible and data quality is lost. Note that this is a

shortcoming of the sample geometry and detection system settings and not of the

multisection method itself. Beyond this point in this thesis, data is only included

from parts of the spectrum which are meaningful. Con�dence in data was ensured

by checking that optical loss is not dependent upon the centre-wavelength of the

spectrometer nor upon detection parameters (such as ICCD exposure length).
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Having de�ned the processes which result in measured intensities having par-

ticular spectral behaviour, their relationship with measured light intensities in the

multisection method for optical loss may be examined.

Regardless of the section which is pumped, �in an ideal device � the light

produced by spontaneous emission in the optical mode is represented by Imeasspon

and the total light generated over a pumped section of length, L, is equal to I (L)

(as de�ned in Equation 1.18). This is equivalent to I0 (as introduced in section

1.3.3) and represents the ASE generated by pumping a single device section, at the

edge of that section which is nearest to the front facet. I0 is shown in Figure 2.11.

This was calculated, in this instance, by multiplying I1 by e(A+αi )L. I0 cannot be

measured directly for reasons discussed in Section 2.7.1.

Figure 2.11: Data series denoted I0, I1 and I2 are the measured intensity spectra gen-
erated by a pumped section, having undergone di�erent degrees of optical loss in prop-
agation to the device front facet. Light intensities I1 and I2 are collected having passed
through a length of L and 2L of passive absorbing material respectively. I0 is then
constructed using I1 and the optical loss spectrum deduced from I1 and I2.

56



The pumped sections are not adjacent to the device facet in the experiments

described in this thesis and hence the optical loss of the unpumped material will

a�ect the characteristics of all light intensities measured in this document. In-

tensity spectra, I1 and I2, measured from a real device are given in Figure 2.11.

In passing through each additional unpumped section of the device, an additional

factor of e�(A+αi )L is lost.

2.7 Further Conditions

There are further conditions which must be met to ensure that the approxima-

tions described in Section 1.3.4 are valid. For clarity, these will be expressed in

subsections, under the titles held in the following bulletpoints:

• Symmetry of device sections

• Optical Mode Considerations

• Round Trip Propagation of Light

Additionally, the e�ect of collection geometry is discussed. However, as this

discussion is somewhat more involved, it is examined separately in Chapter 3.

2.7.1 Symmetry of device sections

Before being considered acceptable for use in experiments I rigorously tested the

optical and electrical properties of devices, both upon collection from being pro-

cessed and after mounting to a TO header. As stated in Section 1.3.4 , the function

of the Multisection Method depends strongly on the assumption that I0 can be

considered to be equal for both device sections. One cannot directly measure the

light intensity as the light leaves sections 1 and 2, but tests of the I-V and inter-

contact resistance throughout the structure can give con�dence that the behaviour

of these two pumped sections is the same. (Recall that what has been de�ned to

be sections 1 and 2 in this document are the 2nd and 3rd sections from the front

facet respectively). The e�ect of I-V mismatches are discussed in more detail in
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Chapter 10.

The pumping current and pulse characteristics, the gating pulse characteristics

and the intensi�er gain are identical during the pumping of each device section to

ensure that I0 is reproduced identically at each section. Furthermore, the position

of all components in the external optical path is unchanged between the two sec-

tion measurements.

It is expected that some degree of `current spreading ' will occur, as current in-

jected at a contact will dissipate in the lateral plane as it passes through the trans-

verse structure of the device [51]. Indeed, models exist for the correction for such

e�ects in gain measurements [52]. However, provided that a device demonstrates

comparable electronic behaviour between its sections (i.e. they have comparable

I-V curves) current spreading is assumed to a�ect the distribution of carriers and

subsequently the light emission in a comparable way for each section. While cur-

rent spreading may change the e�ective boundaries of the device sections (with

regards to where light is generated), recall that it is the change in absorbing

length, Ls , which determines the measured optical loss coe�cients. Given elec-

tronic equivalence of the device sections, the distance by which changing between

pumping section 1 and pumping section 2 moves the e�ective light source longi-

tudinally will be equal to Ls regardless of current spreading. Hence the measured

optical loss coe�cients will be preserved.

Figure 2.12 clari�es these concepts. Figures 2.12.a)-c) represent the pumping

of the 3 sections nearest to the front facet. (The front facet being the left-most

edge of each schematic). Layers of the material system are labeled to the right of

the top diagram. Dashed angled lines demonstrate the spreading of current as it

�ows down from the top contact. Yellow and red regions represent pumped regions

of cladding and active material respectively.
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Figure 2.12: The lateral spreading of injected current is shown through a cross-section of
device along the longitudinal axis. An exaggerated current spread of the order of 100 µm
is shown here to emphasise the e�ect. (Current spreading of a few microns is typical in
real devices). Additionally, for the sake of clarity, the active layer is depicted as being
(proportionally) much further from the upper contact than is typical in modern device
design.

Dashed vertical lines are used to demonstrate the mechanism by which current

spreading does not in�uence measured optical loss coe�cients. The label Ls de-

notes the length of a section in Figure 2.12.a). In Figure 2.12.b), L′ is de�ned to

be the mean distance between the device front facet and the nearest point of the

active region to which current has spread. In Figure 2.12.c) it is demonstrated

that � given identical current spreading conditions in each section � pumping the

third section of the device e�ectively shifts the light source in the middle diagram

an additional distance of Ls away from the front facet. The di�erence in optical

path length between two sections is preserved (provided that neither is adjacent

to the device front facet).

The presence of current spreading is one reason that the section nearest to the

device facet is not used in this experiment (as made clear by the section de�nitions

described in Figure 1.13 ). The underlying problem is made apparent in Figure

2.12. Light from the section nearest the front facet is not used experimentally as
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altered current spreading behaviour would alter the current density (and hence

the light generation) and mean optical path length relative to the other sections.

(If pumping the section nearest to the front facet was required in a particular ex-

periment, the fractional e�ect of current spreading upon a measurement could be

minimised by increasing the device section length). Furthermore, the beam gener-

ated in a pumped section will be partially re�ected by the front facet of the device

[53]. This can cause systematic error in an optical loss measurement, as the degree

to which light intensity increases due to this re�ected wave is di�erent for the two

pumped sections. This is reduced by the introduction of angled facets and an un-

pumped front section. All devices used in this body of work follow this convention.

It is essential that the front facet is properly cleaved and undamaged, and that

no dust or dirt is allowed to settle on the facet since its fabrication, otherwise

scattering at such an irregularity may treat emitted light di�erently for the two

pumped sections and therefore constitute a systematic error in the measurement.

Inspection of the facets under a microscope with a 50x magni�cation objective lens

is routinely carried out. Measurement of the spatial distribution of light intensity

across the device front facet allows a further check for uniform light emission. This

procedure corresponds with the experimental method described in Section 2.3 and

is integral to the new method introduced in Chapter 3. This technique allows one

to rule out the presence of `�lamentation' e�ects, a term used to describe a family

of phenomena related to e�ects such as nonuniform light emission due to localised

defects in the crystal lattice in the optical path, non-uniformities in the contact

layer and various non-linear e�ects [54, 55]. The presence of such e�ects imply

that loss processes do not occur uniformly along the optical path and that the ex-

ponential model of optical loss is inappropriate. The presence of �lamentation also

implies that the Optical Loss Coe�cient is no longer uniform in the lateral plane,

the signi�cance of which will be stressed under the Optical Mode Considerations

section, later in this chapter.

It is also necessary that the propagation of light is independent of its section of

origin. Measurements of the lateral spatial distribution of light intensity across the

device front facet for each connected section are taken. This data provides evidence
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that light is emitted and subsequently propagates in a comparable fashion in each

case. This topic is discussed in more detail and examples of such spatial distri-

bution measurements are given in the discussion of divergence e�ects in Chapter 3.

2.7.2 Optical Mode Considerations

The following mode description will rely heavily on orientations de�ned in Section

1.2.1. Standard calculations of optical loss coe�cients are carried out individually

for each optical mode and polarisation in a device, and demonstrate optical mode

dependence. As such, it is conventional to consider optical loss coe�cients for a

particular mode and polarisation. While a single polarisation can be selected us-

ing a polariser in the optical path, optical modes cannot be �ltered in this way. If

more than one mode exists the measurement no longer represents the loss of light

from any particular mode. Rather, some manner of `e�ective multimodal loss' is

measured. Some factors which in�uence this e�ect include spatial distributions of

the modes in relation to the position of sources of optical loss, the acceptance cone

of the detection system, the distribution of light between optical modes and the

magnitudes of the modal optical loss coe�cients themselves. In particular, it is

established that defects at ridge interfaces result in high optical losses for modes

with a high spatial overlap with these interfaces [4]. The following is a considera-

tion of the existence of modes in three spatial dimensions of a typical device.

Longitudinal modes occur along the long axis of the device and are determined

by the distance between the front and rear facets. However, generated light only

passes through the device once in the Multisection method. Longitudinal modes

are not expected to in�uence the propagation of light. As such, the e�ect of these

modes are neglected.

In both the BA devices and the relatively wide-ridged (50 µm) RW devices

which are used in the following investigations, a lateral single-mode model is not

appropriate. However, uniform lateral distribution of loss processes is expected

due to symmetry of lateral device structure. As such, identical loss is expected
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between di�erent modes and so no further consideration is required. This assumes

that the device is perfectly symmetrical in the lateral plane. As suggested in the

previous section, irregularities within a device and facet damage can break this

symmetry and cause systematic error in an optical loss measurement.

Conversely, the optical loss is expected to vary as we pass between layers of the

device structure in the transverse plane. This spatial distribution of optical loss

coe�cients implies that di�erent modes may be attenuated di�erently in propaga-

tion. It is likely that Oclaro Inc. laser structures (wafer #2), which are nominally

for use in high power devices, have been designed to have a single transverse mode.

The QD wafer designated wafer #1 is known to have been designed to have a single

transverse mode.

2.7.3 Round Trip Propagation of Light

As spontaneous emission occurs in all directions in the active region, the gener-

ated light will be equally guided towards the rear facet as to the front facet. The

multisection method for optical loss is nominally a single pass technique; light is

generated within a device and some fraction of the light which propagates towards

the front facet is collected by the detection system. However, light which com-

pletes a 'round trip' back to the front facet after re�ection from the rear facet

will constitute a systematic error in the measured optical loss coe�cients as the

absorbing path length will di�er for the two pumped sections. This is particularly

signi�cant to work on measuring small values of αi as small loss coe�cients im-

ply that a relatively small fraction of emitted light is lost in propagation to the

detection system. Long, passive rear sections are used to reduce the impact of

round-trip light on optical loss measurements [3].

The di�erence in optical path lengths for re�ected beams originating from two

device sections is indicated in Figure 2.13. A di�erence in paths lengths is shown

for light propagating towards the front facet (arrows pointing left), compared with

light travelling towards the rear facet and being re�ected back (initially pointing

right). The curved right-hand arrow simply represents re�ection from the rear
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facet. This is drawn in this way to avoid arrows overlying and does not imply

that light travels further in this section than in others. In each diagram, the up-

per rows of arrows represent light that has yet to reach a device facet since its

emission. The lower rows of arrows represent light which has been re�ected from

the rear facet and is propagating back towards the front of the device. Taking a

paraxial model of exponential loss in which light travels through the device along

a central longitudinal axis, a calculation has been made of how much single and

round trip light intensity reaches the front facet for each pumped device section.

Zero re�ectivity of the front facet is assumed in this basic model and a re�ectivity

of R = 0.3 is used for the rear facet.

Figure 2.13: Figures 2.13.a) and 2.13.b) represent a device viewed from above in which
sections 1 and 2 are being pumped respectively. Large red arrows outside of the left side of
the devices represent emitted light being collected from the device front facet. Red lines
indicate light travelling through electrically pumped material and undergoing optical
gain. Black lines indicate light passing through unpumped material and undergoing
optical loss.

The increase in measured light intensity due to the `round trip' light for I1 and

I2 are calculated, by summing contributions from front travelling and re�ected rear
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travelling light which reach the front facet. Considering the optical path length

of each contribution, and applying Equation 1.13 to the resultant total intensities,

it can be shown that, for a device which is Ns sections long, the error associated

with round trip light is given by εRT in Equation 2.1:

εRT =
1

Ls
ln

(
1 + R e�(2Ns�4)(A+αi )Ls e(G�αi )Ls

1 + R e�(2Ns�6)(A+αi )Ls e(G�αi )Ls

)
(2.1)

The characteristics of this error can be examined by calculating εRT as a func-

tion of the true value of optical loss. This is carried out for a device of standard

length (Ns = 6 sections of Ls = 300 µm) as well as longer lengths to determine

whether increasing device length is a practical approach to reducing error due to

round-trip light.

Figure 2.14 demonstrates the absolute value of calculated systematic error in

an optical loss measurement as a function of optical loss coe�cient for a range of

device lengths.

The exponential terms that di�er between the numerator and demoninator of

the natural log in Equation 2.1 are critical to interpreting this result. Generally,

the latter is seen to be greater than the former, resulting in a systematic error

which becomes more negative with increasing optical loss coe�cient. (Note that

the absolute value of this error is plotted in Figure 2.14). However, these curves

each have a maximum value of εRT as the aforementioned exponentials both tend

to one for very small optical loss coe�cients and to zero for very large optical loss

coe�cients.
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Figure 2.14: A calculation of the error in measured optical loss coe�cients as a function
of the optical loss itself for various device lengths. The device length in 300 µm sections
for each series is given in the legend. The optical loss is calculated for pumping sections
1 and 2 in each case (as depicted in Figure 1.13 ). This is the absolute value of the error
described by Equation 2.1.

While notable improvements to the magnitude of the sytematic error are ob-

served by increasing the length of a device, this length must exceed 3 mm in order

to reduce this error in a measured optical loss value of 5 cm�1 below the 0.1 cm�1

uncertainty threshold (discussed in Section 1.1). This may constitute unnecessary

use of material, and would necessitate access to a larger cryostat in which to run

experiments. In practice, device facets can be cleaved at an angle from the nor-

mal (typically 10 ◦) to scatter round-trip light out of the optical mode. Another

method is to damage the back facet of a device after mounting, such that light is

arbitrarily scattered rather than specularly re�ected. This latter method is em-

ployed in the experiments outlined in this document.

As stated, I have neglected the contribution from light which is re�ected from
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the front facet towards the rear facet upon reaching the front of the device. Some

of this light will make an additional complete round trip and reach the front facet

again. However, this light will pass through an equal distance of pumped and un-

pumped material regardless of which section is currently being pumped and should

have no additional contribution to the measured optical loss coe�cients.

2.8 Chapter Summary

Having described the multisection method for optical loss in Chapter 1, this chap-

ter has established the device structures, apparatus and experimental techniques

required in this body of work. Measurements of front facet emission � such as that

described in Section 2.3 � from di�erent device sections are combined with the

multisection optical loss equation (Equation 1.16) to produce a characteristic op-

tical loss spectrum for a particular device. The further conditions for an accurate

optical loss measurement (described in Section 2.7) require that the optical and

electronic behaviour of the two sections that are to be pumped are appropriately

similar, that an unpumped section lies between the front facet and the front-most

pumped section (such that current spreading occurs identically between di�erent

device sections) and that steps are taken to suppress the round trip ampli�cation

of light.
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CHAPTER 3

The e�ect of Divergence upon Multisection measurement of

Optical Loss

In preparation for the assessment of Multisection Optical Loss measurements with

an uncertainty better than ±0.1 cm�1, the e�ect of collection geometry must be

examined. In the PhD thesis of Dr. Julie Lutti [49] it was established that collec-

tion geometry can make a substantial contribution to inaccuracy in multisection

measurements of gain spectra. In her thesis, conditions for the reduction of sys-

tematic error associated with collection geometry were determined; the use of a

narrow input aperture and of a small lens collection angle are both critical.

Measurements of the lateral spatial distribution of emitted light from di�erent

device sections in a multisection optical loss experiment suggest that the divergence

of light in propagation through the device cavity results in section-dependent light

collection. Di�ering e�ciency of light collection for two device sections corresponds

with a systematic error in measured values of optical loss from the multisection

method. This e�ect must be examined and the magnitude of the resultant loss

considered.
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3.1 Calculating E�ective Divergence Loss in the

Multisection method

For fully open spectrometer input slits, the lateral spatial distributions of emitted

light were measured upon pumping sections corresponding to I1 and I2 respec-

tively in a device of type #1BA. The device sections were respectively pumped

with 100 mA current pulses at a frequency of 5 kHz, a pulse width of 1.0 µs and

a gate width of 0.5 µs. Each measurement constituted 100 0.1 second CCD expo-

sures. This produced the data shown in Figure 3.1.a). Distributions such as this

are described as Lateral Spatial Intensity Distributions (LSIDs) in this chapter.

The di�erence in intensity between the two distributions is mostly caused by opti-

cal loss in the additional 300 microns of material through which the light associated

with I2 has propagated. However, upon examining the distributions more closely,

it was observed that their shapes are not identical. Due to lateral symmetry of the

device structure, optical loss a�ects an LSID uniformly and is therefore assumed

to have no e�ect upon the relative shapes of LSIDs corresponding to light emission

from di�erent device sections. By normalising the magnitudes of LSIDs from di�er-

ent sections, the e�ect of divergence can be separated from optical loss within the

device structure and consequently, the e�ect of divergence upon measured values

of (A+αi ) can be determined. By area-normalising the LSIDs, the area contained

beneath an interval in the position (x) axis is equal to the fraction of the total

emitted light intensity within that interval. The LSIDs shown in Figure 3.1.a) were

area normalised and plotted in Figure 3.1.b). Measurements of these distributions

with the slits closed demonstrate the width and position relative to the measured

LSIDs. As these LSID measurements are made using 0th order di�raction from the

spectrometer which measures the intensities used in optical loss measurements, the

resultant optical alignments are those associated with an optical loss measurement.

Comparing the LSIDs corresponding to I2 with that corresponding to I1, it is

observed that divergence causes a relative reduction in the area-normalised LSID

magnitudes at the centre of the distribution and a relative increase in magnitudes

further from the centre of the distribution. As only light which passes through the

closed slits is collected in an optical loss measurement, divergence clearly causes a
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reduction in the collected I2 light intensity relative to the collected I1 light intensity.

This section-dependent contribution to collection e�ciency results in a systematic

error in measured values of (A+αi ). Comparable broadening is observed in other

broad area devices.

Figure 3.1: Figure 3.1.a) demonstrates LSIDs for device sections corresponding to inten-
sities I1 and I2. Figure 3.1.b) depicts the same LSIDs from Figure 3.1.a), but normalised
by area. The position of the spectrometer input slits is shown relative to the distributions
in Figure 3.1.b).
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The fraction of the light within the LSID which is collected for a particular

device section is equal to the area beneath the area normalised LSID between the

slits in Figure 3.1.b). As the spectrometer input slits are narrow and centred upon

the (relatively �at) LSID peaks, this fraction, for a particular device section, is

proportional to the peak value of the area-normalised LSID for that section (to

within error of ±0.1cm�1). Hence, the fraction of emitted light passing through the

slits for I2 and I1 can be made equal by multiplying I2 by the ratio of peaks values

of the two area normalised LSIDs. De�ning pi to be the peak value of the area

normalised LSID for the device section corresponding to Ii �as marked in Figure

3.1.b) �, the measured value of I2 (denoted here as Imeas2 ) can be corrected to

a value I div corr
2 such that divergence a�ects the collected intensity to the same

degree as in I1. This is shown in Equation 3.1:

I div corr
2 = Imeas2

p1
p2

(3.1)

The measured optical loss, (A+αi )meas , can be derived by substituting Equation

3.1 into Equation 1.16, as shown in Figure 3.2:

(A+ αi )meas =
1

LS
ln

(
Imeas1

Imeas2

)
=

1

LS
ln

(
Imeas1

I div corr
2

p1
p2

)
(3.2)

As I div corr
2 has been corrected such that divergence has the same e�ect upon

its magnitudes as upon the magnitudes of Imeas1 , the true optical loss of the device

can now be de�ned by (A+ αi )true as stated in Equation 3.3:

(A+ αi )true =
1

LS
ln

(
Imeas1

I div corr
2

)
(3.3)

and the error in optical loss associated with divergence is therefore given by the

`E�ective Divergence Loss ', denoted by εdiv , stated in Equation 3.4:

εdiv = (A+ αi )meas � (A+ αi )true =
1

Ls
ln

(
p1
p2

)
(3.4)
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3.2 Correcting E�ective Divergence Loss in Opti-

cal Loss Spectra

The application of this process to experimental data is presented in Figure 3.2.

Devices of sample numbers #1BA and #1RW were pumped with 100 mA current

pulses at 5 kHz, with a gate width of 0.5 µ s within 1.0 µ s current pulses. 100

0.1 second exposures were taken of I1 and I2 for each device and optical loss

spectra were calculated. The measured optical loss coe�cients below the interband

absorption edge for a RW device are plotted alongside the divergence corrected and

uncorrected data for a BA device. The LSIDs corresponding to I1 and I2 for the

BA device are those examined in Figure 3.1.a). A correction of 3.2 ±0.04 cm�1 is

calculated from the area normalised LSIDs. (The stated uncertainty equals three

standard errors of εdiv and is calculated from a measured standard deviation of pi

in data such as that shown in Figure 3.1). Divergence loss correction of the BA

optical loss spectrum resulted in optical loss coe�cients which are closer to those

produced by the RW device. A εdiv value of 0.004 ±0.01 cm�1 was calculated for

a #1RW device. This is signi�cantly less than the project aim of 0.1 cm�1 .

Figure 3.2: Measured Optical Loss spectra below the interband absorption edge for a
RW device, a uncorrected BA device and a divergence-corrected BA device (denoted in
legend as `50 µm RW', `BA' and `BA corrected' respectively).
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Unlike in later chapters of this thesis, uncertainty in optical loss below the

absorption edge in the data shown in Figure 3.2 has not yet been reduced to be

below ± 0.1 cm�1. However, the value of e�ective divergence loss is su�ciently

large that the point may be made that systematic error due to divergence in a

multisection measurement of optical loss of a BA device cannot be neglected.

While this experimental test of divergence loss correction is encouraging, there

are di�erences between the RW and BA spectra. Further work may address this

issue through comparison with wider or narrower ridges, in which the ridge wall

defects interact with a proportionally smaller or larger fraction of the total device

respectively.

A di�erence between measured internal loss in BA and RW devices � which

has been noted in past research using the multisection method for optical loss �

has been wholly ascribed to processes such as additional scattering associated with

defects near the ridge wall interface. This work demonstrates that this di�erence

is, in part, due to e�ective divergence loss. Divergence compensation is necessary

to attain low uncertainty measurements of optical loss when characterising a BA

device. In later chapters of this thesis, this correction will not be applied to mea-

surements of optical loss spectra in BA devices until such a time as the correction

has been examined further. It is acknowledged that an e�ective divergence error,

acting to increase measured optical loss coe�cients by 3.2 cm�1 is present in the

data presented in the later chapters of this thesis.
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CHAPTER 4

The Modulated Multi-section Method for Optical Loss

4.1 Introduction and Motivation

A sensible starting point for improving the precision of optical loss measurements

using the Multisection Method is to allow the light intensity signal to accumu-

late for a longer duration. However, attempts to assess the limits of precision

in the Multisection Methods in preliminary work uncovered the issue of systemic

drift in the detection system. Such drifts are caused by several mechanisms and

result in unpredictable systematic error in measured optical loss coe�cients, as

the conditions of the apparatus vary between the time periods in which I1 and I2

signals are accumulated. Changes in measured intensities have been observed due

to drifting device alignment and device temperature (temperature dependence of

device performance is described in Chapter 11). The e�ect of these parameters

are re-examined following the optimisation of precision in Chapter 9. (Note that,

while measures are taken to control device and detector temperatures, some time

dependence will remain due to practical limitations in the temperature control

systems).

Any time dependence of measured intensities is a serious concern as the more

time for which each section is pumped to accumulate signal, the more time the
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detection sensitivity is given to change between measurements of I1 and I2. This

potentially results in a larger change in average detection sensitivity for more pre-

cise (longer) measurements. In turn, the longer the detection time, the greater the

impact systemic drift will have on the uncertainty of a measurement.

Preliminary measurements of the in�uence of systemic drift on the measured

optical loss spectra demonstrate that, even over the time span of a conventional

Multisection method experiment (i.e. several minutes), systematic errors much

larger than ±0.1 cm�1 are possible. The inaccuracy of the measurement exceeds

the uncertainty aim of this work and hence the e�ect of this systematic error must

be addressed.

The data in Figure 4.1 demonstrates how the measured value for optical loss can

be seen to change over time if the same measurement is repeated many times con-

secutively. Practically, this was achieved by switching between the two electrically

pumped sections using a computer controlled relay, and applying the Multisection

method analysis (Equation 1.16) to each pair of intensity measurements (at a par-

ticular photon energy). Use of a relay ensured that switching occurred at a regular

interval and minimised human disturbance of the apparatus over the course of the

experiment. This data was obtained via a series of Multi-section Optical Loss

measurements, in which I1 and I2 are measured for roughly 12.5 seconds each in

each instance. While the in�uence of the demonstrated drift would di�er in a sin-

gle Multi-section method measurement of this length (i.e. if I1 and I2 were each

pumped and measured for 2, 000 seconds at a time), the purpose of this data is to

demonstrate the existence of systemic drift and to be indicative of the magnitude

of the systematic error that it is likely to produce.

The measured value of optical loss plotted in Figure 4.1 is taken from a single

pixel at a photon energy that is below the absorption edge of the device. (See

Section 9.4 for more insight into this topic).
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Figure 4.1: Several optical loss measurements are made consecutively to demonstrate
the time dependence of the experimental outcome. Absorptive and scattering processes
within a device are not expected to change in time in this way. This is considered to be
a systematic error in the measurement. A �tting line demonstrates the downward trend
of the data. (The equation for which is provided on the plot). A device of wafer #1BA
measured at a photon energy of 1.65 eV was used in this measurement.

The above data suggests that a drift of 0.1 cm�1 in an optical loss measurement

may occur within a few minutes. This merits further investigation. The standard

deviation of the data points (represented by error bars in the �gure) is large com-

pared with the gradient of the line of best �t over the measured time range. This

raises the question of whether the apparent systemic drift is real, or a coincidence

of the statistics in this speci�c set of sampled data. The slope of the optical loss

data plotted in Figure 4.1 is 7.0± 2.3 × 10�4 cm�1s�1. The eventuality that this

gradient is caused by statistical distribution of data rather than by the action of a

real systemic drift is improbable, but not beyond reasonable doubt. The standard

deviation of each data point in Figure 4.1 is 0.58 cm�1.

Data featured later in this thesis (for example, Figure 6.1) demonstrates that

observed systemic drift in measured intensity data is certainly not always a co-

incidence of the sample statistics. However, Figure 4.1 demonstrates that � in
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order to make strong statements regarding the e�ect of systemic drift upon optical

loss measurements � long experiment durations are required. This achieves both

precise measurement of the time dependent behaviour of the system and allows

drift processes a longer period over which to occur. Hence, experiment durations

which are much longer than those used in typical experiments for optical loss are

used in the following chapters (of the order of several hours per measurement).

Physical mechanisms which may cause the kind of systemic drift described in

this chapter include variations in detector sensitivity, device wall-plug e�ciency,

current pulse generator performance and optical alignment of the device as well as

the lens and polariser. All of these mechanisms have some temperature dependence

and it is known that the temperatureof the apparatus varies by a range of several

Kelvin, even within working hours and in spite of the use of an air conditioning

unit. The cause of systemic drift in any given set of data is not well known.

However, pulse generator output and cryostat temperature have been measured to

be su�ciently constant and investigations of the temperature dependence of the

CCD photocathode have demonstrated an additive (B(t)-type) drift which does

not agree with typical background o�set behaviour observed in this apparatus (see

Appendix A). This suggests that slight changes in device alignment or the variation

of a controlling bias voltage in the ICCD are the most likely cause of the observed

systemic drift.

4.2 Development of a Modulated Method for Op-

tical Loss Spectra

To counteract the e�ect of a drift in a measurement system, one must complete

a pair of I1 and I2 measurements su�ciently rapidly such that the systematic

error caused by the drift is small enough to satisfy the uncertainty requirements

of the given experiment. Preliminary experiments have shown that over this time

period, insu�cient signal will have been accumulated to achieve the high level

of precision in optical loss measurement necessitated by modern device material

and fabrication technique quality. A solution for this problem is to develop a
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method by which a great number of rapidly alternating I1 and I2 readings can be

taken � by synchronising the rapid switching of current between the sections with

intensity measurements � and processed into an optical loss spectrum. If time

dependent drifts can be negated by rapid section switching, then the duration of

an experiment can be freely increased and so precision can be recovered from small

signals within each `modulation cycle' by allowing more of these cycles to occur.

Thus both high precision and high accuracy can be achieved. Such a method

describes a modulated variant of the multisection method and hence is refered to

as the Modulated Multisection method in this thesis. The modulated method is

achieved by varying the absorbing length within a device at a modulation frequency

which is rapid in comparison with the systemic drift in the detection system. The

length of absorbing material is varied by switching between pumped sections, as in

the conventional Multisection Method. A reference signal controlled by a computer

engages switching between the two pumped device sections and synchronises the

measurements accordingly. The practicalities are described in Chapter 5 .
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CHAPTER 5

Implementation of the Modulated Multi-section Method

In this chapter, the modulated variant of the multisection method for optical loss

described in Chapter 4 is realised experimentally. The Modulated Multisection

method uses the same equation (Equation 1.16) and device pumping geometry

(outlined in Figure 1.13) as the conventional multisection method. The section

geometry is repeated in Figure 5.1 for convenience and the layout of the experi-

ment is represented schematically in Figure 5.2 . As in the conventional method

Ls is known from the structure geometry. The same conditions on optical and

electronic characteristics of devices apply as discussed for the conventional Multi-

section Method in Sections 1.3.4 and 2.7 .

A typical device consists of an unpumped front section, two alternately pumped

sections and several unpumped sections at the rear of the device. All sections are

earthed while not being pumped. All sections are 300 µm in length.
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Figure 5.1: A top-down view of the segmented geometry of the (conventional and Mod-
ulated) Multisection Method. The red arrow indicates the propagation of light from the
front facet.

There are certain key distinctions to make between the apparatus of the mod-

ulated multi-section method and that of the conventional multi-section method.

These are outlined below in Figure 5.2 . A connection between the switch box and

the computer has been introduced. This allows automatic switching of the pumped

section by use of a relay. The arrangement to monitor the device input currents

on the oscilloscope (marked by dashed lines) is now di�erent. Due to the design of

the new circuit in the switching box, not all of the current entering the box goes

into pumping the device. As such a current probe is placed at the switching box

output to get an accurate current measurement. Switching is controlled through

use of a program integrated with the Andor system software (which controls the

ICCD and spectrograph [56]). This program is written in a variant of the Basic

programming language.

In investigating systemic drifts, the separation of drifts in the sensitivity from

drifts in the background signal is fundamental. Consequently, a computer operated

shutter has been introduced into the apparatus. A background signal may now be

taken on a regular basis over the course of many hours without intervention by the

experimentalist. The �gure shows this computer-controlled shutter in the optical

path. It is controlled by the Andor software.
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Figure 5.2: The modi�ed apparatus used in the Modulated Multisection method is
demonstrated. The corresponding diagram for the conventional method is given in Figure
2.3.

Timings in a modulated multisection measurement of optical loss are explained

in Figure 5.3. The current pulses sent to the device and exposure of the CCD are

the same as shown in Figure 2.5. Accordingly, the �rst three sets of axes � in

which current pulses, ICCD gate pulses and ICCD exposures are explained � are

omitted from Figure 5.3. A large number of measurements of each device section

(over 5,000 measurement pairs, even in fully optimised conditions) are required to

reach the precision aims of this project. Each measurement must be short such

that a pair of I1 and I2 measurements occurs more rapidly than any systemic drift

processes. In the case that saving and analyzing each pair of measurements is

impractical � due to the large number of measurements � the software can be

programmed to sum or average the respective I1 or I2 values produced by a num-

ber of exposures before saving to �le. In addition to this, switching between device

sections takes a �nite amount of time (the modulated method program allows a

switching time of 0.01 second); binning several measurements of each section be-

fore switching can slightly reduce the total time taken to measure a certain number

of exposures. Conversely, it is useful to have a series of I1 and I2 measurements,
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rather than just a single average of each, as this acts to quantify the degree of

systemic drift underlying their measurements.

A program has been written to alternate between pumping section 1 and 2,

measuring a small number of exposures between each switch (typically 50 expo-

sures) and accumulating intensity measurements for each device section. This

number of measurements is known as `m' in later chapters of this thesis. Grey

shaded regions within measurements in Figure 5.3 represent multiple measure-

ments of each intensity within each modulation cycle. If m becomes too large, the

modulation period becomes long and systematic error associated with systemic

drift becomes larger. The optimum operating conditions � with regard to m, the

total number of exposures required and the handling of background signals � will

be discussed throughout later chapters of this thesis.

Figures 5.3.a) and 5.3.b) depict modulated multisection experiments in which a

single background is taken and in which a background signal is measured at regular

intervals throughout. The latter case would be necessitated by substantial drifts

of the background signal over the course of a typical experiment. This behaviour �

for the apparatus described in Section 2.2 � is addressed in Appendix A, in which

it is found that repeated background measurement is not typically necessary with

this particular apparatus. The possibilty of repeated background measurement is

mentioned here in the interest of generality and for the few experiments in which

this behaviour is examined.

The time period of a modulation cycle � that is the time taken in pumping

one device section and then the other (before pumping the �rst section again) �

is of critical importance in a modulated experiment. In further discussion of this

method, this duration is described as the 'modulation period'. A relatively short

modulation period of 2.4 seconds is shown in Figure 5.3, corresponding to �ve

0.2 second exposures of each device section (allowing for section switching and

CCD readout time). The shutter has a transfer time of roughly 1 second. This is

re�ected in the time between groups of exposures in Figure 5.3 (marked by dashed

lines).

81



Figure 5.3: The sequence of acquisitions taken in a modulated multi-section experiment.
Figure 5.3(a) demonstrates the standard practice of taking a single background reading
at the start of each experiment. Figure 5.3(b) demonstrates the practice in which the
background signal is regularly monitored through the acquisition. The function of m is
clari�ed by the grey regions within each pulse. (m = 5 in this case.)
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CHAPTER 6

The Modulated Multisection method: A Proof of Principle

6.1 Comparison of Modulated and Conventional

method Optical Loss coe�cients

The reduction of error associated with systemic drift in the Modulated Multisection

Method with respect to the conventional Multisection Method must be veri�ed in

experimental data. A sequence of trials was carried out, alternating between the

Modulated and conventional Multi-section methods. Very long experimental dura-

tions (of the order of hours) were used in this investigation to allow larger changes

in intensity values for typical rates of change of intensity within this apparatus.

This ensured that the e�ect of systemic drift upon optical loss measurements was

large with respect to the precision to which it is measured. (A full discussion of

precision is given in Chapter 9). The model in Chapter 8 suggests that systematic

error due to systemic drift will be reduced by use of the Modulated variant of the

method. In order to emphasise the e�ect, long trial durations were used such that

substantial change in the response of the system may occur between I1 and I2

measurements.

As established in Chapter 4, the conventional Multi-section Method collects
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all I1 data then all I2 data whereas the Modulated Multi-section Method takes

a short measurement of I1 and I2 within a modulation cycle and many modula-

tion cycles constitute an experiment. For the purposes of direct comparison of

Conventional and Modulated trials in this experiment, the same total number of

ICCD exposures are taken for each method upon a sample of type #1RW . For the

Modulated Method trials, �ve three second exposures are taken of light intensity

from each device section in a measurement cycle. This cycle was repeated 300

times to acquire accumulated I1 and I2 intensities. In the Conventional Method

trials, 300 groups of �ve three second exposures are accumulated of I1 and then

of I2. For such long switching cycles, the increase in experiment duration due to

the delay in switching between device sections is fractionally small enough to be

neglected (≈ 30 s of a 2.5 hour trial). A drive current of 80 mA was pulsed at

20 kHz (with a 1 µs gate within a 1.5 µs current pulse). The values of intensity

(and hence of optical loss ) were derived from 6 pixels of the intensity spectra,

from 1.651 to 1.658 eV below the device absorption edge.

The upper four series in Figure 6.1 represent the I1 and I2 signals from the

Modulated and Conventional methods, as designated by the legend. MS and Mod

designate Conventional and Modulated Multi-section method data respectively.

The lower two series represent measured optical loss coe�cients determined from

the corresponding intensity data. Odd and even trial numbers represent Modu-

lated and Conventional method data respectively. The underlying cause of the

time dependence of measured intensity is examined in Chapter 9.

The key di�erence between the Conventional and Modulated methods is clearly

seen in the distribution of intensity measurements within the trials corresponding

to each method in Figure 6.1. In the modulated method data, I1 and I2 mea-

surements are evenly distributed throughout a particular trial, whereas , in the

conventional method data, I1 measurements and then I2 measurements occur.
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Figure 6.1: Experimental Intensity and optical loss data qualitatively demonstrate corre-
lation between systemic drift in intensity and systematic error in optical loss measurement
in Conventional Multi-section method. Such a correlation is not seen in the Modulated
Multi-section optical loss data and deviation from mean in modulated method data is
appropriately reduced. Black arrows indicate which series corresponds with which y axis.

The key �nding from this data is that values of optical loss determined from

the Modulated Method deviate from their mean value less than those determined

from the Conventional Method. Taking average absolute deviation from the mean

as a measure, values of 0.11 cm�1 and 0.28 cm�1 are found for the Modulated

and Conventional methods respectively. Trials in which the measured optical loss

value greatly deviates from the mean value correlate with relatively large drifts

throughout the intensity time series. The error in optical loss, for Modulated

Method trials, in the presence of large intensity drifts can be seen to be small in

comparison. Furthermore, optical loss coe�cients determined by the Modulated

and Conventional methods tend towards agreement in trials for which intensity

drift was negligible.
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In the Conventional method data, positive drift in intensity can be seen to

result in a reduction of the measured optical loss. The measured optical loss is

reduced in this instance as the I2 intensity is measured second and hence is rel-

atively large in comparison with the measured I1 intensity; the data erroneously

suggests that less light is lost in the passive section of the device. The relation

between systemic drift and the associated measured values of optical loss in this

data is discussed in more detail in Chapter 8.

Error bars based upon the standard error in measured optical loss coe�cients

are plotted in Figure 6.1, but are not large enough to be visible on this scale.

6.2 Examining the origin of systematic error in

Conventional method Optical Loss data

Examining the intensity data from various key trials of the Conventional method

data allows a clearer view of the drift behaviour. Figure 6.2 examines trial 2, 8 and

20 in more detail. These correspond to Modulated method (A+αi ) measurements

featuring varying degrees of deviation from the mean value.

Figure 6.2 demonstrates intensity time series from selected trials of Figure 6.1.

As such, the y-axis corresponds to measured intensity, with the scale appropriately

altered in each case. The x-axis shows the time elapsed since the start of the trial

under scrutiny.

A positive gradient can be seen in the 'Trial 2' data. The 'Trial 8' intensity

has a relatively small gradient. An intermediate gradient is visible in the 'Trial

20' data. These trials result in deviation from the average optical loss coe�cient

(as determined by the Modulated method) of 1.17 cm�1, 0.01 cm�1 and 0.67 cm�1

respectively. The Modulated method average value of optical loss is used for this

comparison under the preposition that it is less in�uenced by drift error and hence
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more accurate than the Conventional method average.

Figure 6.2: Close examination of selected Intensity time series from Figure 6.1. The
associated Conventional method trial is indicated above each set of axes.

The gradient of the intensity data for a particular trial is clearly indicative

of the behaviour of systemic drifts. However, it would be useful to have a single

quantity by which to characterise both I1 and I2 data for a given trial. The prod-

uct of the I1 and I2 intensity gradients has been taken as an e�cient quanti�er.

The absolute value of this quantity will be large in the instance of large underlying

drift. Furthermore, it will be positive if the net drift acts in the same direction for

both sections and negative otherwise.

The `Intensity Gradient Product' has been determined for both the Modulated

and Conventional method intensity data. While the form of this intensity data
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di�ers slightly, the interpretation of the produced value is comparable.

Intensity gradient product is plotted for each trial of Figure 6.1 for Conventional

and Modulated methods alongside the deviation from the mean Modulated optical

loss coe�cient in Figure 6.3 .

Figure 6.3: Demonstration of correlation between the product of I1 and I2 gradients and
the deviation from the mean Modulated value of optical loss for each trial. Black arrows
on Figure 6.3.a) indicate which series corresponds to which y axis (for both �gures).

Figure 6.3.a) and 6.3.b) show data for the Conventional and Modulated meth-

ods respectively. The left-hand y axes in Figure 6.3 show deviation from the

average Modulated method optical loss value and the right-hand y-axes show the

Intensity Gradient Product. For the Conventional method plot, error in measured

optical loss correlates with Intensity Gradient Product for each trial. In the Mod-

ulated method plot, error in measured optical loss is smaller and such a correlation
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is not present. This data demonstrates that error in optical loss due to systemic

drift can be reduced by use of a Modulated measurement methodology. This is in

agreement with the �ndings of the model in Chapter 7.

6.3 Considering residual error in Modulated method

Optical Loss data

There remains a time-dependence on the Modulated optical loss data. It is infor-

mative to determine whether this is due to residual drift error incurred by the �nite

switching period of the Modulated method in this experiment, or whether this is

real time-dependence due to changes in temperature or alignment of the apparatus.

As previously stated, 3σ error bars are present on the optical loss coe�cients

plotted in Figure 6.1 but are too small to be visible. For the purposes of this chap-

ter, the implication of this is that the deviation from the average optical loss of the

conventional and modulated trials in Figure 6.1 is largely due to some systematic

error source, rather than due to imprecision. ( Precision in optical loss spectra is

discussed in depth in Chapter 9).

6.3.1 Residual Systemic Drift

In Chapter 8, it is established that some systemic drift error will remain in optical

loss values determined by the Modulated method. While the duration of a mod-

ulation cycle is greatly reduced from the Conventional method case � in which

it is e�ectively equal to the experiment duration � the modulation period is still

�nite. Hence, some error associated with systemic drift is still present. This error

is described with the term `Modulated Drift Error ' in this thesis. In the following,

this error will be ruled out as the origin of the observed time-dependence remain-

ing in modulated method optical loss coe�cients in Figure 6.1.
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The magnitude of modulated drift error is quanti�ed in Chapter 8. By quan-

tifying intensity drift using experimentally observed fractional intensity gradients

(introduced in Section 7.2) and the modulation period used in this investigation,

and inserting them into the modulated drift error equation (Equation 8.19), the

magnitude of this `residual' modulated drift error may be determined. For the

intensity gradients of `trial 1', a modulated drift error of 0.004 cm�1 is calculated.

(Recall that `trial 1' is associated with a particularly large intensity gradient).

This value is much smaller than the 0.11 cm�1 di�erence from the average mean

modulated method optical loss value associated with this trial. Additionally, the

modulated drift error due to a positive intensity gradient acts to reduce a measured

optical loss coe�cient (to varying degrees in both Conventional and Modulated

methods), whereas the measured optical loss coe�cient for `trial 1' has increased

with respect to the mean modulated method value. Hence, modulated drift error

is not the primary source of inaccuracy in this data. As `trial 1' features a rela-

tively large intensity gradient, modulated drift error will tend to be smaller than

0.004 cm�1 for the other Modulated method trials. Modulated drift error is not a

signi�cant source of inaccuracy in any of the modulated method trials detailed in

this chapter.

This conclusion implies that the modulated multisection method drastically

reduces the systematic error due to systemic drifts. Some drift due to factors such

as optical alignment, apparatus temperature, or electrical or optical properties of

the device itself remains in modulated optical loss data. These errors will be fur-

ther discussed in Chapter 9.7.

6.4 Chapter Summary

In this chapter, it has been established that larger systematic errors in optical loss

made with the conventional multisection method coincide with larger gradients

in the underlying intensity time series. Much smaller errors are observed in the

application of the modulated multisection method for optical loss, and these errors

do not coincide with larger gradients in the underlying intensity time series. The
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e�ect of systemic drifts upon the measurement of optical loss using the multisec-

tion method can be suppressed through modulation of the absorbing length.

The general relationship between systemic drifts and the corresponding sys-

tematic error in noisy intensity data is examined in Chapter 7. A calculation of

the magnitude of systematic error under varying conditions is given in Chapter 8

and hence the conditions in which systematic error associated with systemic drift

is su�ciently suppressed are established.
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CHAPTER 7

Modelling the E�ects of Drift in the Multisection Method

7.1 Introduction

The examination of systemic drift as a source of systematic error in the Conven-

tional and Modulated Multisection experiments encompasses many subtle points

and the underlying cause of any particular error in experimental data may be dif-

�cult to isolate from other possible causes. The aim of this chapter is to develop

a mathematical model of the e�ect of intensity drift upon the outcome of a mul-

tisection optical loss experiment. The investigations described in this chapter are

primarily examine the assumptions upon which work in later chapters (particularly

the calculations within Chapter 8) are based. Through use of a model, a detailed

examination of experimental conditions may occur. The e�ects which this model

will help characterise in later section of this chapter include:

� Systematic error associated with data analysis in the Modulated method.

� Dependence of the magnitude of error in the modulated method upon the

magnitude of the (A+ αi ) under investigation.

� Misidenti�cation of intensity standard deviations due to systemic drift.
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Furthermore, the model outlined in this Chapter is used in Appendix A in order

to examine the accuracy of the application of linear error propagation equations

to Equation 1.16 .

In principle, one could examine the magnitude of error in optical loss associ-

ated with systemic drifts, in both the conventional and modulated methods, using

the model described in this chapter. However, a more e�cient approach to these

tasks is given in Chapter 8.

7.2 Modelling Systemic Drift in Intensities

In order to simulate an Optical Loss measurement, intensities must �rst be gener-

ated. In order to maintain generality, it will not be assumed that systemic drifts

are caused by either sensitivity of the detection system or behaviour of the back-

ground signal (e�ects which would have a multiplicative and an additive e�ect on

measured intensities, respectively). Experimental intensity data similar to that

shown in Figure 6 has been modelled by means of Equation 7.1:

I
j
Calc

= A(t)I
j
True

+ B(t) (7.1)

in which, I
j
Calc

and I
j
True

represent the measured and true intensity of the j th

device section respectively. A(t) and B(t) are de�ned by Equations 7.2 and 7.3:

A(t) = MAt + CA (7.2)

B(t) = MB t + CB (7.3)

It can be seen clearly in the form of Equation 7.1 that A(t) and B(t) describe

multiplicative and additive drift mechanisms respectively. The respective M pa-

rameters of A(t) and B(t) determine the gradient of the modelled systemic drift.

CA and CB allow the incorporation of a constant o�set in both of the above quan-

tities. More generally, the intensi�er sensitivity will act upon ambient background

noise, resulting in an interdependence of A(t) and B(t). This is neglected in this
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model, as ambient light only represents a small fraction of the total background

signal.

CA = 1 in all models, in this document so that A(t) can be simply interpreted

as a fractional change in intensities. As the o�set due to background signal is

removed in a standard measurement, the initial value of B(t = 0) will be small

in real data. Accordingly, CB = 0 in all further modelling, unless otherwise stated.

It is occasionally more convenient to directly describe the time-dependent be-

haviour of intensity than that of the underlying processes (A(t) and B(t)). Con-

sequently, I de�ne the quantity g to be the gradient of the intensity with respect

to time. For B(t) type drifts, the derivative of ICalc with respect to time is simply

MB . For the A(t) type drifts, g is de�ned by Equation 7.4:

g = MAItrue (7.4)

The distinction between g and MA is important to understanding this chapter.

This document will favour MA over g , as it is more fundamental to both the

mechanism of the systemic drift and the behaviour of the model.

Figure 7.1 demonstrates the generation of A(t) and B(t) which are then com-

bined to produce an example Icalc . Figures 7.1.a) and 7.1.b) show A(t) and B(t)

functions respectively. Figure 7.1.c) shows Icalc as de�ned in Equation 7.1. In

Figure 7.1.a) MA = 0.0001 s�1 and CA=1. In Figure 7.1.b), MB=1 and CB=200.

These parameters were arbitrarily assigned relatively large values to provide clear

ICalc trends in Figure 7.1.c). (These values are not used again beyond this demon-

stration of the model). Figure 7.1.c) demonstrates the e�ect of A(t) and B(t)

upon a calculated intensity magnitude as a function of time. ITrue in Figure 7.1.c)

is 8, 000 counts; as indicated by the dashed line.

Itrue is assumed to be constant in this model. This aids analysis of A(t) and

B(t) , but it ought to be noted that factors unrelated to detection sensitivity

and background behaviour could result in a time dependent intensity signal. The
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concept of the `true' values of intensity or optical loss varying with time are not

discussed in this chapter.

Figure 7.1: Arbitrary A(t) and B(t) functions are combined to obtain an Icalc function.
Constant o�sets are marked by dashed lines on each set of axes. Typically CB is equal
to zero in models in this chapter. It is set to a value of 200 in Figure 7.1.b) purely in
order to demonstrate its function.
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The t-axis can be calibrated such that the user of the model can vary the du-

ration of a modulation cycle (i.e. of an I1-I2 measurement pair). In the following

discussion, this will typically remain �xed at 1 second per pair of I 1calc and I 2calc
values. In the subsequent model described in Chapter 8, the t value will be pa-

rameterized in order to optimise the experimental conditions.

Having modelled intensity behaviour, optical loss may now be considered.

7.3 Conventional and Modulated Methodologies

To simulate an optical loss experiment, an I1 and I2 parameter must both be

generated. An experimentally typical value of 8, 000 is set for I1. I2 is hence de-

termined from an entered `true' value of (A+ αi ) using Equation 1.16. Variation

of this entered (A + αi ) value allows the examination of the e�ect of drift upon

light undergoing varying degrees of optical loss. Typical rates of change in experi-

mentally measured intensities are reproduced in the modelled intensities and e�ect

upon the output values of optical loss is analysed. Having applied A(t) and B(t)

drift to both an I1 and an I2 function, Conventional and Modulated Multisection

measurements may be considered by simulating the temporal sampling of each

method (according to the distinction made between the methods in Chapter 4).

This is explained in Figure 7.2.

A(t) and B(t) functions exist throughout the duration of the simulated experi-

ment and I 1calc and I 2calc values are thereby calculated at regular intervals through-

out this duration. Figure 7.2.a) depicts a set of 300 simulated I 1calc and I 2calc data

points for the A(t), B(t) and I 1true described in Figure 7.1. An (A + αi ) value of

2.6 cm�1 is used.

The two data sets within Figure 7.2.a) are then sampled in the fashion of

the Conventional and Modulated methods to construct Figures 7.2.b) and 7.2.c)

respectively. In Figure 7.2.b) the (single pair of) I1 and I2 measurement periods

of the Conventional Multisection method are simulated.

96



Figure 7.2: Calculated I1 and I2 intensity time series are shown in Figure 7.2.a). From
which, data points may be sampled to simulate the Conventional or Modulated Multi-
section methods as shown in Figures 7.2.b) and 7.2.c) respectively. The optical loss time
series was calculated using adjacent pairs of intensity Icalc values from the Modulated
method data set and plotted in Figure 7.2.d). Black dashed lines represent the true
values of a given quantity. Coloured dashed lines represent the varying measured values
of a given quantity.
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In Figure 7.2.c), the alternating rapid pairs of I1 and I2 measurements of the

Modulated Multisection method are simulated. The intensity `measurements' are

distributed over the experiment duration such that the same number of I 1calc and

I 2calc values are acquired in each method. In Figures 7.2.b) and 7.2.c), crosses rep-

resent used data and dashed lines represent the trend of the intensities for regions

in which data is not sampled. ( In Figures 7.2.b) and 7.2.c) the time between the

measurements is exaggerated such that data points are not cluttered.)

Analysis of these data sets analogous to that applied to experimental I 1meas
and I 2meas values can be carried out to produce a corresponding value of measured

(A + αi ) for each method. Figure 7.2.d) shows (A + αi ) values corresponding to

the pairs of intensities produced within each modulation period of the modulation

method, that is, adjacent intensities in Figure 7.2.c). The calculated (A+αi ) time

series shown in Figure 7.2.d) features systematic error due to the additive and mul-

tiplicative drift behaviour. As time increases, the calculated optical loss changes

due to the gradients in both A(t) and B(t). The initial error in (A+ αi )calc from

its true value is caused by the initial o�set in the additive systemic drift (CB ).

(Recall that a measurement of background signal is removed from all intensity

measurements described in this thesis. The value of CB corresponding to real ex-

periments is only limited by precision in the characterisation of background, and

any o�set is negligibly small.)

7.4 Imprecision and Scatter

In order to further approximate real data, experimental scatter (relating to impre-

cision of the measurement) can be introduced. (A detailed treatment of experimen-

tal uncertainty is given in Chapter 9). A standard deviation from the mean from

typical experimental intensity data (with negligible long-term systemic drift), has

been taken to be roughly 180 counts (arbitrary units) in a signal of 8, 000 counts.

A scatter component with this standard deviation is added to each I 1calc and I 2calc
data point using a normally-distributed value generator.
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An updated form of Equation 7.1 in which this scatter component is included

may be expressed as:

I
j
calc

= A(t)I
j
True

+ B(t) + Sscatter (7.5)

In Equation 7.5, Sscatter represents the scatter component. This scatter is

characterised solely by its standard deviation, σcalcSD . A new value of Sscatter is

generated to be added to each I 1calc and I 2calc .

The entered value of σcalcSD may then be varied to investigate predicted exper-

imental outcomes with varying degrees of scatter (or indeed, no scatter at all).

As such, the propagation of imprecision in intensity data through to (A+ αi )calc

values can be studied.

By setting the MA and MB values to zero, the case of constant A(t) and B(t)

functions can be investigated. This approach is employed in the simulated data

shown in Figure 7.3 to demonstrate modelled scatter in the absence of systemic

drift. For the data shown in Figure 7.3, 300 I 1calc and I 2calc data points were alter-

nately generated, wherein CA = 1, CB = 0 counts and σcalcSD = 180 counts.

Figure 7.3.a) shows a series of I 1calc and I 2calc values with zero drift behaviour

and scatter with a σcalcSD value of 180 arb. units. The frequency distribution of

both of the time series in Figure 7.3.a) are shown in Figure 7.3.b).

Each pair of adjacent I 1calc and I 2calc values from Figure 7.3.a) is used to obtain

an (A+ αi ) value. These are expressed as a separate time series in Figure 7.3.c).

The associated frequency distribution of the data shown in Figure 7.3.c) is plotted

in Figure 7.3.d).
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Figure 7.3: The upper pair of �gures depict the introduction of scatter into calculated
Intensity time series I 1calc and I 2calc and the frequency distributions associated with
these respective series. The red and blue histograms in Figure 7.3.b) represent the two
intensity signals, as indicated by the legend. The intermediate region represents the
overlap between the two histograms. The lower pair of �gures depict the scatter in the
resultant (A+ αi ) time series and its associated frequency distribution.

This scatter function aids interpretation of scatter in real experimental data.

Scatter in the model will be used to make broad comments regarding the general

propagation of imprecise, sampled intensity signals through the multisection opti-

cal loss equation and the distribution of resultant optical loss coe�cients. (Rather

than to extrapolate upon speci�c experimental outcomes.) Scatter in experimental

data will be considered in detail in Chapter 9.

It is seen in Figures 7.3.c) and 7.3.d) that �nite samples of I1 and I2 with

normally distributed scatter result in approximately normally distributed scatter
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in resultant values of optical loss. Note that the input parameters roughly cor-

respond to a 2.5% fractional standard deviation in intensities. By standard error

propagation equations, this approximately results in a 4% fractional standard de-

viation in the quotient of I1 and I2 and hence a 1.1 cm�1 standard deviation in

optical loss (for a device section length of 0.03 cm). In this example, a calcu-

lated value of optical loss of 2.6012 cm�1 was produced. The entered intensity

standard deviation (180 arb. units) resulted in an optical loss standard deviation

of 1.1045 cm�1 (corresponding to a single I1-I2 pair) and consequently an optical

loss standard error of 0.0638 cm�1. The di�erence between the calculated optical

loss and the entered value is smaller than the standard error associated with the

sampling. Repeatibility of similar magnitudes of absolute error upon randomly

generating data such as that given here demonstrates that optical loss values are

accurately reproduced by the underlying mathematics under the stated conditions.

However, it was observed that this is not the case when large intensity standard de-

viations are examined. This error is studied further in Section 7.5.1 of this chapter.

As scatter is introduced additively to calculated intensities (after A(t) and

B(t) functions have been applied), scatter is not a�ected by variation in A(t) and

B(t). The scatter distribution does not scale with the magnitude of intensity in

this model. This is not perfectly representative of the physical situation. However,

for low values of optical loss, I1 and I2 intensity measurements will have a similar

mean value and are hence unlikely to have drastically di�erent associated stan-

dard deviations. Care must be taken in this model while examining larger values

of optical loss.

7.5 Investigation of the Modelled Modulated Mul-

tisection method for Optical Loss

Now that the model is established, properties of the experiment can be examined

through manipulation of the input parameters. As mentioned in Section 7.1. The

following topics will be addressed in the discussion in this section:
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� The systematic error in optical loss associated with data analysis in the

Modulated method.

� Determining whether error in optical loss derived from the Modulated Mul-

tisection method depends upon its magnitude.

� The misidenti�cation of intensity standard deviations due to systemic drift.

7.5.1 Assessment of Analysis Approach in the Multisection

Methods

Analysis of Conventional Multisection method intensity data to provide an (A +

αi )calc value is straightforward. Given a time series such as that shown in Figure

7.2.b), I1 and I2 data sets are respectively averaged and the corresponding loss

determined by Equation 1.16.

Analysis of Modulated Multisection method intensity data provides two op-

tions; averaging all intensities before applying Equation 1.16 (somewhat similar

to the approach taken in the Conventional method), or applying Equation 1.16 to

each adjacent pair of intensities to acquire a series of (A+ αi )calc values (such as

those found in Figure 7.3.c)) and averaging each of these values.

The term `The Average-Process analysis' will be used to refer to the method

in which all intensities are averaged before being processed into an (A+αi ) value.

The term `The Process-Average analysis' will be used to describe the method in

which each intensity pair is processed into an (A + αi ) value before these values

are averaged.

In the instance of zero scatter and zero A(t) or B(t) type drift (in which σcalcSD ,

MA and MB are set to zero) the conventional method and both modulated meth-

ods produce an output (A + αi )calc equal to the input (A + αi )true . This is also

approximately the case for experimentally typical degrees of scatter in intensity

in the absence of systemic drift (the precision of an optical loss measurement in

examined in detail in Chapter 9). However, any scatter will result in some dis-
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crepancy between the two methods of analysis of Modulated data.

The e�ect that analysis method has upon systematic error in optical loss is

examined in the simulated data shown in Figure 7.4. For the result to re�ect real

experimental outcomes, reasonable values of modulation period and experiment

duration must be used, thus limiting the precision of any one simulation. A mod-

ulation period of 1 second and an experiment duration of 300 seconds are used in

the simulations described in this section. In order to examine the e�ect that these

analysis methods have on an optical loss measurement (for a particular σcalcSD ),

the outcomes of each analysis method must be compared for a great number of

such simulated experiments, such that the statistical nature of the sampling is

accounted for. 4, 000 of these 300 second long simulated experiments constitute

the data presented in this section.

In Figure 7.4.a) and 7.4.c), a typical intensity time series is given for input

intensity standard deviations of σcalcSD = 180 counts and σcalcSD = 1, 500 counts re-

spectively. Having applied both analysis procedures to produce an optical loss

coe�cient from such sets of intensity data 4, 000 times for both intensity standard

deviations, the frequency distributions displayed in Figures 7.4.b) and 7.4.d) were

produced respectively. New Sscatter values were generated for each of the 4, 000

data sets for both values of σcalcSD . Sampling a large number of times allows ex-

amination of the sampling distribution, and allows precise characterisation of the

mean experimental outcome. The standard error of the simulated optical loss is

approximately 0.001 cm�1 and 0.009 cm�1 in Figures 7.4.b) and 7.4.d) respectively.

These values were calculated using standard error propagation equations.

For the experimentally typical intensity standard deviation of 180 counts, the

two methods provide very similar frequency distributions. The Average-Process

analysis produces an average(A+ αi )calc of 2.599 cm
�1 while the Process-Average

analysis produces an average (A + αi )calc of 2.600 cm�1. Considering the (A +

αi )true value is 2.6 cm�1 in this model, this error is acceptable for the purpose

of achieving the ±0.1 cm�1 aim of this project. The deviation in the values of

optical loss derived from the Average-Process method from the value entered into
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the model is comparable with the standard error of the simulated distributions.

This demonstrates that the outcome of the modulated multisection method for

optical loss is dependent upon which of these analysis techniques is used, but that

the di�erence is negligible for the uncertainty requirements and for the apparatus

used in the work outlined in this thesis.

Figure 7.4: Figure 7.4.a) depicts a time series of simulated I1 and I2 values in the absence
of drift, with an experimentally typical intensity standard deviation ( 180 counts). Figure
7.4.b) shows the distribution of optical loss values determined using the Average-Process
and Process-Average analysis methods, from 4, 000 time series of the type shown in
Figure 7.4.a) . Figures 7.4.c) and 7.4.d) ful�l the same respective roles as the previous
two �gures, but for an exxaggerated intensity standard deviation of 1, 500 counts. There
is zero systemic drift in each case.

The instance of relatively large (σcalcSD = 1, 500) scatter was modelled to allow

further interpretation of this result. The Average-Process analysis produces an
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average (A + αi )calc of 2.606 cm�1 while the Process-Average analysis produces

an average (A + αi )calc of 2.709 cm�1. The standard deviation for this increased

intensity standard deviation is 0.009 cm�1. While this value of intensity stan-

dard deviation exceeds that expected in experiments, this result is signi�cant as it

demonstrates that some improvement may be made by simply analysing data in

the most appropriate way. Future work may require di�erent experimental con-

ditions or a noisier apparatus, increasing the noise associated with intensity mea-

surements and making the systematic error associated with the Process-Average

method signi�cant.

The Process-Average analysis procedure is used to generate optical loss time

series in this thesis for illustrative purposes (such as those shown in Figures 7.3

and 9.6.b) as two examples). These times series are useful in examining broad

time-dependent behaviour within the measurement. However, due to the system-

atic error outlined in this section, the Average-Process method is used to determine

the single value of optical loss taken from each modulated multisection experiment

in this body of work.

Further modelling of instances of greater standard deviation of intensity scatter

suggests that this error is due to the normal distributions of the modelled intensity

data being distorted upon passing through Equation 1.16. Speci�cally, the distri-

bution of optical loss corresponding to noisy I1 and I2 signals being passed through

Equation 1.16 is made asymmetrical by the equations inherent nonlinearity.

It is worth noting that the intensities are not typically made negative by scatter

in measurements within this thesis. Negative values of measured intensity cause

erroneous values in Process-Average analysis. Assuming that the e�ect is domi-

nant in the (smaller) I2 distribution, this results in a truncation of the intensity

distribution and hence a reduction of the mean measured optical loss coe�cient.

Intensities data is relatively precise before being processed into optical loss co-

e�cients in the Average-Process analysis method and so the e�ect of negative

intensities upon measured optical loss is suppressed . This is an additional reason

that the Average-Process analysis may have less associated systematic error in op-
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tical loss than the Process-Analysis method. This observation is more relevant in

apparatus with poorer signal to noise ratios.

The conclusion of this section is that the e�ect of experimentally typical stan-

dard deviations of scatter in intensity data results in a somewhat skewed optical

loss distribution. For these values of standard deviation, the resultant systematic

error in optical loss is negligible in both the Average-Process and Process-Average

analysis techniques. However, the Average-Process technique is more accurate and

will be preferred in this thesis.

7.5.2 The dependence of systematic error in (A + αi ) upon

the magnitude of (A + αi )

In preparation for further interpretation of the model, knowledge of the depen-

dence of the error in (A+αi ) upon its magnitude would be helpful. In particular,

it would be useful to know whether (A + αi ) ought to be parameterised in inves-

tigations such as that shown in Chapter 8.

Linear multiplicative (A(t)) and additive (B(t)) M coe�cients were chosen as

to reproduce similarly large intensity changes over the simulated time period. typi-

cal of relatively large systemic drift. Values of 1.375 × 10�5 s�1 and 0.1 arb units s�1

were used for MA and MB respectively. CA = 1 and CB = 0arb units in this

model. An example for the instance of MB = 0.1 arb units s�1 wherein I1 is set

as 8, 000 arb units, (A+αi ) is set to 5.0 cm
�1 and I2 is roughly 6, 886 arb units is

given in Figure 7.5.a). This simulated experiment has a modulation period of 0.1

seconds and an experimental duration of 180 seconds. This constitutes 1, 800 I1�I2

measurement pairs.

The magnitude of (A + αi )true was then varied for both the A(t) and B(t)

drifts and the resultant error examined in each case. The A(t) and B(t) drift

components were tested individually by setting the M coe�cient of each to zero

whilst the other is under investigation. Scatter was omitted from this model. This
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was carried out for both the Modulated and Conventional methods and the results

were plotted in Figure 7.5.b). Enough data points were calculated to produce line

plots for the (A+ αi ) region of experimental interest.

Figure 7.5: Scale of intensity drift is demonstrated in Figure 7.5.a). The error in (A+αi )
due to such a drift is shown as a function of (A+ αi ) in Figure 7.5.b)

In the Figure 7.5.b) legend, 'Mod' and 'Conv' denotes values calculated by the

Modulated and Conventional methods respectively. A(t) > 0 and B(t) > 0 denote
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that systemic drift in the indicated series is entirely due to A(t) and B(t) type

drifts respectively.

In Figure 7.5.b), the error due to A(t) type drifts can be seen to be independent

of the magnitude of optical loss under examination. This is due to the fact that a

particular A(t) gradient over a particular experiment duration will have the same

fractional e�ect on intensities (and hence (A + αi )) regardless of the magnitude

of (A + αi ) (by its very de�nition). The Conventional method series has a larger

associated error (in both A(t) and B(t) type drift data) due to its longer measure-

ment cycle.

B(t) drift causes error which is dependent on the magnitude of (A+αi ). This

occurs due to the fact that I 2calc decreases as (A + αi ) increases in this model.

Hence, as larger values of (A + αi ) are examined, magnitudes of B(t)-type error

become relatively large in comparison with I 2calc values to which they are added.

B(t) type drift converges to the A(t) drift value for small values of optical loss, as

I2 and I1 tend towards the same value as optical loss decreases. Hence, the e�ect

of an additive background tends towards a situation where I1 is equal to I2, in

which the background drift a�ects the two intensities identically.

The experiment described in Appendix A suggests that B(t) drifts are not the

primary cause of systemic drift in experimental intensity data. Due to this ob-

servation, the A(t) drift is assumed to be dominant in experimental data. Hence,

following the result shown in Figure 7.5.b), further error calculations within this

model will not be carried out as a function of (A+ αi ).

Examining magnitudes of error in optical loss due to systemic drift is examined

in detail in Chapter 8.
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7.5.3 The erroneous evaluation of Standard Deviation due

to Systemic Drift

In Chapter 9, the standard deviation of optical loss measurements is used to quan-

tify imprecision of experimental data and estimate minimum experiment durations

required to reach a particular precision benchmark. In order for the application of

standard deviation to be appropriate, error sources must result in a normal distri-

bution of deviation from the mean value. The presence of systemic drift implies

that the mean value of a measured intensity distribution is changing in time and

the usual de�nition of standard deviation is invalid. However, standard deviation

can still be interpreted in the usual fashion so long as the measurement in which

standard deviation is determined occurs rapidly with respect to the systemic drift.

In this section, the intensity standard deviations determined from modelled data

with varying degrees of systemic drift are considered, and the resultant impact

upon standard deviation in optical loss is quanti�ed. These modelled optical loss

standard deviations are then compared with the nominal optical loss standard de-

viation in order to comment upon conditions in which intensity standard deviation

is determined with su�cient accuracy for the purposes of this project.

The e�ect of drift in intensity signals upon the measured intensity standard

deviation was calculated in this section by generating intensity time series con-

sisting of 1, 000 measurements, with varying degrees of intensity drift and varying

exposure times (and hence measurement durations). This was repeated for I1 and

I2 intensities. Experimental scatter was simulated in both intensity time series

(using the method described in Section 7.4). An I true1 value of 8, 000 counts and

an optical loss of 5cm�1 was used in this model, resulting in an I true2 value of

roughly 6, 886 counts. The input standard deviation in the scatter in I1 and I2

was 180 counts. Using standard error propagation equations (see Equation 9.8), a

standard deviation in optical loss of 1.150 cm�1 can be calculated for a standard

device section length of 0.03 cm. An example of 1, 000 measurement time series

for both I1 and I2 intensities are plotted together in Figure 7.6.a). An exposure

time of 0.017 seconds and an intensity gradient (MA) of 0s
�1 were entered into

the model to produce this data. Increase in exposure duration is independent of
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intensity standard deviation in this model such that the duration of a simulated

experiment may be changed without changing the associated precision.

Figure 7.6: Figure 7.6.a) shows 1,000 simulated I1 and I2 intensities for MA = 0 s�1

and an exposure time of 0.017 seconds. Figure 7.6.c) shows 1,000 simulated I1 and
I2 intensities for MA = �2.50 × 10�5 s�1 and an exposure time of 10.000 seconds.
The simulations shown in Figures 7.6.a) and 7.6.c) were run 1, 000 times each and the
resultant standard deviations corresponding to both intensities are plotted in Figures
7.6.b) and 7.6.d) respectively.

If systemic drift in an intensity time series is large enough over the course of

1, 000 simulated exposures, the standard deviation of the simulated data points will

disagree with the nominal intensity standard deviation entered into the model. For

the purposes of this investigation, the value of optical loss standard deviation �

determined from the values of intensity standard deviation entered into the model
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� is compared to that determined from the values of intensity standard deviation

which are observed in a pair of simulated I1 and I2 time series (such as Figure

7.6.a) and 7.6.c)). This process relates the characterisation of intensity standard

deviation to the resultant mischaracterisation of optical loss standard deviation.

Comments about the impact of this mischaracterisation upon experimental design

are made at the end of this section.

The simulated intensity standard deviations are subject to imprecision due to

the �nite sample size in each simulation. For this reason, the scatter upon each

series of 1, 000 simulated intensity exposures was generated 1, 000 times and the

average intensity standard deviation of these 1, 000 time series taken to quantify

intensity standard deviation for the corresponding exposure duration and intensity

gradient. (This process improves the fractional precision in the identi�cation of

each intensity standard deviation from around 2.0% to better than approximately

0.1%.)

Exposure times of 0.017, 1.000 and 10.000 seconds were examined for each

intensity gradient. 0.017 seconds corresponds to the smallest exposure duration

allowed by the ICCD in its standard operation and hence the most rapid as-

sessment of an experimental intensity standard deviation which is possible. The

experiment duration corresponding to a 1, 000 measurement time series for these

exposure times are roughly 17 seconds, 17 minutes and 167 minutes respectively.

Intensities gradients of MA = �2.50 × 10�5, �1.25 × 10�5, 0, +1.25 × 10�5 and

+2.50 × 10�5 s�1 were used. An intensity gradient of MA = 2.50 × 10�5 s1� cor-

responds to the largest experimentally measured systemic drift for the apparatus

upon which these experiments are carried out (see Figure 9.10).

In Figure 7.6.a), an example of a simulation of 1,000 I1 and I2 intensities is

given for the case of a 0.017 second exposure time in the absence of systemic drift.

The standard deviations of intensity data sets such as those shown in Figure 7.6.a)

were taken 1, 000 times and the distribution of the resultant values are given in the

histogram shown in Figure 7.6.b). These histograms can be seen to approximately

overlie with the input standard deviation value of 180 counts .
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Figure 7.6.c) shows example data for a simulation of 1,000 I1 and I2 inten-

sities for the case of a 10.000 second exposure time with a intensity gradient

MA = �2.50 × 10�5 s�1. Figure 7.6.d) shows a histogram of the I1 and I2 stan-

dard deviations from 1,000 simulations of the type shown in Figure 7.6.c). The

systemic drift is clearly visible on the time series of Figure 7.6.c), and has the ef-

fect of increasing the standard deviation derived from the simulated intensity data.

In Figure 7.6.d), the histograms corresponding to neither I1 nor I2 standard

deviation is centered near to the input standard deviation of 180 counts. The two

intensities have di�erent intensity standard deviation distributions as it is not the

intensity gradient (g), but the prefactor of the multiplicative drift function (i.e.

MA within A(t)) which is �xed in this model). Hence, I1 and I2 do not have iden-

tical gradients in time, resulting in a greater error in measured standard deviation

for the larger intensity time series.

This data suggests that, in the instance of large systemic drift and over long

measurement durations, the experimentally measured intensity standard deviation

can be drastically overestimated (by a factor of roughly three in Figure 7.6.d)).

Overestimation of intensity standard deviation could lead to underestimation of

the precision of a measurement and to unnecessarily long optical loss experiment

durations. It is seen in Chapter 9 that a relatively small overestimation of intensity

standard deviation could lead to relatively large overestimation of the experiment

duration required to achieve some precision benchmark. Accordingly, the e�ect of

intensity standard deviation being measured incorrectly upon the standard devia-

tion of optical loss is examined further in Figure 7.7.

The erroneous characterisation of intensity standard deviation � such as that

demonstrated in Figure 7.6.b) was used to identify the resultant erroneous iden-

ti�cation of optical loss standard deviation. This is plotted as a function of MA

in Figure 7.7. The optical loss standard deviation which was calculated from the

intensity standard deviations which were entered into the model is represented by

a black dashed line. Figure 7.7 demonstrates that the standard deviation of opti-

112



cal loss is overestimated if systemic drift is present, and that the overestimation

is worsened by both longer exposure times (and hence measurement durations)

and larger absolute values of drift intensity gradient. For a 10 second exposure

duration and the largest observed intensity gradient (MA = 2.50 × 10�5 s�1),

there is an overestimation of optical loss standard deviation of 2.044 cm�1.

Figure 7.7: Mischaracterisation of the optical loss standard deviation based upon the
intensity standard deviations derived from 1,000 simulations of the type depicted in
Figure 7.6.a), as a function of intensity gradient and for various exposure durations.

As addressed in Section 9.2, the required experiment duration to reach some

precision aim increases with the square of the optical loss standard deviation. This

suggests an overestimation of required experiment duration by a factor of roughly

113



eight. Clearly this would be unacceptable for a very precise (and hence long) ex-

periment. The corresponding error in standard deviation of optical loss for the

shortest experimentally available exposure duration is �0.0013 cm�1. This has a

negligible e�ect on experiment duration.

It can be seen in Figure 7.7 that the error in simulated standard deviation of

optical loss for negative intensity gradients is larger than that for positive inten-

sity gradients. This is associated with the warping of the intensity distributions in

being passed through the nonlinear multisection optical loss equation. (This e�ect

is closely related to the concepts discussed in Section 7.5.1).

This analysis does not take into account the fact that longer exposure dura-

tions in a real experiment are likely to have smaller fractional standard deviation

in intensity. The inclusion of this e�ect would not change the fact that systemic

drifts in intensity will introduce systematic error in measured intensity standard

deviation. The key message of this section is simply that short measurements can

characterise intensity standard deviation more rapidly than typical systemic drifts

introduces error into the value (for maximum observed values of MA).

In summary, this section has demonstrated that large systemic drifts typical

to the apparatus used in this body of work cause negligible systematic error in

optical loss standard deviation measurements so long as the minimum exposure

duration (0.017 seconds) is used. This must be re-assessed in the instance that

uncertainty requirements become more stringent or that the method is transfered

to a di�erent apparatus. Based upon the precision of the assessment of optical

loss standard deviation, the addition of several seconds of measurement duration

onto the experiment durations that are calculated in Chapter 9 is advised. This

will account for any likely error in calculated experiment duration associated with

the precision in the identi�cation of the measured optical loss standard deviation.

Additionally, care should be taken in using the standard deviation of intensities

determined from long (precise) optical loss measurements to quantify the precision

of the produced optical loss value.
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7.6 Chapter Summary

In this chapter, the modulated and conventional multisection methods for opti-

cal loss were modelled. The purpose of this model is to allow the separation of

uncertainty in an optical loss measurement due to experimental scatter and both

additive and multiplicative systemic drift. Having described this model, several

key �ndings were reported.

It was determined that intensity measurements in the modulated multisection

method ought to be averaged before being processed with Equation 1.16. Process-

ing the I1 and I2 value determined within each modulation cycle to obtain a value

of optical loss, and averaging these values for each modulation cycle results in a

marginally larger systematic error (due to the e�ect of the nonlinearity of Equa-

tion 1.16 upon the noisy distribution of intensity data). The systematic error is

small compared with the ±0.1cm�1 uncertainty aim of this project in either case,

given typical intensity standard deviations observed within the apparatus used in

this thesis. However, when applying the method to a di�erent apparatus or with

a more stringent uncertainty aim in future work, this distinction may be critically

important.

Systematic error associated with multiplicative (A(t)-type) systemic drift of

intensities in an optical loss measurement using the modulated and conventional

multisection methods, does not depend upon the magnitude of the optical loss co-

e�cient being measured. This demonstrates that the calculation of the systematic

error in optical loss associated with systemic drift � carried out in Chapter 8 �

needn't be repeated for various magnitudes of optical loss.

It is demonstrated in this chapter that systemic drift can cause systematic error

in the evaluation of standard deviation of measured optical intensity. The resul-

tant systematic error in optical loss standard deviation is shown to be negligible

for the largest observed systemic drifts , provided that the measurement occurs

su�ciently rapidly.
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CHAPTER 8

Quantifying Systematic Error in Optical Loss due to Systemic

Drift

Having developed the Modulated Multisection method, an estimate of the error

caused by systemic drift in a Conventional and a Modulated Multisection mea-

surement can now be examined. Analytical expressions for the magnitude of drift

error in each method will be determined in Sections 8.1 and 8.2 respectively.

By considering the error in the Modulated method as a function of the mod-

ulation period, one may determine how rapidly switching must occur in order to

reduce systematic error to an acceptable low level under experimentally typical

drift conditions. In particular, the improvement in drift error between the conven-

tional and modulated multisection methods will be examined.

In this section, error values due to linear drift are determined in the form of

analytical expressions. The model described in Chapter 7 is not directly used in

this process. However, some of the conclusions drawn in that chapter are directly

applied in the following. The analytical expressions derived in this chapter include

linear functions of intensity with time. Unlike the modelling in Chapter 7, exper-

imental scatter is not applied in this chapter.
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A multiplicative systemic drift will be used in these calculations, as de�ned in

Section 7.2. Following the conclusion of Appendix A, it is assumed that additive

systemic drift has a negligible e�ect and will be neglected.

The critical parameter of multiplicative drift is the constant MA, which de-

scribes the gradient of the A(t) function (introduced in Equation 7.2). However,

the resultant gradient of an intensity time series is of more immediate experimental

relevance. In Section 7.2, this quantity is de�ned to be g .

In Section 7.5.2, it was demonstrated that the magnitude of systematic error

in optical loss caused by multiplicative systemic drift is independent of the mag-

nitude of the optical loss. As multiplicative drifts are considered in this section

and additive drifts are neglected, (A+ αi ) will not be used as a parameter in the

following calculations of drift error.

8.1 Systematic Error due to Systemic Drifts in the

Conventional Multisection Method

8.1.1 Derivation

Figure 8.1 depicts a Conventional Multisection method measurement under linear

systemic drift.

Square brackets in Figure 8.1 represent the start and end of each intensity mea-

surement. Assuming a negligible contribution from additive drift, the calculated

I 1calc and I 2calc signals are de�ned (in Equation 7.1) to be:

I 1calc(t) = (MAt + 1)I 1true

I 2calc(t) = (MAt + 1)I 2true
(8.1)
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Figure 8.1: For linearly drifting intensities, the periods during which I1 and I2 are mea-
sured in a conventional multisection optical loss method measurement are represented
by square brackets.

Given knowledge of the intensity gradient and the duration of the I1 and I2

measurements, one can calculate the discrepancy between the true and the mea-

sured (A+αi ) values. This quantity is to be described as conventional drift error

in this thesis and is expressed with the symbol, ∆(A+ αi )
Drift
Conv

.

MA does not, itself, provide the gradient of I (t) with respect to time, which is

de�ned to be g (de�ned in Equation 7.4). Multiplying MA by some duration, t ,

produces the resultant fractional change in an initial intensity over that duration.

In this chapter, I will use the symbol χ to denote this product:

χ = MAt (8.2)

Future users of the modulated multisection method may apply plotted numer-

ical results from this chapter to their own apparatus by calculating a χ value for

typical systemic drift in their intensity measurements (provided that systemic drift

is primarily multiplicative in their apparatus).
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The `trial 2' intensity data surrounding Figure 6.1 is representative of a sub-

stantial systemic drift over an extended period (within the apparatus in question),

giving a g value of 0.11 arb units s�1, an initial intensity of 13, 700 arb units and

thus an MA value of 8.0x10�6 s�1. These values of g and MA are typical of large

systemic drifts for long experiments in my apparatus for the purposes of the fol-

lowing calculations.

A distinction exists between observed intensity gradients common in short ex-

periments (up to 30 minutes) and longer experiments (greater than an hour).

In particular, larger intensity gradients are common in the shorter experiments

described in Chapter 9. A large intensity gradient in one of the measurements

described in Chapter 9 corresponds to an MA value of 2.5x10�5 s�1. A separation

is made in this chapter; calculations over timescales of several hours and those over

time scales of less than an hour will useMA values of 8.0x10�6 s�1 and 2.5x10�5 s�1

respectively.

In a typical measurement, I1 is collected before I2 and a period of t ′ is given

for each measurement. Given linear drift, the average intensity is equal to the

instantaneous intensity halfway through a measurement. Accordingly, in the case

of the Conventional Multisection method, Equations 8.1 can be expressed as:

I 1calc = (
MAt

′

2
+ 1)I 1true

I 2calc = (
3MAt

′

2
+ 1)I 2true

(8.3)

By substituting Equations 8.3 into the standard equation for Multisection optical

loss (Equation 1.16), Equation 8.4 is obtained:

(A+ αi )meas =
1

Ls
ln

(
(MAt

′
2 + 1)I 1true

(3MAt
′

2 + 1)I 2true

)
(8.4)
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By applying the product law of logarithms, Equation 8.5 is derived:

(A+ αi )meas =
1

Ls
ln

(
MAt

′
2 + 1

3MAt
′

2 + 1

)
+

1

L
ln

(
I 1true
I 2true

)
(8.5)

Studying the form of Equation 1.16, this can be simpli�ed to Equation 8.6:

(A+ αi )meas =
1

Ls
ln

(
MAt

′
2 + 1

3MAt
′

2 + 1

)
+ (A+ αi )true (8.6)

It is practically useful to de�ne the error in optical loss due to linear drift in a

conventional Multisection measurement, ∆(A + αi )
Drift
Conv

, to be the true value of

optical loss subtracted from the measured value of optical loss. This results in the

expression for conventional drift error given in Equation 8.7:

∆(A+ αi )
Drift
Conv

=
1

Ls
ln

(
MAt

′
2 + 1

3MAt
′

2 + 1

)
(8.7)

In Equation 8.7, ∆(A + αi )
Drift
Conv

is only a function of Ls , MA and t ′. By setting

an appropriate Ls value for a given calculation, ∆(A + αi )
Drift
Conv

can be uniquely

de�ned by the product of MA and t ′ � the fractional change in an intensity over

the period t ′.

Finally, from Equation 8.7 and 8.2:

∆(A+ αi )
Drift
Conv

=
1

Ls
ln

(
χ′
2 + 1
3χ′
2 + 1

)
(8.8)

L is 300µm in all models described in this thesis. χ′ identi�es the fractional change

in intensity over the time period for which the intensity emitted by a device section

is measured, t ′.
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8.1.2 Results

The relationship described in Equation 8.8 is plotted in Figure 8.2. Figures 8.2.a)

and 8.2.c) show calculated Drift Error in a Conventional Multisection experiment

as a function of the parameter χ′. Figures 8.2.b) and 8.2.d) show calculated con-

ventional drift error as a function of MA and t ′ separately. The axis scales di�er

between the left-hand plots and the legend di�ers between the right-hand plots.

Expressing this relationship in terms of χ′ is useful as it provides a single expres-

sion of the degree of drift over the course of an intensity measurement. Given

knowledge of the maximum magnitude of MA likely to occur in an apparatus, Fig-

ures 8.2.a) and 8.2.c) both provide an indication of whether the adoption of the

Modulated Multisection method is necessary. Separately studying this relation-

ship through t ′ andMA allows a more in-depth examination of trends in the model.

The upper pair of plots show conventional drift error for a wide range of MA

and t ′ values. Figures 8.2.a) and 8.2.b) describe the drift error in experiments

with very high durations. These describe drifts similar to those related to the

experiments described in Sections 6.1 and 8.2.4 and are useful for considering drift

behaviour for the long duration experiments shown in these sections. (A χ′ of

±0.28 is approximately the product of a t ′ of 36, 000 s and anMA of ±8.0x10�6 s�1).

Figures 8.2.c) and 8.2.d) examine drift error in experiments with durations

similar to those discussed in Chapter 9. The timescales are useful for considera-

tion of conventional drift error for durations similar to those used in both precise

measurements of optical loss (Chapter 9) and for durations similar to those used

in the less precise optical loss measurements that precede this body of work (cor-

responding to timescales of several minutes). (A χ′ of ±0.045 is the product of a

t ′ of roughly 30 minutes and an MA of ±2.5x10�5 s�1).
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Figure 8.2: Figures 8.2.a) and 8.2.b) quantify drift error for large (but experimentally
feasible) drifts. Figures 8.2.c) and 8.2.d) allow closer examination of drift error in a
domain near to the 0.1 cm�1 uncertainty aim of this project . The left-hand �gures
present drift error as a function of the χ′ product and the right-hand �gures present drift
error as a function of MA and t ′ separately.

Figures 8.2.a) and 8.2.c) show the absolute value of conventional drift error due

to systemic drift increasing as the absolute value of χ′ increases. This follows in-

tuitively from Equation 8.8. It can be seen from Figure 8.2.a) that the magnitude

of drift error is not symmetrical for positive and negative drift gradients. This is

due to the logarithm in Equation 8.8. This fact could be of experimental interest

if systemic drift is more likely in a particular sign than the other in a particular

apparatus.

The most important implication of Figure 8.2.a) is that drift error due to ex-

perimentally feasible extrema in χ′ result in systematic errors that are far in excess
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of 0.1 cm�1. Signi�cantly, these calculations suggests that a drift error of several

cm�1 is possible over the time scales described by Figure 8.2.b) and a drift error of

greater than ±0.1 cm�1 is possible for the time scales described by Figure 8.2.d).

In a conventional multisection measurement with an uncertainty aim of ±1.0 cm�1,

experiment durations of several minutes are required for su�cient precision and ex-

perimentally observed values of MA correspond to negligible drift errors of around

±0.1 cm�1. If the uncertainty aim is changed to ±0.1 cm�1, experiment durations

of at least 20 minutes are required for su�cient precision (see Chapter 9) and drift

error can exceed the uncertainty aim for experimentally observed values of MA.

Figure 8.2.b) spans the entire range of likely drift error which an experimen-

talist is likely to experience. When t ′ = 36, 000 s in Figure 8.2.b), the extrema of

drift error are +13.74 cm�1 and �7.51 cm�1 respectively. It is unsurprising that

a 10 hour experiment with a signi�cant intensity gradient results in an extremely

inaccurate measurement.

The scale of Figures 8.2.c) and 8.2.d) are determined for the purpose of design-

ing aConventional Multisection experiment in which drift error a�ects uncertainty

by less than the ±0.1 cm�1 aim of this project. Considering the extrema of plotted

MA values in Figure 8.2.d), the model results in drift errors in excess of 0.1 cm�1

for t ′ values of roughly 122 seconds for either positive or negative drift. A conven-

tional multisection measurement of optical loss cannot exceed roughly 4 minutes

without a signi�cant risk of its associated drift error exceeding ±0.1 cm�1. (That

is � of course � without use of the Modulated Multisection method.)

8.2 Systematic Error due to Systemic Drifts in the

Modulated Multisection Method

8.2.1 Derivation

A similar analytical expression for drift error in a Modulated Multisection mea-

surement can be derived. Figure 8.3 aids the understanding of this derivation.
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Figure 8.3: The periods during which I1 and I2 are measured for many cycles of a
Modulated Multisection experiment.

As in Figure 8.1, the square brackets in Figure 8.3 represent the start and end

of an intensity measurement. As in Section 8.1.2, the parameter t ′ represents the

time over which a single intensity measurement takes place. However, there are

many measurements of I1 and I2 in a Modulated Multisection experiment and

hence many t ′ intervals. This �gure is representative of the sampling described in

Figure 5.3.a).

In order to determine an expression for the experimental outcome of the Modu-

lated Multisection method, an additional parameter must be introduced to de�ne

the experiment duration. N will denote the number of pairs of I1 and I2 mea-

surements. The systematic error in optical loss due to linear drift in a modulated

multisection measurement is described as modulated drift error in this thesis, and

denoted by the symbol, ∆(A+ αi )
Drift
Mod

.

As the drift is linear, the average value of each measurement is taken to be
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equal to the value halfway through the measurement. Optical loss is then deter-

mined through Equation 1.16 using the average I1 and I2 values (following from

the discussion in Section 7.5.1). Determining the average value of each intensity

measurement requires that the time of the midpoint (and hence resultant average)

of I1 and I2 measurements must both be de�ned for all N measurement cycles.

In Figure 8.3, it is seen that the midpoints of the nth I1 and I2 measurements

respectively occur at a time de�ned by Equation 8.9.

tn1 =
(4n � 3)t ′

2

tn2 =
(4n � 1)t ′

2

(8.9)

By substituting these time values into Equations 8.1, a general expression for the

average value of the nth I1 and I2 measurement can be calculated:

I n1 = I 1True

(
1 +MA

(4n � 3)t ′

2

)
I n2 = I 2True

(
1 +MA

(4n � 1)t ′

2

) (8.10)

For N I1 and I2 pairs, the average intensity values can be de�ned as INave1 and

INave2 respectively:

INave1 =

N∑
n=1

I 1True

(
1 +MA

(4n � 3)t ′

2

)
N

INave2 =

N∑
n=1

I 2True

(
1 +MA

(4n � 1)t ′

2

)
N

(8.11)

By observing that the sums in Equations 8.11 constitute the sums of arithmetic
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series we hence arrive at equations 8.14:

INave1 =
I 1True
2N

(
2 +

MA(4N � 2)t ′

2

)
(8.12)

INave2 =
I 2True
2N

(
2 +

MA(4N + 2)t ′

2

)
(8.13)

(8.14)

By substituting into Equation 1.16 we �nd Equation 8.15:

(A+ αi )Meas =
1

Ls
ln

I 1True
I 2
True

2 +
MA(4N �2)t ′

2

2 +
MA(4N+2)t ′

2

 (8.15)

and hence Equation 8.16:

(A+ αi )Meas =
1

Ls
ln

 2 +
MA(4N �2)t ′

2

2 +
MA(4N+2)t ′

2

+ (A+ αi )True (8.16)

Modulated drift error, ∆(A + αi )
Drift
Mod

, is given by Equation 8.16. This results in

Equation 8.17:

∆(A+ αi )
Drift
Mod

=
1

Ls
ln

 2 +
MA(4N �2)t ′

2

2 +
MA(4N+2)t ′

2

 (8.17)

It is sensible to express this equation in terms of the time parameters which are

most relevant to real experiments: the total experiment duration, texp , and the

duration of a switching cycle, tmod . These relate to t ′ and N as described by

Equation 8.18:

tmod = 2t ′

texp = 2Nt ′
(8.18)
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and hence Equation 8.19 is derived:

∆(A+ αi )
Drift
Mod

=
1

Ls
ln

(
4 +MA(2texp � tmod )

4 +MA(2texp + tmod )

)
(8.19)

Equation 8.19 could be used to compare the modulated drift error corresponding

with experiments of the same total duration for di�erent modulation periods.

As in Section 8.1.2, one may choose to simplify the argument of the natural

logarithm by de�ning the following parameters:

χmod = MAtmod

χexp = MAtexp
(8.20)

As these χ quantities represent fractional changes in intensity per unit time multi-

plied by a time variable, they represent the fractional change which occurs through-

out a single modulation period and throughout the entire experimental duration

respectively. This is useful as it allows an experimentalist to intuitively relate the

�ndings of the model in this chapter to the parameters from real experiments.

By substituting Equations 8.20 into Equation 8.19, Equation 8.21 is derived:

∆(A+ αi )
Drift
Mod

=
1

Ls
ln

(
4 + 2χexp � χmod
4 + 2χexp + χmod

)
(8.21)

In Equation 8.21, ∆(A+αi )
Drift
Mod

is a function of Ls , χmod and χexp . By setting an

appropriate Ls value for a given calculation, ∆(A + αi )
Drift
Conv

can be examined as

a function of the two χ parameters. Ls is 300 µm in all models shown in this thesis.

Equation 8.21 indicates that modulated drift error is small when χmod is small

in comparison with (4 + 2χexp). As the same MA acts upon both χ parameters,

modulated drift error tends to zero as tmod decreases (for an experiment of a par-

ticular duration and a particular systemic drift). This agrees with the intuition

that the e�ect of systemic drift upon optical loss measurements can be overcome

with su�ciently rapid modulation. The conditions in which modulated drift error
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is kept su�ciently small is examined in Section 8.2.2.

The Ls dependence of systematic errors described by Equations 8.8 and 8.21

suggests that drift related error may be reduced through the use of longer section

lengths. It is shown in Section 8.2.3 that this is not necessary for the measurement

of this sample upon this apparatus. If a future experiment had more stringent op-

tical loss uncertainty requirements, required longer experiment durations or had

to be carried out upon an apparatus which was more susceptible to systemic drift,

drift error could be reduced by the application of longer device section lengths.

(Although the e�ect that the resultant decrease in measured I2 has on precision

and experiment duration would have to be carefully considered. Refer to Chapter

9 for an example of analysis of precision in the measurement of optical loss coe�-

cients).

8.2.2 Results

Equation 8.21 is plotted in Figure 8.4. As explained in Section 8.1.2, di�erent

maximum intensity gradients are applied to long experiments (roughly 10 hours)

and experiments whose durations are optimised for precise measurement of optical

loss (up to 30 minutes). Typical values of χexp for long experiment durations were

taken from the `Trial 2' data of the experiment described surrounding Figure 6.1.

From anMA value of 8.0x10�6 s�1 and a maximum experiment duration of 10 hours,

a maximum χexp of 0.28 was calculated. The initial intensity values were taken

from Figure 6.1. An MA value of 2.5x10�5 s�1 is used to typify large systemic drift

intensity over timescales of the order of 30 minutes. Figure 8.4 examines the case

of 10 hour experiments in order to establish the general properties of Equation

8.21, before these `long' and `short' timescales are examined in detail in Figure

8.5. The 2nd and 4th quadrant data corresponds with the unphysical cases in

which χmod and χexp are of di�erent signs. Data for values of χmod exceeding the

corresponding value of χexp in not plotted as the modulation period clearly cannot

exceed the experiment duration. These regions have been assigned modulated drift

error values of zero.As in the previous results section, an experimentalist may relate
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values of χmod and χexp which are likely to occur in their own apparatus to values

of drift error in their experiments.

Figure 8.4: Calculated drift error as a function of χ parameters.

A key feature of the data shown in Figure 8.4 is that modulated drift error can

be seen to decrease with decreasing absolute value of χmod . The implication of this

is that, for a particular intensity gradient, modulated drift error can be reduced

to arbitrarily small values so long as the modulation period is not limited by the

apparatus. Modulated drift error does not change as drastically as one varies χexp

for a particular χmod . This is due to the fact that an approximately equal drift

error is generated in consecutive modulation periods of equal length for a �xed

intensity gradient. However, for a �xed χmod , large increases in the absolute value
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of χexp (i.e. in the experiment duration) slightly reduce the drift error for posi-

tive intensity gradients, and increase error for negative intensity gradients. The

fundamental reason for this is that I1 and I2 in a particular modulation cycle are

not measured simultaneously (see Equations 8.9). While the intensity gradient is

�xed, the fractional di�erence in I1 and I2 measurements separated by half of a

modulation cycle is not constant.

The edge of the plotted area de�ned by the line, χmod = χexp , describes

the case of a conventional multisection optical loss measurement. By substituting

Equations 8.18 into Equation 8.21 and setting N equal to 1 , the conventional drift

error equation (Equation 8.8) is recovered.

Figure 8.4 demonstrates broad trends of the mathematical model. Figure 8.5

demonstrates the dependence of modelled drift error upon the experiment duration

(texp) and modulation period (tmod ) for a typical large value of intensity drift gra-

dient in the apparatus used in this thesis. This follows the relationship described

in Equation 8.19. In Figure 8.5.a), a range of modulation periods was chosen to

examine the occurrence of drift errors of the order of the 0.1 cm�1 uncertainty aim

of this project in an arbitrarily long � 10 hour � experiment. As in the previous

section, an MA magnitude of 8.0x10�6 s�1 was taken to typify large systemic drifts

over these timescales. In Figure 8.5.b), experiment durations and modulation pe-

riods that are similar to those discussed in Chapter 9 are examined. Accordingly,

a larger MA magnitude of 2.5x10�5 s�1 is used in this �gure. The calculated val-

ues shown in the �gure correspond with negative values of MA. The di�erence

in absolute value of drift error due to the choice of sign of MA is negligible for

drift errors below around 1.0 cm�1. The small region of missing values of modu-

lated drift error near to the tmod axis correspond with experiment durations which

are smaller than a single modulation period � and hence experimentally impossible.

As in Figure 8.4, these plots show that increasing the modulation period for a

particular experiment duration increases the magnitude of drift error. As the MA

is negative in this calculation, increasing the experiment duration for a particular

modulation period increases the resultant drift error.
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Figure 8.5: Calculated Modulated drift error for a large systemic drift is plotted against
the experiment duration and modulation period for two di�erent ranges. Figure 8.5.a)
examines time scales which produce drift error of the order of 0.1 cm�1 (the uncertainty
aim of this project). The red line on the surface demonstrates a modulated drift error of
0.1 cm�1. Figure 8.5.b) examines time scales similar to those discussed in Chapter 9.

Figure 8.5.a) suggests that � for a particular experiment duration � there ex-

ists some maximum value of modulation period above which modulated drift error

is likely to exceed ±0.1 cm�1 for typical large systemic drifts within the apparatus
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described in this thesis. The identi�cation of this maximum modulation period

and hence practical guidelines for the application of the modulated multisection

method for optical loss are carried out in Section 8.2.3.

8.2.3 Considering a Maximum Modulation Period

In order to determine the maximum modulation period for which the 0.1 cm�1

uncertainty aim of the project may be met, the value of tmod at which modulated

drift error exceeds ±0.1 cm�1 and ±0.03 cm�1 were examined for many experi-

ment durations. These two threshold values of modulated drift error respectively

demonstrate the value of tmod where systematic error is equal to the uncertainty

aim of the project and where systematic error becomes small compared with the

uncertainty aim of this project. Positive and negative instances of the largest ob-

served systemic drift magnitude (MA = 2.5 × 10�5 s�1) are examined such that

the resultant drift error is indicative of the maximum drift error that is likely to

be observed. The outcome of these calculations is plotted in Figure 8.6.

It is observed in Figure 8.4 that, for a particular modulation period, modu-

lated drift error increases with increasing experiment duration for negative values

of MA. In Figure 8.6, this results in a reduction � as a function of experiment

duration � in the modulation period at which modulated drift error exceeds a

threshold value. Hence the ultimate limits to the maximum values of modulation

period which can be used in a real experiment are described by the calculations in

Figure 8.6 which correspond with negative MA values.

The experiment duration required to reach the precision aim of this project

is found to be of the order of 30 minutes in Chapter 9. This signi�cant value of

texp is marked with a dashed grey line. The larger values of experiment duration

plotted in Figure 8.6 allow comparison with experimental data such as that shown

in Sections 6.1 and 8.2.4.
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Figure 8.6: The value of modulation period for which modulated drift error exceeds
signi�cant threshold values plotted as a function of experiment duration.

The blue and green lines in Figure 8.6 can be seen to govern the maximum

value of tmod for which modulated drift error is less than a 0.1 and a 0.03 cm�1

threshold respectively. The key �nding of this section is that a modulation period

of roughly 150 seconds is su�cient such that modulated drift error remains less

than ±0.1 cm�1, for experiment durations up to 10 hours. Similarly, a modulation

period of 239 seconds ful�lls this requirement for an experiment duration of 30

minutes. For a threshold value of modulated drift error of ±0.03 cm�1, experi-

ments of 10 hour and a 30 minute durations correspond to maximum modulation

periods of 44 and 74 seconds respectively. Following this �nding, modulation pe-

riods are of the order of seconds in the precise measurements documented in the

latter chapters of this thesis.

The minimum experimentally available modulation period is approximately

0.054 seconds. Therefore, the suppression of drift error by the modulated multi-

section method for optical loss is experimentally viable for the purpose of reaching

a ±0.1 cm�1 uncertainty aim. Figure 8.6 demonstrates that modulation periods

much larger than 0.054 seconds can be used with acceptable degrees of resultant

drift error. This �nding allows �exibility in the optimisation of modulation period
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with respect to rapidly acquiring precise optical loss coe�cients ( carried out in

Chapter 9).

8.2.4 Studying Drift Error in Experimental Data

By selectively sampling measured I1 and I2 experimental intensity time series, the

e�ect of varying the modulation period may be simulated within a particular set

of experimental data. This approach was taken � rather than repeating similar ex-

periments with di�ering modulation periods � as the time dependent behaviour of

intensity time series cannot be expected to be reproduced in di�erent experiments.

Figure 8.7 demonstrates the binning of measured I1 and I2 intensities (of a

particular photon energy). In standard data analysis, each I1 and I2 data point is

respectively averaged and then processed using Equation 1.16 to produce an opti-

cal loss coe�cient. This approach is demonstrated schematically in Figure 8.7.a).

Blue and red crosses represent I1 and I2 measurements in a modulated multisec-

tion method experiment. Blue and red pulses represent that a data point is used

in processing. Figures 8.7.b) and 8.7.c) represent cases in which not all of the

measured intensity data is processed. I describe this processing as the `binning ' of

intensity data.

For a bin size of b, the �rst b I1 data points are averaged and the �rst b I2

data points are discarded. The second b I2 data points are then averaged and the

second b I1 data points are discarded. This pattern is alternated throughout the

entire data set. For example, Figures 8.7.b) and 8.7.c) represent b values of two

and seven respectively.
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Figure 8.7: The demonstration of e�ectively changing the modulation period within a
measured I1 and I2 intensity time series by application of alternating periodic binning is
described.

Values of b are chosen such that an integer number of I1 and I2 bin pairs span

the raw intensity data sets. The periodic acceptance and rejection of intensity data

between di�erent bin sizes is comparable to carrying out modulation experiments
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with di�erent modulation periods. A modulation period, tmod , is determined for

each bin size based on the periodicity of the binning. This period is equal to two

times the bin size multiplied by the modulation period of the raw data. It is noted

that some precision is lost in this measurement due to the discarded data. How-

ever, exactly half of the data is discarded for both I1 and I2 so � other than the

systemic drift related systematic error which I am investigating � no systematic

error is introduced in this process. (For this reason, the analysis implied by Figure

8.7.a) is not equivalent to binning with a b value of one, as no data is discarded).

It is informative to study extreme values of modulation period. Accordingly,

intensity data was acquired with as short a modulation period as the apparatus

allows (approximately 0.054 seconds). This allows access to very low values of

tmod . Conversely, a long total experiment duration allows access to large values of

tmod in this analysis. 720, 000 modulation cycles are acquired such that the total

experiment duration was 8 hours. The analytical expression for modulated drift

error, derived in this chapter, is then compared with these experimental �ndings.

The intensity measurements for each modulation cycle are shown in Figure 8.8.

In a 0.054 second modulation cycle, there is an exposure time of 0.017 sec-

onds (including CCD readout time) for each device section. The additional 0.02

seconds is made up by two 0.01 second switching periods built into the program,

such that measurements are not made as the relay is switching. A drive current

of 80 mA at 18 kHz was used. A current pulse width of 1.2 µs was used with a

gate width of 1.0 µs. This experiment was carried out upon a device of type #1BA.
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Figure 8.8: Figure 8.8.a) shows experimental intensity times series which rapidly alter-
nates between I1 and I2. Figure 8.8.b) shows optical loss calculated from the intensities
demonstrated in Figure 8.8.a) using various `binned ' modulation periods (as illustrated
in Figure 8.7.

Figure 8.8.b) demonstrates the e�ect of binning data into various `e�ective

modulation periods ' upon the acquired optical loss coe�cients using the experi-
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mental intensity time series shown in Figure 8.8.a).

For low values of modulation period, the deviation around the average value

of measured optical loss is comparable to the standard error (once half of each

intensity time series is discarded in the binning process). This standard error is

denoted by error bars in Figure 8.8. For modulation periods greater than around

1, 000 seconds, the measured value of optical loss increases greatly. This occurs

as, the less frequently modulation between device sections occurs, the greater the

fractional change in intensity that a particular systemic drift will cause within each

switch cycle.

Interpretation of this data is complicated by the presence of a slight bowing of

the intensity time series. It can be seen that the measured optical loss coe�cients

corresponding to the two largest values of bin size decrease towards the average

value for small bin sizes. The I1 and I2 time series have negative fractional inten-

sity gradients (MA) of �2.25 × 10�6 and �2.21 × 10�6 s�1 respectively. Taking a

moving average of these intensity time series demonstrates that this is largely due

to a substantial decrease in intensity between roughly 6, 000 and 7, 000 seconds on

the time axis.

If the intensity time series had varied monotonically, higher switch cycle du-

rations would correspond with higher systematic errors. As real, experimental

intensity time series are not perfectly linear, they can a�ect resultant drift error

in complicated ways. However, this e�ect is related to the regions of the intensity

time series from which I1 and I2 data is sampled, and can be avoided by sampling

intensity data as regularly as possible throughout the experiment duration. This

can � of course � be achieved through use of rapid modulation.

In Figure 8.9, the experimental data of Figure 8.8 is compared with the drift

error model (described in Section 8.2.2). For the appropriate experiment duration,

the modulated drift error was calculated for a range of modulation periods based

upon the average intensity gradient of the intensity time series in Figure 8.8.a).

This corresponds to an MA value of �2.23 × 10�6 s�1. Modulated drift error as a
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function of modulation period was added to the optical loss measurement (aver-

aged over the 6 lowest switch cycle durations, where drift error is not expected to

a�ect the observed value).

Figure 8.9: The data previously plotted in Figure 8.8 is plotted alongside the modelled
dependence of modulated drift error upon modulation period (based upon Equation 8.19)
for the average MA intensity gradient of the I1 and I2 time series.

In spite of the non-linear behaviour of the intensity time series and experimen-

tal uncertainty, the modelled drift error corresponding with the average measured

MA reproduces the trend in the experimental drift error well (excluding the points

for which drift error has been reduced by the bowing of the intensity time series).

Increasing the modulation period increased the modulated drift error in this ex-

periment, as suggested by the observations seen in Section 8.2.2.
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8.2.5 Chapter Summary

In this chapter, it has been shown that, by taking a su�ciently short modulation

period, drift error can be reduced to negligible values for the range of intensity

gradients which are common to the apparatus used in this thesis. In particular,

the modulation period can be reduced to make modulated drift error small with

respect to the corresponding error in a conventional multisection measurement of

the same duration.

The dependence of modulated drift error in optical loss upon modulation pe-

riod has been established. In Figure 8.6, it is shown that a modulated drift error of

less than ±0.03̇ cm�1 � and hence small compared with the ±0.1 cm�1 uncertainty

aim of this project � can be achieved in a su�ciently precise (texp = 30 minute)

experiment by using a modulation period no greater than 74 seconds. Modula-

tion periods that are three orders of magnitude shorter than this threshold value

are possible using the apparatus used in this thesis. It is demonstrated that drift

error in the modulated method can be su�ciently suppressed with respect to a

±0.1 cm�1 uncertainty aim.

An additional strength of the modulated multisection method is that, in rapidly

switching between device sections, an I1 and I2 intensity time series is generated

in the natural course of the measurement (provided that the measured intensity in

each switch cycle is saved separately). This may be used to quantify the drift error

associated with a particular set of experimental data. If intensity gradients � and

their associated drift errors � are found to drastically vary within a particular

apparatus then it is sensible to use these intensity time series to directly estimate

the drift error associated with a given set of data. This would be especially useful

in the instance of an experimentalist using the modulated multisection method in

a situation where very high uncertainty is required, intensity gradients vary much

more drastically than those described in this thesis or it is unfeasible to modulate

between sections su�ciently rapidly. A modulated drift error could be associated

with a measurement of optical loss, based upon the primary intensity data, and

this information used to assess the quality of a particular measurement.
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If, rather than a drift in detector sensitivity (A(t)) or background (B(t)),

(A+αi ) systematically changes over the course of an experiment due, for instance,

to �uctuations in device temperature, then a systematic change in the measured

value will occur regardless of modulation period. If the timescale of such behaviour

is long compared with the experiment duration, then an accurate measurement of

the optical loss at the time of the experiment is made. Otherwise, the measured

optical loss is some average of the value over the course of the experiment. This

issue of variability of measured optical loss in the modulated multisection method

is further discussed in the context of experimental data in which the ±0.1 cm�1

precision aim of the project has been met in Chapter 9.
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CHAPTER 9

Precision in the Modulated Multisection method

9.1 De�ning Precision in the Modulated Multisec-

tion method

The focus of this thesis up to this point has been on the e�ect of systematic er-

ror upon the uncertainy of measured values of optical loss within the multisection

method. Naturally, the precision of the measurement also has a crucial contribu-

tion. In order to realise the aspiration of an optical loss uncertainty smaller than

±0.1 cm�1, precision � and its relationship with required experiment duration

� must be examined. The purpose of this chapter is to examine the relation-

ship between the minimum experiment duration in which the optical loss can be

measured su�ciently precisely and various experimental parameters, such that ex-

periment duration may be minimised. It was observed in Chapter 8 that the drift

error in a modulated multisection optical loss measurement is largely governed

by the modulation period, and that there is only a small dependence upon the

chosen experiment duration. In considering precision, acceptable limits on exper-

iment duration will be introduced. The systematic error described in Chapter 3

is acknowledged in the measurements carried out in this chapter, but will not be

corrected herein.
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The average value of a series of experimental measurements of some sample

size, Ntotal , � in nominally identical conditions � has an associated characteris-

tic sampling distribution. The standard deviation of such sampling distributions

will be used to quantify the precision of optical loss measurements in this chapter.

This quantity is also described as the standard error of the mean.

The standard deviation from the mean of such an optical loss sampling dis-

tribution, σ
(A+αi )
SEM

, is de�ned with respect to the sample size and the standard

deviation from the mean of a single measurement, σ
(A+αi )
SD

, by Equation 9.1:

σ
(A+αi )
SEM

=
σ
(A+αi )
SD√
Ntotal

(9.1)

By relating experimentally measured values of standard deviation � in di�erent

experimental conditions � to the time taken to accumulate Ntotal samples, the

precision of an experiment can be related to its total duration ttotal .

The duration of each modulation period within the modulated multisection

method, tcycle , is described in Equation 9.2:

tcycle = 2(m(texposure + tread ) + tswitch) (9.2)

texposure is de�ned to be the duration of each exposure of the ICCD array. tread is

the readout time of the CCD array. (tread for standard settings of the apparatus

described in this thesis is 0.007 seconds). tswitch is the time allocated for switching

time in each modulation cycle. tswitch is set to a value of 0.01 seconds in the pro-

gram which controls the relay. This may di�er for future users of the Modulated

Multisection method using a di�erent kind of relay to switch sections. texposure

and tread are considered separately in this chapter, due to their fundamentally

di�erent roles with respect to the precision of an experiment. In other chapters of

this thesis, read-out time is included in stated values of texposure . m is the number

of I1 and I2 measurements taken between relay switches (�rst introduced in Fig-
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ure 5.3). This parameter can be important in determining experiment durations

as switching time can constitute a relatively large fraction of each total modu-

lation period duration for short exposure times. Taking several measurements of

each section between relay switches increases the modulation period and hence the

magnitude of modulated drift error, but results in precision being accrued more

rapidly. The factor of 2 exists as each device section is measured m times in each

modulation period and the state of the relay is switched twice.

The total duration of a series of measurements is equal to the duration of a

single measurement cycle multiplied by the number of cycles in the series. As such

ttotal can be expressed as shown in Equation 9.3:

ttotal = Ncycle tcycle (9.3)

The total number of intensity measurement pairs (and hence optical loss measure-

ments) in an experiment, Ntotal , is equal to the number of cycles multiplied by

the number of measurement pairs within each cycle. This is expressed in Equation

9.4.

Ntotal = m Ncycle (9.4)

Substituting the expression for Ncycle produced by Equation 9.3 into Equation 9.4

results in Equation 9.5.

Ntotal =
m ttotal
tcycle

(9.5)

This expression for the total number of measurements can be substituted into

Equation 9.1 to describe precision as a function of time parameters as shown in

Equation 9.6.

σ
(A+αi )
SEM

= σ
(A+αi )
SD

√
tcycle

m ttotal
(9.6)

This is a useful expression. However, as experiment duration is the primary interest

of this investigation, Equation 9.6 is rearranged in terms of total duration of the
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series of measurements in Equation 9.7:

ttotal =

σ(A+αi )SD

σ
(A+αi )
SEM

2
tcycle
m

(9.7)

Equation 9.7 gives an expression for the duration required to achieve a precision

of σ
(A+αi )
SEM

. In this chapter, the behaviour of σ
(A+αi )
SD

is examined as a function

of experimental parameters of the apparatus such that the experiment duration,

ttotal , required to reach some degree of precision, σ
(A+αi )
SEM

, can be identi�ed.

9.2 Quanti�cation of Precision within a particular

apparatus

The steps outlined in this section describe the application of Equation 9.7 to the

behaviour of a real experimental apparatus. Similar steps could be taken to apply

these arguments to a general measurement system.

The statistical distribution of optical loss measurements is the primary concern

of this investigation. However, the behaviour of the intensity measurements which

constitute an optical loss measurement allow more direct examination of the be-

haviour of the system.

In order to relate Equation 9.7 to intensity distributions, it is necessary to

relate their standard deviations to the standard deviation of an optical loss mea-

surement σ
(A+αi )
SD

. It is important to observe that, within Equation 9.7, both tcycle

and σ
(A+αi )
SD

depend upon the duration of a single intensity measurement, texposure .

Through the application of standard error propagation to Equation 1.16, Equa-

tion 9.8 is derived:

σ
(A+αi )
SD

≈ 1

LS

√√√√(σI1SD
I1

)2

+

(
σI2
SD

I2

)2

(9.8)
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Parameter Standard Value Measured Values
Frequency 500Hz 100, 200, 500, 1000, 1500, 2000 Hz
Gate Width 100 ns 50, 100, 200, 300, 400 ns

Exposure Time 0.1 s 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 s
Pulse Current 50 mA 10, 20, 50, 100, 150 mA

Table 9.1: Table of parameters used in characterisation of intensity standard deviation.

σI1
SD

and σI2
SD

are de�ned as the standard deviation from the mean of a series of

measurements of I1 and I2 intensities respectively. Following the form of Equa-

tion 9.8, the standard deviation in a measured intensity divided by the intensity

itself is an important quantity. This quantity is described by the term `fractional

standard deviation' within this thesis. The approximation shown in Equation 9.8

is shown to be reasonable in Appendix B.2. Experimentally, the standard devi-

ation of a large sample of intensitiy measurements is taken to approximately be

the population standard deviation. Covariance is not included in Equation 9.8, as

the dependence of I2 upon I1 is handled explicitly in this chapter and the scatter

in values corresponding to standard deviation is assumed to not in�uence this de-

pendence.

Substituting Equation 9.8 into Equation 9.7 results in Equation 9.9:

ttotal ≈

 1

σ
(A+αi )
SEM

LS

2
tcycle(m, texposure)

m

[(
σI1
SD

I1

)2

+

(
σI2
SD

I2

)2 ]
(9.9)

Observation of the standard deviation of intensity measurements within an experi-

mental apparatus is required to understand how Equation 9.9 can be implemented.

It can be seen from the form of Equation 9.9 that low fractional standard devi-

ation corresponds with experiments in which high precision is achieved relatively

rapidly. In order to gain a practical understanding of Equation 9.8 � and hence

Equation 9.9 � the standard deviation and fractional standard deviation in mea-

sured intensities were determined for a range of experimental parameters. In this

investigation, only I1 light intensities are directly examined. It is concluded that I2

intensities can be characterised in the same way in Appendix C. For an intensi�er
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gain setting of 7, measurements consisting of 1, 000 exposures of I1 signal were

carried out as a function of device drive current, frequency of drive current pulses,

gate width within each drive current pulse and the duration of each exposure of

the CCD. A �xed current pulse width of 500 ns was used in all measurements. In

the investigation of each parameter, the other parameters were held at `standard'

values. The range of values and `standard' value for each of the parameters in

this investigation are shown in Table 9.1. The measured intensity was then set

to 8, 000 counts for an intensi�er gain of 7 using `standard' parameters of drive

current and pulse frequency by setting the gate width to 400 ns. Without changing

these parameters, a series of 1, 000 I1 exposures was made for each intensi�er gain

settings (from 0 to 7).

Figures 9.1.a) and 9.1.b) plot the measured standard deviation and fractional

standard deviation against measured intensity respectively, for the values of pa-

rameters described in Table 9.1 and for each intensi�er gain setting. The key

�nding of Figure 9.1 is that all investigated parameters, other than intensi�er

gain, reproduce the same standard deviation and fractional standard deviation

curves. It can be shown that a similar curve exists � independent of the other

stated parameters � for each intensi�er gain setting.

For all experimental parameters other than intensi�er gain, the fractional stan-

dard deviation decreases with intensity as the number of collected intensity counts

increases. The implication of the gain data points in Figure 9.1.a) and 9.1.b) is

that, reduction in fractional standard deviation may be achieved at a particular

measured intensity using lower gain settings. Changes in intensi�er gain result in

di�erent curves and changes in the other parameters do not. This suggests that

the predominant noise mechanisms are independent of the duty cycle of the ICCD,

but not independent of the ampli�cation within the intensi�er.
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Figure 9.1: Standard deviation (Figure 9.1.a)) and Fraction Standard Deviation (Figure
9.1.b)) of sets of 1,000 intensity measurements are plotted for various values of key
experimental parameters. Each data point corresponds to experimental data for one
of the parameter values described in Table 9.1 (with intensi�er gain values separately
described in the surrounding text).

The relationship between standard deviation and intensity was measured for
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Gain Setting Prefactor Exponent
7 7.4404 -0.529
6 5.007 -0.504
5 42.383 -0.812
4 3.4691 -0.515
3 2.7502 -0.511
2 1.5973 -0.516
1 1.4501 -0.506
0 1.1345 -0.505

Table 9.2: Table of constants describing the power law �ts of fractional standard deviation
as a function of measured intensity for each intensi�er gain setting.

each intensi�er gain setting and the results are plotted in Figure 9.2. For gain

settings of 3 to 7, pulse frequency was varied to access di�erent intensity values.

However, in reducing the gain to 0, 1 or 3, the maximum pulse frequency permitted

by the apparatus (20 kHz) could not produce 8,000 counts of measured intensity.

Therefore, the duration of each exposure was used to generate the curves for these

values of gain.

The fractional standard deviation curve for each gain setting was then �tted

with a power law. The resultant expressions for fractional standard deviation as

functions of intensity can be used to express Equation 9.9 as a function of measured

intensity. For example, the gain 2 curve in Figure 9.2.b) is �tted by Equation 9.10:

σI1
SD

I1
≈ 1.5973I �0.5161 (9.10)

A table of constants describing the power law �t for each intensi�er gain setting

is given in Table 9.2.
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Figure 9.2: Standard deviation (Figure 9.2.a)) and fractional standard deviation (Figure
9.2.b)) of sets of 1,000 intensity measurements are plotted for each value of intensi�er
gain.

In order for these fractional standard deviation curves to be used to optimise

experiment durations (see Section 9.4), it is necessary to relate them to precision

in optical loss measurements.
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9.3 Relating Fractional Standard Deviation Curves

to Precision

Having examined the relationship between fractional standard deviation and mea-

sured intensity for each intensi�er gain setting in Section 9.2, fractional standard

deviation must now be related to the precision of an optical loss measurement.

Experimental data in Appendix C suggests that the standard deviation of light

intensity from di�erent device sections follow the same curves. Hence, a value for

σ
(A+αi )
SD

can be determined from Equation 9.8, either through knowledge of I1 and

I2, or by knowledge of either of these intensities and an entered value of optical loss.

By substituting Equation 9.10 into Equation 9.9, one may derive Equation

9.11:

t
gain=2
total

≈

 1

σ
(A+αi )
SEM

L

2
tcycle(m, texposure)

m

[
(1.5973)2

(
I �1.0321 + I �1.0322

)]
(9.11)

Equation 9.11 is expressed in terms I1 and I2. t
gain=2
total

is the minimum experiment

duration for these parameters � with an intensi�er gain setting of 2 � for which

a precision equal to σ
(A+αi )
SEM

can be obtained . (Other gain settings may be exam-

ined by substitution of the appropriate values from Table 9.2. )

Given knowledge of approximate values of I1 and I2 and the expression for

tcycle found in Equation 9.2, the time required to achieve a particular standard

error in optical loss can be examined for typical experimental parameters.

By substituting Equation 1.16 into Equation 9.11, total experiment duration

may be expressed as a function of I1 and (A + αi ). This is useful for considering

how long an experiment must be for extreme values of optical loss, and is used in

the analysis underlying Figure 9.3.b).

In order to study changes in optical loss of the order of 0.1 cm�1, it is nec-

essary to discriminate between experimental scatter on a scale smaller than at
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roughly ±0.03̇ cm�1. Consequently, 3σ experimental precision is achieved by set-

ting σ
(A+αi )
SEM

equal to ±0.01̇ cm�1. This is taken to be the benchmark standard

error of a `precise' measurement in the following.

Equation 9.11 may then be studied as a function of the parameters texposure ,

I1, I2 and m. It is expressed for an intensi�er gain setting of 2, a device section

length of 0.03 cm, a tread of 0.07 seconds and a tswitch of 0.01 seconds in Equation

9.12:

t
gain=2
total

≈
(

1
0.0003̇

)2 2(m(texposure+0.07s)+0.01s)
m

[
(1.5973)2

(
I �1.0321 + I �1.0322

) ]
(9.12)

The measured light intensities depend upon texposure . The e�ect of this de-

pendence upon required experiment durations will be examined in Section 9.4,

following a broad discussion of the characteristics of Equation 9.12. In Figures

9.3, a range of typical I1 values is examined as a function of the other experimen-

tal parameters. In these calculated values, it can be seen that values of ttotal vary

over many orders of magnitude for the examined parameters. Signi�cicantly, they

imply that � in appropriate experimental conditions � su�ciently precise mea-

surement of optical loss can occur within acceptably short experiment durations.

For the calculations carried out in Figures 9.3.a)-9.3.c), an intensi�er gain set-

ting of 2 was used with other parameters as described in Equation 9.12. In Figure

9.3.a), m was set to 1 and (A+ αi ) was set to 5.0 cm
�1. In Figure 9.3.b), m was

set to 1 and texposure was set to 0.1 seconds. In Figure 9.3. c), texposure was set

to 0.01 seconds and (A + αi ) was set to 5.0 cm�1. (A small value of texposure is

taken in the latter case as varying m has a greater e�ect on calculated values of

ttotal for small exposure durations.)
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Figure 9.3: Minimum experiment durations required to achieve a standard error in op-
tical loss of ±0.01̇ cm�1 as a function of measured I1 intensity in various experimental
conditions. Note the logarithmic y-axis.
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The calculations plotted in Figure 9.3 generally show that increasing the avail-

able light intensity, I1, decreases the time required to reach the precision bench-

mark (of ±0.01̇ cm�1). This naturally follows the behaviour outlined in Figure

9.2. The implication of this is that parameters which increase measured intensity

without increasing noise (such as gain) or increasing modulation period (such as

exposure duration) ought to be maximised in any given experiment.

Figure 9.3.a) demonstrates that increasing the duration of each ICCD expo-

sure � for a particular resultant intensity � increases the experiment duration

required to acquire su�cient precision. The interpretation of this is simply that

experiment duration can be minimised by maximising the acquired I1 signal in

each ICCD exposure. For the stated parameter values and an I1 value of 8, 000

counts, texp values of 1.00 and 0.01 seconds correspond with ttotal values of 9491

and 252 seconds respectively. Figure 9.3.a) allows the comparison of cases in which

di�erent intensities are collected within particular exposure durations. However,

the di�erent curves shown in Figure 9.3.a) are not representative of the case in

which the exposure duration is varied for otherwise �xed parameters, due to the

dependence of measured intensity upon exposure duration.

It can be shown that collected intensity is proportional to exposure duration in

otherwise �xed conditions. It is, therefore, informative to scale intensity and expo-

sure duration by a particular factor within Figure 9.3.a) and examine the change in

ttotal . For example, 8, 000 counts of I1 acquired using 0.1 second exposures results

in an experiment duration of 1, 092 seconds in Figure 9.3.a). Whereas, 800 counts

of I1 acquired using 0.01 second exposures results in an experiment duration of

2, 712 seconds. This discrepancy is caused by the increased number of modula-

tion cycles, and hence tswitch periods, required if less signal is collected within

each exposure. The implication of this �nding is that � for a particular pump

current, pump frequency and gate pulse duration � exposure duration ought to

be increased such that peak intensity equals 8, 000 counts (provided that 8, 000

counts are not reached at the minimum possible exposure duration). This will

minimise the number of relay switching periods in a given experiment, and hence

the experiment duration.
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Figure 9.3.b) demonstrates that increasing optical loss results in an increase

in the required minimum experiment duration. This plot was achieved by sub-

stituting the expression for I2 in terms of I1 and optical loss (Equation 1.16)

into Equation 9.12 (as opposed to entering speci�c values of I2). Greater optical

loss for a particular I1 results in a longer experiment duration (to maintain the

same precision) as it reduces the corresponding value of I2 and hence increases

the fractional standard deviation in I2 (according to Equation 9.10). The resul-

tant increase in experiment duration is a consequence of the form of Equation 9.12.

Practically speaking, measurements of both I1 and I2 spectra can be made

and this relationship needn't be applied. It is, however, useful in visualising the

behaviour of Equation 9.12. For the stated parameters and for an I1 value of

8, 000 counts, optical loss values of 0.1 and 100 cm�1 correspond with experiment

durations of 1, 009 and 11, 642 seconds respectively.

Figure 9.3.c) demonstrates that increasing m increases the fraction of each

modulation period in which CCD exposures are occurring. The result of this is

that the required degree of precision is accrued more rapidly for increasing values

of m. This is especially pronounced where tswitch is large relative to texposure .

Accordingly, this calculation was carried out for the minimum experimentally pos-

sible value of texposure , in order to emphasise this e�ect. If a large value of texposure

is used, increasing m is much less bene�cial. Increasing m results in diminishing

returns for m greater than approximately 5. However, so long as the modulation

period does not become su�ciently large that drift error becomes substantial, the

use of a large m parameter can reduce the number of modulation cycles and hence

the number of I1 � I2 data pairs which must be saved and analysed. This may be

useful in easing the hardware requirements of long modulated multisection method

experiments. For the stated parameters and for an I1 value of 8, 000 counts, m

values of 1 and 100 correspond with experiment durations of 252 and 160 seconds

respectively.
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9.4 Optimisation of the Intensi�er Gain setting

Figure 9.2 demonstrates that the fractional standard deviation in measured light

intensity achieved using the various intensi�er gain settings of the intensi�er de-

creases with increasing measured intensity. Furthermore, it shows that fractional

standard deviation curve associated with a particular intensi�er gain setting tends

to decrease in magnitude with decreasing gain setting, with diminishing returns

for the lowest gain settings. The implication of this is that � if enough light can

be emitted from a device that high gain settings are not necessitated � optical

loss can be precisely measured in shorter experiment durations at lower intensi�er

gain settings.

Increasing intensi�er gain setting will tend to result in less precise measurement

as the intensi�er inherently adds ampli�er noise to any signal that it collects. For

low intensi�er gain settings, ampli�er noise is smaller compared to other noise

sources.

The standard pulse generator used in the experimental work described in this

thesis has a maximum attainable current output which is dependent upon its pulse

duty cycle. While using the lower intensi�er gain settings, the duty cycle and pulse

current of the pulse generator which pumps a test device can be maximised at the

lowest possible CCD exposure time without attaining 8, 000 counts on the ICCD,

and hence, without making full use of the ICCD dynamic range. The implication

of Figure 9.3.a) is that the exposure time ought to be increased to minimise exper-

iment duration. It is necessary to understand whether long exposures at low gain

settings result in shorter experiment durations than shorter exposures at higher

gain settings. Only the 4 lowest intensi�er gain settings are examined here, as

higher gain settings result in prohibitively long experiment durations due to the

higher fractional standard deviation associated with a particular measured inten-

sity.

For a broad area device of type #1, with a high pulse generator duty cycle and

pulse current (1.0 µs wide 60 mA pulses at 20 kHz for the pulse generator used in
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this experiment with a gate pulse width of 0.5 µs), a peak I1 signal of 8, 000 counts

was achieved for the four lowest intensi�er gain settings with texposure values of

0.642, 0.184, 0.061 and 0.028 seconds respectively.

Figure 9.4: Figure 9.4.a) demonstrates typical I1 and I2 intensity spectra for a spec-
trometer centre wavelength of 673 nm. Figure 9.4.b) demonstrates experiment durations
calculated from these intensity spectra and the appropriate values of texp and `power law'
coe�cients (found in table 9.2) for the four lowest intensi�er gain settings. Black arrows
identify which series are associated with which vertical axis.
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Figure 9.4 a) shows I1 and I2 intensity spectra measured for an intensi�er gain

setting of 0. Figure 9.4.b) demonstrates how the calculated minimum experiment

duration � based on the measured intensities for each intensi�er gain setting �

depends upon intensi�er gain setting. Appropriate values from table 9.2 are used

to relate the measured intensity for each intensi�er gain setting to its standard

deviation. The shortest required experiment durations coincide with the intensity

maxima of Figure 9.4.a). This agrees with the discussion surrounding Figure 9.3.

An intensi�er gain setting of 2 can be seen to measure optical loss su�ciently

precisely in the shortest calculated experimental duration. This is due to an opti-

mal compromise between the (intensi�er gain-dependent) fractional standard de-

viation dependence upon measured intensity and the duration of a modulation

period when texposure is increased to reach 8, 000 counts of measured I1 intensity.

It is signi�cant that the spectral minimum in experiment duration does not

coincide with the photon energy region which is associated with internal loss. Fig-

ure 9.4.b) can be used to determine the spectral range for which optical loss is

measured to the desired precision by observing the spectral range in which a par-

ticular (arbitrary) experiment duration � denoted by t ′ on the �gure � exceeds

ttotal (hν).

Internal loss in a multisection device can be characterised by measurement of

optical loss in a region of the spectrum in which interband contributions are neg-

ligible. Having identi�ed the spectral dependence of ttotal , it is appropriate to

characterise the magnitude of optical loss as a function of photon energy at the

absorption edge for this device. For this purpose, a �t of the absorption edge

such as that shown in Figure 9.5 is useful. Figure 9.5.a) shows a small spectral

region of the optical loss spectrum introduced in Figure 9.4.b). The experimental

data is represented by blue diamonds and an exponential �t of the band edge is

represented by the thin black line.
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Figure 9.5: Figure 9.5.a) shows an exponential �t of the experimental absorption edge
data. Figure 9.5.b) shows this �t on a logarithmic scale with the y-axis o�set removed.
Blue diamonds and a solid black line are experimental data and the exponential �t
respectively.

As the distribution of transitions in question is associated with quantum dots,

inhomogeneous broadening dominates. Hence a Gaussian function is appropriate

for the �tting of each absorption peak. As an exponential decay approximates the

tail of a Gaussian function su�ciently far from its peak, an exponential function

is used for the purpose of identifying a photon energy below which interband
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contributions to optical loss are negligible. Fit parameters of E0 = 1.655 eV,

∆E = 0.011 eV , AE = 0.12 cm�1 for a �t of the form shown in Equation 9.13.

An o�set value of αi = 7.75 cm�1 was taken to be the average value of optical loss

in the spectral region 1.640 � 1.645 eV.

(A+ αi )(hν) = AE exp
(hν�E0)

∆E + αi (9.13)

Figure 9.5.b) depicts the band edge �t with the αi o�set removed on a loga-

rithmic scale. This plot can be used to determine the magnitude of the interband

contribution to optical loss as a function of photon energy. The grey lines on Fig-

ure 9.5.b) determine the threshold value of photon energy, below which interband

transitions have an e�ect on measured optical loss of less than 0.1 cm�1. For this

sample, internal optical loss can be measured to this accuracy from photon ener-

gies slightly above 1.65 eV. Thus, in order to directly characterise internal loss

up to the high precision standard of this thesis, the optical loss spectrum must be

measured with a precision of less than ±0.01̇ cm�1 at this photon energy . This

photon energy is refered to as hν′ in this thesis.

It is established in Figure 9.8 that a feature exists below the apparent absorp-

tion edge in this sample, centred at around 1.60 eV. A Gaussian �t of this feature

demonstrates that its contribution to measured optical loss at hν′ is negligible with

respect to the ± 0.1 cm�1 uncertainty aim of this project. It would be prudent

to carefully consider the contribution from all such small features in future work.

The nature of this feature is explored further in Section 9.5 and in Chapter 11.

Consulting the calculation featured in Figure 9.4.b), ttotal is equal to roughly

55 minutes at 1.65 eV using an intensi�er gain of 2. However, for the purposes

of this investigation, CCD exposure time is not minimised for this intensi�er gain

setting. As suggested in Figure 9.3.a), reducing exposure time to a minimum

value � for which increasing pulse current and duty cycle can still allow full use

of the dynamic range of the detector� reduces ttotal . For further characterisation

of minimisation of experiment durations a pulse generator with higher maximum

output at high duty cycles was acquired.
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9.5 Precise measurement of Optical Loss in the

Modulated Multisection method

The experimental conditions required for a su�ciently precise measurement of

optical loss at a photon energy at which interband transitions make a negligible

contribution are identi�ed in Section 9.4. An optical loss spectrum can now be

measured in these conditions and the statistical distribution of the resultant data

can be examined.

Through the acquisition of a pulse generator with a higher maximum current

at high duty cycles, the exposure duration in a peak I1 value of 8, 000 counts is

accumulated was reduced to 0.01 seconds. The corresponding experimental pa-

rameters were a pump current of 80 mA, a pulse frequency of 20 kHz, a pulse

duration of 2.2 µs and a gate width of 2.0 µs. Recalculating ttotal as demonstrated

in Figure 9.4 for these new parameters results in a ttotal of approximately 20 min-

utes. Through appropriate choice of an m value of 50 (introduced in Section 9.1),

this duration may be somewhat reduced to around 19 minutes. The experiment

that this describes produces 481 intensity measurement pairs. This is su�cient to

characterise the time-dependent behaviour of intensity, for considerations regard-

ing the e�ect of modulation upon drift error in a particular experimental trial.

In the discussion in Section 7.5.3, it is suggested that imprecise identi�cation

of intensity standard deviation may lead to an underestimation of the required

experiment time. I have calculated that the addition of a single modulation cycle

is su�cient to account for this. Accordingly, 482 modulation cycles must be taken

to measure optical loss to a precision of ±0.1 cm�1 for photon energies as low as

1.65 eV. Following from the optimisation of intensi�er gain and determination of

minimum experiment duration in Section 9.4, a series of 15 modulated multisection

measurements of optical loss were made upon a Broad Area sample of device

type #1. Using an m values of 50 and 482 modulation cycles, a series of 15

measurements (`trials ') of optical loss were carried out, using the device parameters

stated above. Using Equation 8.21, modulated drift error calculated for these

conditions (tmod = 2.7 seconds) allow for absolute values of fractional intensity
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gradients (MA) as large as ± 1 × 10�3 s�1 before systematic error exceeds ±0.1 cm�1

and as large as ± 5 × 10�4 s�1 before systematic error exceeds ±0.03 cm�1 . The

latter �gure is roughly 20 times the largest value of MA observed in experimental

data using this apparatus. Before comparing the results of the various trials, the

data held within the �rst trial is examined in detail in Figure 9.6.

Figure 9.6: Figure 9.6.a) shows the respective sums of the m I1 and I2 measurements
within each modulation cycle and optical loss calculated from each pair of sums in the
instance of a precise measurement of an optical loss spectrum. Figure 9.6.b) examines
a time series of the data shown in Figure 9.6.a) corresponding to a photon energy of
hν′ = 1.65 eV. Figures 9.6.c) and 9.6.d) demonstrate the distributions of intensity and
optical loss from Figure 9.6.b) in the form of histograms. Black lines in Figures 9.6.c)
and 9.6.d) represent Gaussian �ts of the respective distributions of experimental data.
Jagged lines on intensity axis represent a discontinuity between two linear ranges.
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Figure 9.6.a) shows summed intensities and the resultant optical loss spectra

from within each modulation cycle. hν′ = 1.65 eV is the photon energy at which

the interband contribution to optical loss becomes negligible for this particular

sample (as discussed in Section 9.4). Figures 9.6.b-d) are data at hν′ only. Figure

9.6.b) shows the behaviour of I1(hν
′), I2(hν′) and (A + αi )(hν

′) as a function of

time. The stated intensities in Figures 9.6.a) and 9.6.b) are the sum of m mea-

sured intensities within each modulation cycle and therefore exceed 8, 000 counts

in some spectral regions. (m is equal to 50 in these measurements).

Figures 9.6.c) and 9.6.d) are histograms of the distributions of the data shown

in Figure 9.6.b). The Gaussian �ts of the distributions shown in Figures 9.6.c)

and 9.6.d) use the standard deviation and average of each respective quantity (as

suggested by Figure 9.6.b). The approximate agreement between the Gaussian �ts

and the experimentally measured distributions of each quantity suggests approxi-

mately normal distributions of each time series.

The gradient of the I1 intensity time series (g) shown in Figure 9.6.b) is plotted

on the primary y-axis of Figure 9.7.a). The I2 gradient shows a similar trend, and

so is omitted from the �gure. By dividing g by the measured I1 intensity at each

spectral point, the MA coe�cient is obtained. MA is plotted on the secondary

y-axis of Figure 9.7.a). The g and MA values at derived from the I1 spectrum at a

photon energy of hν′ = 1.65 eV are �0.09 arb. units s�1 and �1.65766 × 10�6 s�1

respectively.

Calculated modulated and conventional drift errors � as described in Chapter

8 � are plotted as a function of photon energy in Figure 9.7.b) and the intensity

gradient data upon which they are based is plotted in Figure 9.7.a). The fact that

intensity gradient (g) has a signi�cant spectral dependence and fractional inten-

sity gradient (M ) is much more �at with photon energy supports the idea that

systemic drift is predominantly multiplicative. This supports the discussion found

in Chapter 7. The modulated and conventional drift errors at hν′ are 0.113 cm�1

and 0.000235 cm�1 respectively. The presence of modulation can be seen to make

a substantial di�erence to the magnitude of drift error; reducing it to a fraction
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of the value denoted by the uncertainty aim of this project. Signi�cantly, Fig-

ure 9.7.b) demonstrates that modulated drift error calculated based upon noisy

experimental intensity gradients, does not itself contain noise which is large in

comparison with the optical loss uncertainty aim of this project.

Figure 9.7: Figure 9.7.a) demonstrates the intensity gradients and fractional intensity
gradients associated with the intensity spectra shown in Figure 9.6. Figure 9.7.b) shows
the conventional and modulated drift errors calculated, as a function of photon energy,
using the MA data presented in Figure 9.7.a).
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MA values are approximately a factor of 10 larger than those described in the

longer duration experiments described in previous sections (especially Section 6).

This may be due to the fact that variation in temperatures and optical alignment

as the apparatus `settles' at the start of an experiment cause changes in intensity

with are large with respect to the systemic drifts later in a measurement series. If

the period over which such a `settling' occurs is short compared to the timescales

of the trials described in Chapter 6, then it would have a greater e�ect upon the

observed gradient in the case of shorter experiment durations, thus explaining this

observation.

Figure 9.8 depicts the same optical loss data as is shown in Figure 9.6.a), but

with the photon energy axis rescaled to examine the region in which interband

transitions make a negligible contribution. Error bars in Figure 9.8 denote the

3σ
(A+αi )
SEM

precision � determined from the standard deviation of the intensity

data � for each photon energy. These error bars are roughly ±0.05 cm�1; slightly

larger than the aim of ±0.03̇ cm�1.

Examining the underlying intensity data at a photon energy equal to hν′, the

average intensity and standard deviation of a single I1 exposure are equal to 1, 520

and 76.5 counts respectively. These values for a single I2 exposure are 1, 205 and

67.9 counts respectively. The average value of (A+ αi ) is 7.74 cm
�1 and its stan-

dard deviation is 0.34 cm�1. These values are used in the construction of the

Gaussian �ts shown in Figures 9.6.c) and 9.6.d). Intensity standard deviations are

larger than predicted in previous sections of this chapter due to systematic error

sources acting to vary intensity over the course of the 20 minute measurement.

(Note that the discussion in Section 7.5.3 con�rmed that systemic drift does not

drastically a�ect measured standard deviation for measurement durations of the

order of seconds. That reasoning does not apply to the standard deviations mea-

sured from a 20 minute intensity time series). All optical loss measurements agree

to within 0.1 cm�1 between 1.64 eV and 1.66 eV. Considering measurements of

optical loss within this spectral region to di�er by a negligible amount, the small

degree of experimental scatter and agreement to within error bars supports the

conclusion that the precision aim of the project has been met.
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Figure 9.8: In Figure 9.8.a), the spectral region below the bandgap in the data shown in
Figure 9.6.a) is examined. The dashed line represents the value of optical loss measured
at hν′(= 1.65 eV). Solid black lines represent optical loss values 0.1 cm�1 above and
below (A+ αi )(hν

′).

The improved uncertainty a�orded by the precision optimisation described in

this chapter has allowed the discrimination of a feature at low photon energies in

Figure 9.8; a broad optical loss peak below the absorption edge of the material.

At photon energies as low as 1.61 eV, this feature corresponds to an increase in

optical loss above the local minimum value by substantially more than the error

bars associated with any particular data point. By manipulating the underlying

intensity spectra, it can be shown that a constant systematic error in o�set could

not cause a feature of this magnitude that does not have a drastically higher gra-

dient in photon energy. Within a particular measurement, this feature was found
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to be insensitive to changes in exposure duration and device pumping conditions

suggesting that the feature is not dependent upon the magnitude of the intensities

or upon the relative magnitudes of the light intensity and background signals. This

rules out detector linearity as a cause of this feature. Through use of a 780 nm

(1.59 eV) longpass �lter, it was demonstrated that the light corresponding to this

feature does not originate from stray re�ections/di�raction within the spectrome-

ter. The feature is also present in a measurement of a device of the same structure

by Edge-Photovoltage Spectroscopy. These observations all suggest that this fea-

ture is not caused by systematic error, but by a real loss process within the device.

Further discussion of this feature will follow observations made in Chapter 11.

9.6 Precision of repeated measured of Modulated

Optical Loss

Having considered the outcome of a single precise Modulated Method measure-

ment of optical loss in Section 9.5, the outcomes of several such experiments will

be compared. As described in Section 9.5, 15 trials which are nominally identical

to that described by the data in Figure 9.6 were consecutively carried out. The

device was not realigned between measurements. Figures 9.9.a) and 9.9.b) respec-

tively depict the values of both intensities and optical loss coe�cients measured

at hν′ = 1.65 eV for each modulation period (over the course of all 15 trials).

Figures 9.9.c) and 9.9.d) respectively depict the same intensities and optical loss

given in Figures 9.9.a) and 9.9.b), averaged across each trial. The values of opti-

cal loss from each trial agrees within ±0.1 cm�1. This demonstrates repeatability

in the precise measurement of optical loss at a photon energy of hν′. 3σ
(A+αi )
SEM

error bars are plotted (calculated from the distribution of intensity time series for

each trial). These error values range from ±0.047 to ±0.05 cm�1. Only one of the

15 measurements di�ers from the average by more than its assigned error. The

standard error is slightly larger than the aim of 0.03̇ cm�1. As mentioned in the

previous section, this is likely to be due to the exaggeration of intensity standard

deviations by systemic drift (or other systematic error sources) over the course

of a 20 minute measurement . The average deviation of the measurements shown
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in Figure 9.9.d) is 0.017 cm�1. This is of the order of the precision aim of 0.01̇ cm�1.

Figure 9.9: Raw and averaged Intensity and Optical Loss data for 15 trials in the same
conditions as those described in Figure 9.8. Figures 9.9.a) and 9.9.b) show the measure-
ments from each modulation cycle. Figures 9.9.c) and 9.9.d) show the average of every
modulation cycle within each trial. In Figure 9.9.d) the dashed line represents the aver-
age optical loss coe�cient and the solid lines represent the desired ±0.1 cm�1 uncertainty
bounds.

A systemic drift is visible in the intensity data of Figure 9.9.a). It is useful to

establish whether the deviation in values shown in Figure 9.9.d) is explained by

modulated drift error and � more generally � whether the distribution of optical

loss measurements shown in Figure 9.9.d) correlates with the intensity gradient in

the intensity time series. In order to examine this, the di�erence from the average

optical loss will be examined for each trial, rather than the absolute value of op-
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tical loss.

Figure 9.10.a) demonstrates the time dependence of these quantities. For in-

creased clarity, deviation of optical loss from its average value is plotted against

the fractional gradient in the intensity for each trial in Figure 9.10.b). Through

application of Equation 8.21 to the experimental conditions of this experiment,

the modulated drift error is calculated.

Figure 9.10: Examination of correlation between the di�erence from the average optical
loss and intensity gradient. In Figure 9.10.b), data is plotted as a function of the fractional
intensity gradient observed in each trial alongside calculated drift error derived from
Equation 8.21. Thick black arrows illustrate which data series corresponds to which
axis.

169



The black line in Figure 9.10.b) represents a calculation of drift error as a

function of MA for these experimental conditions. It can be seen from the sec-

ondary y-axis that the predicted error in optical loss corresponding to the largest

measured MA values is a factor of 100 smaller than the measured deviations from

average. This supports the conclusion that there is no causal relationship between

these parameters.

The di�erence from the average optical loss for each trial in Figure 9.10.b) is

largely scattered around the x-axis origin. In Figures 9.10.a) and 9.10.b), error

bars in the di�erence from the average optical loss are based upon the drift error

associated with the intensity gradients of each trial. These error bars are seen to

be negligibly small with respect to the y-axis of Figure 9.10.b). The calculated

modulated drift error does not account for systematic errors of this magnitude.

(Gradients in I1 and I2 intensities are comparable the gradient of I2 could be used

with similar results). No strong correlation is observed in Figure 9.10.b), sug-

gesting that any error due to multiplicative drift has been removed and that the

remaining variability is due to some other error source.

9.7 Uncertainty associated with Optical Alignment

The data shown in Section 9.6 suggests that the modulated method for optical

loss suppresses the action of systemic drift upon measured optical loss coe�cients

su�ciently to measure with a precision and a modulated drift error of less than

±0.1 cm�1. However, the series of measurements shown in Figure 9.9 relates to

a single alignment of a device. In realigning to repeat measurements on di�erent

days, systematic error may increase uncertainty from that observed in the data

within Figure 9.9.d).

The experiment shown in Figure 9.9 was repeated but with a realignment of the

device between each `trial'. In order to give information regarding device alignment

and changes in device alignment over the course of each trial, a measurement of

the spatial distribution of light collected from the device was taken after realign-
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ing � but before starting a new trial � and after each trial. This measurement

was taken by setting the di�raction grating to its 0th order, setting the CCD to

imaging mode and fully opening the spectrometer input slits.

Figures 9.11.a-d) are new data in the same format as Figures 9.9.a-d), for this

new experiment. Figure 9.11.a) shows the I1 and I2 values measured within each

modulation cycle for all trials. Figure 9.11.b) shows the optical loss corresponding

to the I1 � I2 pair correspding to each modulation cycle across all trials. Figures

9.11.c and 9.11.d) respectively depict the same intensities and optical loss given in

Figures 9.11.a) and 9.11.b), averaged across each trial.

It can be seen from Figure 9.11.a) that the act of realigning between trials

introduces discontinuities in measured intensity time series. There is no repeated

pattern in these intensity time series for measurements made on the same day or

on di�erent days.

There is more scatter in the optical loss measurements in Figure 9.11.d) than

in those shown in Figure 9.9.d). Standard deviations of the data shown in Figures

9.11.d) and 9.9.d) can be calculated to be 0.085 cm�1 and 0.017 cm�1 respectively.

Figure 9.11.e) represents the same analysis as was carried out in Figure 9.10.b).

Modulated drift error is calculated from the value of MA corresponding to the I1

time series for each trial. As in the previous instance, no strong correlation be-

tween intensity gradient and the deviation from the average optical loss in each

trial is apparent. The black line demonstrates that calculated drift error due to �-

nite modulation period of the experiment is a factor of 100 smaller than the spread

in experimentally measured values.
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Figure 9.11: Measured intensity and the resultant optical losses are observed for a series
of trials, between which the test device is realigned. Figures 9.11 a-d) represent the same
analysis as that shown in Figure 9.9 and Figure 9.11.e) represents the same analysis as
that shown in Figure 9.10.b), applied to the realigned data.

It must be established whether initial misalignment of the the act of disturbing

the apparatus is responsible for the increase in error from the case in which the de-

vice was not realigned between trials. No evidence for change in rotational device

alignment was found in any of the trials. Accordingly, realignment consisted of
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horizontal and vertical correction of device position and refocussing of the beam.

Following realignment, the apparatus was left to settle for 10 minutes, before the

alignment was checked. In each case, alignment had not changed to within the

resolution of the CCD array and the next trial was then started. This is the cause

of the `gaps' in the time series shown in Figure 9.11.

Figure 9.12 demonstrates the quanti�cation of alignment and alignment change

in a measurement. Figure 9.12.a) shows a contour plot of experimental alignment

data. The data shown in Figures 9.12.a) and Figure 9.12.b) are the result of 100

0.01 second exposures of the ICCD in imaging mode.

The measured spatial distribution corresponds to I1 light intensity for the same

experimental conditions as those described in Figure 9.11, but with the pulse fre-

quency reduced to 2 kHz and the intensi�er gain reduced to 0. Horizontal and

vertical intensity distributions were achieved by summing across each CCD pixel

vertically and horizontally respectively. In a well aligned device, the maximum-

valued pixel of the horizontal and vertical spatial intensity distributions is co-

located with the centre of the distribution in that orientation. This fact was used

to quantify the central pixel of the distribution in each orientation before and after

each trial.

Only a selected region of the CCD is shown, and hence the axes labels do not

represent the absolute position in pixels of the light incident on the CCD. The

horizontal origin of the system is de�ned to be the location of the spectrometer

input slit. The vertical origin of the system is de�ned to be the geometric centre

of the CCD array. These are the reference points with which a device is aligned.

Therefore, in this frame of reference, the device is aligned within the resolution

of the CCD when x = y = 0. Translational alignment of a device at a particular

time can be characterised by the deviation from zero of the horizontal and vertical

position of the collected light. I de�ne the horizontal and vertical alignment at the

start of each trial to be h0 and v0 respectively, as marked in Figure 9.12.a).
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Figure 9.12: Figures 9.12.a) and 9.12.b) represent the characterisation of device alignment
before and after a trial of the type examined in Figure 9.11. The misalignment in Figure
9.12.b) is exaggerated for the purpose of a clear demonstration of the characterisation of
alignment change within an experiment.

Figure 9.12.b) demonstrates an exaggerated case of a misaligned device. The

shift in this �gure is exaggerated to highlight the change that is made to the

horizontal and vertical distributions. I de�ne the horizontal and vertical alignment

after each trial to be h1 and v1 respectively, as marked in Figure 9.12.b). An

important pair of quantities is the change in alignment parameters over the course

of an experiment. These can be de�ned using the terms introduced in Figure 9.12

as shown in Equations 9.14:
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∆h = h1 � h0

∆v = v1 � v0
(9.14)

Additionally, the full width at half maximum of the vertical distribution of

collected light can be used to quantify whether changes in focus occur over the

course of a trial. This quantity is not prominent in Figure 9.12 as it was only

observed to vary beyond the resolution of the CCD array during one of the trials.

Only characterisation of device alignment with respect to I1 intensities is presented

here, as alignment data between device sections is identical to the nearest pixel.

The key at the bottom of Figure 9.11 shows measured intensity values of the

contour plots. The initial alignment and change in alignment was determined for

each trial from alignment measurements of the sort shown in Figure 9.12. Follow-

ing the assumption that change in alignment is evenly distributed over the course

of its corresponding trial (rather than occurring all at once at some point in time),

one can relate the measured change in alignment with a change in experimental

conditions over the trial. It is informative to plot the di�erence from average opti-

cal loss can be plotted against such a change, as in Figure 9.13. From which, one

may learn whether alignment change correlates with systematic error in optical

loss measurement.

Initial FWHM was 3 pixels in all trials. Accordingly, initial FWHM is not plot-

ted in Figure 9.13. It can be seen from Figure 9.13.a) that device is horizontally

aligned to within one pixel. Figure 9.13.b) shows that there is some distribution

in the initial vertical alignment of a device. Fortunately, this initial misalignment

is not large enough to be associated with its own optical loss.

Figures 9.13.c) and 9.13.d) show that change in device alignment varies by a

few pixels, both vertically and horizontally. Figure 9.13.e) shows that the device

focus changed by a measurable amount in only one trial.
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All plots in Figure 9.13 show that the di�erence from average optical loss of a

trial does not tend to increase with increasing initial misalignment or with change

in alignment over the course of the experiment. This suggests that the systematic

error associated with initial misalignment and with change in alignment over the

course of a measurement is small with respect to some other error source.

One interpretation of the increased scatter in optical loss between Figure 9.9

and Figure 9.11 could be that inaccuracy in alignment of a device causes an er-

ror which is large in comparison with the project uncertainty aim of ± 0.1 cm�1.

However, Figure 9.13 provides evidence to the contrary. It is likely that � in the

process of realigning the system � something other than the device alignment

itself is disturbed by a user. This may be related to the disturbance of apparatus

temperature due to the experimentalist entering and leaving the lab or due to phys-

ical interference with the apparatus causing mechanical instability (which is not

exhaustively described by the treatment of device alignment described in Figure

9.12). Measured optical loss is expected to become erroneous upon misalignment

of the device as the simple paraxial model of light collection can no longer be

applied [49]. Additionally, if the device moves during a measurement, the spatial

region sampled by the collecting optics will change, causing slight changes to the

observed loss coe�cient.
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Figure 9.13: Figures 9.13.a) and 9.13.b) plot the di�erence from average optical loss of
each trial against initial device alignments. Figures 9.13.c) and 9.13.d) plot the di�erence
from average optical loss of each trial against change in alignment over each respective
trial. Figure 9.13.e) plots the the di�erence from average optical loss against the FWHM
of the vertical distribution of collected light.
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9.8 Chapter Summary

In this chapter, the dependence upon experimental conditions of the standard error

of an optical loss measurement has been characterised analytically, and the �nd-

ings applied to experimental data in order to minimise experiment durations. The

photon energy at which interband contributions to optical loss become negligible,

hν′, was de�ned to aid the characterisation of internal optical loss. The minimum

experiment duration at which internal loss can be characterised to the precision

aim of the project (3σ
(A+αi )
SEM

= ±0.03̇ cm�1) at hν′ is de�ned to be ttotal (hν
′).

General parameters for the minimisation of ttotal are described in Figure 9.3.

It is established in the discussion surrounding this �gure, that ttotal is maximised

for high device light outputs and short exposure durations. It is preferable to use

the full dynamic range of the ICCD at the smallest exposure duration allowed by

the apparatus. If the test device is pumped with the highest current and duty cy-

cle which is accessible with a particular pulse generator and the detector dynamic

range is not fully utilised for measurements with the minimum exposure duration,

then ttotal is minimised when exposure duration is increased such that the ICCD

dynamic range is fully utilised. A small reduction of ttotal is then possible by

increasing m.

In Figure 9.4, it is demonstrated that ttotal values are minimised within this

particular apparatus for an intensi�er gain setting of 2. Having determined all of

the parameters in which the precision of an optical loss measurement is optimised,

a spectrum was precisely measured, and the data is presented in Figure 9.6. A

ttotal value of roughly 19 minutes is possible using the minimum exposure dura-

tion, upon a device of type #1BA. This corresponds with 482 modulation periods

with an m value of 50. Further increasing m provides a negligible reduction in

ttotal .

The outcomes of repeated measurements of optical loss (shown in Figure 9.9)

demonstrate that a measurement of optical loss at a photon energy hν′ to a preci-

sion better than ±0.1 cm�1 is possible. The data presented in Figure 9.10 demon-
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strates that modulated drift error (introduced in Chapter 8) makes a negligible

contribution to the uncertainty of these measurements.

In Section 9.7 it is demonstrated that there is an additional systematic error as-

sociated with the realignment of the device. Figure 9.13 suggests that this error is

not directly associated with the alignment of the device, but with the disturbance

of the apparatus by the experimentalist. Measurements, between which the device

is realigned, have an associated standard deviation of the order of 0.085 cm�1.

There is an additional day-to-day variability in the measurement which corre-

sponds to systematic errors in optical loss of as large as ±0.25 cm�1.

The implication of this �nding is that optical loss coe�cients cannot currently

be measured with the desired uncertainty aim of ± 0.1 cm�1 due to a day-to-day

variability in experimental results. As experimental results can be reliably repro-

duced within a particular day of measurements, systematic investigations such as

those described in Chapters 10 and 11 are still possible, but any comparison of

results taken on di�erent days requires caution.

9.9 Conclusions and Future Work

Figure 9.9 demonstrates that it is quite feasible to measure optical loss at a pho-

ton energy corresponding to transitions below the interband absorption edge for

a device of sample type #1BA with a standard error of less than ±0.03̇ cm�1.

This allows the discrimination of systematic changes in optical loss of the order of

±0.1 cm�1. However, Figure 9.11 demonstrates that additional error is introduced

by the realignment of a device. Figure 9.13 shows that this additional error is not

related to initial misalignment, or to change in device alignment over the course of

a measurement. The implication of this is that an additional error is introduced

by the increased interaction between the experimentalist and the apparatus.
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Remaining Variability of precise Optical Loss measurements

As correlation is not observed between misalignment and optical loss error, it

is assumed that the alignment is su�ciently precise for measurements with preci-

sion better than ±0.1 cm�1; device alignment is not the primary source of error

in this measurement. By monitoring the readout of the temperature controller in

experiments similar to those described in this section, it was shown that device

temperature does not vary by more than ±0.05 K and measured CCD photocath-

ode temperature does not vary by more than ±3.00 K over time scales of roughly

12 hours. Taking into account the modulated nature of the experiment, neither

temperature varies enough to account for the observed deviation in optical loss

coe�cients. Furthermore, preliminary experiments demonstrated that measured

values of optical loss are independent of the current pulse width and frequency for

the duty cycles used in this body of work. This suggests that self-heating does

not have an observable e�ect upon device temperature and hence upon measured

optical loss coe�cients in the results given in this thesis.

An experiment in which the background signal was measured before each mod-

ulation cycle showed that the background signal did not vary enough to account

for changes in measured optical loss of the order of those shown in Figure 9.11.d).

Neither the background signal, nor the change in background signal over the course

of an experiment apparently correlates with deviation from average optical loss in

each trial.

The preceding reasoning has ruled out the background signal, initial device

misalignment, change in alignment over the course of a measurement, CCD photo-

cathode temperature and device temperature. The pulse generator output has not

been monitored through a measurement. However, it is implied in Figure 10.7.a)

that very large variations in drive current would be required to produce the ob-

served error in optical loss. (The pump current would need to vary from 60 mA

to 20 mA to cause an optical loss error of around 0.1 cm�1. Such a large variation

between trials is unlikely to go unnoticed). The temperature of the intensi�er is

not directly controlled or monitored in this apparatus; it's conceivable that the in-
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tensi�er temperature does correlate with the measured value of optical loss. This

could be investigated most directly in future work via an additional temperature

probe within the casing of the ICCD.

Further minimisation of ttotal

The centre wavelength to which the spectrometer is calibrated may be varied

such that the spectral intensity peaks shown in Figure 9.4.a) are not collected by

the ICCD. This means that exposure time may be increased, such that the dy-

namic range of the detector is � once again � fully utilised. Higher values of

I (hν) will thereby be collected across the new spectral region, reducing ttotal for

these photon energies.

It can be shown that it is more time-e�cient to broaden the spectral region

over which su�cient precision is accrued by using this method than it is to increase

the duration of a single measurement of a single, broad spectral region. In par-

ticular, a precise measurement of optical loss at hν′ (internal loss) may be made

more rapidly by adjusting the spectrometer calibration such that incident light of

a photon energy higher than hν′ is not collected (and the signal increased to make

full use of the detector dynamic range). However, this method is not used in the

work shown in this document, as I deemed that it was worth slightly extending

experiment durations to gather additional data for broad characteristics of optical

loss spectra.
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CHAPTER 10

Drive Current Dependence of Measured Optical Loss

coe�cients

10.1 Introduction

It is an assumption of the multisection method that the earthing of unpumped

sections causes free carriers to be swept away su�ciently rapidly that they will

have a negligible e�ect upon measured optical loss. As optical loss is measured

in passive, unpumped material in the multisection method, the measured optical

loss is not expected to change as a function of the drive current of the pumped

sections. Therefore measuring optical loss as a function of drive current is a useful

test of systematic error and also of the appropriate operating regime for a partic-

ular sample. Carrier injection is expressed in terms of current rather than current

densities in the following sections as that convention is most convenient to address

the resistive network modelling therein. Current densities are discussed in Section

10.5 such that these �ndings may be applied to other device contact geometries.

The data shown in Figure 10.1 represents repeated modulated multisection

measurements of a device of type #1BA with a current pulse frequency of 15 kHz

and a current pulse gate width of 2.0 µs. This measurement is carried out in a
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Drive Current [mA] CCD Exposure [s]
100 0.018
80 0.020
60 0.022
45 0.027
40 0.028
35 0.033
30 0.036
25 0.038
20 0.040
15 0.062
10 0.085
5 0.280

Table 10.1: Table of experimental conditions in drive current experiment

cryostat with the temperature controlled at 300 Kelvin. The drive current was

varied in a range from 5 mA to 100 mA and the CCD exposure duration varied

such that 8, 000 counts were measured at the I1 peak for each current. This was

done such that the resultant precision in optical loss measurement is preserved, at

the expense of experiment duration. (An additional experiment con�rmed that the

same drive current dependence of optical loss is observed if the exposure duration

is kept constant at the expense of measurement precision). Optical loss error bars

in Figure 10.1 demonstrate that the value of 3σ
(A+αi )
SEM

calculated directly from

standard deviations of I1 and I2 intensity data at each drive current has been

made to be comparable by this variation of CCD exposure duration. (3σ
(A+αi )
SEM

is equal to 0.072 ± 0.006 cm�1 in each case, slightly smaller than that required

to discriminate a change in optical loss of the order of 0.25 cm�1 ). The CCD

exposure duration at each measured drive current is given in Table 10.1:

As in Section 9.4, interband absorption by the material is taken to be negligi-

ble at a photon energy of hν′ = 1.65 eV. It was deemed impractical to retain the

±0.1 cm�1 precision discrimination discussed in Chapter 9 in this experiment, as

the longer exposures required for precise measurement of lower currents substan-

tially increase their respective experiment durations. A slightly relaxed precision
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benchmark of approximately ±0.25 cm�1 was taken, as a compromise. This reduced

experimental durations by a factor of roughly 2.5, reducing the ttotal required for

the 100 mA measurement to approximately 3 minutes and the ttotal required for

the 5 mA experiment to 45 minutes. No drive current dependence was observed

in the spatial distribution of emission from the device facet.

Figure 10.1: The Optical Loss coe�cient for hν′ = 1.65 eV for a sample of type #1BA is
plotted as a function of drive current in the pumped region.

An I-V mismatch between the two device sections would cause di�erent frac-

tions of injected carriers wasted to current paths which do not contribute to ra-

diative recombination. (Two such current paths include carrier leakage from the

active region and loss of carriers through the resistive intercontact region to the

earthed contacts adjacent to the pumped contact). I speculate that the large sys-

tematic error at low drive currents is the result of the combination of the small

mismatch in I-V characteristics between device sections and the �nite resistance

between device sections. This source of systematic error is exacerbated in modern

184



devices due to the prevalence of highly doped cap layers, which reduce resistivity

in material between segmented contacts and hence increase the proportion of total

injected current lost through this current path. Note that the measured intercon-

tact resistance of the devices used in this thesis is typically of the order of hundreds

of Ohms, an order of magnitude lower than what was once considered acceptable

in a test device. The analysis within this chapter will allow the management of

this systematic error in devices with heavily doped cap layers.

It is useful to consider a intercontact injection e�ciency, ηdiode ; the fraction of

total current which is not lost to an intercontact current path to earth. In order

to do so, the current paths in this model must be examined. The simple circuit

diagram shown in Figure 10.2 identi�es current paths which do and do not pass

through the device active region.

Figure 10.2: An simple circuit diagram for a multisection method device. The row of
components at the top of the �gure represents the many top metal contacts of a device.
Each metal contact has a corresponding diode and leakage resistor representing a current
path to the common cathode through the layers of the device. Whilst pumping a partic-
ular section, additional current paths exist through the intercontact etch to neighbouring
device sections. Three top contacts (labelled as Points A1, A2 and A3) are connected
to TO header pins and all other contacts are connected by epoxied wires to the device
cathode. The red boxes relate regions of the schematic to the device geometry of the
multisection method.
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The vertical lines at the top of the circuit diagram shown in Figure 10.2 rep-

resent the segmented top contacts of a multisection method device. Each of these

contacts is associated with some contact resistance, Rcontact . Three sections of

this device, denoted A1, A2 and A3 in Figure 10.2, are connected by epoxied wires

to TO header pins and can hence be pumped. These correspond to the sections

which produce I1, I2 and a third adjacent section, as indicated. The other three

sections are connected by epoxied wires to the copper block upon which the de-

vice is mounted, and hence the cathode of the device. In a multisection optical

loss measurement, while a particular section is pumped, all other top contacts

are earthed. The six pairs of parallel components in the lower section of the cir-

cuit diagram represent radiative and leakage currents through each of the device

contacts. In this treatment, the term `pumped diode' refers to the current path

by which current travels directly through the active layer of the material with-

out passing through any RICR resistors. Conversely, the term `unpumped' diode

refers to any path by which current passes through the device active region having

passed through some intercontact resistance (at least one RICR). As the cap layer

is highly p-doped in the devices examined in this thesis, the metal-semiconductor

interface at the device top contact is assumed to be approximately ohmic and

Rcontact is assumed to be small with respect to the intercontact resistance, RICR

(which is determined to be roughly 400 Ω in the analysis given in Section 10.2).

A critical feature of this analysis is that the I-V characteristic of the current

path through the active region (Rdiode(V )) is diode-like. No knowledge is assumed

of current leakage process. It can be shown that if current leakage increases pro-

portionally with the radiative current passing through the active region then it will

not a�ect the measured optical loss. This proportionality is assumed in this anal-

ysis, and hence current leakage is neglected such that the loss of current through

`intercontact' paths can be evaluated in isolation.
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10.2 I-V Measurement

I-V measurements were made across the section contacts corresponding to I1 and

I2 as well as between these top contacts for the device measured in Figure 10.1.

These measurements are described in this chapter as the `Diode' and `Intercontact'

I-V characteristics respectively and are plotted in Figure 10.3.

Figure 10.3: Figure 10.3.a) demonstrates the I-V characteristics of the diode in forward
bias (measured between points A and B in Figure 10.2) . In the key, IA1(V ) and IA2(V )
refer to the sections associated with light intensities I1 and I2 respectively. Figure 10.3.b)
demonstrates the (approximately ohmic) intercontact I-V characteristic (measured be-
tween points A1 and A2 in Figure 10.2).
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The I-V characteristic shown in Figure 10.3.a) was measured between points

Ai and B (as indicated on Figure10.2) for the device top contacts corresponding

to Ii . The top contact associated with point A3 was not earthed. A2 was not

earthed while A1 was measured and vice versa. This lack of earthing minimised

the current lost to intercontact paths. (However, the contact to the left of A1 in

Figure 10.2 is permanently connected to the common cathode by an epoxied wire.)

The I-V characteristic approximates that of the current path across the diode. At

typical operating currents (100 mA), the static resistance of this current path is

around 20 Ω.

The intercontact I-V characteristic was measured between point A2 and points

A1 and A3 in parallel, such that the conditions of an optical loss measurement

were approximated and is plotted in Figure 10.3.b). The device common cathode

was left �oating such that no current is drawn through the diode.

The third quadrant data was acquired by reversing the positions of the I-V ter-

minals. In normal device operation below the turn-on voltage of the PN junction,

(and neglecting diode leakage current) the diode current path draws negligible cur-

rent and the characteristic described in Figure 10.3.b) is hence representative of

the I-V of an intercontact current path. The measured slope resistance in Figure

10.3.b) is 200 Ω and approximately ohmic. As there are two earthed neighbouring

contacts, neglecting Rcontact , there are two RICR in parallel in the equivalent cir-

cuit in this measurement. Hence, the data shown in Figure 10.3.b) is not directly

representative of RICR, but of two parallel current paths consisting of one RICR

and one Rcontact . It can be calculated that a single intercontact current path cor-

responds to a resistance of 400 Ω. This view is also appropriate when top contacts

further from the pumped section are earthed, rather than �oating (such as in an

optical loss measurement) as the two adjacent intercontact `resistors' are taken

to contribute to the combined resistance of the intercontact path, as Rcontact is

assumed small enough that its resistance is dominant in parallel with either RICR

or the resistance of an `unpumped' diode current path. Therefore, only the nearest

RICR in either direction need be practically considered.

It is assumed in further analysis that the majority of the resistance in this path
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is due to intercontact resistance (due to the etch through the upper, conductive

layers) rather than due to the contact of the metalisation, Rcontact . Based upon

the observation that the intercontact resistance, RICR is 400 Ω and the assump-

tion that Rcontact is very small, the circuit diagram can be reduced to that shown

in Figure 10.4 where R
Equ
ICR

describes the resistance due to RICR and `unpumped'

diode resistance in two parallel intercontact paths into regions on either side of a

pumped device section.

In the context of Figure 10.4.a), the I-V characteristics shown in Figure 10.3.a)

describes a current path through the central contact resistance and the central

diode. The I-V characteristic shown in Figure 10.3.b) corresponds to a current

path through the central contact resistance, through both of the intercontact paths

then through top contacts to earth.

Figure 10.4: Figures 10.4.a) and 10.4.b) represent progressive simpli�cations of the ef-
fective circuit diagram introduced in Figure 10.2.

Assuming a negligible voltage drop over the input contact resistance, the volt-

age beyond the �rst contact resistor is approximately equal to the input voltage,

V0. The voltage drop of V0 in crossing one of the intercontact resistors (to the
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left and right diodes of Figure 10.4.a) is determined by the parallel resistance of a

contact resistor with an `unpumped' diode. As some voltage drop occurs over the

intercontact resistor, the voltage across the left or right `unpumped' diode is less

than V0. Therefore the resistance of the `unpumped' diode is greater than that

of the `pumped' diode and also large in comparison with Rcontact . As previously

stated, the parallel resistance of the unpumped diode and Rcontact is comparable

with Rcontact and small compared with RICR. The voltage across the `unpumped'

diodes is therefore small compared with V0 and therefore`unpumped' diodes do

not reach their turn-on voltage. Based upon this observation, the behaviour of

`unpumped' diodes can be simpli�ed by de�ning a piece-wise low voltage resis-

tance. IA1(V )) and IA2(V )) (as introduced in Figure 10.3.a)) are described well

by resistances of 286 Ω and 196 Ω respectively in this low voltage regime. The

resistance below threshold of the unmeasured `unpumped diode' current paths are

assumed to have a resistance equal to the (low voltage regime) average of sections

IA1(V )) and IA2(V )) in this analysis.

Electronic behaviour of an intercontact path is treated using the single value

of resistance taken from the I-V characteristic shown in Figure 10.4.b). (Measure-

ments on other devices with more connected top contacts suggest that if metallisa-

tion is of su�cient quality to result in matching diode I-V characteristics between

device sections, the intercontact resistances between di�erent adjacent sections

also tend to match well).

As calculations of the resistive network shown in Figure 10.2 demonstrate that

the low value of Rcontact causes it to dominate the resistor network beyond the

�rst RICR in either direction from the pumped section. The combined resistance

of any number of device sections (as indicated in Figure 10.2) in either direction

from the pumped section is hence approximately equal to the sum of Rcontact and

RICR. The total resistance of intercontact paths is equivalent to the resistance

taken from Figure 10.4.b). This reduces the resistance due to intercontact current

paths in this equivalent circuit to be R
equ
ICR

(as shown in Figure 10.4.b)), calculated

to be approximately 200 Ω.
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10.3 Introducing Intercontact E�ciency

At low values of current, the resistance of the `pumped' diode is comparable with

R
equ
ICR

and a larger fraction of the total injected current is lost to the intercontact

current paths. Additionally, the mismatch between I1 and I2 I-V characteristics

is fractionally larger at lower drive currents. These processes cause a variation in

the relative e�ciency of injection between device sections that is dependent upon

drive current.

By de�ning an intercontact injection e�ciency, ηidiode , to be the fraction of the

total drive current which reaches the active region upon pumping the device section

corresponding to Ii � rather than being lost to top contact earthing connections

through intercontact current paths �, Equation 10.1 can be obtained:

ηidiode(V0) =
I idiode
I i
total

(V0) =
V0

Ri
diode

(V0)

Ri
total (V0)

V0
(10.1)

Equation 10.1 can be rearranged to give Equation 10.2:

ηdiode(V0) =

 1

Ri
diode(V0)

R
equ
ICR

+ 1

 =

 1

Ri
diode(V0)
200Ω + 1

 (10.2)

This quantity can be calculated for each device section from the Rdiode(V0) func-

tion of that section, which can be achieved from manipulation of the data shown

in Figure 10.3.a). ηdiode(V0) de�nes the fraction of the nominally injected current

which passes through the diode and may contribute to the emission of photons in

the active region. At a drive current of greater than around 50 mA, in a typical

multisection device, ηdiode is around 0.8 for both device sections. ηdiode is more

sensitive to di�erences in device I-V characteristics in the low drive current regime,

where the resistance of the diode is comparable to that of the combined resistance

of the intercontact current paths. This is explored further in Figure 10.5.a).

Assuming that a �xed fraction of the current passing through the diode con-
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tributes to light emission, the light generated upon pumping the device section

corresponding to Ii is reduced by a factor of ηidiode(V0). Hence, at their respective

edges which are nearest to the front facet, section 1 produces a light intensity equal

to I ideal0 η1diode and section 2 produces a light intensity equal to I ideal0 η2diode , where

I ideal0 is the value of I0 which would be collected if there were no loss of current

to intercontact paths. (I0 is introduced in Section 1.3.3 and discussed further in

Section 1.3.5). This treatment neglects prefactors describing the fraction of total

emitted light that is collected by the ICCD, following the convention introduced

in Section 1.3.5. This is justi�ed as the quotient of the two intensities constitute

an optical loss measurement and any common collection e�ciency will factor out.

Accounting for optical loss in propagation through appropriate lengths of un-

pumped material for each device section, this corresponds with measured light

intensities of I ideal0 e�(A+αi )Ls η1diode and I ideal0 e�2(A+αi )Ls η2diode for the two de-

vice sections respectively. Substituting these values into the Multisection optical

loss equation (Equation 1.16) results in the expression given in Equation 10.3.

For the purposes of this investigation, it is more convenient to express ηdiode as

a function of total injected current Idrive , than of voltage. (To be clear, Idrive

always refers to a pump current and I with a numerical subscript always refers to

an edge-collected light intensity in this thesis).

(A+ αi )meas = (A+ αi )
true +

1

Ls
ln

(
η1diode(Idrive)

η2
diode

(Idrive)

)
(10.3)

Hence, the error in measured optical loss due to mismatch of I-V characteristics

between the two device sections is given by Equation 10.4:

∆(A+ αi )(Idrive) =
1

Ls
ln

(
η1diode(Idrive)

η2
diode

(Idrive)

)
(10.4)
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10.4 Application of Intercontact E�ciency

to Experimental Data

∆(A+αi )(Idrive) has been calculated using ηdiode(Idrive) characteristics measured

for a device of type #1BA as described in Section 10.1. ηdiode(Idrive) functions

derived from the two I-V characteristics shown in Figure 10.3.a) are plotted in

Figure 10.5.a). The large di�erence that the slight I-V mismatch makes to this

quantity at low values of drive currents is critical to the derived systematic error in

optical loss. As the raw I-V data is measured at di�erent intervals of current and

voltage for each device section, piece-wise �tting of diode injection e�ciencies was

carried out such that these values could be entered into Equation 10.4 to obtain

the data shown in Figure 10.5.b).

The optical loss of the same device was measured as a function of Idrive .

∆(A+ αi ) was calculated from experimental data by subtracting each value of

optical loss from the average value of (A+αi ) measured at high drive currents (for

which the observed systematic error becomes negligible). These experimentally

observed values of ∆(A+αi ) are plotted in Figure 10.5.b) alongside modelled val-

ues of ∆(A + αi ) calculated from Equation 10.4 using the experimental values of

ηdiode(Idrive) from Figure 10.5.a). Figure 10.5.b) shows that a simple model of the

e�ect of intercontact resistance and I-V mismatch retains the important trends of

experimental measurement of ∆(A + αi )(Idrive). A substantial systematic error

exists for small values of drive current. For this device, this systematic error be-

comes negligible for device currents above around 30 mA. This is below the typical

operating conditions in an optical loss measurement. This e�ect must be noted in

any future experimental work which requires low pump currents (or measurement

as a function of pump current). Additionally, it is sensible to repeat this process

for new devices, in order to increase con�dence in measurements made using said

device.
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Figure 10.5: Values of ηdiode(Idrive) are derived for each device section from the I-V
measurements shown in Figure 10.3.a). The measured systematic error in an optical loss
coe�cient as a function of drive current is plotted next to the systematic error calculated
from Equation 10.4.

At higher drive currents, there is no evidence of a current dependence of mea-

sured optical loss. This indicates that e�ects which become more pronounced as

light intensities within the device cavity increase do not alter the ratio of I1 to I2.

Further investigation of e�ects such as the re�ection of light from the front facet

and photon recycling in the passive region is not necessitated by this �nding.
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10.5 The e�ect of Device Temperature upon Drive

Current dependence of measured Optical Loss

The temperature dependence of e�ects outlined in this chapter are of general inter-

est. It is established in Section 10.4 that, for a particular device at a temperature

of 300 Kelvin, there is a critical drive current, below which systematic error in an

optical loss measurement exceeds 0.1cm�1. The experiments outlined in Chapter

11 measure optical loss for device temperatures greater than 300 Kelvin. It is im-

portant to establish whether this critical drive current is di�erent for temperatures

above 300 Kelvin.

Optical loss spectra were measured for device temperatures of 325, 350 and

375 Kelvin at drive currents of 5, 10, 40 and 100 mA in each instance (using the

corresponding exposures times given in Table 10.1). Otherwise experimental con-

ditions were identical to those described in reference to the data shown in Figure

10.1.

Recall that in the 300 Kelvin data, optical loss was examined at a photon en-

ergy of hν′ = 1.65 eV. This is taken to be the point at which interband transitions

make a negligible contribution to the optical loss coe�cient for this device. How-

ever, at device temperatures other than 300 Kelvin, the temperature dependence

of the bandgap � described by Varshni's equation (Equation 1.12) � causes a

relative change in the position of interband transitions within a sample. In order

for a direct comparison of behaviour at di�erent temperatures to be meaningful,

this spectral shift must be accounted for. This is carried out by determining the

spectral separation of hν′ from a prominent feature of the optical loss spectrum

� the 1st optical loss peak, in this case � and examining the value of optical loss

at this spectral separation from this feature at each temperature. (This spectral

shift is described in more detail in Chapter 11). Observing a photon energy at a

�xed energy separation from the 1st optical loss peak is justi�ed for this device,

as negligible temperature dependence of broadening is observed in features of the

optical loss spectrum for the temperature range observed in this thesis.
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At each device temperature, the value of optical loss at a drive current of

100 mA was subtracted from the optical loss at each other drive current to ap-

proximate the drive current dependent error. The measurements at the three new

temperatures are compared to the 300 Kelvin case (plotted in Figure 10.5) in

Figure 10.6.

Figure 10.6: Error in optical loss as a function of drive current is compared for various
device temperatures. The experimental data taken from Figure 10.5 is plotted against
similar measurements for device temperatures of 325, 350 and 375 Kelvin.

It can be seen that a similar general trend of optical loss with current depen-

dence is observed at each temperature, but that � at each drive current � the

error in optical loss decreases with increasing temperature. This suggests that at

temperatures above 300 Kelvin, the drive current at which the observed systematic

error in optical loss becomes negligible is smaller than the corresponding current at

300 Kelvin. For this device, critical drive current is no greater for any device tem-

perature (in the range considered in this thesis) than that at 300 Kelvin. The form

of Equation 10.2 suggests that the temperature dependence of ∆(A + αi )(Idrive)

is due to temperature dependences of the diode or intercontact resistance causing

relative changes between η1diode and η2diode .

In order to further comment on critical drive current as a function of device

temperature, a least squares exponential �t of the drive current dependence of
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Device Temperature [K] Drive Current [mA] Current Density [mA cm�2] [×104]
300 22.0 14.6̇

325 21.5 14.3̇
350 21.0 14.0

375 19.0 12.6̇

Table 10.2: Table of critical Current and Current Densities for discrimination of
± 0.03̇ cm�1 changes in Optical Loss.

optical loss error at each device temperature was carried out. The resultant �tted

functions are plotted in Figure 10.7.a). Thin vertical lines with colours that cor-

respond to the plot legend mark the drive currents at which the systematic error

in optical loss is equal to 0.1 cm�1.

In the following discussion, the drive current at which the �tted optical loss

error exceeds a particular error threshold is described as the `critical ' drive current

associated that particular threshold of systematic error. The critical drive current

associated with a systematic error in optical loss of 0.1 cm�1, for each device

temperature, is marked by the blue series in Figure 10.7.b). It is also useful to

evaluate the drive current at which error in optical loss can be considered small

with respect to the ±0.1 cm�1 uncertainty aim of this project. An upper bound

upon this value is taken to be 0.03̇ cm�1. The critical drive currents corresponding

to an error in optical loss of 0.03̇ cm�1 is also plotted in Figure 10.7.b) and the

critical currents and associated current densities are given in Table 10.2. (Current

densities are calculated from the area of the top contact of each section, based upon

a section length of 300 µm and an oxide stripe width of 50 µm.) The critical drive

current associated with 0.1 and 0.03̇ cm�1 optical loss error thresholds can both be

seen to decrease with increasing device temperature. Figure 10.7.b) suggests that

a drive current of 22 mA is su�ciently high to ensure that the systematic error

in optical loss described in this chapter does not exceed 0.03̇ cm�1. All precise

measurements of optical loss within this thesis use much higher drive currents, of

the order of 60 to 100 mA. Hence, error in optical loss due to intercontact current

paths is negligible in this thesis with respect to the 0.1 cm�1 uncertainty aim.
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Figure 10.7: Figure 10.7.a) are the exponentials derived from least square �ts of the
optical loss error as a function of drive current for each measured device temperature.
Figure 10.7.b) plots values of `critical ' drive current at which optical loss errors exceed
0.1 cm�1 and 0.03̇ cm�1.
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CHAPTER 11

Temperature dependence of Modulated Multisection Optical

Loss in InP Quantum Dots

In this chapter, the high precision developed in Chapter 9 is combined with the

suppression of drift error described in Chapter 8, and the resultant low uncertainty

is applied to speci�c study not previously possible by conventional methods. The

chosen demonstration is a measurement of temperature dependence of internal

mode loss in a quantum dot laser structure. This information is of particular

importance in high power lasers which are intended to operate above room tem-

perature.

A device of type #1BA was pumped with a pump current of 60 mA, a pulse

frequency of 20 kHz, a current pulse duration of 2.2 µs and a gate width of 2.0 µs.

Following the arguments found in Chapter 9, 482 modulation cycles were measured

with an m value of 50.
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11.1 Maintenance of constant Optical Loss precision in

temperature-dependent intensity measurements

In this chapter, optical loss spectra are examined at device temperature intervals

of 5 Kelvin, from 300 to 380 Kelvin. In preliminary measurements, it was ob-

served that measured intensities � I1 and I2 � decreased with increasing device

temperature as well as shifting with the bandgap of the InP Quantum Dots (see

Equation 1.12). This is shown in Figure 11.1.a). In order for the resultant preci-

sion of an optical loss measurement to be preserved, either the device light output,

the ICCD gate period, the number of measurements within a modulation period

(m), or the number of modulation periods must be increased. Varying the number

of modulation periods is preferable, as doing so preserves the conditions of each

modulation cycle and allows a direct comparison of the intensities averaged over

each modulation period at di�erent device temperatures. Standard deviation (and

hence precision) decreases more drastically with temperature near the intensity

peak of the emission spectrum, where a greater optical loss in the unpumped ma-

terial results in a greater reduction in I2 intensities. Accordingly the compensation

required to maintain precision is carried out upon the peak value of intensity rather

than at hν′. This will overcompensate for the decrease in precision with increas-

ing temperature at hν′ and maintain precise measurement across a broad spectral

region. In optimising the precision of the measurement at each temperature, the

combined duration of all measurements in minimised.

The number of modulation cycles that must be acquired to maintain a par-

ticular precision at an intensity peak which is decreasing in magnitude with tem-

perature can be established by determining the optical loss standard deviation at

each temperature (through the application of Equation 9.1 to measured intensity

data) and increasing Ncycle in Equation 9.1 appropriately. The key details of the

process are summarised in Figure 11.1.
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Figure 11.1: Plots summarising the increase in Ncycle required to compensate for the
temperature dependence of emitted intensities. Figures 11.1.a) and 11.1.b) depict the
temperature dependence of measured intensities. Figure 11.1.c) depicts the number of

modulation cycles required in order to maintain the 3σ
(A+αi )
SEM precision of ±0.03̇ cm�1

(derived from I1 and I2 values corresponding to the I1 peak at each temperature. Figure
11.1.d) demonstrates that this increase in Ncycle has the desired e�ect upon precision in
the experimental data given in Figure 11.2.

The decrease in peak measured I1 intensity is shown in Figure 11.1.a). Data

is plotted every 20 Kelvin, such that the plot is not too cluttered. Measured I1

and I2 values corresponding to the I1 peak photon energy are given at 5 Kelvin

intervals in Figure 11.1.b). The resultant number of cycles required to maintain

precision is plotted as a function of device temperature in Figure 11.1.c). Fig-

ure 11.1.d) demonstrates calculated values of 3σ
(A+αi )
SEM

corresponding to values of

standard deviation observed in the Optical Loss data shown in Figure 11.2, at the

photon energy of the minimum value of optical loss below the bandgap for each

201



temperature. It is demonstrated that � at this photon energy � 3σ
(A+αi )
SEM

(the

chosen measure of precision in this document) increases with device temperature

if the number of modulation periods, Ncycle , is equal to 482 and that 3σ
(A+αi )
SEM

decreases if Ncycle is increased to the values depicted in Figure 11.1.c). Hence,

these Ncycle vaues are used in the following investigation.

The origin of the temperature dependence of the peak intensities in Fig 11.1

is not known but is consistent with established mechanisms. The heterobarrier

potential wells which facilitate carrier con�nement in laser structures have a �-

nite well depth. Above zero Kelvin, the thermal spread of carriers in energy �

described by the Fermi function (Section 1.2.5) � results in some fraction of the

injected carriers having su�cient energy to escape from the well. This fraction

increases with increasing device temperature as the Fermi distribution broadens.

As the device was operated at constant drive current, the reduction in radiative

e�ciency associated with this process ought to decrease emitted intensity with

increasing device temperature [4, 27].

Temperature dependent gain saturation has been demonstrated in quantum

dots devices [57]. This e�ect has been associated with a clamping of the Fermi

level caused by the relatively high density of states of the wetting layer (compared

with that of the quantum dots). This clamping acts to suppress the occupancy

of dot states and hence cause a reduction in emission processes in the dots which

worsens with increasing device temperature (as the broadening of the Fermi func-

tion increases its overlap with the wetting layer states). If required in future work,

an investigation of the temperature dependence of gain-current characteristics of

this device could con�rm this.
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11.2 The precise measurement of optical loss as

a function of device temperature

As stated, optical loss measurements were made at device temperatures from 300

Kelvin up to 380 Kelvin in steps of 5 Kelvin. As alignment was disturbed by

thermal expansion of the apparatus, the device was realigned once the tempera-

ture controller readout had stabilised within 0.05 K of the set temperature. The

apparatus was then left for a 10 minute settling period before the alignment was

checked. Measurements were made initially while increasing the device tempera-

ture. Temperature was varied upwards from 300 to 350 Kelvin on one day, then

from 355 to 380 Kelvin on a second day. On the third day of the experiment, a

measurement was made every 20 Kelvin while decreasing the device temperature

back down to 300 Kelvin. The upward and downward data can be compared to

determine whether the trend is reproducible and to investigate the e�ect of tem-

perature lag upon the experiment. Every fourth optical loss spectrum is plotted

in Figure 11.2.a). The temperature dependence of the bandgap is visible in the

spectral shift of the 1st optical loss peak. These peaks were manually colocated,

such that the optical loss peak for spectra at each temperature overlies with the 1st

optical loss peak at 300 Kelvin. These colocated peaks are shown in Figure 11.2.b).

Having colocated the optical loss peaks � thus compensating for the shift in rela-

tive positions of transitions due to the changing device temperature � the data is

easier to interpret. The behaviour of these optical loss spectra at photon energies

below the absorption edge are examined in more detail in Figure 11.2.c). Figure

11.2.d) shows the temperature dependence of the photon energy of the 1st optical

loss peak and of the photon energy of the minimal value of optical loss below the

absorption edge. Using an appropriate photon energy o�set, the gradient of the

temperature dependence described by the Varshni equation is shown to approxi-

mately match that of the experimental data (using parameters stated within the

�gure caption). This suggests accuracy of the device temperature measurement.
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Figure 11.2: Figure 11.2.a) shows the optical loss spectra measured at various device
temperatures. Figure 11.2.b) shows the same spectra, but shifted such that the optical
loss peaks overlie. Figure 11.2.c) shows the same shifted optical loss spectra as in Figure
11.2.b), but with axes scaled to examine photon energies below the device absorption
edge. Figure 11.2.d) examines the photon energy of key features of the data as a function
of device temperature. Varshni parameters are α = 3.63 × 10�4 eV K�1 and β = 162 K
and Eg value of 1.421 eV [58]. (This value is 0.376 eV from the stated bandgap of InP.)

3σ
(A+αi )
SEM error bars are plotted on each optical loss spectrum, but are typically smaller

than their associated data marker.

Due to the low uncertainty developed in this thesis, spectral and temperature

dependence of the optical loss below the absorption edge can be discriminated in

the data shown in Figure 11.2.c). The minimum measured value of optical loss

below the absorption edge ranges from 8.13 cm�1 at 300 Kelvin to 6.42 cm�1 at

380 Kelvin. (This temperature dependence is examined in more detail in Figure
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11.3.a)). A feature at below the absorption edge (at roughly 1.61 eV) is visible in

this data due to the high precision of each measurement.

Any features of the optical loss spectrum which are associated with InP quan-

tum dot interband transitions can be expected to be respectively spectrally colo-

cated in Figure 11.2.b). Contrarily, temperature dependence of the spectral posi-

tion of a feature in these plots would indicate that it is associated with an inter-

band transition unrelated to the InP quantum dots, or that it is not associated to

an interband transition at all. The low photon energy feature in this data (�rst

discussed in Section 9.5) can be seen to be approximately colocated at the temper-

atures demonstrated in Figure 11.2.c). Thus this feature is associated with states

which share the temperature dependence of the spectral shift of the InP bandgap.

This suggests that this feature is either caused by quantum dots which are phys-

ically larger than those associated with the absorption peak around 1.72 eV (at

room temperature) or caused by defect states whose temperature dependence of

spectral position is bound to that of the InP bandgap. Previous work by Mo-

hammed Al-Ghamdi on similar structures suggests that the former is the case [59].

These features correspond to the photon energies of a feature which he describes

as `very large dots ' (VLD).

The full characterisation of the VLD peaks is not possible in this data set as

only the high energy side of the peak can be discriminated above 300K . Exami-

nation of the ASE intensity spectra demonstrates that this is due to temperature

dependence of the bandgap causing a red-shift of the feature past the edge of the

intensi�er. Full characterisation of this behaviour � in which the spectrometer

grating is shifted and re-calibrated, such that the full VLD absorption peak is ob-

served at each temperature � is recommended as future work. (For this new data

to be useful, precision ought to be re-assessed such that data is su�ciently precise

at photon energies lower than hν′). Low temperature measurements of emission

from the VLD states has not yet been carried out.

In order to establish that the dot size of these proposed VLD states is fea-

sible to an order of magnitude, a simple model was used to calculate dot sizes
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corresponding to the �rst absorption peak and the VLD states. A 3-dimensional

(cubic) in�nite potential well model (as described in Equation 1.6) was used. This

method makes the assumption that a separation of variables is appropriate and

that an in�nite well is an appropriate approximation of the con�nement potential.

Taking the bandgap of InP to be 1.34 eV at 300 Kelvin, the con�nement energies

associated with the observed absorption peak at 1.72 eV and the peak associated

with the VLD peak are 0.38 and 0.27 eV respectively. mh and me values for InP

were taken to be 0.6m0 and 0.08m0 respectively (where m0 is 9.11 × 10�31 kg).

In this model, the 1.72 eV and VLD peaks correspond with dot lengths of d = 6.5

and 7.7 nm respectively. Quantum dot sizes of this order are feasible.

The largest optical loss peak at 1.725 eV as well as the small feature around

1.705 eV in Figure 11.2.b) are both colocated regardless of device temperature.

This suggests that all of the features at the higher photon energy end of the opti-

cal loss spectra correspond to absorption by states of the InP quantum dots.

Having introduced the broad behaviour of the optical loss spectra (in Figure

11.2) using a subset of the measured device temperatures, the temperature depen-

dence of key features of optical loss spectra at each measured device temperature

must be examined. The temperature dependence of the �rst absorption peak and

of the minimum value of optical loss at photon energies below the absorption edge

are plotted in Figures 11.3.a) and 11.3.b) respectively. The values corresponding

to the experiment in which spectra were acquired every 5 Kelvin as the device

temperature was increased are depicted by blue data points in Figures 11.3.a) and

11.3.b). The values corresponding to the experiment in which spectra were ac-

quired every 20 Kelvin as the device temperature was decreased are depicted by

red data points in Figures 11.3.a) and 11.3.b).

The �rst observation from Figures 11.3.a) and 11.3.b) is that a systematic de-

crease in internal loss and increase in peak absorption has been observed, and

that experimental scatter is small in comparison with the change in either quan-

tity. Such a measurement would not be feasible with the conventional multisection

method.
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Figure 11.3: The minimum value of optical loss near the absorption edge and at the
1st peak are plotted as a function of device temperature in Figures 11.3.a) and 11.3.b)
respectively. The di�erence in measured values between the cases of increasing and of
decreasing device temperature are visible in both plots.

There is a systematic error between the upwards and downwards measurements

depicted in both Figure 11.3.a) and in Figure 11.3.b) which is large with respect to

the ± 0.1 cm�1 uncertainty aim of this project. Repeating this measurement such

that spectra were collected every 20 Kelvin upwards on one day and then down-

wards on the following day produced a systematic error which was smaller and

acting in the opposite direction (data omitted). This suggests that the di�erence

between upward and downward observations is related to a day to day variability
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in optical loss measurements, rather than lag between the cryostat temperature

sensor readout and the actual device temperature. Error due to temperature lag is

likely to be reproducible and � while the sign of the systematic error is consistent

with temperature lag between the device and temperature monitor for low photon

energies � it is not consistent with temperature lag at high photon energies. The

origin of this systematic error has not been conclusively identi�ed and is discussed

in the Future Work section (Section 12.2). For the purposes of the discussion of

temperature dependence of optical loss in this chapter, the systematic error associ-

ated with change in measurement direction or with measurement on di�erent days

will be neglected and only the blue data in Figure 11.3 will be considered. (It is

assumed that systematic error was constant for the measurements with increasing

temperature).

11.3 Interpretation of Temperature-dependent

Optical Loss

Measured lateral spatial intensity distributions for I1 and I2 do not change shape

with temperature. This suggests that electronic behaviour of the sample � rather

than varying optical con�nement � is the cause of the observed temperature de-

pendence of optical loss.

The reduction in the minimum optical loss below the absorption edge with in-

creasing device temperature that is shown in the blue series of Figure 11.3.a) has

an associated gradient of �0.02 cm�1K�1.

The small feature below the absorption edge associated with `very large dot'

transitions is not stongly temperature dependent. The quantity ∆(A + αi )VLD

was introduced in Figure 11.2.c) and is useful in describing the magnitude of the

`very large dot' feature. It is de�ned as being the maximum value of the feature's

peak optical loss with the minimum value below the absorption edge subtracted

from it. ∆(A + αi )VLD is equal to 0.2 cm�1 to a precision of ±0.07 cm�1 at ev-
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ery measured temperature. This suggests that the optical loss of the `very large

dot' feature is insensitive to device temperature, and that an additional process is

causing the majority of the temperature dependence of optical loss at low photon

energies.

Mathematical modelling of possible underlying mechanisms could provide in-

sight into the physical processes occurring within this device. Assuming that an

internal optical loss process � rather than one associated with absorption by the

VLD states � is responsible for temperature dependence below what appears

to be the absorption edge, then the temperature dependence of processes associ-

ated with internal loss is a sensible starting point. Cho et al. demonstrated that

modelled Inter-Valance Band Absorption may decrease with increasing device tem-

perature in InP Quantum Well structures [60]. The work of Krishnamurthy et al.

demonstrates the possibility of decreasing free-carrier absorption in bulk InSb with

increasing device temperature in both modelling and experimental measurements

[61, 62]. The decrease in optical loss below the band edge with increasing tem-

perature may correspond to a reduction of such an absorption process due to the

redistribution of carriers in the device bandstructure. Similar modelling in future

work would help to clarify this.
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CHAPTER 12

Conclusion and Future Work

12.1 Conclusion

A modulated variant of the multisection method for optical loss has been devised,

analysed in depth, and shown to e�ectively reduce systematic error corresponding

to systemic drifts in intensity to acceptably small magnitudes. Following a detailed

evaluation of precision, measurements of optical loss at a photon energy below the

absorption edge and with a nominal uncertainty of better than ±0.1 cm�1 were

made. A series of 20 minute long optical loss measurements made within a sin-

gle day has an average deviation of 0.017 cm�1 at a photon energy below the

absorption edge. This order of uncertainty is not feasible using the conventional

multisection method.

The reduction of systematic error associated with the modulated method was

demonstrated in experimental data (Section 6.1) and an analytical quanti�cation

of this systematic error was found to be in good agreement with experimental data

(Section 8.2.4). For typical large intensity drifts and experiment durations � for

the apparatus used in this investigation �- the associated error is made negligible

with respect to a ±0.1 cm�1 uncertainty aim for modulation periods of 74 seconds

or less.
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The improvement in uncertainty a�orded by the introduction of modulation

and by the optimisation of precion in this project has revealed a day to day vari-

ability in measurements of optical loss below the absorption edge of the order of

±0.25 cm�1.

It is demonstrated in Chapter 3 that there exists a systematic error in optical

loss measurements of broad area devices due to the lateral divergence of light in

propagation towards the front facet. This error is absent in ridge waveguide devices

due to their greater lateral optical guiding. A correction is derived in Section 3.1

and the resultant systematic error is acknowledged. It is demonstrated in Chapter

10 that a systematic error associated with the loss of current through the contact

geometry is negligible for pump currents greater than approximately 22 mA for

device temperatures of 300 Kelvin or greater.

The low uncertainty developed in this thesis is utilised in a systematic inves-

tigation of optical loss with device temperature in Chapter 11 in which spectral

and temperature dependence of optical loss coe�cients are evaluated in a fashion

that would previously have not been possible. A reduction of internal loss with

increasing temperature is observed with a gradient of �0.02 cm�1K�1.

Having optimised experimental conditions such that a precision of ±0.1 cm�1

was achieved in a measurement of optical loss below the absorption edge, it was

observed that repeated measurements in which a device is realigned each time

result in a greater deviation than that predicted by precision. It is demonstrated

in Section 9.7 that this error does not correlate with systemic drifts or with any

metric of device misalignment. The origin of this error is not yet known.

12.2 Future Work

The low uncertainty method developed in this thesis facilitates the discrimination

of �ner structure in optical loss spectra and the systematic investigation of less

pronounced optical loss processes (and thereby further optimisation of device de-
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sign and fabrication processes) than is possible with conventional methods. This

simultaneously allows investigation of more subtle device physics and more precise

characterisation of systematic error sources in the method itself. This discussion

of future work is grouped with respect to these two categories.

Investigations of Device Physics

The temperature dependences of both absorption and internal loss observed

in Figure 11.3 are not well understood. To gain understanding of this data, it

would be sensible to consider mechanisms which have previously been suggested

to explain a negative gradient in internal loss coe�cients [60�62].

A general systematic study of the processes which contribute to internal opti-

cal loss could be carried out through investigation of device temperature, doping

concentration (in various device layers) and optical mode distribution dependence

in optical loss spectra.

Further Reduction of Systematic Error

Having eliminated error due to systemic drift and appropriately optimised mea-

surement precision, the uncertainty of the modulated method for the identi�cation

of optical loss has been reduced. However, it is now limited by error sources which

could not have previously been separated from those associated with systemic drift.

Further improvement of uncertainty in optical loss measurement will require the

identi�cation of these errors. This includes the day to day variability in measured

optical loss coe�cients described in Section 9.8.

Further characterisation of the divergence described in Section 3.1 would assure

con�dence in the correction demonstrated in Section 3.2. In order to gain insight

into its wider signi�cance, observation of divergence related error in various mate-

rial systems is recommended.

In this thesis, it is determined that intercontact current paths due to mismatch-
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ing electrical properties of di�erent device sections have a negligible e�ect upon

optical loss measurements provided that the drive current of the pumped section

is su�ciently high. If this condition was found to be an obstacle to future inves-

tigations, this error could be removed by improved device fabrication or through

deeper characterisation of current paths.
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APPENDIX A

Background Measurement in a Sealed Enclosure

Over the course of my studies, a sealed enclosure � for the spectrometer used in

the multisection method measurements described in this document � was devel-

oped by PhD. candidate, Peter Rees. The intention of this enclosure is to reduce

the collection of ambient light by the detection system. All measurements from

Chapter 3 onwards make use of this enclosure.

It is shown in this appendix that, following the installation of the enclosure,

additive systemic drift (the B(t)-type drift introduced in Section 7.2) has a negli-

gible e�ect upon measurements of optical loss. This �nding is signi�cant as it is

used to justify the assumption that multiplicative (A(t)-type) systemic drifts are

dominant and that additive drifts needn't be considered. This is crucial to the

work carried out in Chapters 7 and 8 (as well as the application of this work to

further chapters). The process of background removal in a normal experiment is

described in Chapter 2.

The approach taken was to repeatedly acquire long time series of the back-

ground signal, determine what constitutes a `large' variation in background and
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� in relation to typical I1 and I2 values � infer the e�ect upon an optical loss

measurement. This �nal step was achieved using the model described in Chapter 6.

During a measurement of background signal, the device was pumped and sec-

tions were switched with the relay as if a modulated multisection optical loss

measurement was under way, such that any electrical e�ects that these processes

have upon a real measurement were present in the resultant data. A device of

sample #1BA was pumped with 20 mA pulses at 5 kHz with a pulse width of

1.2 µs and a gate width of 1.0 µs. The beam was obstructed using a metal block

in the optical path. No measurable light intensity from the device reached the

detector whilst the obstruction was in place. For each background time series,

1, 000 background spectra were collected. Each spectrum consists of 360 expo-

sures which lasted 0.1 seconds each. The total experiment duration is roughly 10

hours, comparable with the longer experiment durations examined in this thesis.

This 10 hour background measurement was carried out on 5 separate occasions,

and the resulting time series with the largest gradient was selected to be indicative

of relatively large background drift in Figure A.1. For the selected time series, an

average background value was calculated for each of the 1, 000 spectra in a spectral

region from which internal optical loss may typically be measured, 1.60 � 1.65 eV.

This average background is plotted for each of the 1,000 measurements in the time

series in Figure A.1.b). The background (labelled B(t)) can be seen to vary ap-

proximately linearly from around 30, 750 to around 31, 000 counts.

By recreating this B(t) time series in the drift model described in Chapter

6, the drift error associated with this experimental data was determined for an

experiment of this duration. Figure A.1.c) represents the error in a measurement

of optical loss. I1 was set to 8, 000 and I2 was determined by the various values

of optical loss which were examined. CB is set to zero in this model to simulate

the act of subtracting a measurement of the background signal at the start of the

experiment. Drift error is determined by subtracting the nominal value of optical

loss from the output of the simulation. This is repeated for a range of nominal

values to form the data plotted in A.1.c) .
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Figure A.1: Figure A.1.a) demonstrates an example background spectrum. Figure A.1.b)
shows the behaviour of optical loss below the absorption edge for a succession of 1,000
such spectra. Figure A.1.c) demonstrates the modelled drift error due to this background
time series for a range of optical loss values.
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B(t) is applied to both intensities as a function of time and the entire set of

intensities is sampled to emulate a conventional multisection method experiment.

A measured optical loss, and hence drift error, is determined from these sampled

intensities. Bearing in mind that the point of this exercise is to evaluate whether

drift error associated with additive drift is large enough to merit consideration, the

drift error shown in Figure A.1.c) was calculated using a simulation of the con-

ventional method. Had the modulated method been simulated, drift error would

have been even smaller. Additionally, this model describes the behaviour of a 10

hour measurement. The systematic error in optical loss corresponding to a drifting

background o�set in an experiment of shorter duration (such as those described

in Chapter 9) would be decreased from the values described in Figure A.1.c).

Taking the gradient of the background time series shown in Figure A.1.b) to

typify large background gradients for the apparatus in question, the drift error

depicted in Figure A.1.c) approximately represents an upper bound on drift error

associated with B(t) drifts.

For a relatively large drift in background o�set, and over a 10 hour simulated

optical loss measurement � using the conventional multisection approach �, the

associated drift error does not exceed the 0.1 cm�1 uncertainty aim of this project

for this range of optical loss coe�cients. There is negligible systematic error due

to additive (B(t)-type) systemic drift in the apparatus described in this thesis.

For an experimentalist using an apparatus in which the background signal

is drifting su�ciently rapidly that its corresponding drift error is unacceptable

in spite of modulation, additional background measurements can be distributed

through the experiment duration through use of an automated shutter in the op-

tical path.
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APPENDIX B

Device Section dependence of Precision Characteristics

B.1 Investigating Section Dependence of Fractional

Standard Deviation in measurements of Opti-

cal Intensity

The precision related calculations found in Section 9.3 depend upon the fact that

the same dependence of fractional standard deviation upon measured intensity

applies regardless of which device section the light originated from. This appendix

demonstrates that this assumption is justi�ed.

The light intensity was varied for I1 and I2 light signals by increasing the gate

duration of each current pulse in increments of 100 ns. Gate duration was varied

for both device sections in a range spanning between 0 counts and 8, 000 counts

of intensity, corresponding to a maximum gate duration of 900 ns for the front

section and 1300 ns for the rear section.

As in Section 9.2, values of standard deviation were calculated from samples

218



of 1,000 intensity measurements. A 500 kHz current pulse of 50 mA and a current

pulse duration of 1500 ns was used. The CCD exposure time was 0.1 s. Intensi�er

gain was set to 7.

Figure B.1: Dependence of fractional standard deviation of 1,000 rapid measurements
upon the measured light intensity for I1 and I2 light signals.

The same curve is shown to be reproduced for I1 and I2 light signals. It is

hence assumed that the fractional standard deviation for a particular gain setting

is not dependent upon pumped section in Chapter 9.

B.2 Error Propagation in Nonlinear Equations

In Section 9.2, Equation 9.8 is based upon the assumption that standard error

propagation equations su�ciently estimate the standard deviation of an optical

loss measurement based upon the respective standard deviations and magnitudes

of intensities I1 and I2.
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In order to assess the suitability of this assumption, standard deviation cal-

culated from Equation 9.8 for modelled intensity data is plotted as a function of

optical loss with no systemic drift (using the model described in Chapter 7). In

this calculation, I1 is set to 8, 000 counts, L is set to 0.03 cm�1 and the standard

deviation of both intensities are set to 180 arb. units. These parameters are rep-

resentative of those found in experimental data. This calculation constitutes the

blue curve of Figure B.2.

Figure B.2: Study of the approximate uncertainty propagation described in Equation
9.8.

The model described in Chapter 7 is used to simulate 1,000 of optical loss mea-

surements for a range of values of optical loss coe�cient. The normally-distributed

scatter described in Section 7.4 is present in this model and systemic drift is ab-

sent. Intensity, intensity standard deviation and device section length parameters

are set to the same values used in the previous (standard error propagation) cal-

culation.
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The standard deviation of the sample of 1,000 optical loss simulations is de-

termined for each optical loss coe�cient and these points are plotted as the red

squares in Figure B.2.

This demonstrates that, for normally distributed samples of I1 and I2, the use

of Equation 9.8 is appropriate for small values of Optical Loss.

The discrepancy in the calculated values of σ
(A+αi )
SD

for larger values of Optical

Loss is due to the assumption (in Section 7.4) that modelled scatter magnitudes

are independent of intensity and the nonlinearity of the relationship between Op-

tical Loss and Intensity.

Error in the value determined by the error propagation equation exceeds 1%

for optical loss coe�cients of 55 cm�1 and above. However, in a real experiment,

signal intensities tend to be much higher for spectral regions with higher Optical

Loss coe�cients.

Recall that standard deviation is primarily of practical use in the determination

of minimum experiment durations for a particular precision requirement. It can be

observed that the experiment duration required to reach a particular precision aim

is governed by the intensities colocated spectrally with the lowest optical loss that

one wishes to measure (see discussion in Section 9.4). Hence, an overestimation of

the standard deviation of large values of optical loss is practically unimportant, as

experiment duration optimisation is carried out with respect to (smaller) optical

loss coe�cients below the absorption edge.

This suggests that Equation 9.8 is appropriate, so long as it is only used in

the determination of experiment durations for experiments in which the minimum

Optical Loss coe�cient in a spectrum is below roughly 50 cm�1. As this work is

primarily focused upon identi�cation of low values of optical loss, the e�ect that

this approximation has upon error bars was not assessed in the main body of this

thesis.
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APPENDIX C

Demonstration of the General Drift Model

This appendix demonstrates that the model described in Chapter 7 reproduces

the general trends of real experimental data. Modelled and experimental intensity

data and their respective resultant values of optical loss must be compared.

Trial 1 of the data shown in Figure 6.1 demonstrates the form of the Modu-

lated method in an experiment during which substantial systemic drift exists. The

model for systemic drift described in Chapter 7 has been used to reproduce the

`Trial 1' intensity behaviour and hence determine that the model produces results

comparable to those found in experimental data.

In normal use of the model, one typically begins with a �xed I1(t = 0) and

produces I1 and I2 time series based on multiplicative and additive drift functions

and a value of (A + αi ). In this case, modelled data was constructed such that

it would reproduce a measured experimental data set in which the true value of

(A+αi ) is unknown. As such, gradients and y-axis intercepts determined by line-

�tting the `Trial 1' data were used to reproduce I1 and I2 time series. Scatter due

to imprecision was then added as described in Section 7.4.
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Based on the �ndings of Appendix A, systemic drift is assumed to be primarily

multiplicative (with a negligible B(t) contribution). Accordingly, systemic drift is

achieved by varying A(t) parameters with B(t) parameters equal to zero. Apply-

ing a linear �t to the `Trial 1' intensity data produced an optimal value for MA of

6.8× 10�6 s�1. CA is set to a value of 1. B(t) is set to a constant value of zero in

this model (MB = 0, CB = 0).

A σcalcSD of 220 arb. units was required to match the approximate distribution

in both intensity time series. Figure C.1 compares this `Trial 1' intensity and

(A + αi ) data. The purpose of this test is simply to demonstrate that the model

is functional and that it produces sensible values of (A+ αi ) when processing fa-

miliar intensity data. The model will be used to examine trends in the equations

and the method itself rather than to speculate on the underlying physical processes.

The approximate trends of the intensity data in C.1.a) are reproduced in Fig-

ure C.1.b). The gradient of 0.08 arb. units s�1 in the experimental intensity time

series is reproduced in both modelled intensity time series.

The modelled and experimentally measured (A+αi ) time series in Figure C.1.c)

can be seen to be comparable. The average (A + αi ) values of the experimental

and modelled data are 2.90 cm�1 and 2.82 cm�1 respectively.

These values were determined using the Average-Process method described in

Section 7.5.1.
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Figure C.1: Figure C.1.a) shows the `Trial 1' intensity data from Figure 6.1. Figure C.1.b)
shows the output of the model. Figure C.1.c) compares the (A + αi ) time series deter-
mined from adjacent pairs of I1 and I2 data from both the modelled and experimental
`Trial 1' data sets.
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Conventional Multisection data results can similarly be reproduced using this

systemic drift model. As this process is very similar to the above discussion, this

demonstration has been omitted. Additionally, the modelled (A + αi ) values are

similarly accurate for cases of negative and negligibly small intensity graidents as

they are in the case of positive intensity gradients. However, further demonstra-

tions are omitted for brevity.

The modelled data can be shown to reproduce trends and (A + αi ) values

from experiment. As such, the use of the model to investigate certain aspects of

the experiment is validated. This will allow the study of data analysis techniques

and experimental conditions in relation to the uncertainty of the experiment. The

model will not be used to infer information regarding particular sets of experimen-

tal data.
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"But who shall dare to measure loss and gain in this wise?

Defeat may be victory in disguise.

The lowest ebb is the turn of the tide."

� Henry Wadsworth Longfellow
In The Harbour: Loss and Gain
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