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Abstract 

 

An empirical study in the ship-building sector has been undertaken to understand the problems 

associated with the coordination of engineer-to-order (ETO) supply chains and to reveal insights into 

opportunities for improvements based on the application of soft systems methodology (SSM). A 

number of alternatives to improve coordination of supply chain have been proposed based on the 

comparison between a soft systems model and actual practice. These alternatives were summarized 

into seven general principles that help define the role of individual companies’ in coordinating ETO 

supply chains, highlighting the company’s structures and interdependencies that lead to project 

tardiness.  Due to the specific nature of a project which changes according to the context, it is difficult 

to generalize the soft system model. Nevertheless, future research can further explore some of the 

principles proposed to deal with coordination problems experienced in other types of ETO project 

operations, such as construction and oil and gas.  
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1. Introduction 

There is little literature on the problems faced by engineer-to-order (ETO) supply chains and there is 

still a considerable gap between theory and practice (Gosling and Naim 2009, Mello and Strandhagen 

2011). The development of supply chain management theory and practice in ETO supply chains is still 

relatively immature when compared with other types of supply chains that produce high-volume 

products (Hicks et al. 2000, Gosling and Naim 2009, Zirpoli and Becker 2011, Shishank and Dekkers 

2013, Gosling et al. 2014). Engineering, or product development, which encompasses concept, basic 

design and detailed engineering, is an integral element of the ETO supply chain that typically is a 

separate business process in other types of supply chains (Hicks et al. 2000). Furthermore, many ETO 

companies have been outsourcing production to low-labour cost countries, and retained engineering as 

a core expertise (Stavrulaki and Davis 2010). This decision has created a barrier between engineering 

and production that has resulted in the occurrence of protracted delays leading to poor on time delivery 

performance.  

In ETO supply chains there is typically no stock of finished products to immediately satisfy a specific 

customer need, hence the customer is exposed to the total product lead time (McGovern et al. 1999). 

The high degree of product customization required by individual customers has a direct impact on the 

delivery lead-time (Konijnendijk 1994). The greater the degree of customization the longer the lead 

time, since more activities are performed after receiving the order (Amaro et al. 1999). To remain 

competitive in this context, companies need to understand customer needs and fulfil customer demands 

through short lead times. Therefore, lead time reduction is considered one of the most important factors 

for improving the performance of ETO supply chains (Hicks et al. 2001, McGovern et al. 1999, 

Konijnendijk 1994). 

According to Caron and Fiore (1995), delays happen because of the lack of inter-functional coordination 

which increases both project lead times and costs. In particular, there is a need for better coordination 

of engineering and its interface with production activities in an ETO supply chain (Gosling and Naim 

2009). Hence, coordinating engineering and production has considerable scope to improve supply chain 

performance (Hicks et al. 2001). Although the problems related to coordination of engineering-

production interface have also appeared in MTS supply chains (Hoek and Chapman 2007, Hoek and 

Chapman 2006, Pero et al. 2010), the complexity of the product structure and the need to deal with 

specific customer needs make them more relevant to ETO supply chains (Pandit and Zhu 2007). 

To outline the opportunities for improving coordination, this study explores the use of soft systems 

methodology (SSM). SSM was initially proposed by Checkland (1981) as a way to deal with real-world 

problem situations involving complex systems which lack a formal definition. This approach enables 

improving the perceptions about problems through the learning experience gained working with a soft 

systems model (Checkland and Scholes 1990). This model is used to guide an inquiry process which 
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helps to address meaningful changes for improving coordination. Although SSM has demonstrated its 

applicability to tackle complex problems, applications of SSM in project-based operations, such as ETO 

supply chains, are still scarce (Winter et al. 2006).  

Therefore, the formal aim of this paper is: to understand how to coordinate an engineer-to-order supply 

chain in order to avoid delays and reduce the lead time, and to outline opportunities for improvements 

based on the application of the soft systems methodology. To achieve this aim, the following research 

questions have been proposed: 

(i) What are the coordination needs in an ETO supply chain? 

(ii) How can SSM be applied to fulfil those needs?  

(iii) Based on the application of SSM, what are the alternatives to improve coordination in an ETO 

supply chain? 

The next section provides an overview of the literature that covers the coordination of ETO supply 

chains and the applicability of SSM in a project context. After that, the research approach is explained 

and the empirical setting is described. Next, the application of SSM is reported and the current 

management practices are analyzed. Finally, the conclusions summarize the main findings and address 

the opportunities for further research. 

 

2. Background 

2.1 Project and production management 

The emphasis on type of management control often depends on the type of operations. According to 

Hayes and Wheelwright (1984), volume and variety are two important variables to characterize the 

different types of operations. In the case of customer-specific products, characterized by low volume 

and high variety, operations can be managed through project-based processes (Hayes and Wheelwright 

1984). A project usually comprises a high level of uncertainty because project activities typically involve 

unique attributes with a high degree of human judgment with little opportunity for process 

standardization. The body of knowledge for managing projects, related to ‘one-of-a-kind’ products, is 

typically associated within the ‘project management’ literature, while jobbing, batch, mass and 

continuous operations are related to ‘production management’. While the purpose of a project is to 

accomplish its objective and then complete, hence temporary in nature, production has the objective of 

sustaining on-going business and is therefore repetitive (PMI 2013). The ‘uniqueness’ of each project is 

an essential characteristic that distinguishes project management from production management (Gosling 

et al. 2014). According to the Project Management Body of Knowledge (PMBOK): 

“Every project creates a unique product, service, or result. The outcome of the project may be tangible or 

intangible. Although repetitive elements may be present in some project deliverables and activities, this 

repetition does not change the fundamental, unique characteristics of the project work. For example, office 

buildings can be constructed with the same or similar materials and by the same or different teams. 
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However, each building project remains unique with a different location, different design, different 

circumstances and situations, different stakeholders, and so on..” (PMI 2013: p.3) 

In general, operations in project-oriented companies are characterized as engineer-to-order (ETO). In 

ETO companies value is created mainly by developing customer-specific solutions and integrating 

sophisticated systems (Wortmann et al. 1997). More recently, the emergence of a new paradigm has 

changed the perception of how companies compete. The main premise is that companies are no longer 

competing individually but as supply chains (Cooper et al. 1997, Lambert and Cooper 2000). Project 

organizations have realized that the inter-functional coordination of companies carrying out different 

activities has the potential of reducing project schedule and cost overruns and the chances of project 

failure systems (Asbjørnslett 2002, Venkataraman 2007). But while there has been much research on 

‘production management’ supply chains there is little work on project-based supply chains that are 

managed as ETO systems (Asbjørnslett 2002, Venkataraman 2007). 

2.2 The engineer-to-order supply chain  

Supply chains consist of multiple companies which together satisfy customer needs through products 

and/or services. As defined by Christopher (1992: p.15): “A supply chain is the network of organizations 

that are involved, through upstream and downstream linkages, in the different processes and activities 

that produce value in the form of products and services delivered to the ultimate consumer”. In practice, 

there are several types of supply chains and different ways to classify them. The customer order 

decoupling point (CODP) enables differentiation of four principal types of supply chains: make-to-stock 

(MTS), assemble-to-order (ATO), make-to-order (MTO), and engineer-to-order (ETO) (Olhager 2003). 

In ETO supply chains, the CODP is located at the design stage, so each customer order penetrates to the 

design phase of a product (Gosling and Naim 2009). This means that each product is designed according 

to specific customer needs. 

In general, ETO companies create value in understanding customer requirements, translating them into 

specifications at product and component level, and integrating components and subsystems into products 

(McGovern et al. 1999). Shipbuilding, heavy equipment, offshore oil and gas, and construction are 

typical examples of sectors with ETO operations. Some main characteristics of ETO include: low 

volume, high demand oscillations, specific customer requirements, various engineering disciplines, high 

number of customized items, long lead times, contractual relationships, and high capital investment. In 

general, such characteristics lead to increasing costs. Consequently, ETO companies have pursued 

different strategies in order to increase cost efficiency, and outsourcing has being a major trend for most 

of them (Hicks et al. 2000). In most cases design and engineering capabilities are retained at the 

headquarters while manufacturing activities have been preferentially outsourced, except from the case 

where manufacturing capability is necessary due to a lack of potential suppliers  (Hicks et al. 2000). The 

result is an ETO supply chain involving multiple companies worldwide to develop and produce high-

value products (McGovern et al. 1999, Hicks et al. 2000, Gosling and Naim 2009). 
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In ETO supply chains there are basically two main flows: physical material flows and non-physical 

information flows (Bertrand and Muntslag 1993). According to Bertrand and Muntslag (1993), the non-

physical stage concerns planning, design, engineering and procurement and the physical stage relates to  

manufacturing, assembly, and installation. The interdependency between information and material flow 

gradually increases as products move from development to production. Consequently any changes at 

the latter stages of product development have a higher impact on the efficiency of production (Simchi-

Levi et al. 2008). Managing information and material flows requires a systems approach to identify, 

analyze, and coordinate the interactions among the entities (Shin and Robinson 2002). Such an approach 

can help to understand the relationship between various activities across companies, and how the 

behaviour of a single company can damage the performance of the supply chain as a whole (Forrester 

1961).  

Many of the difficulties in ETO supply chains arise from managing the customization requirements in 

the new product development process (Rahman et al. 2003). The importance of effectively managing 

the interface between engineering and supply chains has been noted by a number of researchers (Dekkers 

et al. 2013, Pero et al. 2010, Hoek and Chapman 2007). The issue of the ‘regularity’ of demand becomes 

particularly relevant in ETO supply chains, whereby demand patterns are inconsistent  (Ireland 2004). 

Competitive bidding within project situations have been found to be an important source of delays and 

problems (Elfving et al. 2005), and, more generally, project situations have been found to introduce 

unpredictability in what would normally be regarded as stable supply situations (Sanderson and Cox 

2008).  Potential responses to such problems include the use of flexible supply chains (Gosling et al. 

2013), better information flow through IT (Information Technology) solutions (Pero and Rossi 2013), 

and business process improvement (McGovern et al 1999). In this paper we focus on the need for a 

system-based view of co-ordination strategies. 

2.3 The role of coordination and systems thinking in ETO supply chains 

Malone and Crowston (1994) defined supply chain coordination as “the act of managing dependencies 

between entities and the joint effort of entities working together towards mutually defined goals”. In 

this sense coordination is a relevant aspect of the decision-making process that maintain the order and 

stability of a system. To be fully coordinated, a supply chain requires that all decisions are aligned to 

accomplish a global system objective (Shin and Robinson 2002). A system view is essential to highlight 

individual behaviours that may damage overall performance. This means that coordination is enacted 

on decisions, communications and interactions between supply chain members and supports companies 

in managing information and material flows associated with key business processes (Romano 2003). 

In an ETO context, poor coordination among project participants to deal with specific customer 

requirements and product changes generates delays which increase the lead time (Pandit and Zhu 2007). 

Delays often result in difficulties in defining accurate lead-times. According to Hicks et al. (2001) 

improving delivery in an ETO context is dependent on both reducing lead times and increasing the 
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reliability of lead time estimates. The three major phases that require coordination are: marketing 

(tendering), engineering (product development), and production (product realization) (Hicks et al. 

2000). Coordination of these processes requires specific coordination mechanisms , such as: mutual 

adjustments or teams, which can be used in a situation of limited standardization and rarely any repeat 

orders (Konijnendijk 1994). Konijnendijk (1994) argues that in ETO the use of rules for coordination in 

the form of design standards is very limited. 

In general, supply chain coordination has been addressed mainly from a logistics perspective (Romano 

2003), and there has been little effort made to develop a holistic view of coordination (Arshinder and 

Deshmukh 2008). The requirements of coordination may change according to the nature of activities 

performed in the supply chain. In some types of supply chains, especially those requiring a high degree 

of manual work, performance is highly dependent on the people who execute the processes and interact 

with the technologies. One of the most difficult issues in coordinating supply chain members is to 

manage people, and more case studies are required to explore qualitative issues related to human-based 

systems in order to achieve coordination (Arshinder and Deshmukh 2008, Christopher and Towill 2000, 

Stank et al. 2011). 

The operations in ETO companies are project-oriented. Given the number of daily problems that 

managers have to deal with, a project can be viewed as a problem-solving situation in itself. Indeed, a 

project is a typical example of human-activity system which involves different parties with conflicting 

objectives. To prevent poor functional performance, each part may act on behalf of its own interests 

even though this behaviour can deteriorate the overall performance of the project. Methodologies 

commonly adopted to tackle problems related to coordination include: analytical, mathematical and 

optimization tools which are based on the positivism paradigm (Arshinder and Deshmukh 2008). Such 

approaches, however, usually fail to adequately present complex problems because they tend to focus 

on one specific element of the system or oversimplifying a problem situation (Jackson 2003). In this 

sense SSM can provide a holistic view of coordination which may help to understand the roles of each 

company and the interdependence between its activities. 

Previous systems-based research, using predominantly System Dynamics, in project management 

(which is also relevant to ETO) has elaborated on many of the aspects presented in the paper. For 

instance, Chapman (1998) emphasized that people issues can have an impact on project performance as 

great as technical issues. According to Chapman (1998), changing project personnel during the design 

stage erodes the productivity, and this is something considerable difficulty for recovering. In this paper, 

we came across a similar finding. While Chapman (1998) has focused on the design stage, we 

emphasized the importance of people skills, knowledge and experience during the production stage. As 

we pointed out, developing and maintaining the production capability has a great importance for 

avoiding delays delivery, particularly when designs are innovative.  
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The Ingalls case, described by Sterman (2000), sheds lights in some of challenges to manage design 

changes in innovative and technically sophisticated projects. During the 70s, Ingalls Shipbuilding won 

a contract to build a fleet of 30 new destroyers for the US Navy, but, as the project progressed, cost 

overruns projected to exceed $500 million and the case ended up in the court (Sterman 2000). A systems 

dynamics model was used to help both Ingalls and the Navy set up a common framework for discussion 

of the causes of the delays and cost overrun. Sterman (2000) points out that the learning from this 

experience was that the better the understanding of the model, the more likely it will be influential in 

the resolution of the dispute. More details on the applicability of hard (system dynamics) and soft (soft 

system methodology) methods in project management are discussed in detail by Crawford and Pollack 

(2004). 

2.4 Soft systems methodology 

 

SSM helps to deal with messy problem situations in the real world which lack a proper definition 

(Checkland 1981). Such types of problems are common in ‘human-activity systems’. According to 

Checkland (1981), humans are able to attribute meaning to what they experience and observe, hence a 

transformation process, for example, can assume several meanings according to different points of view. 

Consequently, each person may pursue their own objectives instead of the objectives set by an 

organization. Such behaviour may result in conflicting interests which are surrounded by a higher level 

of subjectivity. SSM aims to accommodate different interests, something that is facilitated by the use of 

systems thinking.  

Checkland and Scholes (1990) highlight that the goal of SSM is not simply consensus-seeking, but 

preparing the different parties to ‘go along with’ purposeful actions. The goal is to capture the real-life 

richness of details and impressions to build SSM models which are used for comparison and debate. 

Checkland and Scholes argue that SSM is a wider concept than just a ‘seven-step’ problem solving. 

SSM is an enquiring process in which a system is developed to organize a debate about purposeful 

changes (Checkland and Scholes 1990). SSM requires the involvement of people, which may find 

themselves in the problem situation to collaboratively develop models. Such models help to make sense 

of a complex situation and to take purposeful actions to change the situation constructively. 

Relevant successful applications of SSM include: organizational structuring, performance evaluation, 

policy assessment and information systems redesign (Mingers and Taylor 1992, Zhou et al. 2007, Liu 

et al. 2012). In particular the case of larger engineering projects performed by several companies is 

considered a very complex setting where a system perspective can provide useful insights. Project 

management practice has been mainly influenced by a ‘hard’ systems approach, which derives from 

systems engineering; however, SSM has a growing acceptance in developing understanding of, and 

tackling, complex problem situations (Pollack 2007).  
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Conventional project management practices do not address the fundamental sources of uncertainty, 

which may be present in the conception and post delivery stages of the project life cycle (Atkinson et 

al. 2006). According to Atkinson (2006), while projects with low uncertainty and ambiguity can be 

managed using quantitative success measures such as time and cost performance, projects with high 

uncertainty and ambiguity require a different approach based on the validity of different perspectives 

and worldviews. Although SSM has been pointed out as a relevant approach to address the complexity 

of projects (Atkinson et al. 2006), a number of authors (i.e. Winter et al. 2006, and upheld by White and 

Fortune 2009, Staadt 2012) emphasizes that most studies have been largely theoretical lacking examples 

of practical application. Therefore, more practical examples of the use of SSM in real project situations 

are needed to fulfil this gap. 

3. Method 

3.1 Overview 

A field study has been undertaken to understand the problem situation and to reveal insights into possible 

changes. The motivation for carrying out the SSM was to tackle the coordination problems which cause 

project delays and longer delivery time in shipbuilding projects. Field studies are characterized by the 

detailed understanding of the practice in a particular company, business or industry (DeHoratius and 

Rabinovich 2011). The main appeal for conducting a field study is the need to understand empirical 

phenomena through the use of observation and participation over an extended time period (Karlsson 

2009). It gives rich insights into the investigation of complex and dynamic processes by allowing the 

researcher to collect new data, revisit the site of previous data collection and/or develop the methods 

used in data analysis (Karlsson 2009). According to Karlsson (2009), the presence of the researcher in 

the company helps to observe behaviours and patterns of human activity, and become part of the 

situation being studied to feel what it is like for the people in a specific context. 

The research study presented was undertaken in the shipbuilding industry, which is a setting to represent 

the ETO context. Two companies were selected, a ship designer and a shipyard. These companies are 

responsible for developing (ship designer) and producing (shipyard) sophisticated and customized 

vessels that operate in offshore oil and gas platforms. The main unit of analysis is the interdependences 

between activities carried by these companies in a shipbuilding project, and embedded units correspond 

to the departments inside each company.  

While the study incorporated extensive data from interviews, facilitated workshops and documentation 

review (see the following section). The core modelling/stakeholder team guiding the SSM application 

were 4 academics and 3 practitioners. This included the co-authors, the Managing Director of the design 

company, the Supply Chain Manager and the Engineering Manager. This core team discussed the project 

as the study progressed.  

 

3.2  Data collection 
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Data was collected through semi-structured interviews, facilitated workshops, field observation, press 

material, and access to companies’ procedures, flowcharts and project documentation over a period of 

approximately one and a half years. Engineering and production activities have the greatest lead times. 

The data was collected with the intention to cover the completion of engineering (data collection phase 

1) and production (data collection phase 2) activities. Data collection phase 1 was carried out from 

October 2010 to May 2011, and data collection phase 2 from October 2011 to July 2012 (Figure 1). 

Following Kotiadis et al. (2013) the workshop and SSM stages have also been mapped onto the timeline. 

Reflection and analysis were performed after each data collection period and the preliminary results 

presented in two workshops. This created a series of iterations between the evidence (via case notes in 

the form of digitally recorded interviews and meeting), the existing body of knowledge from the 

literature, and discussions between the research team, as well as with practitioners. This is in line with 

Dubois and Gadde (2002) and Naim et al. (2002). The latter was particularly influential as the research 

team had previously tested and applied the iterative data collection approach using the method described 

therein, including post-data collection brainstorming activities and data triangulation.  

 

To mitigate the bias from interviews and facilitated workshops, triangulation was performed based on 

additional sources of information including procedures, flowcharts and project documentation. 

Contracts, schedules, drawings, specifications, standards, and reports were the main types of project 

documentation used. Data from media press were collected from newspapers, technical magazines and 

company’s public documentation. Such material was organized to highlight facts and events during the 

development of each project. Due to commercial sensitivity, data on costs were not available. 
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Figure 1. Data collection in relation to the project life cycle 

 

In total, a period of five weeks was spent in companies’ sites to perform interviews and facilitated 

workshops. Sixteen interviews were conducted with the ship designer’s staff and twelve with the 

shipyard’s staff. Interviewees from the ship designer included the managing director and the underlining 

organization: sales manager, design manager, engineering manager, project engineers (4), supply chain 

manager, procurement coordinator, project manager, production advisor, site engineer. In the shipyard, 

interviews were carried out with the administrative manager and the respective line organization: 

engineering manager and design engineer, supply and logistics manager, procurement coordinator, 

planning and production manager, project coordinator (2) and project planners (2). 

Most of these interviews took approximately one hour, and were audio recorded and field notes were 

used to summarize key points of discussions and to record events and impressions. A semi-structured 

questionnaire was used to guide the interviews. Due to the nature of soft systems study which deals with 

ill-defined problem situations, the questions used in the research protocol were ‘open questions’. Some 

examples of questions used were: What are the major problems in this project? How often do these 

problems happen? How can these problems affect the lead time? Why are these problems happening? 

How could these problems be mitigated or avoided? More specific questions were made according to 

the answer from interviewees, such as: What activities will be affected by doing this change? How will 

they be affected? Asking the same questions across various departments and companies helped us to 

compare the different views of delays. E-mails and phone calls were used after the interviews to clarify 
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and validate the information gathered from interviewees. On-site observation helped to contextualize 

the problems described and make sense of their criticality. Drafts of the rich picture were developed 

through meetings, and were presented at the facilitated workshops, as well as feedback gathered through 

email exchange between people participating in the study. 

Facilitated workshops helped to further discuss problems identified during interviews and to bring 

insights about possible changes. A mix of insider-outsider viewpoints helped to develop a deep 

understanding of both organizational and technical issues affecting coordination, and helped to generate 

a number of alternatives to improve coordination. Three facilitated workshops were carried out, two 

with the ship designer and one with the shipyard. These facilitated workshops were structured as a debate 

in which participants were invited to contribute with their opinions about various alternatives to improve 

coordination, which also helped the team to model the situation (Franco and Montibeller 2010). The 

number of participants in facilitated workshops varied from 4 to 6 people. The target group was 

managers from engineering, supply chain, production and project management departments. The first 

workshop, at ship designer, company has focused on discussing critical problems which may delay the 

project, identifying sources of conflicts between project partners and highlighting potential alternative 

solutions. The second workshop, at the shipyard, gave us the opportunity to discuss more in depth the 

problems previously highlighted in the first workshop and to assess which solutions would be feasible 

to implement. The third workshop, at the ship designer, was dedicated to build consensus around 

solutions which would make sense from both ship designer and shipyard perspectives. An overview of 

participants in each of the facilitated workshops is given in Table I.  

 

[Table I. Around here] 

 

 

 

3.3 Analysis using soft systems methods 

All the data were collected and analyzed by applying the soft systems methods proposed by Checkland 

and Scholes (1990), namely Customer, Actors, Transformation, Owner, Weltanschauung (worldview), 

and Environmental constraints (CATWOE), root definition, rich picture and soft systems model as 

shown in Table II. A more detailed description of these methods is given in the next section. The Figure 

2 provides a comprehensible representation of how the soft systems methods are combined with one 

another. CATWOE, and root definition, supported by a rich picture, has helped to create a soft systems 

model. 

 [Table II. Around here] 
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Soft system 

model

Rich picture Actions to improve the 

problematic situation

A real-world 
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Real-worldSoft system methods

Learning 

cycle

Debate on 
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Figure 2. The SSM roadmap, adapted from Checkland and Scholes (1990). 

CATWOE 

CATWOE summarizes relevant elements of a problem situation. Checkland and Scholes (1990) point 

out that for any transformation process (T) there will be always different interpretations (W), someone 

undertaking it (A), someone that can stop it (O), someone who will be affected (C), as well as 

environmental constraints (E) which are taken as given.  

Root definition 

The elements of the CATWOE are used for developing a root definition which expresses a formal system 

definition. A root definition is derived from the worldview and the transformation process. A simple 

schema “a system to do X by Y in order to achieve Z” has show to be useful to develop a root definition 

(Checkland and Scholes 1990). Although sometimes a root definition seems trivial, it helps to bring 

together diverse views about what the system really is.  

Rich picture 

Other subjective (also called soft) elements of a system can be represented using a rich picture. A rich 

picture is a visual representation of the problem situation that enables to show behaviours which are 

important in the problem situation analyzed. There is no formal technique to generate these pictures. 

Judgments, mindsets, concerns, and other issues concerning human affairs are relevant to represent 

(Checkland and Scholes 1990). The rich picture was drawn mainly from impressions of on-site 

observations. These impressions were later on confirmed either by interviews, facilitated workshops, 

procedures, flowcharts, or press material. 

Soft systems model 

The modelling process consists of using verbs to structure the minimum number of activities needed to 

carry out the transformation process (Checkland and Scholes 1990). The model provides a basis for 

comparison with the perceived reality, and makes the thinking process coherent and capable of being 

shared. The soft systems approach does not offer pre-conceived answers for a problematic situation. 

This means that potential changes are addressed comparing the soft systems model and the perceived 

reality through a debate. In fact, the new perceptions generated during this debate are more important 
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than the model itself. According to Checkland and Scholes (1990) such interpretations do not deserve 

the status of being universal, new interpretations of the problem are continually generated throughout 

the debate. 

 

4. Soft system study 

The goal of the soft system study was to understand how the functional structure of each company and 

its interdependence can generate problems which delay the overall project execution. The analysis is 

carried out considering that the boundary of the system comprises the project activities accomplished 

by the ship designer and shipyard. 

4.1 Rich picture - Representing the project behaviour 

To highlight the behaviour of the ship designer and the shipyard during a shipbuilding project, a pictorial 

representation was developed using a rich picture as given in Figure 3. It shows the perspectives of 

different actors, both in ship design processes and at the shipyard. It is possible to see from this 

representation the complex interplay between the actors, and potential tension points as the project 

progresses.  The rich picture illustrates a typical project situation where each function, while attempting 

to perform in a better manner, ultimately leads to a problematic situation for the system as a whole, as 

evidenced by protracted delays.  
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Figure 3. Rich picture of the project behaviour 

 

 

4.2 Describing the problem situation 

This study is based on a project carried out to develop and produce an offshore supply vessel. The project 

involved several companies including a shipowner, a ship designer, a shipyard, dozens of main 

equipment suppliers and hundreds of minor other suppliers. The shipowner is the customer, and each 

offshore vessel needs to be customized according to its specific needs and preferences. The ship designer 
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suppliers and shipyards are contacted by the ship designer to evaluate the technical capability, delivery 

schedule and cost. 

To win a contract, the shipbuilding supply chain needs to demonstrate its ability to deliver a vessel that 

provides maximum operational performance while minimizing both total costs and contractual risks. 

Although the ship designer led the negotiation with the shipowner, contractually, it is the shipyard that 

has the obligation to deliver the vessel to the shipowner. The shipyard has signed a contract with the 

ship designer only to deliver the drawings and specifications. The ship designer was also contracted to 

procure main equipment, such as main engines, generators, tunnel thrusters, propellers, cargo systems, 

electrical and communication systems. In this case, the ship designer established a contract with several 

main equipment suppliers to deliver the equipment according to the specifications provided. Other minor 

suppliers, for accommodation, windows, electrical cables, pipes, steels plates and HVAC (heating, 

ventilation and air condition) had a contract with the shipyard. 

Once the contract was signed the project was formally launched. The main project processes include 

tendering, engineering, procurement, production and commissioning. The description of these 

processes, companies involved and their main roles are presented in the Table III. 

 

[Table III. Around here] 

 

In the shipbuilding project each company had its main deliveries defined in the contract. Although the 

contract influences the behaviour of companies setting penalties and incentives, the contract itself does 

not assure that coordination is achieved.  Examples of this lack of coordination appear in a number of 

quotations from interviews with managers, and evidence problems which occurred throughout the 

project as shown in Table IV. In summary, the project involves a significant level of interdependence 

between activities which are difficult to streamline because these activities are not performed at the same 

company. Consequently, a problem in one company also affected other companies, and negotiations 

across companies were often needed and joint effort was required to overcome conflicts. Most of the 

time problems were discovered later during production, when it becomes more difficult to solve. For 

example, engineering errors seem difficult to avoid, and it has a significant impact in the progress of 

production activities. When problems were not solved quickly, they propagated to activities performed 

in other companies producing a ‘snow ball effect’ that increased the delay of the project even more. 

 

[Table IV. Around here] 

 

4.3 CATWOE - Identifying essential elements of the system 

The CATWOE is applied to structure the elements of a shipbuilding project as it is shown in Table V. 

Interviews were the main data sources to develop the CATWOE. Facilitated workshops, procedures, 

flow charts, and project documentation were used to collect complementary information. 
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[Table V. Around here] 

 

The CATWOE shows that the shipowner is the customer (C) of a shipbuilding project. Although the 

ship designer and the shipyard are the leading companies in delivering a project to satisfy shipowner 

needs, there are other companies involved including main equipment suppliers, other suppliers and 

financial institutions (A). Three sub-processes (T) are essential to accomplish the transformation from 

understanding a customer need through to the delivery of a ship to the customer: engineering (including 

tendering), procurement and production (including commissioning). The main reason (W) why several 

companies accept the risks of performing a shipbuilding project is because they each expect to make a 

profit. The worldview of the ship designer is the primary lens for analysis in this study. This is justified 

on a number of grounds. Firstly, the ship designer is the hub for co-ordination, bringing together 

information from the main equipment suppliers, the shipyard, the client and other stakeholders for the 

needs of the project. Secondly, it is a large global company (employing over 4000 people), playing a 

substantive role in the establishment of the supply chain, project and industry more generally. The 

common mindset is that all companies can mutually benefit from using their expertise to satisfy the 

needs of a shipowner.  

 

Although contractually the shipyard is primary responsible to deliver the vessel to the shipowner, both 

the ship designer and the shipyard (O) share the authority over the project. The ship designer coordinates 

the engineering and procurement of main equipment while the shipyard coordinates the procurement of 

materials and production. The ship designer has a contract with the shipyard, but if delays occur the 

shipyard will be the most affected actor since the latter allocates more resources and contractually takes 

the responsibility for delivering the vessel. That is the reason trust plays an important role in this type 

of project. A shipbuilding project is usually dependent of the approval of classification societies and 

local authorities (E) which restrict the scope of project decisions. For example, classification societies 

such as DNV and Lloyd’s play an important role in approving drawings and calculations made in the 

engineering. 

 

4.4 Root definition - Formally defining the system 

Based on the CATWOE, a root definition is proposed as:   

A project, instigated by a shipowner and co-managed by a ship designer and ship yard, that efficiently 

delivers shipbuilding projects, consisting of engineering, procurement and production, also involving 

suppliers and financiers, who make profits by satisfying shipowner needs, in terms of delivery, price and 

vessel performance subject to the regulations imposed by local authorities and classification societies. 
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This root definition was primarily set up based on data from interviews, observations and project 

documentation. The perception of company members towards the root definition was captured during 

the facilitated workshops. Except for a few adjustments, there were not substant changes to the root 

definition initially proposed 

4.5 A soft systems model - Supporting the improvement process 

A soft systems model is developed, as shown in Figure 4, in order to structure a debate about possible 

changes to mitigate the occurrence of problems that delay the project. To develop the model, information 

about core project activities was listed and cross-checked against data from interviews, procedures, flow 

charts, and project documentation. Interaction with company members by phone and e-mail was 

necessary to endorse the model before starting to use it in facilitated workshops to debate feasible 

changes. 

 

 

Figure 4. Soft systems model of the ETO supply chain under study 

The model is generated to identify the minimum number of activities required to successfully perform 

the project. The basic activities for developing the soft systems model are activities: (1) Tendering - 

covers the concept design and systems engineering; (6) Engineering - relates to development of drawings 
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and specifications which are delivered to main equipment suppliers and shipyard as per project schedule; 

(7, 11) Procurement - the ship designer procures the main equipment while the shipyard procures 

standard components and commodities; (13) Manufacturing  - fabrication of frames and blocks at the 

shipyard; (14) Assembling and commissioning – the shipyard is responsible for outfitting and 

commissioning the equipment prior to sea testing; (15) Testing – the performance of the vessel can be 

continually evaluated to feed back engineering and production. This soft systems model also includes 

the following support activities: (9, 10, 17, 18) Project management - responsible for monitoring and 

controlling the execution of project activities within the ship designer and shipyard; (5) Planning and 

control - plans and schedules are defined collaboratively, and both ship designer and shipyard needs to 

be committed to achieve the delivery time; (2) Quality assurance - assessment of project partners’ 

capabilities (skills, competence and resources) in order to avoid quality problems later on during the 

project execution; (4) Risk management - use of knowledge from previous projects in order to assess 

both technical and management risks; (3) Lessons learned - the knowledge obtained from post-project 

appraisals need to feed back quality assurance and risk management in order to avoid previous problems; 

(8, 16, 19) Performance measurement - the performance is measured based on efficacy (the extent the 

system accomplish its objectives) and efficiency (how well the resources are used), while the 

performance of project is measured based on effectiveness (the extent the system meets its long term 

goals); (12) Continuous improvement - production engineering team provides the necessary skills in 

order to avoid errors and accidents while optimizing the productivity; (20, 21) Managing the whole 

project – consist of monitoring all activities from 1 to 18 from both ship designer and shipyard in order 

to ensure the effectiveness of the project. 

 

4.6 Debate on feasible changes 

As Checkland and Scholes (1990) suggest, the compassion between soft system model and the perceived 

reality was organized as a debate. Such debate was structured in four steps. Initially participants received 

explanations about the soft system model (step 1). So, participants who had not been involved in the 

early phases had the opportunity to understand what the model is. Then, the participants were exposed 

to the problems illustrated in the rich picture (step 2). This enabled illustration, for example, of how 

solutions adopted in one department may create problems in another one. Actions to improve the 

problem situation were discussed comparing whether each activity in the system model exists in practice 

(step 3).  

A list of potential changes was previously organized based on a literature review (see Appendix A). 

Such a list was distributed among the participants, and it helped to trigger the debate where participants 

were asked to give opinions on the feasibility of potential changes. To enrich the debate about the 

alternatives to improve coordination participants used the list to develop new insights. At the end of the 

debate, the changes that achieved more empathy among the participants were summarized (step 4).  

Indeed, the debate serves to ‘accommodate’ meaningful improvement actions which different people 
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having different worldviews can still live with (Checkland and Winter 2006). It does not mean that all 

participants agreed with all alternatives. As Checkland and Scholes (1990: p.30) states “It is wrong to 

see SSM simply as … consensus-seeking... the conflicts endemic in human affairs are still there, but are 

subsumed in an accommodation which different parties are prepared to ‘go along with’”. Throughout 

the debate, the researcher’s role was mainly mediating the discussion and stimulating the involvement 

of participants. Such participants were also taking part in developing knowledge as co-researchers since 

the practice of dealing with the problem provides tacit knowledge which was essential (Shani et al. 

2008). Therefore, this approach has shown useful for conducting research in a complex setting which 

involves a considerable number of variables and uncertainties, and a lack of reliable quantitative data 

(Mingers and Rosenhead 2001). In such context, problem solving is not simply an intervention but a 

continuous learning cycle (Senge 1990). 

 

4.7 Analysis of the current practices and outcomes 

The debate, comparing the system model of Figure 4 and the perceived reality, highlighted potential 

actions for improving coordination as given in Table VI. The left-hand column corresponds to the 

activities derived from the model. The next two columns question whether such activity exists in practice 

and who does it respectively. The right-hand column addresses the feasible alternatives to change an 

activity in order to improve coordination. Even the activities that already exist in practice may offer 

opportunities for improvements. We have considered five possibilities to categorize whether or not an 

activity exists. In some case, simply stating ‘Yes’ or ‘No’ was not enough to categorize an activity. In 

some cases an activity does not exist yet, but is ‘Being implemented’. The use of ‘To some extent’ refers 

to the fact that a particular activity does exist but its scope is rather limited. For example, the ship 

designer and shipyard have performance measures however the application of such measures in only 

limited to monitor schedule progress, rework rate and quality problems are not recorded. ‘Not formally’ 

indicates that the activity does exist but is not rigorously or routinely undertaken in practice. For 

instance, a lesson learned is not carried out a process throughout the project by the ship designer, but 

only as a ‘close out’ meeting in the end of the project. More than simply highlighting changes SSM 

helped to structure a debate that increased the knowledge of the problem situation. As Jackson (2003: 

p.188) states “Problem resolving should be seen as a never-ending process in which participants' 

attitudes and perceptions are continually explored, tested and changed, and they come to entertain new 

conceptions of desirability and feasibility”. 

 

[Table VI. Around here] 

 

5. Discussion 
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Via the application of soft systems methods, this paper has investigated the role of coordination in an 

ETO supply chain. At the beginning of the paper three research questions were posed. We now revisit 

and discuss each question in turn.  

The first research question was ‘what are the coordination needs in an ETO supply chain?’. An ETO 

supply chain consists of multiple companies engaged to perform complex projects. Coordinating these 

companies and their interrelated activities is regarded as a critical issue for mitigating delays and 

reducing the total lead time. The main coordination needs in an ETO supply chain are related to design 

/ engineering, procurement, and production / testing. In practice the interdependence between these 

processes is substantive, and that increases the complexity of coordination.  

 

The second research question was ‘how can SSM be applied to fulfil those needs?’. To deploy effective 

coordination mechanisms, a system view is necessary. In this study, a number of soft systems methods 

have been applied, namely: CATWOE, root definition, rich picture and system model. The CATWOE 

has helped to clarify the structure of the system and the roles of each company as given in Table V. In 

large projects involving several companies, a holistic view of the project is missing. In this sense, the 

root definition set a common view about what the system is. Functional silos, inadequate contractual 

rules, and non-aligned performance measures are attributed to engineering and production not being 

undertaken within the boundaries of a single company.  

The rich picture of Figure 3 enabled the implications of the relationship between two companies to be 

drawn. The adoption of a systemic perspective to analyse the interdependence between these companies 

has resulted in a system model. The model shown as Figure 4 indicates a higher number of linkages 

across the boundaries of each company, and suggests that managing this interface is critical for 

delivering the project on-time. The comparison between the model and actual practice has guided an 

inquiry process to tackle the problem situation. The ‘system view’ provided by SSM was very useful in 

presenting the complexity in an ETO supply chain. Rather than a recipe for guaranteed achievements, 

SSM has provided a learning experience to explore a complex problem situation. In SSM, a structured, 

coherent and shared vision has motivated the improvement process. Therefore the role of SSM is 

twofold. First, it has enhanced the knowledge about the problem in order to address meaningful changes, 

and second it contributed to engage people which may support the process of change.  

 

The application of SSM was very effective to involve practitioners in discussing alternatives to improve 

coordination. Such alternatives were developed together with the people that do the job. The soft system 

study was undertaken to highlight meaningful alternatives, which make sense to people in that particular 

problem situation. As Checkland and Schole (1990: p.58) emphasize: “SSM will always emerge in use 

in a form which its users find comfortable in the particular situation they are in”. Hence the alternatives 

generated are assumed to be feasible from the perspective of the participants in the soft system study. 
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It is important to note that, due to the focus of the study, and the experience of the academic and 

practitioner teams, the improvements and alternatives generated were from an operational stand point. 

Further relational approaches at a strategic level to improve coordination among supply chain members 

could also be considered. Contracts and incentive structures might be re-thought to encourage 

collaborative working (Broome, 2002), risk sharing arrangements could help with appropriate allocation 

of risks (Barnes, 1981) and 3rd party consultants could act as liaisons to facilitate synergies among 

partners.  

Indeed, it was a ‘bottom-up’ rather than a ‘top-down’ approach. Although most of the alternatives 

proposed have not been implemented yet, we expect that managers involved in interviews and facilitated 

workshops will be engaged in the change process. Further attention is required for ensuring that such 

changes can be accepted at higher hierarchical levels. From that perspective, the use of a soft system 

approach which includes tables, diagrams and illustrations can facilitate the communication with top 

management. 

The main weakness of SSM in terms of implementation can be the lack of reliable quantitative data to 

compare the potential gains adopting the different alternatives to improve coordination. This would be 

particularly helpful to prioritize the implementation of alternatives that give better results. Additionally, 

the use of SSM was relatively time consuming in terms of collecting and analysing data as well as 

organizing facilitate workshops. There was a need to continuously interact with company members, 

which might be easier when SSM is led by the practitioners themselves, as Checkland and Scholes 

(1990) suggest. 

In terms of learning, the feedback from participants indicates that the soft system approach was useful 

for improving the perceptions about delays. It was clear in the initial interviews that in the mindset of 

managers of the ship designer the reason for delays was lack of competence in the shipyard. It was 

common to hear that delays were a problem of the shipyard rather than of the ship designer. In contrast, 

on the shipyard side, it was argued that delays occurred because the ship designer had not delivered 

drawings on-time and several drawings had to be revised after being released. It was quite surprising to 

realize how the soft system methods helped many participants to change their mindset. By changing 

their mindset, we expect that companies will be more willing to collaborate with other as they realize 

the mutual benefits of avoiding delays. A statement from the supply chain manager (ship designer) 

during one of the facilitated workshops highlights this change of perception: “I think this approach 

[SSM] helps us from different departments to understand a bit more about needs and difficulties of other 

departments. It is not that we have clashes between departments but sometimes one argue in this way 

[right] and another one in this way [left], two different approaches. Here, we see the whole picture.”  

After the SSM study was conducted, a number of the recommendations were taken forward in relation 

to the alternatives envisaged in Table VI.  For activity 2, a new supplier assessment processed was 

designed and trialled. For activity 3, an improved risk management system was developed which pooled 

knowledge from previous projects to feedforward into a risk mitigation plan. In considering activity 5, 
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collaborative planning initiatives were trialled, which encourage more pro-active sharing of information. 

This also helped to shape activity 6, where production plans at the shipyard were considered at a much 

earlier phase by the engineering teams. A common issue identified at activity 7 was delays at customs 

due to incorrect paperwork. A new structured approach to document control was developed based on 

this acknowledgement.  

The final research question was ‘based on the application of SSM, what are the alternatives to improve 

coordination in an ETO supply chain?’.  

 

Based on the specific alternatives generated in Table VI, the generic learning outcomes of the soft 

systems model can be summarized into seven principles for improving coordination in ETO: systematize 

requirements and reuse solutions, develop/ maintain the production capability, collaborate with 

suppliers, integrate engineering and production, structure a ‘lessons-learnt’ process, enable joint project 

management and extend use of IT systems. Some of the practical and theoretical implications regarding 

these principles are described as follows. 

Systematize requirements and reuse solutions 

In practice, shipbuilding deals with a considerable amount of customer requirements. Accurately 

translating customer requirements into feasible engineering specifications is one of the most relevant 

aspects of engineering activity. Customer requirements have several implications which are important 

to understand as early as possible in order to avoid delays. The use of quality function development 

(QFD) can help to systematize requirements and to reduce the level of uncertainty during the project 

(Akao 1990). One of the main advantages of the QDF is to reduce the product development lead times 

and to enhance customer satisfaction (Youssef 1994, King 1989, Clausing 1994). Although the QFD 

was originally developed by Japanese shipbuilders (Nishimura 1972), it seems that, outside of Japan, 

the QFD has not been extensively applied in shipbuilding. The formalization of requirements is the first 

step towards increasing the adoption of standards components and modular systems in ETO, and this is 

something essential to reduce late rework and mitigate delays (Jansson et al. 2013). From a 

manufacturability perspective, both standardization and modularization is highly desirable, and they can 

provide a smooth transition from engineering to production (Pero et al. 2010). 

Develop / maintain production capability 

Innovative ship designs have two direct implications for the occurrence of delays. First, it generates a 

number of errors which leads to a large amount of rework during production, a phenomenon often seen 

in the construction industry (Barker et al. 2004). Thus, the production capability, which involves staff’s 

skills, knowledge, experience and autonomy, is important to identify and solve such design errors as 

quickly as possible. Previous literature has shown that the maturity of the design influences the 

downstream coordination effort (Adler 1995). Valle and Vázquez-Bustelo (2009) has shown that 

innovative design increases uncertainty and makes it difficult to specify all the project details and 



24 
 

diagnose problems. Second, manufacturing operations in a shipbuilding yard often lacks routine and 

repetition. Streamlining the workflow and creating one-piece flow can enable to shorter the production 

lead time and improve resource utilization compared to batch processing in shipbuilding (Liker and 

Lamb 2002) The material flow in ETO is often complex since several different projects are executed at 

the same time (Ballard and Howell 1998). While in high-volume manufacturing (make-to-stock) the 

challenge is high efficiency (productivity) without compromising quality (Naylor et al. 1999), in low-

volume manufacturing it is high quality without compromising efficiency.  

Collaborate with suppliers 

Multi-sourced adversarial trading is widespread in ETO companies (Hicks et al. 2000). Particularly in 

shipbuilding, lack of collaboration is one of the major issues concerning quality and efficiency (Held 

2010). Held (2010: p.372) points out that “Joint cost reducing programmes with suppliers are only at 

the beginning in the shipbuilding industry, even though they would make it possible to avoid time 

consuming and capacity binding concept competitions and RfQs [request for quotations]”. Suppliers 

have little commitment with the shipbuilding project because the purchase for a single project is 

relatively small compared to suppliers’ total sales volume. In terms of delivery performance, most 

suppliers are not delivering equipment on time but this is not seen as a major problem because the project 

is frequently delayed as well. In fact, when a supplier is delayed this opens up an opportunity to project 

partners to blame someone for their own delays (Ford and Sterman 2003). To overcome this situation, 

shipbuilding companies may have to give more importance to on time delivery as the criteria to select 

suppliers. In addition to that, suppliers may also have to start focusing on improving the overall project 

performance rather than obtaining individual advantages through opportunistic behaviour. The 

experience of the construction industry shows that collaboration has evolved when not constrained by 

contractually-defined partnering relationships (Briscoe and Dainty 2005). 

Integrate engineering and production 

Integration is necessary to manage engineering changes more effectively and ensure a seamless 

information flow. Integration in shipbuilding depends on several aspects, such as: co-located teams, 

integrated IT, common goals, direct communication and similar organisational culture (Held 2010). 

According to Held (2010), the interdependence between activities performed by the ship designer and 

shipyard is massive, thus it is important that the ship designer can interact directly with the shipyard in 

order to handle changes quickly and then prevent generation of delays in other downstream activities. 

The importance of integrating engineering and production is more evident when production is 

outsourced (Ulrich and Ellison 2005, Novak and Eppinger 2001, Treville and Trigeorgis 2010). For 

example, Treville and Trigeorgis (2010) argue that the synergy between engineering and production is 

a critical factor to deliver customised products on time and to directly manage problems. According to 

Treville and Trigeorgis (2010), having engineering and production located at the same site enables 

companies to better exploit the innovation capability and to achieve customisation and responsiveness. 

Outsourcing production of complex products, when companies do not maintain high levels of dominance 
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over the activities that are performed, creates coordination challenges which lead to poor project 

performance (Hui et al. 2008, Dekkers et al. 2013). 

Structure a lessons-learnt process 

In shipbuilding, effective decisions rely on experience dealing with similar problem situations (the 

learning curve). “When it comes to the adaptation to change and adoption of new business concepts and 

work procedures, incremental advances typically prevail. Radical change among maritime firms is not 

so frequently experienced” (Ulstein and Brett 2012). This situation indicates the need to engage project 

participants in a more systemic learning process (Senge 1990) which can be used to support the early 

project phase in mitigating potential problems. For example, post-project appraisal can be an additional 

mechanism for helping companies to cope with uncertainty, interdependence and change which 

characterize projects in an ETO supply chain (Twigg 2002). Hence, the learning obtained by the project 

team can increase the effectiveness of coordination and progressively reduce the need for interaction. 

Indeed, the learning developed carrying out complex projects is essential for avoiding excessive 

adaptation in later phases which can delay the project. To address the root cause of problems in a 

complex situation, companies need to implement a more effective learning process (Parnaby and Towill 

2012). This is particularly the case in the ETO environment, since learning and innovation must be 

captured in such a way that it may inform future one off projects (Gosling et al. 2014). We believe that 

soft systems methods can contribute to this learning process. 

Enable joint project management 

Shipbuilding projects involve multiple companies, and each company has to take into account how their 

decisions can impact on the project as a whole. For example, if the shipyard does comply with the 

payment milestones for main equipment suppliers, such suppliers will not deliver product data sheets to 

the ship designer. If the ship designer does not receive the data sheets as planned, the ship designer may 

have to reallocate resources to another project and it may take several weeks until the same resources 

are available again. If the ship designer has not allocated enough resources to work in the project, the 

shipyard may have production delays due to unavailability of drawings and specifications. As projects 

become more fragmented, the risk of having conflicts also increases considerably. In shipbuilding 

projects, joint project management it is an alternative to support problem resolution and to solve conflicts 

(Held 2010). Joint project management, or partnering (Cowan et al. 1992), means that a team or 

committee involving members of various companies is set up to coordinate the decisions among project 

partners. Since most of project members are geographically distributed, virtual project teams may have 

to be adopted. According to the PMBOK (PMI 2013), virtual teams coordinate their activities and 

exchange project information based on collaborative tools, such as: shared online workspaces and video 

conferences. Similar concepts have been discussed within the literature on virtual organizations and 

enterprises (Goldman et al. 1995), as well as virtual projects (Pokharel 2011). 

Extend use of IT systems 
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The shipbuilding project is carried out in a dynamic environment where project managers are not able 

to effectively coordinate cross-business activities without the support IT systems. Nevertheless, the use 

of IT system in shipbuilding is rather limited, except to design and engineering activities (i.e. Solesvik 

2007). One of the challenges is to integrate project management data from several partners into a single 

database. Due to the complexity of the project, a large amount of data and information have to be 

exchanged between the project partners. The considerable number of companies participating in the 

project causes numerous different IT systems which are challenging to integrate. Integration of these 

system means that data can be easily transferred from one system to another (Gronau and Kern 2004). 

The information that flows through the shipbuilding supply chain can be accurate and available by 

integrating the existent IT systems (Bolton 2001). In addition to that, more functionalities are necessary 

to enhance the collaboration with project partners, to communicate across multiple companies, to 

integrate logistic and production information, etc. IT developments in project oriented companies such 

as ETO are apparently less developed compared to serialized production. 

 

6. Conclusion  

 

The paper provides relevant contributions in a number of ways. First, it gives a better understanding of 

coordination in ETO supply chains and highlights alternatives to improve coordination based on the 

application of SSM. Most of the discussion on coordination has been carried out at a conceptual level, 

and there is still a lack of guidance about how companies can improve coordination (Fugate et al. 2006). 

From that perspective, this study helps to shorten the gap between theory and practice on coordination. 

Secondly, the paper helps in indicating potential improvements in the coordination of the engineering-

production interface by showing how the functional structure of each company and its interference 

generate problems that delay the project. Thirdly, the paper enhances our knowledge of problem solving 

approaches in a complex setting, such as ETO supply chains, providing a detailed application of SSM. 

As the literature has shown (i.e. Jackson 2003, Atkinson et al. 2006), other methodologies based on a 

positivism paradigm (i.e. analytical, mathematical and optimization tools) usually fail to analyse and 

document complex problems by focusing on one specific element of the system or oversimplifying a 

problem situation. Therefore, SSM provides a holistic view of coordination in a context with 

considerable number of variables and uncertainties, and lack of reliable quantitative data. SSM was 

found to be a useful approach for outlining opportunities for improvement in this challenging sector. 

Due to the specific nature of a project which changes according to the context, it is difficult to generalize 

the model itself. Thus, the authors encourage further research effort to explore some of the general 

principles proposed to deal with coordination problems experienced in other types of ETO project 

operations, such as construction and oil and gas, as well as to adopt a broader perspective which also 

includes other ETO supply chain members i.e. equipment supplier and customers. Finally, it might be 
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interesting to adopt few quantitative measures in order to perform analysis on cost efficiency, lead-time 

reduction and quality improvement. 
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Group meeting ___ / ____ / ________ 

Name: ...........................................................................................   Position: ................................................  

Activity in the model Does it exist? Who does it? What are the alternatives to improve it? 
Applied? 

(yes / no) 

Feasible? 

( x ) 

Unfeasible? 

( x ) 

1. Interact with customers, and 

define a concept. 
Yes Design dept. (Ship designer) 

 Involve suppliers into development    

 Formalize customer requirements (QFD)    

 Use of design rules based on previous projects    

 Use of multifunctional teams during the design    

2. Evaluate equipment suppliers and 

shipyard. 

Being 

implemented 

Project management dept. (Ship 

designer) 

 Establish a committee to plan and develop capabilities    

 Proceed supplier/shipyard quality certification - TQM    

3. Use/Accumulate knowledge from 

previous projects. 
Not formally 

 Deploy a system to manage the knowledge developed in projects    

 Conduct post-project appraisal based on project performance    

4. Establish a multifunctional team to 

assess risks. 
To some extent 

 Develop a culture of trust (sharing risks and rewards)    

 Perform total cost analysis to assess hidden costs    

 Analyze the critical modes of failure (FMEA – product/process)    

5. Set up a plan for the project 

collaboratively. 

Being 

implemented 

Project management dept. (Ship 

designer/ Shipyard) 

 Implement a cooperative production planning approach    

 Use flexible/adaptable scheduling (i.e. critical chain, last planner)    

 Critical analysis of overlapping project activities    

 The design work need to be approved by manufacturing    

 Plan for resolving producibility issues after design is released    

 Manage product changes (design spiral)    

6. Develop/deliver drawings and 

specifications. 
Yes 

Design dept. and engineering dept. 

(Ship designer) 

 Integrate product information systems (PLM)    

 Adopt modular design/standard items    

 Involve procurement/manufacturing in the specification    

7. Procure main equipment and follow 

up delivery 
Yes SCM dept. (Ship designer) 

 Develop strategic partnerships    

 Collaborate with suppliers (supplier development)    

 Use of turnkey suppliers/systems suppliers    

 Consolidate purchasing    

 Develop new suppliers    

 Ensure on-time payments to suppliers    



33 
 

 Use check lists before shipping equipments    

8. Performance measures: 

Efficacy / Efficiency 
To some extent 

Project management dept. (Ship 

designer) 

 Have similar values/Common performance measures    

 Joint project management (visibility of project status)    

9. Monitor 1-7 To some extent  Integrate management information systems (communication)    

10. Take a control action To some extent 

 Joint solving problem teams    

 Use a protocol for dealing with problems and disputes    

 Stimulate face-to-face communication    
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11. Procure material and follow up 

delivery 
Yes SCM dept. (Shipyard) 

 Collaborate with suppliers (supplier development)    

 Use electronic Data Exchange (EDI)/E-procurement    

 Adopt frame agreements    

 Implement vendor managed inventory (VMI)    

 Use online inventory management/inventory control    

 Adopt kanban / JIT deliveries    

 Joint container systems    

 Consolidated purchasing    

 Develop new suppliers    

 Ensure on-time payments to suppliers    

12. Provide production engineering 

competence 
No Production dept. (Shipyard) 

 Streamline the workflow / Process orientation (visibility)    

 Adopt process standardization    

 Time compression (eliminate NVA time)    

 Shift production from ETO to ATO    

 Exchange of design and production information    

 Generate detailed manufacturing/assembling instructions     

13. Manufacture components and 

build blocks 
Yes Production dept. (Shipyard) 

 Integrate logistics and production information    

 Increase the autonomy (semi-autonomous groups) 
   

14. Assembling and commissioning 

equipments 
Yes 

Production dept. (Shipyard) / Equip. 

suppliers  Improve the manufacturing flexibility (multifunctional workers)    

15. Delivery the vessel and follow 

customer experience 
To some extent 

Quality management (Shipyard/Ship 

designer) 
 Follow up the customer/crew experience (social media) 

   

16. Performance measures: 

  Efficacy / Efficiency 
To some extent 

Project management dept. 

(Shipyard) 

 Have similar values/Common performance measures    

 Joint project management (visibility of project status)    

17. Monitor 5, 11-15 To some extent 
 Integrate management information systems (communication)    

 Adopt shop floor coordination using RFID, real time data, ...    

18. Take a control action No 

 Joint solving problem teams    

 Use a protocol for dealing with problems and disputes    

 Stimulate face-to-face communication    
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19. Performance measures: 

- Effectiveness 
No Project management team (Ship 

designer/ Shipyard) 

 Have similar values/Common performance measures    

 Joint project management (visibility of project status)    

20. Monitor 1-18 No  Integrate management information systems (communication)    

21. Take a control action No   Coordinate inter-firm teams    

 

Comments? 
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Table I - Overview of participants in group meetings 

 
Participants 

Group 

meeting #1 

Group 

meeting #2 

Group 

meeting #3 

S
h

ip
 d

e
si

g
n

er
 

Design Manager    
Engineering Manager    
Supply Chain Manager     
Project Manager    
Site Engineer    
Production Advisor    
Project Engineer    

S
h

ip
y

a
rd

 Engineering Manager    
Application Engineer    
Planning and Production Manager    
Supply and Logistics Manager    
Project Coordinator    
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Table II. Summary of data collection procedure and its correspondent method of analysis 

Methods 

Data 
CATWOE 

Root 

definition 

Rich 

picture 

Soft systems 

model 

Interviews     

Group meetings     

Observation     

Procedures     

Flow charts     

Project documentation     

Press material     
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Table III. Overview of processes, actors and roles 

Shipbuilding processes Companies involved Main role 

1. Tendering: translate 

shipowner needs into 

product requirements. 

Shipowner 
Externalize aspirations, desires, and 

expectations, provide information needed and 

discuss concepts.  

Ship designer 
Define requirements considering a broad range 

of aspects (efficiency, safety, cost, etc.) and 

develop general specifications.  

2. Engineering: develop 

technical specifications 

based on product 

requirements. 

Ship designer Develop technical specifications and detailed 

drawings according to schedule. 

Main equipment 

suppliers 

Provide technical information about main 

equipments when it is required. 

Shipyard Provide technical information from other 

suppliers about equipments when it is required. 

3. Procurement: purchase 

equipments and 

materials based on 

technical specifications.  

Ship designer 
Negotiate contractual terms and conditions, 

purchase main equipments and follow up 

delivery. 

Main equipment 

suppliers 

Make quotations, provide technical 

specifications, and answer inquiries.  

Shipyard 
Negotiate contractual terms and conditions, 

purchase materials and equipments and follow 

up delivery. 

Other suppliers Make quotations, provide technical 

specifications, and answer inquiries. 

4. Production: manufacture 

and assembly the vessel 

following the technical 

specifications.  

Ship designer Deliver technical specifications and drawings, 

and answer inquiries. 

Shipyard Manufacture blocks, build the hull, and 

assemble the equipments according to schedule. 

Main equipment 

suppliers 

Deliver equipments according to the 

specifications received from engineering. 

Other suppliers Deliver equipments according to the 

specifications received from shipyard. 

Shipowner Follow up the realization of quality checks and 

monitor the progress of the project execution. 

5. Commissioning: assure 

that the vessel is ready to 

operate and evaluate the 

adherence to contractual 

specifications. 

Main equipment 

suppliers 

Inspection and test equipments, generate 

reports, and provide technical support. 

Shipyard Perform sea trials, make adjustments, and 

support suppliers. 

Shipowner Supervise tests, provide feedback, and involve 

crew members.  
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Table IV. Example of problems evidencing the lack of coordination 

Problem Consequence Quotation 

Poor quality of 

documentation 

The quality of the documentation affects the 

performance of the engineering work generating delays 

and reworks. In addition, poor technical documentation 

requires more interaction with equipment suppliers and 

shipyard. 

“Many of these shipyards are not making drawings 

themselves, and they do not have a good understanding of 

what is really needed for the engineering department to do 

good drawings. They don’t understand at all our need for 

documentation”. Project Manager (Ship designer) 

Delay to deliver 

drawings 

It directly impacts the work of the shipyard by delaying 

the project. In most cases the shipyard assumes the risks 

of buying material before receiving the specification in 

order to avoid such delays.  

“Deliver the drawings in the right time is the most difficult 

thing for us because we are missing information [from 

equipment suppliers]”. Project Manager (Ship designer) 

Product changes 

after production 

starts 

Late product changes delay the whole project. After the 

design freezes, any change will certainly impact the 

performance of the shipyard. The effect of changes on 

other components already built tends to be 

underestimated. 

“Drawings from all the blocks were updated. I start to build, 

and then they [ship design & engineering] start to replace the 

drawings for updated versions. For example, they [ship design 

& engineering] say that ‘the inspection door cannot be placed 

there anymore, close it and open a new one in another 

place’”. Planning and Production Manager (Shipyard) 

Long time 

 to find and 

correct errors 

If an error is found and not communicated quickly to all 

other project partners, more errors will continue to be 

generated consequently increasing delays. Companies 

tend to hide their errors assuming that communicating 

them will give a bad reputation.  

“So the big killer for us is HVAC (Heating, Ventilation and 

Air Condition) system that is the area where we do the biggest 

mistakes and it cost the biggest money and we don’t find out 

about the mistakes until very late in the project. That is the 

major problem.” Engineer Manager (Ship designer) 

High number 

 of quality 

problems 

All in all, quality problems end up affecting the shipyard 

most. When discovered during the production, errors 

demand more time to solve and therefore increase 

delays. 

“There is a well-know standard defining that the maximum 

capacity of transportation for certain products is 800 m3. But, 

they [ship design and engineering] sent us a design where the 

total capacity of the tanks was 900 m3. I realized the mistake 

and informed my team, but the tank was already built”. 

Application Engineer (Shipyard) 

Information flow 

is not integrated 

The lack integration between engineering and production 

can generate reworks/delays and redundant work 

demanding more staff. Furthermore, the lack of 

integration affects the time to find and correct errors.  

“Sometimes we make a notification to someone of the 

structure design, but this information does not go through 

other disciplines such as accommodation. And now we [at the 

shipyard] are struggling because there is a beam crossing a 

furnished compartment”. Application Engineer (Shipyard) 

Little visibility 

of processes 

In order to plan activities it is necessary to have a good 

visibility of the progress of the work. Allocating 

resources to activities when it is not needed increase 

costs and buying material/ equipment very early affects 

the cash flow. 

“I need to assembly an engine that comes from a supplier 

abroad, and I don’t know anything about this engine. I will 

give you an example, we assembled the thruster, and now we 

have to remove this thruster to change its base because the 

base was 70 millimeters larger than it should be”. Planning 

and Production Manager (Shipyard) 

Partners may 

over evaluate 

their own skills 

It is difficult to precisely measure the capabilities needed 

to perform a project. Also project partners deny 

admitting lack of capability in order to avoid being 

blamed for all the mistakes throughout the project. 

“If people at shipyard have not made this type of vessel 

before, then, of course, they will realize that there are new 

solutions which they have never used. They may think that this 

is a very easy vessel because the hull is a small one. And, 

often, an offshore vessel is small, but it has a lot of equipments 

in a small area.”  Procurement Coordinator (Ship designer) 

Delays to deliver 

equipments 

It has a significant impact in the occurrence of delays 

during the production. Having the equipment very early, 

however, demands more area for storage and increases 

the risks of accidental damage. 

The equipment arrives there [harbor], then it goes to the 

customs. If any information is missing…, then all the 

documentation needs to be corrected …. The equipment will 

not be released …, and it’ll take from two to three weeks. 

During this time the equipment stays at the harbor and the 

company has to pay a storage fee, moreover this delay will 

have impact on the production”. Supply and Logistics 

Manager (Shipyard) 

Processes are 

difficult to 

follow up 

The number of project activities is very high and 

consequently it is difficult to follow them up. This lack 

of visibility increase delays due to false impression of 

the project being on-time. 

“The link with the ship design & engineering demands more 

attention and needs to be followed up frequently. Because it 

may happen that information is stuck in the middle of the 

process waiting for someone to make a decision. For example, 

the list of electrical cables that we are struggling to have here 

[shipyard] was already available there [at the ship design & 

engineering], but nobody sent it because of the size of the 

file”. Project Coordinator (Shipyard) 

 



40 
 

  

Table V. CATWOE of a shipbuilding project 

C Who will be affected by the project? Shipowner 

A Who is performing the project? 

 Ship design & engineering 

 Main equipment suppliers 

 Other suppliers 

 Shipyard 

T What are the main processes in the project? 

Three sub-processes (T) are essential to 

accomplish the transformation from understanding 

a customer need through to the delivery of a ship 

to the customer: engineering (including tendering), 

procurement and production (including 

commissioning). 

W* What is the meaning of performing the project? 

Companies can mutually benefits from performing 

shipbuilding projects that satisfy a specific 

shipowner’s needs. 

O Who is the responsible for the project? Ship designer (indirectly) and shipyard (directly). 

E What are the environmental constraints? 

 Classification societies (certification) 

 Authorities (regulations) 

 Financial institutions (banks, brokers, etc.) 

 Healthy, Safety, Environmental norms 

 

* From view point of ship designer (mainly) and shipyard. 
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Table VI. Comparison system model and perceived reality 

Activity in the model 
Does it 

exist? 
Who does it? What are the alternatives to change it? 

1. Interact with shipowner, and 

define a concept. 
Yes 

Design department 

(Ship designer) 

Implement a systematic analysis of customer 

requirements applying quality function development 

(QFD). 

Incentivise the early involvement of production to 

improve manufacturability. 

2. Evaluate equipment suppliers 

and shipyard. 

Being 

implemented 

Project management 

department (Ship 

designer) 

Assess main equipment suppliers and shipyards (quality 

certification). 

Set up plans for developing equipment suppliers’ and 

shipyards’ capabilities in order to reduce potential risks.  

3. Use/Accumulate knowledge 

from previous projects. 
Not formally 

Conduct post-project appraisal and use a database to 

manage the knowledge developed in previous projects. 

4. Establish a multifunctional team 

to assess risks. 

To some 

extent 

Perform total cost analysis that includes indirect costs 

(i.e. coordination costs, supplier/shipyard development 

costs).  

5. Set up a plan for the project 

collaboratively. 

Being 

implemented 

Project management 

department (Ship 

designer, Shipyard) 

Make plans collaboratively and provide more flexibility 

to adjust plans to new project situations (manage 

product changes). 

Integrate ship designer and shipyard plans. 

6. Develop/deliver drawings and 

specifications. 
Yes 

Design department and 

engineering 

department (Ship 

designer) 

Incentive the adoption of modular systems and standard 

components. 

Integrate design teams using product information 

systems and project-oriented office layout. 

Involve main equipment suppliers/shipyard in 

development of specifications. 

7. Procure main equipment and 

follow up delivery 
Yes 

SCM department (Ship 

designer) 

Collaborate with main equipment suppliers to assure 

that all documentation, equipment and assembling 

instructions are delivered on-time. 

8. Performance measures: 

Efficacy / Efficiency 

To some 

extent 
Project management 

department (Ship 

designer) 

Establish common performance measures and use a 

system to monitor the progress of projects and highlight 

problems in different phases. 9. Monitor 1-7 
To some 

extent 

10. Take a control action 
To some 

extent 
Use joint problem-solving team and project 

management team to solve conflicts. 

11. Procure material and follow up 

delivery 
Yes 

SCM department 

(Shipyard) 

Develop a culture of trust with suppliers to receive the 

technical documentation and equipment on-time. To 

build trust it is necessary to adopt a procurement 

approach focusing not only price but also other aspects 

such as on-time deliveries, number of quality problems, 

level of service, and so on. 

12. Provide production 

engineering competence 
No 

Production department 

(Shipyard) 

Streamline the workflow, stimulate process 

standardization and provide instructions for 

manufacturing/ assembling critical components. 

13. Manufacture components and 

build blocks 
Yes 

Production department 

(Shipyard) 
Integrate logistics (delivery of drawings and equip) and 

production information. 

Improve the flexibility using more multifunctional 

workers and semi-autonomous teams. 
14. Assembling and 

commissioning equipment 
Yes 

Production department 

(Shipyard and Main 

equipment suppliers) 

15. Deliver the vessel and follow 

shipowner experience 

To some 

extent 

Quality management 

(Shipyard and Ship 

designer) 

Implement an approach to follow up the crew 

experience onboard the vessel. This can be facilitated 

through use of social media (i.e. Facebook and Twitter). 

16. Performance measures: 

Efficacy/ Efficiency 

To some 

extent 

Project management 

department (Shipyard) 

Establish common performance measures and use a 

system to monitor the progress of projects and highlight 

problems in different phases. 17. Monitor 5, 11-15 
To some 

extent 

18. Take a control action No 
Use joint problem-solving team and project 

management team to solve conflicts. 

19. Performance measures: 

- Effectiveness 
No 

Project management 

team (Ship designer, 

Shipyard, and 

Shipowner) 

Monitor the performance measures to assure that the 

system reach its goal (see ‘root definition’ section 5.1). 

Due to geographical distribution of project partners, 

more IT systems are needed to support this activity and 

facilitate collaboration. 
20. Monitor 1-18 No 

21. Take a control action No 

Coordinate inter-firm teams and communication across 

multiple companies in order to enable joint project 

management. 
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