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Abstract: 

Purpose:  In mechanically ventilated patients, the endotracheal tube is an 
essential interface between the patient and ventilator, but inadvertently it also 
facilitates the development of ventilator-associated pneumonia (VAP) by 
subverting pulmonary host defense. A number of investigations suggest that 
bacteria colonising the oral cavity may be important in the aetiology of VAP. 
The present study evaluated microbial changes that occurred in dental plaque 
and lower airways of 107 critically ill mechanically ventilated patients. 
Materials and Methods:  Dental plaque and lower airways fluid was collected 
during the course of mechanical ventilation, with additional samples of dental 
plaque obtained during the entirety of patients’ hospital stay. Results : A 
‘microbial shift’ occurred in dental plaque, with colonisation by potential VAP 
pathogens, namely, Staphylococcus aureus and Pseudomonas aeruginosa in 
35 patients. Post-extubation analyses revealed that 70% and 55% of patients 
whose dental plaque included S. aureus and P. aeruginosa, respectively, 
reverted back to having a predominantly normal oral microbiota. Respiratory 
pathogens were also isolates from the lower airways and within the 
endotracheal tube biofilms. Conclusions:  To the best of our knowledge, this 
is the largest study to date exploring oral microbial changes during both 
mechanical ventilation and following recovery from critical illness. Based on 
these findings, it was apparent that during mechanical ventilation, dental 
plaque represents a source of potential VAP pathogens.  



Introduction  

In mechanically ventilated patients the endotracheal tube is an essential 

interface between the lungs and the ventilator. Unfortunately, the presence of 

an endotracheal tube also impairs pulmonary host defenses and promotes 

ventilator-associated pneumonia (VAP) through supporting biofilm formation 

within its inner lumen [1,2]. In addition, the endotracheal tube and incomplete 

mouth closing will alter the oral microenvironment. VAP is the most common 

nosocomial infection in critical care with a prevalence of approximately 15% 

and prognosis is negatively influenced with involvement of multidrug resistant 

pathogen biofilms [3,4]. The endotracheal tube biofilm may serve as a 

reservoir of respiratory pathogens that are largely protected from host defense 

mechanisms. In recent years, studies into the origin of VAP causing 

microorganisms have primarily focused on oropharyngeal sites rather than the 

gastro-intestinal tract [5-8]. As a consequence, a number of recent strategies 

aimed at preventing VAP have sought to target the oral microbiome [9,10]. 

Dental plaque was initially considered to be a bacterial construct (i.e. a 

biofilm) in the 1970s [11]. Dental plaque harbors an estimated 500 different 

bacterial species with variation in microbial composition occurring between 

and along the teeth [12]. Streptococcus species are recognised as primary 

pioneer colonisers of teeth and are initiators of dental plaque development 

[13]. Lazarevic et al.  analysed the oral microbiome using molecular methods 

and reported that up to 70% of sequences belonged to the Streptococcus and 

Neisseria genera [14]. Saliva plays an important role in modulating dental 

plaque formation [15, 16]. Glycoproteins and proline-rich proteins (PRPs) in 

saliva will adsorb to tooth surfaces generating an enamel pellicle allowing 

bacteria to adhere [17]. 

 

The oral microbiome could promote VAP in several ways [18]. Firstly, during 

mechanical ventilation rapid colonisation by potential respiratory pathogens 

including Pseudomonas, Klebsiella, Staphylococcus aureus and 

Acinetobacter can occur and these bacteria may subsequently disseminate to 

the lung [8,19,20]. Secondly, commensal oral bacteria may actively promote 



respiratory pathogen colonisation of the endotracheal lumen, and these 

bacteria may again translocate to the lower airways leading to VAP [1,21]. 

Biofilm-mediated infections are difficult to treat, as not only are the cells 

protected within the biofilm structure, but the microorganisms involved are 

also frequently inherently less susceptible to antimicrobial agents [22-24]. 

Colonisation of dental plaque by respiratory pathogens is important in VAP 

aetiology, and it is also known that for the majority of critically ill patients, oral 

hygiene frequently deteriorates during mechanical ventilation [25,26]. 

Furthermore, not all oral hygiene interventions appear effective at reducing 

VAP incidence [27,28] and a recent meta-analysis even suggested that 

accepted oral hygiene treatments, such as use of chlorhexidine may actually 

lead to harmful effects [29]. 

In order to deliver effective oral care to critically ill patients to reduce VAP, it is 

important to increase our understanding of the dynamics of the oral 

microbiome during mechanical ventilation and how this relates to 

contamination of both the ETT and lower airway. The current study examined 

the nature of microbial changes in dental plaque and the lower airway, during 

mechanical ventilation and, in contrast to previous studies, during the patient 

recovery after mechanical ventilation.  

 

 

Materials and Methods  

Methods 

Patient recruitment  

Ethical approval was obtained from the National Research Ethics Service 

(NRES) within the Research Ethics Committee (REC) for Wales (Ref: 

13/WA/0039). In order for sufficient statistical power (>80%) to observe a 20% 

change in at least one phylum in microbial profiles and associated 



downstream high-throughput techniques [30], the minimum number of 

participants required for the study was 101. Mechanically ventilated patients 

were eligible for inclusion in the study if they were aged >18 years, had >8 

original teeth, their anticipated period of mechanical ventilation was >24h and 

their expected survival was >24 h. Informed consent for participation in the 

study was obtained from the next of kin and also taken from the patient if they 

recovered capacity.  

Within 6h of critical care admission, a critical care mouth plan was completed 

to determine the level and frequency of oral care required. Oral care included 

toothbrushing 4 times a day with sterile water, moistening of the oral cavity 

and lips. Antiseptic mouthwashes were not used. Additional care was 

provided for denture wearers. VAP was diagnosed using the existing Patients 

with a clinical suspicion of VAP had a Clinical Pulmonary Infection Score 

(CPIS) calculated using parameters of temperature, white blood cell count, 

PaO2/FIO2 ratio, the presence of tracheal secretions and changes on chest 

radiograph. Quantitative microbiological culture (>103CFU/ml) of the lower 

airways by (bronchoalveolar lavage (BAL)/non-directed bronchoalveolar 

lavage (NBL) was undertaken if the CPIS score was >6BAL was performed 

bronchoscopically by an attending clinician, whilst NBLs were undertaken by 

the bedside nurse inserting a suction catheter through the catheter mount into 

the lung parenchyma and flushing and withdrawing sterile saline  [32-36]. 

 

Decayed, missing and filled teeth (DMFT) score 

The DMFT score was recorded (by a dental professional). The DMFT score is 

a measurement of dental caries status and is therefore an indicator of prior 

longer-term oral hygiene levels [31]. Each incidence of a tooth recorded as 

decayed, missing or filled results in a score of 1 to generate a score of 0-28, 

with higher scores representing poor oral health. Final DMFT scores can 

therefore range between 0-28. DMFT scores, although not reflective of the 

remaining dentition, may indicate prior differences in oral hygiene 



maintenance within the patient cohort and therefore the level of risk for dental 

plaque changes. 

Dental plaque collection 

Subgingival and supragingival plaque was collected using paper points (QED 

size 40) and dental examination kits (Minerva Dental) [37]. Collection was 

performed on 3 occasions during the first week of admission to critical care 

and then weekly. The fist sample was collected within 24 h the start of 

mechanical ventilation. A total of 9 paper points, sampling 3 teeth per area 

(front, middle and back) were used per collection. In cases where the patient 

did not have sufficient teeth for the above protocol, plaque was taken from the 

closest areas. Plaque specimens were suspended in transport medium [38] 

and processed using microbial culture on the day of collection.  

 

Collection of subglottic aspirations, non-directed bronchoalveolar 

lavages (NBLs), bronchoalveolar lavages (BALs) and endotracheal tubes 

(ETTs) 

Subglottic secretions were collected through a subglottic port in the ETT using 

a syringe and transferred into sterile universals. Subglottic aspirates and 

NBLs were aseptically transferred into universal containers and endotracheal 

tubes were collected and placed in sterile bags when available for transport to 

the microbiology laboratory. 

 

Identification of respiratory pathogens  

Clinical specimens were processed within a Class II safety cabinet. Dental 

plaque was vortex-mixed and spread-plated on to appropriate selective agar 

media for detection of Staphylococcus aureus (MSB; Mannitol Salt Agar, 

MSA) and Pseudomonas aeruginosa (Pseudomonas agar base; Lab M), 

which are prevalent VAP pathogens [39-41]. Agar media were incubated at 

37°C under aerobic conditions for 5 days.  

NBLs and BALs were centrifuged for 3 min at 10,000g, and the pellet re-

suspended in 1 ml of PBS. A 50-µl volume was spread-plated on the previously 

described selective agar. Growth of P. aeruginosa and S. aureus was 



recorded, and colonies of presumptive respiratory pathogens identified by 

biochemical testing. Staphylococcus aureus colonies were sub-cultured on 

MSA agar for 18-24 h at 37°C and tested for catalase and coagulase activity 

[42]. Colonies of P. aeruginosa were sub-cultured on Pseudomonas agar for 

18-24 h at 37°C and tested for oxidase activity.  

Definitive identification of S. aureus and P. aeruginosa was by species-

specific PCR (Table 1) [43,44]. DNA extraction employed a commercially 

available DNA extraction kit (Qiagen). PCR was performed in a total reaction 

volume of 50 µl containing 2 µl of DNA template. Thermal cycling parameters 

for S. aureus detection were an initial 5 min at 94ºC, followed by 35 cycles of 

94ºC for 40 s, 50ºC for 40 s and 72ºC for 1 min, with a final elongation step of 

72ºC for 10 min. For P. aeruginosa PCR, there was an initial denaturation 

step of 95ºC followed by 35 cycles of 94ºC for 45 s, 58.4ºC for 45 s and 72ºC 

for 1 min ending with 5 min at 72ºC.  

Antimicrobial susceptibility profiling 

Staphylococcus aureus and P. aeruginosa were cultured on Mueller Hinton 

agar at 37°C for 18-24 h. A 0.5 McFarland standard (108 cells/ ml) was 

prepared to create an inoculum for antimicrobial sensitivity testing. A sterile 

swab was used to homogenously inoculate the 0.5 McFarland standard 

across the agar. Cefoxitin discs were used to identify MRSA, whilst sensitivity 

profiles of P. aeruginosa and S. aureus were tested against 6-12 

antimicrobials discs (selected based on previous administration to patients 

and according to frequent antibiotics used for these microorganisms). Agars 

were incubated for 18-24 h at 37°C and subsequent zones of inhibition (ZOI) 

measured and categorisation of isolate susceptibility (sensitive, resistant and 

intermediate resistant) was done according to British Society for Antimicrobial 

Chemotherapy (BSAC) guidelines. For analysis, the isolate antimicrobial 

sensitivities were grouped into clinical site origin.  

Imaging of endotracheal tube biofilms  

A 0.5-cm section of an ETT was placed in 2 ml of 10% (v/v) formalin for 24 h, 

processed in embedded wax and sectioned to 20 µm. Peptide nucleic acid 



probes (PNA; 100 µmol; Panagene; Table 2) were prepared in hybridisation 

solution (10% (w/v) dextran sulphate, 10 mM NaCl, 30% (w/v) formamide, 

0.1% (w/v) sodium pyrophosphate, 0.2% (w/v) polyvinylpyrolidone, 0.2% (w/v) 

ficol, 5 mM disodium EDTA, 50 mM Tris HCl and 0.2% Triton-X at pH 7.5) 

[45]. 

Processing involved enzymatic pre-treatment to promote access of the biofilm 

to PNA probe hybridisation. A 50-µl volume of lysostaphin was added to the 

section which was incubated at 20°C for 30 min. A 100-µl volume of lysozyme 

(10 mg/ml) was then added followed by incubation at 37°C for 30 min. A 100-

µl volume of PNA probe (300 nM for all probes with exception of the S. 

aureus-specific probe which was at 450 nM) was added and incubated at 

55°C for 90 min. Sections were flooded with 2 ml of wash solution (5 mM Tris, 

15 mM NaCl and 1% (v/v) Triton X-100 at pH 10) and incubated at 55°C for 

15 min [45] prior to mounting under coverslips with Vectashield™ 

(Vectorlabs). Controls devoid of probe were included. 

Sections were imaged using a Leica TCS SP2 AOBS spectral confocal 

microscope (Leica, Heidelberg, Germany) and appropriate excitation and 

emission settings for FITC (ex max 494nm; em max 518nm); Cy 3 (ex max 

550nm; em max 570nm) and Cy 5 (ex max 650nm; em max 670nm). 

Micrographs were presented as image overlays of confocal fluorescence 

(colour) superimposed upon Nomarski differential interference contrast 

(greyscale).  

Statistical analysis 

Where appropriate, statistical analysis (t test sampling) was performed using 

IBM SPSS v20. 

 

Results 

Patient recruitment and demographics 



A total of 1016 patients were screened over 14 months. Of these, 5 patients 

were <18 years, 20 patients had <8 teeth, 210 patients were anticipated to be 

mechanically ventilated for <24h, 439 patients were not mechanically 

ventilated and 232 patients could not be consented. A total of 107 patients (65 

male and 42 female; mean age 54) met the inclusion criteria and were 

recruited following receipt of informed consent. The median duration of 

mechanical ventilation was 7 days. 

 

The study was performed in a single adult critical care unit.  Patients were 

recruited with various health backgrounds for admission to critical care. 

Patient demographics and clinical measurements are presented in table 3.  

There was a lower mean age (39 y) for acute/ poly-trauma (n=12), compared 

to respiratory failure (n=30; mean age of 60 y). The mean age of patients 

admitted/receiving mechanical ventilation following an out of hospital cardiac 

arrest (OOHCA) was 60 y (n=11). A total of 77 (71%) of mechanically 

ventilated patients received at least one antibiotic, and just under half of 

patients (49%) received >2 different antibiotics during the course of 

mechanical ventilation. Over 30 antibiotics were administered to patients 

during the clinical study (table 3). Antifungals (including nystatin and 

fluconazole) were also administered to mechanically ventilated patients 

(n=12). Of 107 patients, DMFT indices were obtained for 97 and these scores 

increased with age; a score >10 was typically recorded for patients >40 years 

of age.  

 

Microbiological analysis during mechanical ventilat ion 

A total of 848 dental plaque samples were obtained from 107 mechanically 

ventilated patients.  Of these, 592 were collected during mechanical 

ventilation, with a mean number of plaque samples of 5 per patient. At least 

one dental plaque specimen was colonised with either S. aureus (43 patients) 

or P. aeruginosa (23 patients) during mechanical ventilation. Co-isolation of S. 

aureus and P. aeruginosa occurred for 10 patients. Of 43 patients who were 

culture positive for S. aureus during mechanical ventilation, 21 (48%) were 



culture negative for S. aureus at the time of intubation. A total of 23 patients 

were culture positive for P. aeruginosa during mechanical ventilation, with 18 

(78%) patients culture negative for this species at the time of intubation 

(Figure 1). The dental plaque of 35 patients out of 107 (33%) therefore 

exhibited a change in microbial composition to incorporate at least one of the 

targeted respiratory pathogens.  

Staphylococcus aureus was detected in the lower airways of 37 patients, and 

predominately occurred with concurrent dental plaque colonisation. The 

subglottic secretions of 14 patients and 4 patients contained S. aureus and P. 

aeruginosa, respectively. Co-colonisation of P. aeruginosa from both dental 

plaque and lower airway specimens was higher than for S. aureus. Twenty 

nine patients were culture positive for P. aeruginosa, and 23 of these were 

positive from dental plaque culture. ETT biofilm imaging using PNA-CLSM 

facilitated detection and spatial location of targeted species in the ETT biofilm 

(Figure 2).  

Forty-one patients were clinically diagnosed and treated for VAP during the 

study. This apparent high VAP rate can be related to the patient cohort as 

many had prolonged ventilation (13 ventilated between 5 – 7 d and 57 

ventilated >7 d). Of these patients, 18 had respiratory pathogens within dental 

plaque during mechanical ventilation, and 24 patients were colonised with the 

same respiratory pathogen within the dental plaque and the lower airways at 

any time point. In addition 9 patients clinically treated for VAP had respiratory 

pathogens in their dental plaque from the start and over the course of 

mechanical ventilation.  

 

 

Antimicrobial sensitivity of S. aureus and P. aeruginosa isolates 

The majority (>70%) of tested isolates from all sites were susceptible to the 

antibiotics tested. A total of 114 isolates of S. aureus (table 4) were recovered 

both during mechanical ventilation and into the recovery period. Where 

differences were observed in sensitivities, S. aureus isolates with antibiotic 

resistance profiles were most frequently isolated from subglottic secretions 



and tended to more frequently exhibit resistance to erythromycin, penicillin 

and cefepime. The majority of S. aureus were sensitive to cefoxitin and 

ceftazidime irrespective of origin. Of the 56 P. aeruginosa isolates, 35 were 

from dental plaque. Antimicrobial resistance patterns for all tested antibiotics 

ranges between 2% (ciprofloxacin) to 23% of strains (meropenem) (table 5). 

Although only 5 P. aeruginosa isolates were recovered from endotracheal 

tube sections and one of these exhibited the most resistant profile across all 

antibiotics tested. P. aeruginosa isolates exhibited the greatest sensitivity to 

Tobramycin with antibiotic susceptibilities ranging from 80% of isolates 

sensitive to all antimicrobials in the ETTs, to 97.1% in the dental plaque. 

 

Antimicrobial sensitivity patterns for recovered isolates of P. aeruginosa 

between dental plaque, the lower airways and endotracheal tube biofilms 

were largely similar for 7 out of 10 patients. Similarly, for recovered isolates of 

S. aureus between dental plaque, the lower airways and endotracheal tube 

biofilms, antimicrobial sensitivity patterns were related for 21 out of 30 

patients. (All individual isolate sensitivities are shown within the 

supplementary material). 

 

In the context of this study, an MDR pathogen was defined as a pathogen 

exhibiting a resistant profile (In terms of ZOI according to BSAC guidelines) to 

at least three antibiotics. A total of 3 patients were colonized with MDR P. 

aeruginosa and 21 patients were colonized with an MDR S. aureus (8 patients 

colonized with MRSA as detected by resistance to cefoxitin with a ZOI 

<20mm). 

Dental plaque analysis after endotracheal tube extu bation 

A total of 256 dental plaque samples were collected during the recovery 

period with 88 collected within 1 week post-endotracheal tube extubation, 66 

during week 2 post-extubation, 43 collected 3 weeks post-extubation and a 

further 59 were collected >1 month post-extubation. For a total of 31 patients, 

dental plaque was not collected due to either patient withdrawal upon 

recovery, or death. Out of the 35 patients that exhibited microbial changes 



during mechanical ventilation, analysis of post-extubation dental plaque was 

completed for 27 patients.  

These analyses allowed an assessment of persistence of respiratory 

pathogens in patients’ dental plaque. In patients where dental plaque was 

colonised with S. aureus, 71% reverted back to a predominantly normal oral 

microbiota, devoid of S. aureus colonisation after extubation. Similarly for 

patients whose plaque was colonised by P. aeruginosa, 55% became culture 

negative for P. aeruginosa after extubation. A bar graph (Figure 1) compares 

the colonisation of respiratory pathogens during mechanical ventilation and 

the recovery period, highlighting reversed-microbial changes during the 

recovery period. Readmission rates to critical care were similar for patients 

exhibiting a reverse-microbial change (11.1%) and those patients harboring 

pathogens within their dental plaque during the recovery period (10%).  

Discussion  

VAP is an important hospital acquired infection in critically ill patients [4] and 

is associated with increased mortality, duration of stay and cost [46]. 

Prevention of VAP is vital, and an important facet in the development of 

appropriate preventative strategies is a better understanding of the aetiology 

and pathogenesis of VAP [47,48]. 

The microbiome of the oral cavity is both highly diverse and dynamic, 

primarily because of the wide range of microbial habitats that exist in the 

mouth and the fluctuations that can arise in these environments due to 

changes in diet, salivary flow and oral hygiene interventions [49-54]. 

Unsurprisingly, since the oral cavity is directly linked to the lower airways, 

associations between oral microbiology and respiratory infections are 

frequently made. In the case of VAP, it has been suggested that oral 

microorganisms could promote colonisation of dental plaque and 

endotracheal biofilms by potential respiratory pathogens, or may directly 

cause VAP themselves [55]. Carrilho-Neto et al, showed a reduction in oral 

hygiene for the majority of hospitalized patients, reporting a positive 

correlation between dental plaque index and gingival index [56]. Gingival 



inflammation caused by poor oral hygiene in intubated patients may also drive 

inflammation within the lungs [56-58]. The primary objective of this study was 

to determine the colonisation dynamics for key microbial species at defined 

sites in critically ill patients undergoing mechanical ventilation. Although 

previous studies have examined colonisation with potential respiratory 

pathogens following critical illness, this has only been over a short duration of 

ventilation following intubation.  

An important finding of this study was that the composition of dental plaque in 

a significant proportion (approximately one third) of mechanically ventilated 

patients altered with inclusion of the potential respiratory pathogens S. aureus 

and P. aeruginosa. Importantly, these bacterial species may exhibit resistance 

to antibiotics, and are causative agents in up to 50% of VAP cases [39-41]. 

The presence of these targeted microorganisms in the endotracheal tube was 

also evident using the culture independent tool of PNA-FISH coupled with 

CLSM. Aggregates of respiratory pathogens were clearly evident using this 

approach. The displacement of respiratory pathogens to the lower airway 

would deliver infectious agents already within a biofilm phenotype and are 

therefore more resistant to host defence mechanisms and administered 

antimicrobials. Although only a small proportion of S. aureus isolates were 

reported as MRSA, ~25% isolates recovered from dental plaque were 

resistant to at least one antibiotic tested in vitro (tables 4 and 5.) When 

assessing antimicrobial resistant levels between isolates recovered within the 

dental plaque and the lower airways, the highest levels of resistance were 

recovered from outside of the oral cavity. Resistance rates were highest for P. 

aeruginosa within the ETT biofilm, and for S. aureus within subglottic 

secretions (table 4).  This can imply higher rates of resistance within the 

airways, and if VAP were to develop in these patients then this could 

exacerbate the success of antimicrobial therapy. 

Importantly, in the majority of patients where microbial changes occurred in 

the dental plaque, a reversal occurred once the patient was extubated, and 

this was most readily evident with S. aureus colonisation. A higher proportion 

of patients colonised with P. aeruginosa retained the respiratory pathogen 



colonisation post extubation. Although most dental plaque communities 

reverted back to a phenotype without target respiratory pathogens within one 

week of extubation, the fact that some patients remained colonised with 

respiratory pathogens over a prolonged duration could represent a patient 

group at risk of subsequent hospital-acquired pneumonia.  

Although not regarded as a normal inhabitant of the oral cavity, S. aureus has 

been detected within the dental plaque of debilitated or elderly individuals  

[59]. An observational study of hospitalized patients by Sachdev et al, (62% 

were not ventilated), revealed colonization rates of S. aureus at ~14% [26]. In 

the current study, the high incidence (43 of 107 patients) of S. aureus in 

dental plaque was nevertheless surprising, particularly as half of these 

patients did not have S. aureus in their dental plaque at the time of intubation. 

Similarly, dental plaque also became colonised with P. aeruginosa during 

mechanical ventilation, albeit at a lower incidence. As dental plaque is easily 

sampled, and is a less invasive procedure than a NBL or BAL, isolation of 

potential respiratory pathogens in dental plaque of patients with suspected 

VAP may enable targeted antimicrobial therapy and should be evaluated in 

future studies. In 6 mechanically ventilated patients, although P. aeruginosa 

was isolated within the lower airways there was no confirmation of P. 

aeruginosa via microbial culture within their dental plaque. Perhaps further 

investigation coupled with high-throughput technologies could elucidate 

whether P. aeruginosa could be detected if present in a much lower 

abundance. Furthermore, there is the potential for dental plaque analysis in 

guiding empiric therapy, however false negatives when relating to the 

occurrence of respiratory pathogens in the lower airways can occur.  

One of the main limitations of the current study is that target pathogens were 

limited to S. aureus and P. aeruginosa by culture specific methods. Whilst 

additional respiratory pathogens were not assessed in this study, others have 

found that E. coli, Klebsiella species and Acinetobacter species may also 

colonise dental plaque and endotracheal tubes during mechanical ventilation 

[2].  Furthermore we have demonstrated considerable microbial diversity and 

colonisation of plaque with potentially pathogenic bacteria using non-culture 



techniques such as community profiling by high throughput sequencing [30]. 

The reason(s) why such microbial changes occur in dental plaque remain 

unclear, but are likely linked to local environmental changes in the mouth. 

These may include plaque accumulation and gingival inflammation from 

inadequate delivery of oral care during mechanical ventilation, perturbations 

of salivary composition and reduced salivary flow as a consequence of 

incomplete mouth closure, or following receipt of drugs [60].  

This is to our knowledge, the first study in critically ill mechanically ventilated 

patients that has sequentially assessed the dental microflora over a prolonged 

duration and shown a decrease in respiratory pathogen colonisation of dental 

plaque in some patients during recovery from critical illness. Once elucidated, 

the reasons why the dental plaque of some patients’ begins to revert back to a 

profile of microbes without respiratory pathogens (identified during mechanical 

ventilation), potentially offers new preventative strategies for VAP. Whether 

those patients who have persistent colonisation with respiratory pathogens 

despite recovery from critical illness are at increased risk of hospital acquired 

infection needs to be evaluated in larger adequately powered studies.  It was 

evident from this present study that microbial changes occur in the dental 

plaque of mechanically ventilated patients and these include colonisation by 

respiratory pathogens. The presence of respiratory pathogens in dental 

plaque is a risk factor for VAP. Emphasising the importance of maintaining 

oral hygiene during mechanical ventilation, may actually limit this reservoir of 

respiratory pathogens within the dental plaque of mechanically ventilated 

patients.  
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Species Target 
Gene 

Primers Amplicon 
size 

Reference 

S aureus Vick vicK1: 5’-CTA ATA CTG AAA 
GTG AGA AAC GTA-3’ 
vicK2: 5’-TCC TGC ACA 

ATC GTA CTA AA-3’ 

289bp 32 

P. aeruginosa ecfX Ps.aeru_ECF1: 5’-ATG GAT 
GAG CGC TTC CGT G -3’ 

Ps.aeru_ECF2: 5’-TCA TCC 
TTC GCC TCC CTG -3’ 

528 bp 33 

Table 1 - PCR primers for identification of S. aureus and P. aeruginosa. 

 

 
 

Probe 

 
Nucleotide sequence 

(5’-3’) 

Fluorescent 
marker (N- 
terminal) 

final probe 
concentration 

(nM) 
Bacterial 
Universal 

CTGCCTCCCGTAGGA Cy3-00- 300 

Pseudomonas 
aeruginosa 

AACTTGCTGAACCAC FITC-00- 300 

Staphylococcus 
aureus 

GCTTCTCGTCCGTTC Cy5-00- 450 

Candida 
albicans 

ACAGCAGAAGCCGTG FITC-00- 300 

 

Table 2 - Species-specific PNA probes and associated fluorescent labels  

 



 

Recruited patients Patient NO. Gender Age Admission  details (reason for MV) DFMT Antibiotic use 

1 PN001 M 51 Respiratory failure 8 Clindomicin, Meropenem 

2 PN002 M 33 Stroke/brain injury/seizures 4  -  

3 PN003 M 31 Overdose/suicide attempt 9  Co-amoxiclav 

4 PN004 F 55 Stroke/brain injury/seizures 19 Cefuroxime 

5 PN005 M 62 Stroke/brain injury/seizures 21 Cefuxome (in theatre) 

6 PN006 F 34 Respiratory failure 0 Meropenem, Gentimicin, Co-tremoxyle  

7 PN007 F 54 Stroke/brain injury/seizures 11 Cefuroxime 

8 PN008 M 63 Respiratory failure 12 Clarthromycin, co-amoxiclav 

9 PN009 F 77 Other 23 Meropenem, Tazocin 

10 PN010 F 30 Stroke/brain injury/seizures  -  Trimethroprim 

11 PN011 F 73 Respiratory failure 16 Augmentin Tazocin, Clarithromycin 

12 PN012 M 68 Respiratory failure 13 Tazocin 

13 PN013 F 50 Stroke/brain injury/seizures 14 - 

14 PN014 M 44 Respiratory failure 11 Meropenem, Tazocin 

15 PN015 F 49 Stroke/brain injury/seizures 11 Cefuroxime 

16 PN016 M 28 Other 4 Clindomicin, Meropenem 

17 PN017 F 51 OOHCA 23 - 

18 PN018 M 39 Overdose/suicide attempt  -  - 

19 PN019 M 69 Poly-trauma  22 Teicopleinin, Cefuroxime, Tobramycin, Erythromycin 

20 PN020 F 29 Poly-trauma  3 Tazocin,  

21 PN021 F 18 Stroke/brain injury/seizures 0 Aciclovir  

22 PN022 M 72 OOHCA 12 Tazocin  

23 PN023 M 19 Stroke/brain injury/seizures 5 Tazocin, Clarithomycin 

24 PN024 M 40 Stroke/brain injury/seizures 14 - 



25 PN025 F 27 Stroke/brain injury/seizures 4 - 

26 PN026 F 63 General surgery - Stomach  -  Meropenem 

27 PN027 M 41 Stroke/brain injury/seizures 5 - 

28 PN028 F 55 Respiratory failure 15 - 

29 PN029 M 76 Respiratory failure 15 Co-amoxiclav, Tazocin 

30 PN030 F 58 Stroke/brain injury/seizures 19 Ciprofloxacin, Metronizadole, Gentamycin 

31 PN031 F 31 Other  -  Meropenem,  

32 PN032 M 67 Stroke/brain injury/seizures 11 Augmentin, Tazocin, Clarithromycin 

33 PN033 F 85 Respiratory failure 17 Amoxicillin, Co-amoxiclav, Clarithromycin, Tazocin 

34 PN034 M 57 Other 18 Cefuroxime, Metronidazole, Ciprofloxacin, Gentamycin 

35 PN035 M 58 OOHCA 19 Tazocin 

36 PN036 M 60 OOHCA  -  

37 PN037 M 37 Stroke/brain injury/seizures 15 Ceftrixone, Meropenem, Ciprofloxacin 

38 PN038 M 37 Stroke/brain injury/seizures 0 Meropenem, Ciprofloxacin, Ceftriaxome 

39 PN039 F 86 Respiratory failure 17 Co-amoxiclav, Tazocin, Clarithromycin 

40 PN040 F 60 Respiratory failure 21 - 

41 PN041 F 58 Respiratory failure 26 - 

42 PN042 M 74 Stroke/brain injury/seizures 15 - 

43 PN043 M 59 Stroke/brain injury/seizures 6 - 

44 PN045 F 22 Stroke/brain injury/seizures  -  Tazocin 

45 PN046 M 48 OOHCA 12 - 

46 PN047 M 53 Stroke/brain injury/seizures 12 - 

47 PN048 M 57 Stroke/brain injury/seizures 7 Cefuroxime 

48 PN049 F 75 General surgery - Stomach 16 Gentamycin, Tazocin 

49 PN050 M 39 Stroke/brain injury/seizures 11 - 

50 PN051 F 73 Stroke/brain injury/seizures 8 Cefalexin, Meropenem 

51 PN052 M 65 Other 16 - 



52 PN053 F 66 Respiratory failure 11    Vancomycin, Tazocin 

53 PN054 M 66 Other 13 

54 PN055 F 60 Other 8 Meropenem, Vancomycin 

55 PN056 F 49 Stroke/brain injury/seizures 17 - 

56 PN057 M 53 Respiratory failure 11 - 

57 PN058 F 38 Stroke/brain injury/seizures 6 Meropenem 

58 PN059 M 86 General surgery - Stomach 28 Tazocin 

59 PN060 M 39 Stroke/brain injury/seizures 9 Cefuroxime, Co-amoxicillin 

60 PN061 M 36 Poly-trauma  14 Tobramycin, Colomycin, Cefuroxime 

61 PN062 M 21 Poly-trauma  1 Tobramycin, SDD oral paste, Colomycin, Cefotaxime,  

62 PN063 M 58 Respiratory failure  -  Amikacin, Tazocin, Clarithromycin 

63 PN064 M 44 OOHCA 23 - 

64 PN065 F 42 General surgery - Stomach 13 Gentamycin, Augmentin, Metronidazole, Tazocin,   

65 PN066 F 73 Respiratory failure 0 Augmentin, Tazocin, Meropenem 

66 PN067 M 68 Respiratory failure 19 Meropenem 

67 PN068 M 52 OOHCA 8 - 

68 PN069 F 82 General surgery - Stomach 20 - 

69 PN070 M 18 Poly-trauma  2 Cefotaxime, (SDD regime Nystatin, Colomycin), Tobramycin 

70 PN071 M 26 Poly-trauma  7 Augmentin, SDD: Nystatin, Colomycin, Cefuitoxime 

71 PN072 M 67 Respiratory failure 10 Tazocin 

72 PN073 M 59 Other 19 - 

73 PN074 F 51 Stroke/brain injury/seizures 17 Rifampicin, Meropenem, Vancomycin 

74 PN075 M 75 Stroke/brain injury/seizures 20 Cefotaxime, Amoxicillin, Meropenem, Vancoymcin, Gentamycin 

75 PN076 M 49 Respiratory failure 16 Tazocin, Clarithromycin 

76 PN077 M 70 Stroke/brain injury/seizures 18 Cefuroxime 

77 PN078 M 75 Respiratory failure 24 cotrimazole cream, Meropenem, Vancomycin  

78 PN079 F 51 Respiratory failure  -  Tazocin, Trimethroprim 



79 PN080 F 71 Respiratory failure 6 Meropenem 

80 PN081 M 74 Other 18 Tazocin 

81 PN082 F 45 Stroke/brain injury/seizures 1 Gentamicin 

82 PN083 M 47 Respiratory failure 1 Augmentin, Clarithromycin 

83 PN084 M 58 Poly-trauma  17 Augmentin, SDD: Colomycin and Tobramycin, Teicoplanin 

84 PN085 F 75 Respiratory failure 14 Meropenem 

85 PN086 M 74 Stroke/brain injury/seizures 5 

86 PN087 M 80 OOHCA 11 

87 PN088 F 40 Dental/Oral cavity 22 Meropenem, Clindamycin, Metronidazole 

88 PN089 M 38 Poly-trauma  15 Co-amoxiclav, Tobramycin, (SDD: Colistin + Nystatin) 

89 PN090 M 66 Respiratory failure 17 Tazocin, Co-trimoxizole 

90 PN092 M 55 Stroke/brain injury/seizures 13 Tazocin 

91 PN093 F 42 Stroke/brain injury/seizures 7 Meropenem, Ceftriaxone, Rifampicin, Vancomycin 

92 PN094 M 60 Respiratory failure 13 Co-amoxiclav, Clarithromycin 

93 PN095 M 41 Stroke/brain injury/seizures 9 - 

94 PN096 F 27 Other 1 Amoxicillin, Ceftriaxone 

95 PN097 F 77 Poly-trauma  22 Colomycin, Tobramycin, Cefotaxime  

96 PN099 M 58 Other 9 Rifampicin, Isoniazid, Pyrazinamide, Ethambutol 

97 PN100 M 26 Overdose/suicide attempt 6 Clarythromcin, Cefotaxime 

98 PN101 M 29 Respiratory failure 25 Meropenem 

99 PN102 M 30 Respiratory failure 8 Co-amoxiclav, Clarithromycin, Co-trimoxazole 

100 PN103 F 80 Respiratory failure  -  Augmentin, Co-amoxiclav, Clarithryomcin 

101 PN104 M 56 OOHCA 18 - 

102 PN105 M 67 OOHCA 14 - 

103 PN106 F 60 Respiratory failure 19 Amoxicilin 

104 PN107 F 47 Stroke/brain injury/seizures 12 - 

105 PN108 M 74 OOHCA  -  - 



106 PN109 M Respiratory failure 7 Tazocin 

107 PN110 M 60 Other   Metronidazole, Cefotaxime 

 

Table 3 - Patient demographics: age, gender, DMFT scores, admission details (primary reason for mechanical ventilation) and 
antibiotic administration 

 

 



 

114 Isolates of S. aureus  

  Cefepime  Cefoxitin Ceftazidime  
Fusidic 

Acid Gentamicin  Meropenem  

Sensitive % 65 88 88 89 82 86 

Intermediate % 20 0 2 4 13 6 

Resistant % 15 12 11 7 4 8 

 
Ciprofloxacin  Clindamycin Erythromycin  Penicillin Tobramycin  Vancomycin  

Sensitive % 86 61 62 55 79 88 

Intermediate % 4 27 16 31 15 1 

Resistant % 11 12 22 14 6 11 
 

Table 4 - Antimicrobial sensitivities for S. aureus isolates 

 

56 Isolates of P. aeruginosa 

  Ceftazidime Ciprofloxacin Gentamicin Meropenem Piperacillin Piperacillin-Tazobactam Tobramycin 

Resistant % 8.8 1.8 1.8 22.8 15.8 10.5 1.8 

Sensitive % 82.5 87.7 66.7 64.9 40.4 63.2 96.5 

Intermediate %  8.8 10.5 31.6 12.3 43.9 26.3 1.8 
 

Table 5 - Antimicrobial sensitivities for P. aeruginosa isolates 

 



 

 

Figure 1 - Microbial colonisation of respiratory pathogens during endotracheal 

intubation and analysis during the recovery period (up to 8 weeks post ETT-

extubation).  



 

Figure 2 - Micrographs of endotracheal tube (ETT) biofilm obtained by 

confocal laser scanning microscopy (CLSM). All micrographs show a confocal 

fluorescence image superimposed (colour) upon a Nomarski differential 

interference (greyscale) A) Aggregates of bacteria hybridised with the 

universal bacterial Peptide Nucleic Acid (PNA) probe labeled with Cy-3 



(red); B) Pseudomonas aeruginosa hybridised with species specific FITC 

labelled PNA probe (green); C) Staphylococcus aureus hybridised with 

species specific PNA probe conjugated with Cy-5 (blue). Where possible, the 

edge of the ETT section is arrowed.  



 

Patient Antibiotic 

Patient 
 

Sample Cefepime Cefoxitin Ceftazidime Ciprofloxacin  Clindamycin Erythromycin 
Fusidic 
Acid Gentamicin Meropenem Penicillin Tobramycin Van comycin  

  

PN004 SUB 25 0 20 35 0 0 0 26 26 0 22 0 
PN005 DP 28 29 16 28 0 0 30 24 34 16 22 16 
PN005 DP 27 29 19 28 0 0 36 24 38 17 23 16 

PN007 DP 27 30 20 20 27 26 30 22 34 40 22 17 

PN007 DP 28 29 18 21 36 25 36 22 36 16 22 16 

PN007 DP 24 28 18 21 22 26 31 24 32 29 21 16 

PN007 DP 27 0 28 35 0 0 24 23 35 0 22 0 
PN009 DP 24 29 18 27 20 24 33 23 36 42 20 18 

PN009 NBL 22 28 17 24 30 24 33 23 33 33 23 16 

PN009 DP 23 29 16 22 30 18 32 22 31 28 22 16 

PN015 DP 28 0 27 35 0 0 0 23 36 0 25 0 

PN021 ETT 26 31 14 21 29 21 35 24 36 17 21 16 

PN021 DP 27 29 17 20 30 24 36 23 39 16 19 16 

PN021 NBL 28 30 18 20 30 25 35 22 36 15 23 16 

PN021 DP 24 29 17 22 28 21 30 22 32 29 21 17 

PN024 SUB 26 30 19 21 28 26 30 23 31 15 21 16 

PN024 NBL 25 29 19 22 27 26 30 22 30 17 22 16 

PN024 ETT 24 29 18 22 27 23 29 23 33 30 22 18 

PN024 DP 23 30 19 26 30 23 31 22 30 39 20 18 

PN024 NBL 27 28 16 28 29 22 32 23 33 36 21 19 

PN025 DP 25 30 17 27 28 24 30 23 32 30 21 16 

PN025 NBL 27 30 18 28 30 24 31 22 31 34 22 17 



PN025 NBL 27 29 17 27 28 25 30 22 30 40 22 16 

PN025 ETT 26 29 18 26 27 25 32 23 32 29 21 18 

PN027 NBL 28 29 28 34 29 23 30 24 31 40 21 17 

PN027 NBL 25 29 16 0 29 24 30 22 30 30 23 17 

PN027 ETT 23 30 18 0 22 0 30 22 10 0 21 17 

PN028 ETT 0 9 0 24 23 0 30 25 0 0 19 14 

PN028 SUB 0 10 0 12 29 0 33 22 13 7 22 16 

PN028 NBL 0 11 0 0 31 0 30 22 12 0 22 17 

PN037 DP 24 30 18 26 28 18 31 25 30 17 20 18 

PN037 NBL 25 30 19 27 24 27 30 23 30 17 21 17 

PN037 NBL 31 30 20 25 28 26 30 24 30 19 19 18 

PN037 NBL 24 30 17 24 28 22 30 24 30 20 20 20 

PN042 DP 24 30 18 24 28 23 30 24 30 20 20 20 

PN042 NBL 24 30 18 25 24 23 30 24 30 20 19 18 

PN042 SUB 16 0 0 25 13 26 30 24 18 0 14 15 

PN042 ETT 24 30 18 25 28 22 30 22 30 30 19 19 

PN043 DP 24 30 18 24 28 22 30 24 30 18 18 18 

PN045 DP 22 29 19 23 30 23 30 22 32 21 22 19 

PN046 DP 24 30 18 25 28 22 30 22 30 28 19 19 

PN046 NBL 24 30 18 25 28 22 30 22 30 28 19 19 

PN046 DP 25 30 19 24 28 22 30 22 30 28 18 14 

PN046 NBL 27 30 20 27 25 19 29 22 29 21 22 18 

PN046 ETT 24 30 18 24 28 22 28 23 30 28 18 21 

PN046 DP 22 30 20 23 30 22 29 0 31 18 20 18 

PN048 NBL 25 30 18 24 24 18 30 22 30 28 20 20 

PN049 DP 22 30 19 25 21 20 30 19 29 19 22 20 

PN049 NBL 20 30 20 24 21 23 29 25 32 29 24 0 



PN049 DP 25 0 18 11 10 22 19 20 30 20 14 0 

PN050 DP 22 30 19 25 28 20 30 22 30 28 19 20 

PN050 NBL 22 29 20 24 28 19 29 19 30 19 20 20 

PN050 ETT 23 30 20 22 29 19 29 23 30 28 20 20 

PN051 DP 23 30 19 0 28 0 29 19 30 28 24 20 

PN051 DP 20 30 20 22 21 19 30 22 29 22 24 21 

PN052 DP 24 31 18 24 0 0 29 22 30 28 22 19 

PN052 NBL 23 30 19 24 30 23 29 22 30 29 21 4 

PN052 ETT 21 30 19 22 21 22 29 22 30 20 20 11 

PN054 NBL 23 30 20 24 22 23 30 22 30 21 19 19 

PN056 DP 23 30 20 22 29 19 29 22 30 19 22 19 

PN056 NBL 23 30 20 22 29 19 30 24 30 29 19 21 

PN056 DP 19 29 21 22 22 23 30 18 30 29 21 19 

PN056 NBL 20 30 19 22 29 23 30 24 29 28 21 19 

PN056 SUB 19 30 21 22 21 23 30 18 30 28 22 20 

PN056 SUB 19 30 21 23 21 22 30 18 28 21 21 21 

PN057 NBL 19 29 20 23 22 22 30 22 30 19 21 22 

PN057 ETT 20 30 18 23 22 19 29 23 30 21 21 21 

PN058 SUB 19 29 20 21 22 22 29 18 30 30 22 0 

PN063 NBL 20 29 18 22 22 19 29 18 30 30 22 0 

PN068 DP 21 30 20 0 9 0 30 20 30 30 20 0 

PN068 NBL 22 30 20 22 28 0 26 21 29 28 0 28 

PN068 DP 22 30 19 21 28 28 11 21 30 29 21 19 

PN077 NBL 22 29 19 21 27 22 29 20 21 22 19 19 

PN077 DP 22 30 19 26 28 22 30 20 32 23 20 0 

PN077 NBL 21 30 20 22 28 22 30 20 30 29 21 19 

PN080 SUB 0 14 0 10 28 0 30 10 20 0 10 21 



PN080 DP 0 13 0 0 32 0 30 10 21 0 10 21 

PN080 DP 0 15 0 0 33 0 33 11 21 0 0 21 

PN081 NBL 0 0 0 0 28 23 10 27 30 0 20 0 

PN081 SUB 0 0 0 0 32 26 29 23 7 0 20 9 

PN081 DP 0 9 0 0 33 29 31 24 14 0 23 18 

PN081 DP 0 8 0 0 30 27 21 24 9 0 22 17 

PN086 NBL 23 30 19 23 28 22 29 22 29 21 22 20 

PN087 ETT 21 30 19 23 28 19 30 24 29 21 24 20 

PN087 NBL 25 20 16 21 29 8 29 22 29 17 23 20 

PN087 SUB 24 30 19 24 22 0 30 22 30 28 22 20 

PN087 DP 23 30 20 22 28 0 30 22 29 29 21 20 

PN089 NBL 23 30 20 24 28 22 30 24 30 29 21 19 

PN089 SUB 23 29 21 22 21 22 29 22 30 28 20 21 

PN089 NBL 25 30 22 23 28 24 29 23 29 31 20 20 

PN089 DP 21 30 21 24 28 22 29 23 29 28 21 19 

PN092 DP 23 30 22 0 21 23 30 22 27 24 21 20 

PN092 NBL 21 30 20 23 21 24 29 23 29 29 22 20 

PN094 NBL 24 29 21 22 28 23 30 22 29 29 21 19 

PN095 DP 21 29 21 22 0 0 29 22 29 32 21 20 

PN095 NBL 29 32 17 22 0 0 17 25 35 29 22 19 

PN095 SUB 26 30 14 24 0 0 19 24 33 29 18 18 

PN095 DP 22 30 18 24 0 0 19 23 29 18 21 0 

PN097 NBL 23 30 21 24 24 23 30 21 31 31 22 18 

PN099 DP 20 29 23 24 28 22 30 23 30 28 21 21 

PN099 DP 23 30 19 22 27 19 29 23 30 29 21 18 

PN102 DP 23 30 19 23 25 22 29 22 33 29 19 19 

PN102 DP 20 29 22 21 0 0 30 22 34 30 21 20 



PN104 DP 21 30 24 23 28 24 30 24 30 21 21 17 

PN104 NBL 21 30 21 23 21 25 30 24 30 29 22 18 

PN104 DP 20 30 22 24 21 23 30 23 30 28 20 21 

PN105 NBL 20 30 21 20 28 23 30 23 30 31 22 19 

PN105 ETT 24 30 22 21 21 24 30 23 29 29 20 18 

PN106 ETT 22 30 23 21 28 23 29 23 30 30 21 19 

PN108 DP 20 30 22 23 21 23 30 23 30 28 19 20 

PN108 NBL 24 30 19 23 28 22 29 22 29 28 21 20 

PN108 ETT 21 30 16 23 29 22 31 24 30 28 20 19 

PN109 DP 20 30 17 24 24 22 32 22 32 30 20 17 

PN110 NBL 0 0 0 10 32 0 25 12 0 0 12 20 

Resistant   
Supplementary table 1 – Individual antimicrobial sensitivities for S. aureus isolates obtained during mechanical, and where 

possible, into the post- endotracheal tube extubation recovery period.  

 

Patient Antibiotics 
Patient  Sample Ceftazidime Ciprofloxacin Gentamici n Meropenem Piperacillin Piperacillin-Tazobactam To bramycin 

PN006 DP 22 30 20 27 24 27 19 
PN007 DP 22 30 20 28 24 27 22 
PN008 DP 24 30 26 28 24 27 21 
PN018 DP 22 30 19 27 24 28 21 
PN018 NBL 23 30 18 32 25 27 20 
PN030 DP 19 30 19 28 23 27 20 
PN030 NBL 20 30 19 29 24 27 20 
PN030 SUB 21 29 20 30 24 27 19 
PN030 NBL 22 29 20 30 24 29 19 



PN030 ETT 23 30 18 32 20 26 20 
PN030 DP 19 31 19 31 18 26 20 
PN038 DP 22 30 24 0 18 20 20 
PN045 NBL 22 30 22 0 17 21 22 
PN047 DP 22 29 19 20 21 26 24 
PN047 DP 19 28 21 27 22 29 22 
PN047 DP 22 30 19 27 23 26 19 
PN047 DP 21 30 20 27 19 27 20 
PN048 NBL 22 30 20 28 23 27 21 
PN049 DP 21 30 19 28 17 18 19 
PN049 DP 22 30 18 18 23 26 21 
PN051 DP 21 30 20 27 23 28 21 
PN060 DP 23 30 21 27 21 25 22 
PN060 DP 22 30 21 18 14 19 21 
PN060 DP 21 30 19 29 21 28 19 
PN062 DP 22 31 21 29 22 27 19 
PN062 NBL 22 28 21 28 22 27 19 
PN062 DP 22 30 20 0 23 25 20 
PN075 DP 20 30 20 29 21 26 19 
PN078 NBL 21 30 20 28 20 28 20 
PN079 SUB 22 30 18 30 21 26 20 
PN079 DP 22 30 21 28 0 14 19 
PN079 NBL 23 30 21 29 19 28 22 
PN079 DP 22 27 19 6 11 15 21 
PN079 DP 22 27 19 0 12 17 21 
PN081 DP 23 30 20 0 21 26 20 
PN083 NBL 23 30 21 10 19 27 21 



PN095 SUB 22 29 20 29 20 29 19 
PN095 DP 20 29 21 29 21 28 22 
PN095 ETT 22 29 21 29 19 29 19 
PN095 DP 22 30 21 0 18 29 18 
PN095 NBL 21 30 18 10 22 29 19 
PN095 SUB 21 30 23 28 23 27 20 
PN102 DP 21 30 20 30 24 28 20 
PN104 DP 20 30 19 30 21 28 20 
PN105 ETT 24 30 19 28 24 27 21 
PN105 NBL 25 30 19 29 24 29 21 
PN105 DP 21 29 21 29 21 28 21 
PN106 DP 19 29 21 27 23 27 19 
PN107 DP 22 30 21 30 22 28 20 
PN108 ETT 16 7 17 19 11 19 14 
PN109 DP 20 30 21 31 23 28 20 
PN109 DP 23 30 21 27 23 29 20 
PN109 DP 22 29 21 29 25 28 19 
PN110 DP 22 28 20 28 21 25 20 
PN110 NBL 23 27 21 28 22 26 19 
PN110 ETT 22 30 21 29 22 26 21 

Resistant   

Supplementary table 2 - Individual antimicrobial sensitivities for P. aeruginosa isolates obtained during mechanical, and where 

possible, into the post- endotracheal tube extubation recovery period. 


