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How to Pack Trapezoids:
Exact and Evolutionary Algorithms

Rhyd Lewis and Penny Holborn

Abstract—The purposes of this paper are twofold. In the first,
we describe an exact polynomial-time algorithm for the pair
sequencing problem and show how this method can be used to
pack fixed-height trapezoids into a single bin such that inter-
item wastage is minimised. We then go on to examine how
this algorithm can be combined with bespoke evolutionary and
local search methods for tackling the multiple-bin version of
this problem—one that is closely related to one-dimensional
bin packing. In the course of doing this, a number of ideas
surrounding recombination, diversity, and genetic repair are also
introduced and analysed.

Index Terms—Trapezoid Packing, Bin Packing, Pair Sequenc-
ing Problem, Recombination, Diversity.

I. INTRODUCTION

The Pair Sequencing Problem (PSP) is defined as follows:

Definition 1. Let P be a multiset of unordered pairs of
nonnegative integers P = {{x1, y1}, {x2, y2}, . . . , {xn, yn}},
and let X be an ordering of the elements of P in which each
element is also expressed as an ordered pair. The PSP involves
identifying the solution X which minimises the objective
function

f(X ) =

(
n−1∑
i=1

D
(
rhs(i), lhs(i+ 1)

))
(1)

+D
(
rhs(n), lhs(1)

)
where lhs(i) and rhs(i) denote the values on the left- and
right-hand sides of the ith ordered pair in X , and where
D(x, y) = |x− y| denotes the difference between two values
x, y ∈ N0.

The PSP can be used in the game of dominoes to determine
whether a set of tiles can be laid out legally in a single
(non-branching) line of play. This is achieved by using each
{xi, yi} ∈ P to represent a tile with “end” values xi and yi,
with a legal line of play then corresponding to a solution X
in which at most one of the terms in the objective function
has a non-zero value (see Fig. 1). Indeed, if the cost of X
is zero then the ends of the two terminal dominoes can also
be joined to form a circuit. In a similar fashion, the PSP can
also be used to determine whether a set of n matrices with
dimensions xi, yi (i = 1, . . . , n) can be ordered and transposed
so that they might be properly multiplied together (though, of
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Fig. 1. A legal line of play in dominoes. Here, P = {{1, 4}, {1, 6}, {2, 4},
{2, 5}, {3, 5}} and the solution is written X = 〈(6, 1), (1, 4), (4, 2), (2, 5),
(5, 3)〉, giving f(X ) = 3.
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Fig. 2. (a) Examples of form-1 (left) and form-2 (right) trapezoids; and (b)
two example packings of the same four trapezoids into an H×W bin. Inter-
item wastage is shown in white.

course, different solutions may bring about different answers
to the resultant calculation).

Our main motivation for studying the PSP, however, comes
from a variant of the one-dimensional bin packing problem
that was originally considered by Lewis et al. in 2011 [1].
In their work the items to be packed have a fixed height,
vary in width, and are trapezoidal in shape. The problem
is of particular interest in the construction industry, where
we are interested in cutting trapezoidal-shaped roof trusses
from fixed-length rectangular stocks; however, it also has
other applications, such as when laying decked flooring (see
Section V).

Consider a set U of trapezoidal items of a fixed height H .
Each item i ∈ U is defined as having a “base width” bi,
and two “projections” xi and yi that determine the angles of
its lateral sides. An item’s “central width” is simply ci =
bi − (xi + yi). Each trapezoid can also be one of two forms:
form-1, where projections occur on the same side of the shape,
or form-2, where they occur on alternate sides. In both cases
the area of an item i is simply A(i) = 1

2H(bi + ci) (see
Fig. 2(a)).

Definition 2. Given a set U of trapezoidal items of height
H and base widths bi ≤ W, ∀i ∈ U , the trapezoid packing
problem (TPP) involves packing the items of U into a minimal
number of H ×W bins such that no bin is over-filled.
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Note that the classical one-dimensional bin packing problem
is a special case of the TPP in which xi = yi = 0,∀i ∈ U ;
hence the TPP is NP-hard.

In addition to the bin packing task of deciding which items
should be assigned to which bins, the TPP involves deciding
how items should be packed into each bin such that wastage
between successive items is minimised. This task can be
formally defined as follows.

Definition 3. Let S ⊆ U be a set of trapezoidal items
whose total area is less than or equal to a bin’s area (i.e.,
A(S) =

∑
i∈S A(i) ≤ HW ). The trapezoid packing sub-

problem (TPSP), involves determining whether an arrange-
ment of the items in S exists such that the “inter-item wastage”
is less than or equal to HW −A(S).

Here, inter-item wastage is defined as the total area of all
triangular spaces between each pair of adjacent items, plus
the left- and right-most triangles of wastage, as illustrated in
Fig. 2(b). If the inter-item wastage is indeed less than or equal
to HW −A(S), then it is obvious that an arrangement of the
items exists that allows them to be packed into a single bin.

In [1], the TPSP was noted as being a special type of
travelling salesman problem and was conjectured to be NP-
complete. These observations were then used to justify a
greedy approximation algorithm for the subproblem (discussed
further in Section III-B). An exact IP-based model was also
used when their greedy algorithm was too inaccurate, though
this often turned out to be restrictively slow in their experi-
ments.

In this present work we show that the TPSP can be
expressed as a type of PSP. In Section II, we then show that
the PSP, and therefore the TPSP itself, can in fact be exactly
solved using a polynomially bounded algorithm, therefore
disproving Lewis et al.’s conjecture [1]. After presenting this
algorithm, in Sections III and IV we then go on to show
how this exact method can be combined with state of the
art packing heuristics to produce high-quality results for the
TPP. Section V then concludes the paper and makes some
suggestions for further work.

A. Expressing the TPSP as a PSP

Let us start by making the following observations about the
TPSP. First, since we are only attempting to minimise inter-
item wastage, the values bi and ci can be ignored as they have
no bearing on the calculation. Second, although each trapezoid
in a sequence can be aligned according to four orientations (by
flipping on none, either, or both of its horizontal and vertical
axes), only two of these orientations need to be considered
due to the following theorem.

Theorem 1 ( [1]). When minimising wastage between succes-
sive trapezoids in a defined sequence, we only need to decide
whether each trapezoid should be flipped on its vertical axis.

Proof. Suppose a set S of trapezoids have been placed in
a particular sequence from left to right, together with a
specification, for each trapezoid, of which projection should
be on the left. If the orientations are such that the inter-item

wastage for this particular arrangement is minimised, then
the adjacent projections will be aligned so that they “nest”.
That is, “�” angles will be adjacent to other “�” angles
and “�”angles will be adjacent to other “�” angles (as is
the case in Fig. 2(b)). Now suppose the contrary, and that
two adjacent trapezoids in this arrangement do not nest. If we
now take all trapezoids to the right of this join and flip them
on their horizontal axis, this join will be nested, decreasing
this wastage, and leaving the remaining joins in the sequence
unchanged. Hence, the original orientation of the items could
not have given the minimal wastage.

The task of arranging a set S of trapezoids into a single
bin can now be seen as involving two things: (a) determining
their ordering from left to right, and (b) deciding for each
trapezoid i ∈ S whether projection xi or yi should occur on
the left. Joins between adjacent trapezoids can then be easily
nested due to Theorem 1. Note that this allows us to disregard
the differences between form-1 and form-2 trapezoids. It also
means that the area of wastage between any two projections
xi and xj can be calculated as 1

2H(|xi − xj |). This can be
further simplified to |xi−xj | by assuming H = 2, which has
no effect on the problem or its solutions.

It is now clear that the task of optimally arranging a set
S of trapezoids into a H × W bin can be expressed as an
instance of the PSP using P = {{xi, yi} : i ∈ S} ∪ {{0, 0}}.
Here, the additional element {0, 0} is used for calculating the
left- and right-hand triangles of wastage and can be viewed as
a trapezoid i for which xi = bi = yi = 0. Our task is to now
identify a PSP solution X whose cost f(X ) ≤ HW −A(S).

II. SOLVING THE PSP

In this section we give a polynomially bounded exact
algorithm for the PSP. In proving the correctness of this
algorithm it is useful to consider the problem from a graph-
theoretic point-of-view.

Definition 4. Let P be an instance of the PSP, and let
G = (V,E) be an undirected multigraph defined by an edge
multiset E = P , giving |E| = n. The vertex set V is defined
using one vertex for each of the different values occurring
in P . That is, V =

⋃n
i=1{xi, yi}. For convenience, let the

subscript j of a vertex vj correspond to its numerical value
in P; hence the degree of vj , written deg(vj), corresponds to
the number of occurrences of the value j in P .

Considering a graph G constructed in this manner, the task
of forming a solution to the PSP might be viewed as a special
type of undirected rural postman problem (RPP). In the RPP
we are given an arbitrary edge-weighted graph for which some
edges are marked as compulsory. The task is then to form a
cycle that traverses all compulsory edges at least once. In cases
where all edges are marked as compulsory, the RPP becomes
equivalent to the well-known Chinese postman problem, which
is solvable in polynomial time [2]; however, the RPP is known
to be NP-hard in general [3].

For the PSP, all edges in G are compulsory. Like the RPP,
we are interested in forming a cycle containing all compulsory
edges, though these must be traversed exactly once. Note that
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Fig. 3. (a) The graph G formed by the example problem P = {{0, 0},
{0, 6}, {1, 5}, {2, 3}, {4, 7}}; and (b) an example (sub-optimal) solution
X = 〈(0, 0), (0, 6), (5, 1), (2, 3), (4, 7)〉, with f(X ) = 10. Solid edges
corresponds to the trapezoidal items and are therefore compulsory. Dotted
edges incur a cost (indicated).

this may require additional edges to be added to G, as Fig. 3
demonstrates. These additional edges will each incur a cost,
defined as w(vi, vj) = D(i, j) = |i − j|. The graph G can
therefore be seen as a special type of Euclidean graph in which
all vertices lie on a straight line. In particular, given vertices
vi, vj , vk with i < j < k, this implies w(vi, vk) = w(vi, vj)+
w(vj , vk). Solving the PSP using G can therefore be viewed
as the task of identifying the set of additional edges whose
total cost is minimal, but which allows all edges in G to be
traversed exactly once.

We now recall the following definition from classical graph
theory:

Definition 5. A graph is Eulerian if and only if it has no
vertices of odd degree (that is, all vertices are of even degree).

An Eulerian cycle (or Eulerian tour) of a graph is defined as
a cycle that visits every edge exactly once and that starts and
ends at the same vertex. Eulerian cycles were introduced by
Leonard Euler in the mid-seventeenth century in his solution
to the famous Seven Bridges of Königsberg problem [4]. In
this work, the following theorem was also stated, a proof of
which was later published by Hierholzer and Wiener [5].

Theorem 2 ( [4], [5]). A graph contains an Eulerian cycle if
and only if it is both connected and Eulerian.

Theorem 2 now allows us to state the following for the PSP.

Theorem 3. There exists a zero cost solution X to an instance
P of the PSP if and only if its corresponding graph G =
(V,E) features an Eulerian cycle.

Proof. Let C = 〈(vx1 , vx2), (vx2 , vx3), (vx3 , vx4), . . . ,
(vxn

, vx1
)〉 be an Eularian cycle in G. In each vertex vxi

encountered along this cycle, we “enter” vxi
via the edge

(vxi−1
, vxi

), and “exit” via the edge (vxi
, vxi+1

). Since
D(xi, xi) = 0, the corresponding PSP solution X = 〈(x1, x2),
(x2, x3), (x3, x4), . . . , (xn, x1)〉 has a cost of zero.

Alternatively, let X be the zero-cost PSP solution X =
〈(x1, x2), (x2, x3), (x3, x4), . . . , (xn, x1)〉. Because P =
E and the elements of X have a one to one correspon-
dence to elements in P , then C = 〈(vx1

, vx2
), (vx2

, vx3
),

(vx3
, vx4

), . . . , (vxn
, vx1

)〉 defines an Eulerian cycle.

Eulerian cycles can be constructed from connected Eulerian
graphs using Hierholzer’s algorithm, which is of complexity

v0 v1 v2 v3 v5 v6 v7 
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Fig. 4. (a) Graph G formed by the problem P = {{0, 3}, {1, 5}, {2, 3},
{3, 3}, {3, 6},{3,7}}. Odd-degree vertices are shown in white. (b) shows
the resultant Eulerian graph when the matching M∗ (dotted lines) has been
added.

O(n) (see [5], [6]). For the PSP an optional step is also avail-
able in which we might reduce n by removing certain edges
from G before identifying the Eulerian cycles. Specifically,
• If there exist two edges {vx, vx} and {vx, vy}, these can

be replaced by the single edge {vx, vy}. Note that this
condition also allows the possibility that x = y, in which
case multiple loops of the form {vx, vx} can be replaced
by a single loop {vx, vx}.

• If there exist three edges {vx, vy}, {vx, vy}, and {vx, vy}
(where x 6= y), these can be replaced by the single edge
{vx, vy}.

These opportunities arise from the fact that the above edge
combinations can always be adjacent in any Eulerian cycle.
For example, in the second bullet above we can always form an
Eulerian cycle containing 〈. . . (vx, vy), (vy, vx), (vx, vy) . . .〉;
hence, in a graph in which two of these edges have been
removed, an Eulerian cycle containing just one occurrence of
(vx, vy) obviously still exists.

In instances of the PSP for which the corresponding graph
G does not feature an Eulerian cycle, it is necessary to add
additional edges, each of which will attract an additional cost.
This leads to an optimal solution X for which f(X ) > 0. Let
G′ = (V ′, E′) be a complete edge-weighted subgraph com-
prising only the odd-degree vertices of G and edge weights
w(vi, vj) = D(i, j) for all vi, vj ∈ V ′. According to the hand-
shaking theorem, |V ′| must be even [4]. In addition, because
the vertices of V ′ lie on a straight line, a minimum-weight
perfect matching M∗ can be achieved by considering the
vertices from left to right and simply taking the edge that joins
each successive pair (as is the case in Fig. 4). The appropriate
FIND-MATCHING procedure for this task is shown in Fig. 5.
Note that a more expensive weighted matching algorithm for
general graphs might also be applied to achieve this task;
however, this is unnecessary due to the special structure of
G′ noted.

Theorem 4. Let G = (V,E = P) be non-Eulerian. Now set
E ← E ∪M∗, where M∗ is found by the FIND-MATCHING
procedure. If G is now connected, an Eulerian cycle of G
defines a minimum cost solution to P .

Proof. It is obvious that G is now Eulerian since all of the
originally odd-degree vertices in G have had their degrees
increased by one. Because G is connected, it therefore contains
an Eulerian cycle according to Theorem 2. If an Eulerian cycle
of G does not define a minimum cost solution to the PSP, this
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FIND-MATCHING (G = (V,E = P))
(1) Let V = {vx1

, vx2
, . . . , vxl

} where x1 < x2 < . . . < xl
(2) M∗ ← ∅, i← 1
(3) while (i ≤ l) do
(4) if deg(vxi) is odd then
(5) for j ← i+ 1 to l do
(6) if deg(vxj

) is odd then
(7) M∗ ←M∗ ∪ {{vxi

, vxj
}}

(8) break
(9) i← j + 1

(10) else i← i+ 1

Fig. 5. Algorithm for achieving a minimum-weight matching M∗ on the
odd-degree vertices of G.

implies the existence of a weighted matching M whose edge
weight sum is less than M∗. However, since all vertices of
G lie on a straight line and have Euclidean distances, such a
matching can obviously not exist.

As a final step, we now need to consider the situation where
the Eulerian graph G comprises more than one component.
If this is the case, these Eulerian components will need to
be joined by adding further edges to the graph. To see how
this can be done, it is instructive to view each component
as a sub-solution to the original PSP problem P . Note that
any sub-solution (and indeed full solution) to the PSP remains
unchanged under cyclic shifts and inversions. For example,
the solution 〈(1, 2), (3, 4), (5, 6), (7, 8)〉 is equivalent to the
solution 〈(7, 8), (1, 2), (3, 4), (5, 6)〉 (due to a right cyclic
shift), and the solution 〈(8, 7), (6, 5), (4, 3), (2, 1)〉 (due to an
inversion). This means that a particular sub-solution X2 can
be inserted into another sub-solution X1 in 2 × |X1| × |X2|
different ways. We define such an operation as a splice.

In more detail, let the sub-solutions X1 = 〈. . . (xi, xi+1),
(xi+2, xi+3) . . .〉 and X2 = 〈(y1, y2), . . . , (yl−1, yl)〉. Splic-
ing these sub-solutions by inserting X2 between elements
(xi, xi+1) and (xi+2, xi+3) in X1 results in a new sub-solution
with an additional cost of

D(xi+1, y1)+D(xi+2, yl)−D(xi+1, xi+2)−D(y1, yl). (2)

Alternatively, inserting an inverted X2 in the same manner
gives a sub-solution with an additional cost

D(xi+1, yl)+D(xi+2, y1)−D(xi+1, xi+2)−D(y1, yl). (3)

In each of these cases, there are |X1| possible insertion points
for X2 in X1, and |X2| possible versions of X2 due to cyclic
shifts. This gives the 2×|X1|×|X2| possible options as stated.

Definition 6. Let Xi and Xj be two sub-solutions. A minimum
cost splice is the operation of splicing Xi and Xj such that the
minimum additional cost, denoted by ρ(Xi, Xj), is incurred.

A minimum cost splice between two sub-solutions Xi and
Xj can be calculated by simply checking all 2× |Xi| × |Xj |
possible options and taking the smallest value. The act of
performing this minimum cost splice is denoted by Xi ←
SPLICE(Xi, Xj). That is, Xj is simply copied into Xi in
the appropriate way at the correct position. As an exam-
ple, consider two sub-solutions X1 = 〈(0, 2), (2, 4), (4, 3),

MERGE-SUB-SOLUTIONS (X = {X1, X2, . . .})
(1) while |X | > 1 do
(2) Determine Xi, Xj ∈ X with minimal ρ(Xi, Xj), i < j
(3) Xi ← SPLICE(Xi, Xj)
(4) X ← X − {Xj}
(5) X ← X1

Fig. 6. Algorithm for optimally merging all subsolutions into a single,
complete solution.

(3, 2)〉 and X2 = 〈(6, 7), (7,5), (5, 6)〉. The operation X1 ←
SPLICE(X1, X2) garners an additional cost of ρ(X1, X2) = 2,
which involves applying one right cyclic shift to X2 and then
inserting it between the second and third elements of X1 to
give X1 = 〈(0, 2), (2, 4), (5,6), (6,7), (7,5), (4, 3), (3, 2)〉.

An algorithm for merging all sub-solutions into a single,
full solution to the PSP is shown in Fig. 6. Given a set of
sub-solutions X = {X1, X2, . . .}, in each iteration the pair of
sub-solutions with the minimum cost splice overall is identified
and these are spliced together appropriately. The final full
solution results when only one sub-solution remains, as shown
in Line (5) of Fig. 6. Note that this algorithm is analogous
to Kruskal’s algorithm for identifying a minimum spanning
tree [7]. This operates by taking an arbitrary edge-weighted
graph and, at each step, merging a pair of components, until
only one component (representing a minimum spanning tree)
remains. More specifically, at the outset Kruskal’s algorithm
considers each vertex of the graph as a component, and then
selects the lowest cost edge between any two components. The
components at the end points of this edge are then merged into
a single component, and the process then repeats.

From the perspective of using the multigraph G to represent
a PSP, because all vertices occur in a single row, each pair of
Eulerian components Xi, Xj ∈ G can be seen as being linked
by an edge with cost ρ(Xi, Xj). The resultant spanning tree
then describes the way in which these components are to be
merged together. In effect, however, each application of the
operation Xi ← SPLICE(Xi, Xj) is actually adding two edges
between Xi and Xj (whose total weight equals ρ(Xi, Xj)) to
ensure that the resultant component is still Eulerian.

The final overall procedure for solving the PSP, which we
call the EULER-SPLICE algorithm, is as follows:

1) Given P , form the graph G = (V,E) according to
Definition 4. If G is connected and Eulerian, return an
Eulerian cycle and end.

2) If G = (V,E) is not Eulerian, determine the matching
M∗ by executing FIND-MATCHING(G) and set E ←
E ∪M∗. If G now comprises one component, return an
Eulerian cycle of G and end.

3) Execute MERGE-SUB-SOLUTIONS(X ), where the input
X = {X1, X2, . . .} is the set of all Eulerian components
of G. Return X as the optimal solution to P .

An example application of this method is provided in Fig. 7.
Given |P| = n, observe that the FIND-MATCHING procedure
is of linear complexity O(n), as is the act of determining
the resultant Eulerian cycles via Hierholzer’s algorithm [5],
[6]. MERGE-SUB-SOLUTIONS can involve up to n iterations
of the outer while-loop, while Line (2) of the procedure is of
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complexity O(n2) due to the number of calculations that need
to be carried out in calculating the minimum ρ(Xi, Xj) across
all pairs of components Xi, Xj ∈ X . Splicing operations,
however, are of complexity O(1) if linked lists (or similar)
are used. EULER-SPLICE therefore features an overall worse
case complexity O(n3)

III. INITIAL RESULTS WITH THE TPP

From this point of the paper onwards we now focus on
algorithms for the trapezoid packing problem (TPP), making
particular use of the EULER-SPLICE method for solving the
TPSP (i.e., for determining the best item packings in individual
bins). Recall from Definition 2 that the TPP involves packing
a set of fixed height trapezoidal items U into a set of bins
such that (a) no bin is overfilled (i.e., the packing in each bin
is feasible), and (b) the number of bins used is minimised.

In general, our approach to this multi-bin problem will
use ideas stemming from the one-dimensional bin packing
problem, though suitable modifications are also needed to
cope with the trapezoidal nature of the items. Here, a feasible
candidate solution is denoted by the set S = {S1, . . . , Sk}
such that (a)

⋃
Si = U ; (b) Si ∩ Sj = ∅ (for all i 6= j); and

(c) for all Si ∈ S, the items in Si can be feasibly packed
into a single bin. Obviously, k is the variable that we seek to
reduce.

The one-dimensional bin packing problem (BPP) has been
the target of much research in the past fifty years, with a
number of different approximation algorithms and heuristics
being proposed [8]–[12]. Perhaps the simplest approximation
algorithm is the first-fit (FF) algorithm, which operates by
taking each item in U one by one in an arbitrary order and
assigning it to the lowest indexed bin into which it can be
feasibly packed, opening new bins when necessary. FF has an
asymptotic worst case ratio of 17

10 [13]. A simple improvement
on this is the first-fit descending (FFD) heuristic, which sorts
the items into descending order of size (area) before applying
FF as before, featuring an asymptotic worst case ratio of
11
9 [14]. Better still is the ratio 71

60 achieved by the more time-
consuming algorithm of Garey and Johnson [15].

The FF algorithm can also be used as a basis for the first-
fit grouping (FFG) heuristic. This involves taking an existing
feasible solution S = {S1, . . . , Sk} and forming an ordering of
the items such that items within the same bin Si (∀Si ∈ S) are
adjacent to one another.1 It is known that if such an ordering
is used with FF, the resultant solution S ′ will feature an equal
number or fewer bins than the original solution S [9]. For these
reasons, it is also known that there exists at least one item
ordering with which FF produces an optimal solution, since
such an ordering can be generated using an optimal solution
itself.

Despite its obvious overlap with the BPP, note that the above
worst case ratios do not hold for the TPP due to the (often nec-
essary) inter-item wastage that can occur within solutions. For
similar reasons, the well-known theoretical minimum number
of bins in a BPP solution, TMin = d(

∑
i∈U A(i))/HW e, will

1Note that k! such orderings of the bins are available here. Whenever FFG
is applied in this paper, one of these k! orderings will be selected at random.

also be less accurate, particularly for problems whose solutions
involve only a small number of items per bin. Nevertheless,
in this section we choose to look at how the FFD bin packing
heuristic, suitably modified for trapezoidal items, performs
across a large set of benchmark problem instances for the TPP.

A. Problem Instances

The TPP problem set used here was created in [1] and
comprises 1,300 problem instances intended to model real-
world truss cutting problems encountered in the construction
industry (the original inspiration for the problem). The number
of items |U | ranges from 100 to 500 and bin size W is set
to 4,200 mm, which is a standard industry size. As explained
in Section I-A, H = 2 in all cases. Item widths bi are set
to between 300 and 3600 mm using values selected uniform
randomly within this range, or so that a particular number
of “large” items (2,700–3,600 mm) and “small” items (300–
1,800 mm) are included. Projection sizes are then determined
by setting the angles of the lateral sides to between 30◦and
90◦, while ensuring that xi+yi ≤ bi for all i ∈ U . Within this
set, two kinds of problems are also included: artificial (“a”)
instances, where each item has its own unique dimensions,
and the more realistic (“r”) instances where sets of identical
items are present within each instance.2

It is noted in [1] that solutions to these problem instances
tend to feature fewer than three items per bin on average
(that is, the trapezoidal items tend to be quite long and
thin), meaning that the TPSPs encountered during a run are
often very small. To gain a wider view of performance, this
“original” instance set has therefore been modified to create
two further sets in which the central width ci of each item
i ∈ U is set to half and a quarter of their original values. The
main features of these instance sets are given in the first four
columns of Table I.

B. Tackling the Trapezoid Packing Sub-Problem (TPSP)

As we have seen, at various points during execution it is
necessary to determine whether a subset of items S ⊆ U can
be feasibly packed into a particular bin. For one-dimensional
bin packing, this involves simply checking whether the total
size (area) of the items in S is less than or equal to the bin
capacity. For the TPP this criterion also applies, though further
computation is also needed to determine whether a solution
to the TPSP exists. In their original work, Lewis et al. [1]
suggested first using the following simple checks to identify
the existence (or otherwise) of such a solution. These were said
to be sufficient for solving approximately half of the TPSPs
encountered during their experiments.
• If |S| = 1 then a feasible packing exists.
• If A(S) = HW , then it is necessary for a feasible

packing to feature no inter-item wastage; consequently,
in S there needs be an even number of occurrences of
each projection size, and there should be at least two
projections of size zero (to ensure that no wastage occurs

2A more detailed description of this generator, together with the instances
themselves, is available at [16].
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(a) PSP Instance:  
P = {{1,2}, {1,3}, {2,6}, {3,5}, {5,7}, {6,7}, {8,8}, {9,10}, {9,11}, {10,12}, {10,14}, {11,13}, {13,15}, {13,15}, {14,15}} 

(b) Use the FIND-MATCHING procedure to form an Eulerian graph (comprising three components here). 
Result: 
X1 = ((1,2),(2,6),(6,7),(7,5),(5,3),(2,1)) Cost = 0 
X2 = ((8,8)) Cost = 0 
X3 = ((9,11),(11,13),(13,15),(15,13),(15,14),(14,10),(10,12),(10,9)) Cost = 4 

(c) X1 ← SPLICE(X1, X2). Here, ρ(X1, X2) = 2. 

Result:  
X1 = ((1,2),(2,6),(6,7),(8,8),(7,5),(5,3),(2,1)) Cost = 2 
X3 = ((9,11),(11,13),(13,15),(15,13),(15,14),(14,10),(10,12),(10,9)) Cost = 4 

(d) X1 ← SPLICE(X1, X3). Here, ρ(X1, X3) = 2. 
Result: 
X1 = ((1,2),(2,6),(6,7),(8,8),(9,11),(11,13),(13,15),(15,13),(15,14),(14,10),(10,12),(10,9),(7,5),(5,3),(2,1)) Cost = 8 

   

Fig. 7. Example application of the EULER-SPLICE algorithm.

in the left and right extremes of the bin). If this is not
the case then no feasible packing exists.

• Let τi denote the minimum amount of wastage we can
hope to occur around item i ∈ S in a packing, determined
by inspecting the closest projection sizes to xi and yi in
the set S − {i}. Now let τmax = max(τi : i ∈ S). It
is obvious that if τmax > HW − A(S) then no feasible
packing exists.

In cases where these basic checks were inconclusive, Lewis
et al. [1] made use of the following GREEDY method to try
and determine a feasible packing of the items in S.

1) Make a copy of S called S′. Given S′, identify the
item i ∈ S′ with the smallest projection. Place this item
into the left-most position in the bin with the identified
projection on the left hand side, and remove i from S′.

2) Consider the size of the right projection of the right-most
item in the bin. Call this value x. Now identify the item
i ∈ S′ with a projection size y closest to x (i.e., that
minimises |x − y|). Add item i to the bin so that the y-
sized projection is nested with the projection of size x.
Remove i from S′ and repeat Step 2 until S′ = ∅.

If, on completion of these steps, the inter-item wastage was
seen to be less than or equal to HW − A(S) then a feasible
packing was known to exist. If this was not the case (the
bin was overflowing) then a further process was invoked by
Lewis et al. [1]. This went through each item in the bin from
left to right and identified whether rotating the item on its
vertical axis reduced the total amount of inter-item wastage.

If this was the case, the rotation was performed. At the end
of this process, if the inter-item wastage was still larger than
HW − A(S), then it was assumed that no feasible packing
for S existed.

Of course, since the GREEDY algorithm is only approxi-
mate, it is natural here to replace it with the exact EULER-
SPLICE method. Our implementation of EULER-SPLICE op-
erates as described in Section II but without the optional step
of edge removal. This is because the TPSPs, and therefore
individual instances of the PSP, encountered in the benchmark
problems were found to be quite small on the whole (usually
less than ten items) meaning that the overheads of this stage
usually outweighed the expense of simply applying EULER-
SPLICE to the original problem. This will not be the case for
larger PSP instances, however.

C. FFD Results

Table I compares the results gained by the FFD heuristic,
when used in conjunction with either GREEDY or EULER-
SPLICE, on the complete set of 3,900 problem instances. All
individual trials took less than 15 ms to execute.3 We see
that the FFD variant using EULER-SPLICE produces solutions
using fewer bins on average for 26 of the 30 instance sub-
classes. In 16 of the 26 cases, these differences are statistically

3Algorithms presented in this work were written in C++ and executed on
a 3.3 GHtz Windows 7 machine with 8 GB RAM. A complete version of the
code, together with a complete listing of the results from our trials can be
downloaded from www.rhydlewis.eu/resources/trapezoid.zip.
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significant, as indicated. Where significance is not observed,
note that the sample sizes are quite small due to only 20
problem instances being available.

Table I also demonstrates that solutions using TMin bins
tend to be found less frequently when |U | is large and/or when
the number of items per bin is small, as with the original
instances. This is to be expected since the FFD algorithm will
usually be less accurate with larger problem sizes, while small
numbers of items per bin tends to cause TMin to underestimate
the true optimum. We also see that the variance in the number
of bins required is higher for the “r” instances. This is because,
with smaller numbers of different item and projection sizes, it
is usually more difficult to achieve tight packings of the items.

In summary, the results provide clear evidence that, when
packing the trapezoidal items into bins, the use of an exact
method to solve the TPSP brings definite advantages over
the approximate GREEDY method. An illustration of these
improvements is shown in Fig. 8. In this example, observe
that the solutions are identical up to bin 12, but in the 13th
the EULER-SPLICE method has allowed one further item to
be added compared to GREEDY, resulting in one fewer bin
overall once all remaining items have been inserted.

IV. IMPROVING RESULTS USING EVOLUTIONARY
METHODS

In this section we improve on the results of the previous
by employing specialised evolutionary methods, which are
known to have produced some of the best-known results for
the BPP and related partitioning problems [8], [17]–[20]. Here,
we focus particularly on the issue of recombination, with
each operator being applied within a common evolutionary
framework incorporating a bespoke local search procedure.
This procedure is described in the next subsection, with
Sections IV-B and IV-C detailing the remaining elements of
the evolutionary algorithm (EA). Sections IV-D and IV-E then
describe the results of our experiments and explore how further
improvements to our methods can be achieved. Note that from
this point onwards the EULER-SPLICE algorithm as described
in Section III-B is used exclusively for solving the TPSP.

A. Local Search

The local search method employed in all of our algo-
rithms operates on a pair of feasible sub-solutions S and S ′
that, together, make up a full solution. That is, (

⋃
S∈S S) ∪

(
⋃

S′∈S′ S
′) = U , and (

⋃
S∈S S) ∩ (

⋃
S′∈S′ S

′) = ∅.
The following steps are applied. For each S ∈ S and S′ ∈

S ′ (considered in a random order):
1) If there exist pairs of items i, j ∈ S and i′, j′ ∈ S′ such

that A(i) + A(j) < A(i′) + A(j′) and ((S ∪ {i′, j′}) −
{i, j}) ∈ F and ((S′∪{i, j})−{i′, j′}) ∈ F , then move
items i, j from S to S′ and items i′, j′ from S′ to S.

2) If there exists a pair of items i, j ∈ S and an item i′ ∈ S′
such that A(i)+A(j) ≤ A(i′) and ((S∪{i′})−{i, j}) ∈
F and ((S′ ∪ {i, j}) − {i′}) ∈ F , then move items i, j
from S to S′ and item i′ from S′ to S.

3) If there exist items i ∈ S and i′ ∈ S′ such that A(i) <
A(i′) and ((S∪{i′})−{i}) ∈ F and ((S′∪{i})−{i′}) ∈

F , then move item i from S to S′ and item i′ from S′

to S.
4) If there exists an item i′ ∈ S′ such that (S ∪ {i′}) ∈ F

and (S′ − {i′}) ∈ F , then move item i′ from S′ to S.
Here, the notation S ∈ F signifies that all items in S can
be feasibly packed into a single bin.4 This is determined as
described in Section III-B.

The above steps are a modified version of a procedure
previously used for the BPP based on the concept of bin
dominance, defined by Martello and Toth [8]–[11]. The idea
is that items are interchanged between bins such that wastage
within bins in S decreases, while the number of items in each
bin in S remains the same or also decreases. If this is achieved,
then the bins in S can be said to have improved, while the
smaller, easier to pack, items will have been moved into bins
in S ′. The procedure operates by first attempting to swap a
pair of items from a bin in S with a pair of items from a bin
in S ′ (Step 1). Similarly, Steps 2 and 3 involve swapping a
pair of items with a single item, and then a single item with
a single item. In Step 4, attempts are then made to try and
transfer a single item from a bin in S ′ into a bin in S. If this
is possible, and |S′| = 1, this reduces the number of bins in
S ′ by one.

In our application, whenever one of the above four steps are
satisfied, the associated items are moved between the bins and
the procedure moves immediately back to Step 1. This process
continues until none of the four steps are satisfied (that is, an
entire parse of the procedure is performed with no changes
being made to any bin in S or S ′). Following this, a complete
solution is then reconstructed by executing FFG with S ′ to
get a new partial solution S ′′ (giving |S ′′| ≤ |S ′|) and then
simply setting S ← S ∪ S ′′. Note that this entire procedure
cannot increase the number of bins being used in a solution,
but it does have the potential to decrease it.

B. Recombination

In general, the ideal aim of an EA’s recombination oper-
ator is to allow different parts (building blocks) of existing
candidate solutions to be effectively combined to make new,
good-quality offspring solutions. For the BPP it is usually
the bins themselves, together with their associated items, that
are considered the relevant building blocks, as discussed, for
example, in [8], [21], [22]. However, it is not always possible
to copy complete bins of items from multiple parents into an
offspring because the items occurring in a single bin in one
parent might be spread across many bins in another parent.
Consequently, offspring solutions will often feature duplicated
or missing items, which will then need to be dealt with by
some sort of repair operator. Decisions on how many and
which bins to copy from each parent during recombination
also need to be made, which could further influence algorithm
performance.

The first recombination operator we investigate originates
from the grouping genetic algorithm (GGA) of Falkenauer [8]
and operates as follows. Given two feasible parent solutions,

4That is, F denotes the set of all item combinations that can be feasibly
packed into a single bin.



8

TABLE I
INSTANCE SET CHARACTERISTICS AND RESULTS GAINED BY THE TWO FFD VARIANTS. THE LOWEST MEAN VALUES FROM THE BINS COLUMNS ARE
MARKED IN BOLD. ASTERISKS INDICATE STATISTICAL SIGNIFICANCE AT ≤ 0.05 (∗) AND ≤ 0.01 (∗∗) ACCORDING TO A TWO-TAILED PAIRED T-TEST

AND TWO-TAILED MCNEMAR’S TEST FOR THE BINS AND TMIN % COLUMNS RESPECTIVELY.

FFD with GREEDY FFD with EULER-SPLICE
Type, |U | # Inst. # Typesa TMinb Binsc TMin %d Bins TMin %
orig., a, 100 20 100 44.65 46.45 ± 6.3 0.0 46.40 ± 6.3 0.0
orig., a, 200 20 200 90.70 94.95 ± 5.4 0.0 94.95 ± 5.4 0.0
orig., a, 300 20 300 134.70 139.30 ± 3.9 0.0 139.3 ± 3.9 0.0
orig., a, 400 20 400 177.75 183.15 ± 4.5 0.0 183.10 ± 4.6 0.0
orig., a, 500 20 500 222.55 228.35 ± 3.0 0.0 228.35 ± 3.0 0.0
orig., r, 100 240 20.19 38.66 42.53 ± 28.0 1.6 ∗42.51 ± 28.0 2.1
orig., r, 200 240 20.31 75.50 82.73 ± 27.8 0.0 ∗∗82.70 ± 27.8 0.0
orig., r, 300 240 20.05 115.10 126.48 ± 27.0 0.0 ∗∗126.41 ± 27.1 0.0
orig., r, 400 240 20.65 154.44 169.81 ± 27.2 0.0 ∗∗169.69 ± 27.3 0.0
orig., r, 500 240 19.60 193.03 212.80 ± 28.6 0.0 ∗∗212.60 ± 28.6 0.0
half, a, 100 20 100 23.45 24.10 ± 4.6 35.0 24.1 ± 4.6 35.0
half, a, 200 20 200 47.45 48.60 ± 3.0 10.0 ∗48.30 ± 2.9 15.0
half, a, 300 20 300 70.55 71.70 ± 2.4 5.0 71.60 ± 2.5 10.0
half, a, 400 20 400 92.95 94.65 ± 2.3 0.0 ∗94.45 ± 2.5 0.0
half, a, 500 20 500 116.40 118.25 ± 2.4 0.0 118.15 ± 2.4 0.0
half, r, 100 240 20.19 20.52 21.30 ± 22.2 29.2 ∗∗21.23 ± 22.3 ∗∗34.6
half, r, 200 240 20.31 39.97 41.43 ± 22.2 6.3 ∗∗41.30 ± 22.2 8.3.0
half, r, 300 240 20.05 60.80 63.17 ± 22.2 1.6 ∗∗63.00 ± 22.2 2.5.0
half, r, 400 240 20.65 81.34 84.26 ± 21.6 0.0 ∗∗84.10 ± 21.6 0.0
half, r, 500 240 19.60 101.75 105.67 ± 23.4 0.0 ∗∗105.41 ± 23.4 0.0
quar., a, 100 20 100 13.00 13.30 ± 4.3 70.0 13.20 ± 4.7 80.0
quar., a, 200 20 200 25.80 26.40 ± 4.7 40.0 26.30 ± 4.5 50.0
quar., a, 300 20 300 38.40 39.15 ± 4.4 25.0 39.10 ± 4.5 30.0
quar., a, 400 20 400 50.60 51.40 ± 2.6 25.0 ∗51.20 ± 2.7 40.0
quar., a, 500 20 500 63.30 64.30 ± 4.0 5.0 64.25 ± 3.9 5.0
quar., r, 100 240 20.19 11.48 11.78 ± 20.7 70.0 ∗∗11.74 ± 20.8 ∗∗74.2
quar., r, 200 240 20.31 22.14 22.78 ± 20.1 37.1 ∗∗22.73 ± 20.1 ∗∗42.1
quar., r, 300 240 20.05 33.62 34.54 ± 20.7 22.1 ∗∗34.49 ± 20.7 24.2
quar., r, 400 240 20.65 44.80 45.95 ± 20.3 15.8 ∗∗45.87 ± 20.2 17.9
quar., r, 500 240 19.60 56.05 57.58 ± 21.2 5.0 ∗∗57.49 ± 21.2 6.2

aNumber of different item types per instance (mean across all instances).
bTMin = d(

∑
i∈U A(i))/HW e (mean across all instances).

cNumber of bins per solution (mean across all instances, plus or minus the coefficient of variation (%)).
dPercentage of instances where a solution using TMin bins was found.

Fig. 8. Example solutions produced for a 100-item “half, r” problem instance using FFD with the GREEDY (left) and EULER-SPLICE (right) algorithms.

S1 and S2, the bins of S2 are first randomly permuted. Two
bins in S2, namely S2,i and S2,j (where 1 ≤ i ≤ j ≤ |S2|),
are then randomly selected and all bins between and including
these outer bins in S2 are copied into an offspring solution S,
together with all bins from S1. At this point, S will contain
multiple occurrences of some items, and so the operator goes
through S and deletes any bins containing duplicates that
came from parent S1 (see Fig. 9). This operation results in
an offspring solution that comprises only feasible bins, but
that could be missing some items. These are then dealt with
by a repair procedure, described below.

Our second recombination operator is a modification of
the greedy partition crossover (GPX) scheme, which was
originally proposed for the graph colouring problem [21].
Unlike the GGA operator, GPX biases the copying of fuller
bins from parents to offspring. Duplicates are also dealt with
differently by only eliminating the offending items themselves,
as opposed to entire bins. Specifically, given two feasible
parent solutions S1 and S2, the fullest bin from either parent
is first identified (breaking ties randomly). This bin is then
moved into the offspring S and, to avoid duplicates, the copied
items are also removed from the other parent. To form the next
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Fig. 9. Example application of the GGA recombination operator, where the
third and fourth bins of S2 have been chosen for insertion into S.
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Fig. 10. Example application of the GGA recombination operator. In this
case min(|S1|, |S2|) − 1 = 3 bins are formed in the offspring S, resulting
in missing items j, k, and l.

bin, the other (modified) parent is then considered and, again,
the fullest bin is moved into S, with these items also being
removed from the first parent. This process is continued by
alternating between the parents until min(|S1|, |S2|)− 1 bins
have been created in the offspring (see Fig. 10). Missing items
are again dealt with by our repair procedure.

Our third recombination operator, which we call GPX’, is
analogous to that proposed for the BPP by Quiroz-Castellanos
et al. [19]. It operates in the same manner as GPX but also uses
the GGA’s method of eliminating duplicates; hence, once a
bin has been copied from a parent to the offspring, rather than
simply removing the duplicate items from the other parent,
any bins containing duplicates are deleted. This usually leads
to a larger number of missing items compared to GPX.

Upon termination of these recombination operators, an
offspring solution S will comprise only feasible bins, but may
be missing some items. To deal with these, our repair operator
first uses FFD on the missing items to form a partial solution
S ′. The local search procedure is then applied using S and S ′
as input to construct a complete solution.

C. EA Framework

Our overall EA works as follows. Given a solution S =
{S1, . . . , Sk}, mutation operates by selecting 0 < l ≤ k bins
at random, removing these from S and inserting them into a
second set of bins S ′. The partial solutions S and S ′ are then
used as input for the local search procedure, which is used to
produce a new, complete solution.

Different values for l have previously been suggested in
the BPP literature for similar mutation operators, including
“at least three”, four, and five (see [8], [11] and [20] respec-
tively). On the other hand, Quiroz-Castellanos et al. [19] have
suggested that l should be defined as a stochastic function
based on the number of bins k and the proportion of bins not
full to capacity, though this is less appropriate for the TPP due
to the prevalence of inter-item wastage in solutions. The above
four papers also suggest strongly biasing bin selection towards
emptier ones; however, we consider this to be unnecessary
because (a) it might sometimes be advantageous to break up
a full bin, particularly if it is not part of a globally optimal
solution; and (b) in some cases, a relatively empty bin might
become very high in quality once a small number of other
items have been added to it. In our case each application of
mutation involves simply selecting a value for l according to
the distribution L ∼ 1+B(k, 3/k), which offers an acceptable
compromise.

An initial population for the EA is formed by creating one
solution via FFD, and the remainder via FF using random item
orderings. Each member of the population is then mutated to
try and improve its quality. In each iteration of the EA, two
parent solutions are selected at random from the population
and recombination is used to create a single offspring. This is
then mutated before replacing the least fit of its two parents.
The fitness of a parent solution S is calculated as

f(S) =
∑

S∈S(A(S)/(HW ))2

|S|
, (4)

with higher values being deemed fitter. Given two solutions S1
and S2, it is known that if |S1| < |S2| then f(S1) > f(S2);
consequently a global optimum for this function corresponds
to a solution with the minimum number of bins [8]. This
function is useful because, due to its more fine-grained nature,
it allows evolutionary pressure to remain for larger portions
of the run compared to simply using the number of bins as a
fitness measure. Among solutions using the same number of
bins, it also allocates higher fitness values to those whose bins
show the highest variance in spare capacity. This encourages
some bins in a solution to remain relatively empty, which could
be useful in practice if these contiguous areas of wastage were
to be used at a later stage, such as when cutting further roof
trusses for a different order. Note that exponents larger than
two may also be used within this function. This would lead to
even higher fitnesses values being awarded to solutions with
“extreme” bins (i.e., bins that are either very full, or very
empty), although the property regarding global optima stated
above no longer holds in such cases.

In extensive preliminary tests, we experimented with a
number of different selection and replacement policies, but
found that the strategy described above, whose evolutionary
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pressure exists solely due to the replacement of the weaker
parent, gave the most consistent results. We also used extended
runs of up to 1,000 seconds to test a range of different
population sizes (5, 10, 25, 50, 100, 200); however, unlike
studies with the BPP, which have often used population sizes
of 100 or more, we found that the best results, both in terms
of final solution quality and the speed of optimisation, were
found using the relatively small population size of size 10.
This suggests that good solutions are derived from repeated
applications of the EA’s operators on a small pool of solutions
as opposed to a wide sampling of the solution space.

Finally, for comparative purposes, we also implemented
the hill-climbing (HC) algorithm of Lewis et al. [1]. This
operates on a single solution initially constructed using FFD.
In each iteration the mutation operator described above is
then employed, followed by the FFG heuristic. Note that, in
[1], Lewis et al.’s original version of this algorithm used the
GREEDY method for determining item packings as opposed to
EULER-SPLICE. Our implementation can therefore be seen as
an enhancement on theirs, featuring a more connected solution
space.

D. Comparison of Results

Table II compares the quality of the results achieved by
our four algorithms across all 3,900 problem instances. In all
cases a CPU time limit of 600 seconds was used, which was
deemed adequate for providing some notion of excess time
in our trials. The number of EA iterations performed within
this time limit was found to depend heavily on the amount of
time required for each application of the local search operator,
which is the most time consuming component of the algorithm.
This tends to take longer for problem instances where |U |
is high or where there are many items per bin. As a result,
the number of EA iterations ranged from approximately 1.2
million to 57,000 on average for the 100-item and 500-item
original instances respectively. For the quarter instances, the
corresponding figures were just 70,000 and 2,500 iterations.

From Table II it can be seen that the EAs using the GGA
and GPX recombination operators produce the best solutions
overall; however, their strengths are witnessed in different
places. For the original instances, where high quality solutions
comprise a relatively small 2.4 items per bin on average, the
GGA consistently produces the best results. With the quarter
instances on the other hand, where good solutions feature an
average closer to 8.8 items per bin, the GPX shows the most
favourable behaviour. For the quarter instances, it seems that
high quality solutions are achieved by identifying subsets of
items that can be packed into a bin with very little wastage—
that is, we are interested in determining individual bins that are
well packed. This mechanism is supplied by the GPX operator,
which places a heavy bias on promoting such bins in the
population. On the other hand, for the original instances good
quality solutions occur more as a result of good combinations
of bins being identified. Here, the GGA, which features far less
bias for promoting well-filled individual bins in the population,
facilitates a wider sampling of the solution space, ultimately

allowing better results to be achieved.5 Similar observations
to these have previously been made for the graph colouring
problem, where an increased edge density of a graph usually
increases its chromatic number and, as a result, decreases
the number of vertices assigned to each colour [18], [23].
Singh and Gupta [20] have also reported the poor performance
of a GPX variant on “triplet” BPP instances (where optimal
solutions comprise just three items per bin), presumably for
similar reasons.

Table II also shows that the GPX’ and HC algorithms are
outperformed in all cases by at least one of the two remaining
methods. Though GPX’ is very similar in form to GPX, its
method of deleting entire bins containing duplicates seems to
be too destructive and, as a consequence, good building blocks
are not being propagated in the population to a sufficient level.
HC is also consistently outperformed, suggesting that the use
of a population of candidate solutions (with suitable operators)
is beneficial compared to using just one. Fig. 11 illustrates the
behaviour of the four algorithms over time. The patterns seen
in the table appear to be stable and are established early on in
the runs. This suggests that shorter or longer run times would
not drastically alter the characteristics shown in the table.

1) Population Diversity: It is also instructive to examine
the effects of the three recombination operators on population
diversity. Diversity measures for partitioning problems have
previously been proposed by Mattiussi et al. [24] and Lewis
et al. [17]; however, modifications are required with the TPP
(and indeed the BPP) due to the interchangeability of items
of identical dimensions. In more detail, given an item i ∈ U ,
let t(i) be an integer denoting its type. Two items i, j ∈ U
then have identical dimensions if and only if t(i) = t(j).
The items in Fig. 8, for example, are labelled according to
type, with bin 1 containing two type-15 items and one type-
16 item. The number of item types per instance, as listed in
the third column of Table I, is therefore |{t(i) : i ∈ U}|. It is
obvious that items of the same type can be interchanged within
a solution, but that this will have no effect on its underlying
structure. To cope with this issue of symmetry, we propose a
modification to the diversity measure of [17] as follows.

Definition 7. Given a solution S = {S1, . . . , Sk}, let PS be
a multiset of multisets, where each element of PS corresponds
to a pair of item types that are assigned to the same bin. That
is, PS = {{t(i), t(j)} : i, j ∈ S ∧ S ∈ S}.6 The distance
between two solutions, S1 and S2 is then defined according
to the Sörensen-Dice measure

d(S1,S2) =
2|PS1 ∩ PS2 |
|PS1 |+ |PS2 |

, (5)

which gives the proportion of elements that occur in both PS1
and PS2 . (Note that the intersection operator used here refers
to the multiset variant.)

5Note that statistical significance is only observed with the GGA according
to the number of bins used. It is not observed in the TMin % column due
to the small sample sizes occurring as a result of TMin’s lower accuracy in
these cases.

6As an example, the left solution from Fig. 8 would result in a multi-
set containing elements {16, 15}, {16, 15}, {15, 15}, {16, 15}, {16, 15},
{15, 15}, {23, 21}, {23, 21}, {21, 21}, and so on.
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TABLE II
RESULTS ACHIEVED AT THE CUT-OFF POINT BY (A) THE GGA, GPX AND GPX’ OPERATORS UNDER A COMMON EA FRAMEWORK, AND (B) THE HC

ALGORITHM [1]. BOLD TEXT AND ASTERISKS SHOULD BE INTERPRETED AS WITH TABLE I. NOTE THAT RESULTS OF THE “A” AND “R” INSTANCES ARE
COMBINED HERE DUE TO THE ALGORITHMS’ BEHAVIOUR BEING SIMILAR FOR BOTH CLASSES.

GGA GPX GPX’ HC
Type, |U | # Inst. TMina Binsb TMin %c Bins TMin % Bins TMin % Bins TMin %
orig., a&r, 100 260 39.12 3.33 17.7 3.35 16.5 3.35 16.2 3.36 15.8
orig., a&r, 200 260 76.67 ∗∗6.17 6.5 6.24 6.2 6.23 5.8 6.21 5.4
orig., a&r, 300 260 116.61 ∗∗9.62 1.9 9.80 1.9 9.83 1.2 9.72 1.5
orig., a&r, 400 260 156.23 ∗∗12.93 1.2 13.24 0.0 13.26 0.0 13.10 0.4
orig., a&r, 500 260 195.30 ∗∗16.64 1.2 17.05 0.4 17.09 0.0 16.84 0.0
half., a&r, 100 260 20.75 0.22 78.8 0.20 80.4 0.22 79.2 0.26 74.6
half., a&r, 200 260 40.54 0.38 63.8 0.37 65.0 0.42 60.4 0.49 53.8
half., a&r, 300 260 61.55 0.73 45.4 0.73 46.5 0.82 40.0 0.88 34.6
half., a&r, 400 260 82.23 0.84 35.4 0.90 34.6 1.05 25.8 1.05 21.9
half., a&r, 500 260 102.87 ∗1.16 23.8 1.25 26.9 1.45 20.0 1.44 13.5
quar., a&r, 100 260 11.60 0.07 93.1 0.06 93.8 0.07 93.5 0.08 92.3
quar., a&r, 200 260 22.42 0.12 88.1 ∗0.08 ∗∗91.5 0.12 88.1 0.15 85.4
quar., a&r, 300 260 33.98 0.17 83.1 ∗0.14 ∗∗86.2 0.19 81.2 0.24 76.2
quar., a&r, 400 260 45.25 0.21 79.2 ∗0.17 ∗∗83.1 0.24 76.5 0.27 73.8
quar., a&r, 500 260 56.61 0.32 68.1 ∗∗0.27 ∗∗72.7 0.38 63.1 0.43 57.3

aTMin = d(
∑

i∈U A(i))/HW e (mean across all instances).
bNumber of bins beyond TMin (mean across all instances).
cPercentage of instances where a solution using TMin bins was found.
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Fig. 11. Run profiles using the |U | = 500 original and quarter instances respectively. Each line is the average across all 260 instances at each second.

Definition 8. Given a population of solutions S1, . . . ,Sp,
diversity is calculated as the mean distance between all pairs
of solutions:

D(S1, . . . ,Sp) =
∑
∀Si,Sj :1≤i<j≤p d(Si,Sj)(

p
2

) . (6)

Note that d(S1,S2), and therefore the diversity measure
itself, ranges between 0 and 1, with larger values indicating a
higher diversity. An alternative to this method of calculation
would be to measure distance according to the number of items
that would need to be moved in order to convert one solution
into another. However, this scheme heavily depends on the way
that bins are labelled in each solution; hence, some sort of bin
relabelling scheme of the type reviewed by Coll et al. [25]
would also be required.

Figure 12 illustrates how population diversity changes dur-
ing the first 1,000 iterations of the EA under the three recom-
bination operators. For the original instances it is evident that
the two least successful operators, GPX and GPX’, maintain
higher levels of diversity, suggesting that the algorithms are
not suitably “homing in” on the better quality regions of
the solution space. Similarly, for the quarter instances it is
the GPX operator that shows a steady decrease in diversity
while the other operators maintain much higher levels. In this
case, the GGA and GPX’ operators are not helped by the
larger numbers of items per bin, which causes larger numbers

of items to become unplaced in each application, therefore
making it more difficult to transmit building blocks from one
iteration to the next. Such observations have previously been
made by Lewis and Paechter [26] who, using a timetabling
problem, demonstrate the difficulties experienced by the GGA
operator when tackling partitioning problems involving large
numbers of items per group.

E. Seeking Further Improvements

In this section we now discuss three possibilities for further
improving the results of our EA.

The first of these involves using an updated version of
the first-fit (FF) heuristic where, instead of simply ordering
the items at random, the “large” items (that is, those of area
A(i) ≥ 1

2HW ) are placed in a random order in the left-most
positions of the item permutation. This heuristic was proposed
for the BPP by Quiroz-Castellanos et al. [19], who found that
it was able to return better solutions than FF in their tests,
albeit using instances featuring high proportions of “large”
instances. Note that, with our EA, the incorporation of this
heuristic only affects the way in which the initial population
is constructed. Additionally, “large” items are only seen to
exist in the original instances, and only in small proportions.
Consequently, the incorporation of this heuristic was not seen
to improve our results in any way.
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Fig. 12. Population diversities during runs with the |U | = 500 original and quarter instances respectively. Each line is the average across all 260 instances.

A more fruitful avenue of research that has yet to be consid-
ered within the BPP (and related) literature is to consider the
way in which duplicate items are dealt with during recombina-
tion. Consider the GGA operator. Given two parent solutions
S1 = {S1,1, . . . , S1,k1

} and S2 = {S2,1, . . . , S2,k2
}, recall

that an offspring solution is constructed by (a) concatenating
all bins from S1 with l ≤ k2 bins from S2, and then (b)
removing duplicated items by deleting a subset of bins that
originally came from S1. However, note that when we have a
problem instance containing many occurrences of items of the
same type, there might be many subsets of bins that can be
eliminated to get rid of the duplicates. Indeed, these different
choices may result in variations to the number of bins that are
subsequently inherited from S1 and also the amount of repair
then needed.

Stated more precisely, let S(t) = {S(t)
1 , . . . , S

(t)
k } be a

multiset of multisets representing a solution S according to
item type t(·). That is, S(t)

i = {t(j) : j ∈ Si}, ∀Si ∈ S .
Without loss of generality, now assume that in applying the
GGA operator we intend to concatenate the first l bins of
a parent solution S2 to a parent solution S1. We are now
interested in establishing a subset S∗ ⊆ S(t)1 that covers the
multiset U = {j : j ∈ S(t)

2,i , 1 ≤ i ≤ l}. This covering S∗ will
then specify the sets (bins) that need to be removed from S1
to cope with the issue of duplicates; additionally, the multiset
U∩(

⋃
S∗i ) will define the missing items, which will then need

to be dealt with by the repair operator.
Note that because U ⊆

⋃k1

i=1 S
(t)
1,i , a valid covering is

achievable according to the following steps, which are to be
repeated until U = ∅. To start, let S∗ = ∅:

1) Choose S(t)
1,i ∈ S

(t)
1 for which S(t)

1,i ∩ U 6= ∅.
2) S∗ ← S∗ ∪ {S(t)

1,i}.
3) U ← U − S(t)

1,i .
4) S(t)1 ← S

(t)
1 − {S

(t)
1,i}.

Using this procedure, a number of different heuristics might
be used in Step 1 for influencing the type of covering that is
achieved. Most obviously, we might make a random choice,
which is what we did to produce the results in Table II. We call
this heuristic h1. A second option, h2, is to choose the S(t)

1,i for
which |S(t)

1,i∩U| is maximised. This operates under the assump-
tion that we are seeking to minimise |S∗|, thereby reducing the
number of bins deleted from S1 and maximising the number

of bins that are inherited from the parent solutions. (Note,
however, that the task of minimising |S∗| is actually a generali-
sation of the NP-hard set covering problem (featuring multisets
instead of sets); hence, this heuristic—whose use essentially
gives the well-known greedy algorithm for set covering—
only determines |S∗| approximately.) Other heuristic options
include choosing the S(t)

1,i for which the corresponding bin i
has the largest amount of spare capacity (thereby encouraging
bins with large amounts of spare capacity to be eliminated) or
seeking to maximise |S∗| in order to encourage large amounts
of repair and therefore prolong population diversity. However,
these alternatives were not found to improve performance on
the whole; consequently, only h1 and h2 are considered below.

Note that the same set covering method and heuristics as
above can also be used for the two remaining recombination
operators. For GPX’ the above procedure needs to be executed
in each of the min(|S1|, |S2|) − 1 iterations of the operator.
That is, w.l.o.g., each time a bin S2,i ∈ S2 is moved into
the offspring solution, the procedure is applied using S(t)1

and U = S
(t)
2,i . This is also the case for GPX, though slight

modifications are also required to cope with the different way
in which duplicates are dealt with (see Section IV-B).

Table III shows the results achieved when using heuristics
h1 and h2 with the GGA and GPX operators. Note that
only the “r” instances are considered here (the heuristics are
actually equivalent with the “a” instances as they feature no
repeated items). We also leave out the GPX’ operator as it was
always outperformed by GPX, GGA, or both.

The positions of the asterisks in the table indicate that
heuristic h2 consistently improves on the results of the original
recombination operators. Thus, there seems to be an advantage
in seeking to increase the number of bins (building blocks)
inherited from the parents. This stands to reason because, when
fewer bins are inherited by an offspring, more bins will need
to be formed using the repair procedure; hence these parts will
not be subject to the refinements made in previous iterations
of the EA.

The locations of the bold text and daggers (†) in Table III
also indicate the same patterns as Table II—i.e., that the
GGA operator produces the best results overall for small-group
instances, with GPX being better for large-group instances.
As with Fig. 11, Fig. 13 also shows that these characteristics
remain relatively stable throughout the run.



13

TABLE III
RESULTS ACHIEVED AT THE CUT-OFF USING HEURISTICS h1 AND h2 WITH THE GGA AND GPX OPERATORS. THE LOWEST MEAN VALUES ACROSS THE
FOUR ALGORITHMS ARE MARKED IN BOLD. FOR EACH RECOMBINATION OPERATOR, ASTERISKS INDICATE STATISTICAL SIGNIFICANCE AT ≤ 0.05 (∗)

AND ≤ 0.01 (∗∗) AS WITH TABLE I. THE † SYMBOL IS USED IN THE SAME WAY, BUT INDICATES STATISTICAL DIFFERENCE BETWEEN THE BEST RESULT
OF EACH RECOMBINATION OPERATOR.

GGA (h1) GGA (h2) GPX (h1) GPX (h2)
Type, |U | # Inst. TMina Binsb TMin %c Bins TMin % Bins TMin % Bins TMin %
orig., r, 100 240 38.66 3.47 19.2 3.47 19.2 3.49 17.9 3.48 18.3
orig., r, 200 240 75.50 6.35 7.1 †6.33 7.9 6.42 6.7 ∗∗6.37 7.5
orig., r, 300 240 115.10 10.09 2.1 ∗††10.07 2.9 10.26 2.1 ∗∗10.15 2.5
orig., r, 400 240 154.44 13.62 1.3 ∗∗††13.59 2.1 13.95 0.0 ∗∗13.75 1.3
orig., r, 500 240 195.03 17.60 1.3 ∗∗††17.55 1.7 18.02 0.4 ∗∗17.75 0.8
half., r, 100 240 20.52 0.22 78.8 0.22 79.2 0.21 79.6 0.22 79.2
half., r, 200 240 39.97 0.39 62.9 ∗∗0.35 ∗∗66.7 0.38 63.8 ∗0.35 ∗66.7
half., r, 300 240 60.80 0.76 43.3 ∗∗††0.67 ∗∗50.8 0.78 43.8 ∗∗0.71 ∗∗48.3
half., r, 400 240 81.34 0.86 35.0 ∗∗††0.74 ∗∗44.2 0.95 31.7 ∗∗0.80 ∗∗41.7
half., r, 500 240 101.75 1.20 22.9 ∗∗††1.03 ∗∗31.3 1.34 22.1 ∗∗1.14 ∗∗29.2
quar., r, 100 240 11.48 0.07 92.9 0.07 92.9 0.07 93.3 0.06 94.2
quar., r, 200 240 22.14 0.12 88.3 ∗∗0.09 ∗91.3 0.09 91.3 ∗∗††0.05 ∗∗††94.6
quar., r, 300 240 33.62 0.17 82.9 ∗0.15 85.0 0.15 85.4 ∗††0.12 ∗∗†87.9
quar., r, 400 240 44.80 0.22 78.8 ∗∗0.17 ∗∗83.8 0.18 82.1 ∗∗†0.15 ∗∗85.8
quar., r, 500 240 56.05 0.33 67.5 ∗∗0.24 ∗∗75.8 0.30 70.4 ∗∗0.23 ∗∗77.1

aTMin = d(
∑

i∈U A(i))/HW e (mean across all instances).
bNumber of bins beyond TMin (mean across all instances).
cPercentage of instances where a solution using TMin bins was found.
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Fig. 13. Run profiles using the |U | = 500 original “r” and quarter “r” instances respectively. Each line is the average across all 240 instances at each second.

A third possibility for improving the results of our EA
is to generalise the GPX operator so that q ≥ 2 parents
contribute towards the production of each offspring [27]. Here,
our suggested multi-parent operator produces offspring in the
same manner as GPX except that, in each iteration, the fullest
bin from across multiple parents is chosen to be moved into
the offspring. The intention behind this increased choice is that
fuller bins will be identified, hopefully resulting in a higher
quality offspring solution once all of its min{|Sj | : 1 ≤ j ≤
q}− 1 bins have been constructed. To prohibit too many bins
being inherited from one particular parent, a rule can also be
specified with this operator specifying that if the ith bin in an
offspring has originated from parent Sj , then no further bins
should be taken from this parent until a certain number of bins
have then been taken from other parents. In our case we set
this value to be q/2. Note in particular that GPX is therefore
an application of the multi-parent operator using q = 2.

To test this new operator we repeated our previous trials
on all problem instances using heuristic h2 together with the
following settings for population size and q: 10, 2; 10, 4;
10, 8; 20, 2; 20, 4; 20, 8; and 20, 16. For the original and
half instances we found that the first of these settings offered
the best results, with larger values for q tending to degrade
performance. Such findings are consistent with those noted in

Section IV-D, namely that for these problems too much bias
is being placed on inheriting the fullest bins as opposed to
encouraging a wider sampling of the solution space. On the
other hand, as also seen in Section IV-D, such bias is seen
to be less problematic with the quarter instances. Indeed, for
the 260 problem instances for which |U | = 500, values of
q = 4 and 6 resulted in solutions requiring 0.027 and 0.023
fewer bins on average7 compared to q = 2. However, such
improvements were not observed with the other problem sizes
in this class.

V. CONCLUSIONS

This paper has described an exact polynomial-time algo-
rithm for the pair sequencing problem, which has then been
used to solve the related trapezoid packing sub-problem. We
have also seen how this EULER-SPLICE method can be com-
bined with specialised evolutionary and local search methods
to produce high-quality results for the more general trapezoid
packing problem. Of course, EULER-SPLICE might also be
used with other bin packing methods. For example, it could
be used in conjunction with column generation techniques to
generate a large pool of feasible packings, a subset of which

7Using populations of size 10. Both differences were statistically significant
at the p ≤ 0.025 level.
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TABLE IV
PERCENTAGE OF THE 260 LARGE PROBLEM INSTANCES THAT ARE
“SOLVED” AT VARIOUS TIME LIMITS FOR THE BEST PERFORMING

ALGORITHMS.

Method & Instances 5s 10s 30s 60s 300s 600s
GGA (h2), orig., |U | = 500 88.85 91.92 96.15 97.31 99.23 99.62
GGA (h2), half, |U | = 500 71.15 77.31 84.62 86.15 92.69 94.62
GPX (h2), quart., |U | = 500 75.00 82.69 91.54 95.00 99.23 99.23

might then be selected to form an optimal solution [28]. The
EA itself might also be used to generate such a pool by
collecting information on good packings of items during a run.
This pool could then be used with an integer programming
formulation of the set covering problem as an additional post-
optimisation phase to try to make further improvements to a
solution—see, for example, the approach of Malaguti et al.
[29] for the related graph colouring problem.

In our evolutionary algorithm we have observed that recom-
bination operators showing less bias towards well-filled bins
seem better suited to problem instances where the number
of items per bin is small, whereas the opposite is true for
instances with many items per bin. We have also demonstrated
the advantages of using set-covering heuristics for encouraging
fewer bins to be destroyed during recombination, helping to
increase the amount of information passed from parents to the
offspring.

Throughout this paper we have used a fixed run-time limit of
600s in our trials; however, as Figs. 11 and 13 have illustrated,
the majority of improvements are achieved in very early stages
of runs. To demonstrate this further, Table IV reports the
quality of results achieved at different times using the best
reported algorithms on the largest problem instances of each
class. (Note that in this table an instance is considered “solved”
by the corresponding method if its solution uses the same
number of bins as the best observed value for this instance
from across all of our trials—it does not imply optimality as
such.) We see that even for these large problem instances, over
three quarters have been “solved” in less than ten seconds.

A further practical application of the TPP is in the laying
of decked flooring, where it is often preferable for decking
boards to be laid diagonally across floor joists. Often, areas of
floor will be square or rectangular in shape with boards being
laid at a 45◦ angle; hence the corresponding cutting problem
will actually be a special case of the TPP for which exact
polynomial-time algorithms could be available.

Another bin packing variant with a sub-problem related
to the TPSP is the box cutting problem, first defined by
Goulimis [30]. This problem models the task of using a
specialised machine to cut fixed-height rectangular cardboard
items from larger strips of cardboard so that the number of
larger strips (bins) used is minimised. Like the TPP, each item
in this problem features projections on its left- and right-hand
sides, in this case defining where the machine is to score the
cardboard ready for folding. However, due to the mechanics
of this machine, the scoring points on adjacent items within
a bin must be a certain minimum distance apart. As with
Definition 1 the resultant sub-problem can therefore be defined
using a set of unordered pairs of nonnegative integers P . The

task is to then seek an ordering of the elements X such that
rhs(i) + lhs(i+ 1) ≥ C,∀i ∈ {1, . . . , n− 1} for some given
constant C. Heuristics for this sub-problem have previously
been suggested by Lewis et al. [1] and Becker et al. [31];
however, at the time of writing we are not aware of a proof
of this sub-problem’s NP-completeness.
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