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ABSTRACT 

Purpose: Previous studies have identified many genetic loci for refractive error and myopia. We 

aimed to investigate the effect of these loci on ocular biometry as a function of age in children, 

adolescents and adults.  

Methods: The study population consisted of three age-groups identified from the international 

CREAM consortium: 5,490 individuals aged <10 years; 5,000 aged 10-25 years; and 16,274 

aged >25 years. All participants had undergone standard ophthalmic examination including 

measurements of axial length (AL) and corneal radius (CR). We examined the lead SNP at all 

39 currently known genetic loci for refractive error identified from genome-wide association 

studies (GWAS), as well as a combined genetic risk score (GRS). The beta coefficient for 

association between SNP genotype or GRS versus AL/CR was compared across the 3 age 

groups, adjusting for age, sex, and principal components. Analyses were Bonferroni-corrected. 

Results: In the age-group <10 years, 3 loci (GJD2, CHRNG, ZIC2) were associated with 

AL/CR. In the age-group 10-25 years, 4 loci (BMP2, KCNQ5, A2BP1, CACNA1D) were 

associated; and in adults 20 loci were associated. Association with GRS increased with age; β = 

0.0016 per risk allele (P = 2E-08) in <10 years, 0.0033 (P = 5E-15) in 10-25 year-olds, and 

0.0048 (P = 1E-72) in adults. Genes with strongest effects (LAMA2, GJD2) had an early effect 

that increased with age.  

Conclusion: Our results provide insights on the age span during which myopia genes exert 

their effect. These insights form the basis for understanding the mechanisms underlying high 

and pathological myopia. 
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INTRODUCTION 

The prevalence of myopia (nearsightedness) has increased dramatically in developed countries 

in recent decades [Bar Dayan, et al. 2005; Vitale, et al. 2009]. Myopia is a complex, 

multifactorial disease with increasing public health burden due to a strong rise worldwide. In 

particular high myopia is associated with blinding complications such as myopic macular 

degeneration, glaucoma and retinal detachment [Curtin and Karlin 1971; McBrien and Gentle 

2003; Saw 2006]. High myopia mostly has its onset in early childhood before age 10 years 

[Fledelius 2000]. 

The eye’s dimensions alter markedly during the peak development phase between birth 

and the late teenage years, ultimately exerting very strong effects on final refractive error (RE) 

in later adult life. A complex process called emmetropisation aims to coordinate ocular 

development, bringing light into clear focus on the retina. Early life myopia is characteristically 

associated with excessive axial length (AL) increase. This results in a mismatch of the optical 

effects of the various refractive components of the eye, resulting in a focal point in front of the 

retina. Such a mismatch can be described by the ratio of AL to corneal radius (CR), AL/CR ratio, 

which has a high correlation with RE [Hashemi, et al. 2013; Ip, et al. 2007] and is independent 

of cycloplegia which may vary between studies.  

Various studies have examined the heritability of myopia showing increased risk for first-

degree relatives of affected individuals [Farbrother, et al. 2004; Guggenheim, et al. 2000] and 

twins [Sanfilippo, et al. 2010; Young, et al. 2007]. Numerous genetic loci that cause familial high 

myopia (MYP1-18) have been discovered using linkage analysis [Baird, et al. 2010]. More 

recently, genome wide association studies (GWAS) in large cohorts have been performed to 

identify further determinants for REs in the general population. The first single nucleotide 

polymorphisms (SNPs) identified were near GJD2 [Solouki, et al. 2010] and RASGRF1 [Solouki, 

et al. 2010]. Later many more loci were found in studies of large populations (CREAM; 

23andMe)[Kiefer, et al. 2013; Verhoeven, et al. 2013] [Wojciechowski and Hysi 2013]. 
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All previously published refractive error GWAS studies were performed in cohorts 

enrolling participants aged 25 years and older. We aimed to study the effect size of the 39 

GWAS-identified genetic regions associated with refractive error to date, as a function of age.  

  

METHODS 

Study specific analysis 

We included 18 cohorts from 8 different countries in Europe, Asia and Oceania, with a total of 

5,490 children <10 years, 5,000 individuals of 10-25 years, and 16,274 adults, all with 

phenotypic and genome-wide genotypic data available. Details on subject recruitment 

procedures can be found in the supplemental materials. Each study participant was genotyped 

with either an Affymetrix or Illumina SNP array (supplemental table I). All studies were 

conducted according to the Declaration of Helsinki. The studies were approved by the local 

review boards. Written, informed consent for the collection and analysis of measurements of all 

study participants was obtained.  

SNPs 

A total of 39 SNPs were included in this analysis. The SNPs were selected based on their 

known association with RE and myopia in the GWAS carried out by CREAM [Verhoeven, et al. 

2013] and 23andMe [Kiefer, et al. 2013](supplementary table II). An unweighted genetic risk 

score (GRS) was calculated for each participant by summing the dosage of risk alleles (scale 0-

2) for all 39 SNPs. The risk score was normally distributed.   

Ocular biometry 

The ocular biometry measurements included AL and CR, and the AL/CR ratio was calculated. 

Multiple measurements of AL and CR were taken of the right eye and left eye, were averaged to 

calculate a mean AL and CR for each eye. The average AL of both eyes was divided by the 

average CR of both eyes to calculate the AL/CR ratio. Details of the phenotypic assessment 

protocols/instruments used in each study can be found in the supplemental material. 
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Meta-analysis 

All studies performed linear regression models with each SNP or the GRS as determinants, and 

the AL/CR ratio as outcome. Analyses were adjusted for the potentially confounding effects of 

age and gender, and additionally – to account for ancestry differences within the sample – for 

principal components where applicable. A meta-analysis was performed to estimate the beta 

effects using an inversed variance weighted fixed effect model with METAL [Willer, et al. 2010]. 

Meta-analyses were performed in each age stratum separately, and in combined strata of all 

participants <25 years. Several children measured in TEST (Twins Eye Study Tasmania) and 

GTES (Guangzhou Twin Eye Study) had follow up measurements at an older age; therefore, 

only data from the oldest age were used in the combined analysis. In the Asian studies the 

following SNPs were excluded due to low minor allele frequency (MAF) <0.05 in the Chinese 

population: rs17428076, rs1656404, rs14165, rs13091182, rs12205363, rs11145465, 

rs10882165, and rs17183295. 

Pathway analysis 

Loci with significant effects (P <0.05) were further explored to identify differences in effect of 

early-onset genes (significant loci identified in groups <10 years, 10-25 years or the combined 

analysis) and late-onset genes (adult subjects). Data were analysed through the use of 

QIAGEN’s Ingenuity® 

 Pathway Analysis  (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) and the online 

software tool Database for Annotation, Visualization and Integrated Discovery (DAVID) [Huang 

da, et al. 2009a; Huang da, et al. 2009b]. 
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RESULTS 

Our study sample of children <10 years comprised 5,490 participants derived from 5 studies; 

one of European ancestry (TEST), three of Asian ancestry (SCORM, STARS, and Guangzhou 

Twins), and one of mixed European, African, and Asian ancestry (Generation R). Our sample of 

individuals aged 10-25 years included 5,000 participants derived from 6 studies; 4 of European 

ancestry (TEST, ALSPAC, BATS and RAINE) , and 2 of Asian (STARS, Guangzhou Twins) 

ancestry. Our sample of adults >25 years compromised 16,274 participants derived from 10 

studies; 9 of European ancestry (Croatia Split, -Kurcula and – Vis study, Gothenburg Health 

Study, EPIC-Norfolk and the Rotterdam Study I-III), and one Asian study (Nagahama). General 

characteristics per study are shown in Table I. 

 

Genetic risk score 

The genetic risk score was associated with a higher AL/CR ratio even in children aged <10 

years (table II), and this association increased in magnitude with older age. Specifically, AL/CR 

increased with each age category from β 0.0019 (SD 0.0003) per risk allele in children <10 

years, to 0.0033 (SD 0.0004) in participants aged 10-25 years, to 0.0051 (SD 0.0003) in adults 

(figure I). Only the adult group showed evidence for heterogeneity (heterogeneity P-value 

0.0005) between studies, therefore, meta-analyses for this age category were also performed 

using the random effect model  (β 0.0048; SD 0.0007; supplementary table IV). The variance 

explained by the genetic risk score increased from 0.7% in the children aged 6 from the 

Generation R study, to 3.7% for the adult participants in the RS I-III (Fig II). 

 

Genetic loci 

In children <10 years, 9/39 loci were significant at P <0.05, and 3/39 were significant after 

correction for multiple-testing for 39 SNPs (P <0.00128). The 3 loci significant after Bonferroni 

correction were in the vicinity of the genes GJD2, ZIC2 and CHRNG. The 2 nominally-significant 
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loci with the greatest effect size (beta) were close to the CHRNG and PRSS56 genes. The other 

5 loci were near KCNQ5, SHISA6, KCNMA1, BMP2 and BICC1. Interestingly, the SNP at the 

BMP2 locus had a reversed effect from that observed in adult samples, i.e., the risk allele was 

associated with a lower AL/CR ratio. In individuals aged 10 - 25 years, 10/39 loci showed 

nominally significant association with AL/CR ratio, of which 5 survived Bonferroni correction 

(BMP2, TOX, KCNQ5, A2BP1 and CACNA1D). Five of the 10 SNPs above were already 

nominal significantly associated with AL/CR ratio in children <10 years (GJD2, BICC1, ZIC2, 

BMP2 and PRSS56); of the remaining nominally-significant loci, the variant with the greatest 

effect in 10-25 year-olds was the SNP at the LAMA2 locus. One variant differed significantly in 

effect between children <10 years and those aged 10-25 years. This was the SNP at the BMP2 

locus which, as mentioned above, showed an opposite effect to that expected in children aged 

<10 years (Figure III). One of the loci (TOX) showed evidence for heterogeneity (supplementary 

table III) in effect between study cohorts in the age category 10-25 years (Heterogeneity P = 

0.001). With random effect model the effect of this SNP decreased to β 0.0062 (SE 0.0073; P 

0.40)(supplementary table IV). In the combined analysis of all studies <25 years, BICC1 and 

PRSS56 reached Bonferroni adjusted significance; one additional locus (PDE11A) showed a 

nominally significant effect for AL/CR ratio. In adults, 31/39 loci showed a significant effect, of 

which 19/39 were Bonferroni significant. All loci, except for ZBTB38 (β -0.0004; SE 0.0019), 

showed an association in the expected direction (i.e. risk allele associated with a higher AL/CR 

ratio). As in 10-25 years, one locus significant in adults showed evidence for heterogeneity 

(LOC100506035); with random effect model this locus lost statistical significance 

(supplementary table III and IV). Figure IV displays all estimated effect sizes per age group.  

Pathway analysis 

Pathway analyses were performed to gain insight into the mechanisms for early versus late-

onset eye growth and myopia development. We hypothesized that loci with at least a moderate 

effect in children and adolescents most likely had an early onset. Hence, a locus was defined as 
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early onset when nominally significant (P<0.05) in the groups <25 years and no evidence for 

heterogeneity (Figure IV; loci above green line). Loci nominally significant in the adult population 

without a significant effect <25 years were grouped as late onset genes (Figure IV; loci below 

green line).  

Ingenuity Pathway Analysis (IPA) 

Genes with an early onset in the age group <25 years were enriched in pathways of auditory 

disease, organismal injury and abnormalities, and gastrointestinal disease (at FDR <5%). The 

genes that were significantly associated in adults predisposed to connective tissue disorders, 

developmental disorder (e.g. microphthalmia; BMP4 and SIX6,), and also gastrointestinal 

disease (supplementary table V). 

Database for Annotation, Visualization and Integrated Discovery (DAVID) 

Using the categories defined above, early-onset genes were annotated to ion channels and ion 

transport (CACNA1D, CHRNG, GJD2, KCNMA1 and KCNQ5). Late onset genes appeared to 

be more related to neuron differentiation and visual perception (RORB, SIX6, RASGRF1, 

CHD7, RGR, RDH5 and GRIA4.) (supplementary table VI). 

 

DISCUSSION: 

This study identifies the age span during which the known GWAS-identified loci for refractive 

error have their greatest effect. The current meta-analysis suggests that specific loci had their 

greatest effect in young children (CHRNG, ZIC2, KCNMA1), while others reached the greatest 

effect during early teenage years (BMP2, CACNA1D, A2BP1). However, most appeared to have 

a gradual effect during the entire age span of myopia development (LAMA2, LRRC4C, DLX1, 

RDH5, GRIA4, RGR, SIX6).  

Strengths of this study were the large sample size, the comparison across 3 distinct age 

categories, and the precision in measurements of ocular biometry. A drawback was the lack of 

complete cycloplegic refraction in children in several studies, which jeopardized valid 
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measurements of RE in this age category. Thus, we used AL/CR ratio as an indicator of RE to 

avoid heterogeneity in the outcome. This ratio has a high correlation with RE [Hashemi, et al. 

2013; Ip, et al. 2007] and was available from all studies in the consortium. Another limitation 

was the lack of power to detect statistically significant differences between the age groups for 

most genes. A pooled analysis would have increased statistical power, but raw data from 

individual participants were not available. Ideally, a study using longitudinal data of the same 

children over different age periods would have the best study design for the current analysis.  

Little has been reported on the development and progression of myopia as a function of 

age; however, a number of studies investigated the relationship between development of ocular 

biometry related to age. Until the age of 25 years, corneal curvature, the crystalline lens, and 

axial length all evolve with age, and thereby influence refractive error. The cornea increases in 

radius until preschool age leading to flattening of the corneal curvature and decrease in 

refractive power [Augusteyn, et al. 2012]; the crystalline lens grows until 10 years of age, also 

reducing refractive power [Mutti, et al. 2012; Mutti, et al. 1998]. This decrease in refractive 

power is compensated by axial elongation which increases from 17 mm in newborns [Lim, et al. 

2015] to 23.3 mm in 12-13 year olds [French, et al. 2012]. The average AL in emmetropic adults 

is 23.5 mm [Fotedar, et al. 2010; Gordon and Donzis 1985]. The highest growth rate of AL 

occurs in the first years of life and relates to emmetropisation; the growth rate after early teens 

is more gradual but mainly relates to myopisation [Gordon and Donzis 1985]. The exact age at 

which eye growth stops is not known; generally this occurs before age 20 years, but increase in 

AL has been described up to the age of 25 years in university students [Fledelius 2000; 

Midelfart, et al. 1992].  

One of the key detected GWAS-identified loci for refractive error is on chromosome 15 

near the GJD2 gene, that encodes a gap junction protein known as CX36. This protein not only 

processes cone-to-cone and cone-to-rod signals [Lee, et al. 2003] but also directs signaling 

between other retinal cells [Feigenspan, et al. 2001; Hidaka, et al. 2004]. This cell-to-cell 
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communication appears to be under regulation of light exposure and dopamine [Bloomfield and 

Volgyi 2009], two factors that have an established role in eye growth and myopia development. 

Our data suggest that GJD2 has an early-onset, indicating that altered retinal cell signaling, 

perhaps via reduced light exposure and low dopamine levels, may be a first step in myopia 

development. As expected, some early-onset genes also had a reported role in eye 

development. Knockout of LAMA2, a gene encoding the large extracellular glycoprotein laminin-

α2; causes growth retardation including smaller eyes with compressed cellular layers [Gupta, et 

al. 2012]. Mutations in the serine protease gene PRSS56  cause a severe decrease of AL 

leading to microphthalmia [Nair, et al. 2011].  Another developmental gene is ZIC2, an 

enhancer-binding factor required for embryonic stem cell specification [Luo, et al. 2015]. This 

gene may be important for development of retinal architecture, as it is known to be involved in 

differentiation and proliferation of retinal progenitor cells [Watabe, et al. 2011], and development 

of retinal ganglion cell trajectories [Herrera, et al. 2003]. Strikingly, several other genes involved 

in eye development, such as SIX6, CDH7, and DLX1, did not show an early onset but were 

more significant after the age of 10 years. Other early-onset genes were ion channels such as 

KCNQ5, a potassium channel present in cone and rod photoreceptors [Zhang, et al. 2011], and 

CACNA1D, a calcium channel present in photoreceptors [Xiao, et al. 2007]. CHRNG has as yet 

an unknown role in myopia development. It encodes the γ subunit of the embryonal 

acetylcholine receptor, which is widely expressed in the retina [Hruska, et al. 1978; Hutchins 

and Hollyfield 1985], and is associated with multiple pterygium syndrome [Vogt, et al. 2012].   

Several remarkable patterns of effect were notable. For instance, the lead SNPs at the 

BMP2,  MYO1D, PTPRR, and BMP4 loci showed an opposite effect in children <10 years than 

in those who were older. This is not uncommon in biology, as such a trajectory has also been 

described for the FTO locus in relation to body mass index in children [Sovio, et al. 2011]. 

Interestingly, gene expression studies of BMP2 in chickens showed that mRNA of this gene in 

the retinal pigment epithelium is up- or down-regulated depending on the location of the image 
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plane [Zhang, et al. 2012]. When the image was focused behind the retina, mRNA was 

downregulated and the vitreous chamber enlarged. This underscores a bidirectional role for 

BMP2 in modulation of eye growth.   

Most genes had a late onset. BMP4 has a similar function to BMP2 as it is also responds 

to optical defocus with bidirectional regulation of eye growth [Zhang, et al. 2013]. SIX6 is a 

DNA-binding homeobox and has a SIX domain, which binds downstream effector molecules. It 

is known to influence eye size in zebrafish with knocked down SIX6 expression [Iglesias, et al. 

2014]. Other genes play a less obvious role in myopiagenesis. MYO1D is involved in membrane 

trafficking in the recycling pathway and expressed in oligodendrites [Benesh, et al. 2012]. 

RORB, a gene encoding a nuclear receptor-directing photoreceptor differentiation, is known to 

activate and generate S-opsin [Jia, et al. 2009; Srinivas, et al. 2006]. DLX1 belongs to the DLX 

family of homeobox transcription factors, and produces GABAergic interneurons during 

embryonic development.  

In conclusion, our study suggests that only a small proportion of the currently known 

GWAS-identified loci for RE exert their full effect at a young age. Furthermore, some of the 

pathways previously-identified by GWAS meta-analyses [Verhoeven, et al. 2013] can now be 

separated into early- and late-onset pathways. For example, genes coding for ion channels 

typically had an early onset, while genes related to connective tissue and visual feedback 

mechanisms appeared to become more important at a later age. As the currently known genes 

play only a minor role in early-onset myopia, we question whether this type of myopia is caused 

by common variants in other genes, or whether rare variants with large effects determine early-

onset. Future research may shed more light on genes for early-onset myopia, and unravelling 

these genes will open up strategies for prevention of high myopia.  
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Table I Participating studies and characteristics stratified per age group 

*GTES= Guangzhou Twin Eye Study, RS I-III = Rotterdam Study I-III, GHS=Gutenberg Health Study 

 

Age <10 years 

Study N AL/CR (SD; range) Age (SD) Gender, % Female 

STARS 207 2.99 (0.150; 2.76 – 3.46) 5.45 (2.11) 47.3 

Generation R 3,874 2.87 (0.083; 2.38 – 3.90) 6.18 (0.51) 50.3 

SCORM 898 3.02 (0.112; 2.63 – 3.45) 7.48 (0.87) 47.7 

TEST 166 2.94 (0.101; 2.65 – 3.25) 7.53 (1.21) 52.4 

GTES 345 2.97 (0.100; 2.62 – 3.45) 8.73 (0.79) 50.1 

Total 5,490  

Age 10-25 years 

STARS 96 3.23 (0.127; 2.95 – 3.60) 12.23 (1.7) 58.3 

GTES 699 3.13 (0.147; 2.58 – 3.82) 14.83 (1.2) 52.9 

TEST 182 2.99 (0.108; 2.68 – 3.51) 15.16 (4.0) 60.4 

ALSPAC 1,996 2.99 (0.099; 2.57 – 3.52) 15.46 (0.3) 53.6 

BATS 983 3.03 (0.106; 2.67 – 3.82) 19.07 (3.2) 53,8 

RAINE 1,044 3.05 (0.104; 2.63 – 3.54) 20.04 (0.4) 48.9 

Total 5,000  

Age >25 years 

Nagahama 2,762 3.13 (0.153; 2.62 – 3.86) 52.05 (13.8) 49.0 

Croatia-Split 730 3.02 (0.128; 2.38 – 3.90) 52.16 (13.0) 61.2 

Croatia Korcula 832 2.99 (0.203; 2.26 – 5.73) 56.62 (13.3) 64.7 

Croatia-Vis 573 2.99 (0.121; 2.50 – 3.83) 55.93 (13.8) 60.4 

GHS 2 936 3.07 (0.160; 2.50 – 4.01) 59.26 (10.6) 50.0 

GHS 1 1,919 3.06 (0.151; 2.30 – 3.88) 60.17 (10.7) 47.1 

EPIC-Norfolk 6,051 3.05 (0.146; 2.42 – 3.95) 68.9 (8.0) 54.3 

RS I-III 2,471 3.05 (0.143; 2.43 – 3.86) 70.02 (8.8) 53.6 

Total 16,274  
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Table II Effect size of myopia related genes in age groups <10 years, 10-25 years, 25> years 

    
<10 years 10 - 25 years Combined >25 years 

Variant Chr Gene RA Beta (SE) P Beta (SE) P Beta (SE) P Beta (SE) P 

Allele Score - - - 0.0019 (0.0003) 10^-11 0.0033 (0.0004) 10^-15 0.0024 (0.0002) 10^-24 0.0051(0.0003) 10^-72 

rs1652333 1 CD55 G 0.0033 (0.0017) 0.05 0.0006 (0.0024) 0.80 0.0026 (0.0014) 0.07 0.0084(0.0017) 10^-6 

rs4373767 1 ZC3H11B T 0.0010 (0.0017) 0.55 0.0032 (0.0023) 0.16 0.0019 (0.0014) 0.16 0.0053(0.0017) 0.002 

rs17412774 2 PABPCP2 A 0.0007 (0.0017) 0.69 0.0010 (0.0023) 0.67 0.0008 (0.0014) 0.57 0.0063(0.0017) 10^-4 

rs17428076 2 DLX1 C 0.0017 (0.0021) 0.43 0.0029 (0.0027) 0.28 0.0024 (0.0017) 0.16 0.0073(0.0021) 10^-4 

rs1898585 2 PDE11A T 0.0022 (0.0019) 0.26 0.0050 (0.0029) 0.09 0.0034 (0.0017) 0.04 0.0057(0.0021) 0.007 

rs1656404 2 PRSS56 A 0.0073 (0.0024) 0.002 0.0067 (0.0033) 0.04 0.0069 (0.0019) 10^-4 0.0079(0.0024) 0.001 

rs1881492 2 CHRNG T 0.0086 (0.0024) 10^-4 0.0039 (0.0031) 0.21 0.0064 (0.0020) 0.001 0.0085(0.0022) 10^-5 

rs14165 3 CACNA1D G 0.0035 (0.0020) 0.08 0.0082 (0.0026) 0.001 0.0055 (0.0016) 0.001 0.0055(0.0020) 0.005 

rs13091182 3 ZBTB38 G 0.0008 (0.0020) 0.69 -0.0001 (0.0024) 0.98 0.0007 (0.0015) 0.66 -0.0004(0.0019) 0.83 

rs9307551 4 LOC100506035 A 0.0007 (0.0019) 0.70 0.0037 (0.0026) 0.16 0.0020 (0.0016) 0.20 0.0051(0.0020) 0.008 

rs5022942 4 BMP3 A 0.0014 (0.0018) 0.44 -0.0016 (0.0026) 0.54 0.0007 (0.0015) 0.63 0.0006(0.0020) 0.78 

rs7744813 6 KCNQ5 A 0.0050 (0.0017) 0.004 0.0081 (0.0023) 10^-4 0.0060 (0.0014) 10^-5 0.0066(0.0018) 10^-4 

rs12205363 6 LAMA2 T 0.0041 (0.0041) 0.31 0.0138 (0.0046) 0.003 0.0094 (0.0031) 0.003 0.0229(0.0036) 10^-10 

rs7829127 8 ZMAT4 A 0.0025 (0.0020) 0.22 0.0019 (0.0028) 0.49 0.0025 (0.0017) 0.13 0.0072(0.0021) 0.001 

rs7837791 8 TOX G 0.0029 (0.0016) 0.06 0.0083 (0.0022) 10^-4 0.0050 (0.0013) 10^-4 0.0042(0.0017) 0.012 

rs4237036 8 CHD7 T 0.0001 (0.0018) 0.96 0.0032 (0.0024) 0.18 0.0013 (0.0014) 0.37 0.0058(0.0018) 0.001 

rs11145465 9 TJP2 A 0.0035 (0.0022) 0.11 0.0027 (0.0028) 0.33 0.0029 (0.0017) 0.09 0.0062(0.0021) 0.004 

rs7042950 9 RORB G 0.0028 (0.0019) 0.14 0.0031 (0.0026) 0.24 0.0027 (0.0016) 0.08 0.0071(0.0020) 10^-4 

rs7084402 10 BICC1 G 0.0035 (0.0016) 0.03 0.0066 (0.0023) 0.004 0.0050 (0.0013) 10^-4 0.0074(0.0017) 10^-6 

rs6480859 10 KCNMA1 T 0.0040 (0.0018) 0.02 0.0037 (0.0023) 0.10 0.0040 (0.0014) 0.004 0.0015(0.0017) 0.38 

rs745480 10 RGR G 0.0007 (0.0016) 0.67 0.0021 (0.0022) 0.34 0.0011 (0.0013) 0.40 0.0055(0.0017) 0.001 

rs10882165 10 CYP26A1 T 0.0012 (0.0018) 0.49 0.0002 (0.0024) 0.93 0.0007 (0.0014) 0.61 0.0011(0.0018) 0.54 

rs1381566 11 LRRC4C G 0.0026 (0.0020) 0.21 0.0040 (0.0034) 0.23 0.0028 (0.0018) 0.12 0.0093(0.0022) 10^-5 

rs2155413 11 DLG2 A 0.0022 (0.0017) 0.18 0.0027 (0.0022) 0.23 0.0023 (0.0013) 0.09 0.0021(0.0017) 0.21 

rs11601239 11 GRIA4 C 0.0011 (0.0016) 0.50 0.0027 (0.0022) 0.22 0.0014 (0.0013) 0.30 0.0055(0.0017) 0.001 

rs3138144 12 RDH5 G 0.0020 (0.0021) 0.35 0.0039 (0.0027) 0.16 0.0028 (0.0017) 0.10 0.0045(0.0019) 0.02 

rs12229663 12 PTPRR A -0.0023 (0.0019) 0.21 0.0046 (0.0026) 0.08 0.0000 (0.0016) 1.00 0.0069(0.0019) 10^-4 

rs8000973 13 ZIC2 C 0.0058 (0.0017) 10^-4 0.0058 (0.0023) 0.01 0.0059 (0.0014) 10^-5 0.0027(0.0017) 0.10 

rs2184971 13 PCCA A 0.0008 (0.0016) 0.61 0.0006 (0.0023) 0.80 0.0009 (0.0014) 0.48 0.0021(0.0017) 0.21 

rs66913363 14 BMP4 G -0.0025 (0.0017) 0.15 0.0040 (0.0024) 0.10 0.0006 (0.0014) 0.68 0.0047(0.0017) 0.006 

rs1254319 14 SIX6 A 0.0007 (0.0017) 0.68 0.0044 (0.0024) 0.07 0.0017 (0.0014) 0.22 0.0054(0.0018) 0.002 

rs524952 15 GJD2 A 0.0069 (0.0016) 10^-5 0.0068 (0.0023) 0.003 0.0067 (0.0013) 10^-7 0.0122(0.0016) 10^-14 

rs4778879 15 RASGRF1 G 0.0018 (0.0017) 0.29 0.0033 (0.0023) 0.15 0.0019 (0.0014) 0.17 0.0051(0.0017) 0.002 

rs17648524 16 A2BP1 C 0.0018 (0.0018) 0.33 0.0079 (0.0024) 0.001 0.0039 (0.0015) 0.01 0.0077(0.0019) 10^-5 

rs2969180 17 SHISA6 A 0.0035 (0.0016) 0.03 0.0017 (0.0023) 0.46 0.0027 (0.0014) 0.05 0.0079(0.0017) 10^-6 

rs17183295 17 MYO1D T -0.0033 (0.0023) 0.16 0.0009 (0.0030) 0.76 -0.0018 (0.0018) 0.33 0.0089(0.0023) 10^-4 
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Values are betas (SE) and P-values, from linear regression models adjusted for sex, age and principal components if applicable meta-analysed 

with inversed variance meta-analysis in METAL. Bold: P <0.05. 

rs4793501 17 KCNJ2 T 0.0029 (0.0016) 0.08 0.0001 (0.0022) 0.95 0.0019 (0.0013) 0.16 0.0041(0.0017) 0.015 

rs12971120 18 CNDP2 A 0.0002 (0.0019) 0.93 0.0048 (0.0026) 0.07 0.0017 (0.0015) 0.27 0.0024(0.0019) 0.22 

rs235770 20 BMP2 T -0.0043 (0.0018) 0.02 0.0121 (0.0025) 10^-6 0.0008 (0.0015) 0.60 0.0043(0.0017) 0.013 
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Figure I. Association between genetic risk score and myopia in the three age groups  

Figure II. Association between non-weighted genetic risk score and AL/CR ratio in children and adults.  

Figure III. Increased effect on AL/CR ratio with age for BMP2 gene.  

Figure IV. Distribution of effects on AL/CR ratio per myopia-related gene in three age groups 
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The y-axis represents the beta of the non-weighted genetic risk score. Black dots and grey lines depict the 
beta and the 95% CI. Estimate for > 25 years was based on a meta-analysis using a random effects model 

because relatively high heterogeneity; in the other two groups a fixed effects model could be used.  

Figure I. Association between  
258x136mm (300 x 300 DPI)  
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The grey dots and line represent children in Generation R (N = 3,874); the black dots and line represent 

adults from the Rotterdam Study I-III (N = 2,471).  

Figure II. Association between  
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Comparison of the association with AL/CR ratio (beta) of the topSNP near BMP2 between the age groups 
<10 years and 10-25 years ordered on average age for top to bottom.  

Figure III. Increased effect o  
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Effect was represented by betas of association with AL/CR ratio per top SNP. Above the orange line are 
genes that have a significant (P <0.05) effect in children <10 years; between the orange and green line are 
genes that have a significant effect in individuals <25 years; below the green line are genes that have a 

significant effect in adults. * showed heterogeneity in 10-25 years and was not significant with random 
effect model.  

Figure IV. Distribution of eff  
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Supplementary Table I Genotyping and imputation details 

Study Genotyping platform Imputation  Reference population (1000G) QC 

ALSPAC Illumina HumanHap550  MACH/minimac GIANT phase1 release v3 Cheng et al. 2013 1 

BATS/TEST 
Illumina HumanHap610/660-
Quad 

MACH 
1000G Phase 1 release on Aug 
4, 2010 

Yazar et al. 2015 2 

RAINE Illumina 660W-Quad MACH/minimac 

1000G Phase 1 release on Nov 
23, 2010  

 

Yazar et al. 2015 2 

TEST 
Illumina HumanHap610/660-

Quad 
MACH 

1000G Phase 1 release on Aug 
4, 2010 

Yazar et al. 2015 2 

Generation R 
Illumina Infinium II 
HumanHap610 Quad Arrays 

MACH 1000 Genomes GIANTv3 panel Kruithof et al. 2014 3 

GTES Affymetrix Gene Titan IMPUTE2 v2.3.0 
1000G Phase 1 release on Nov 
23,2010 

 

SCORM Illumina HumanHap550/550-Duo MACH/minimac 
1000G Phase 1 release March 
2012 

Cheng et al. 2013 1 

STARS  Illumina HumanHap610-Quad MACH/minimac 
1000G Phase 1 release March 
2012 

Cheng et al. 2013 1 

GHS 1/2 
Affymetrix Genome-Wide Human 
SNP Array 6.0 

MACH/minimac 
1000G Phase 1 release on Nov 
23, 2010 

 

Rotterdam Study 

RS I: Illumina Infinium II 
HumanHap550 chip v3.0 array. 

RS II: HumanHap550  
Duo  Arrays + Human610 ‐

MACH 
NCBI build 36, HapMap release 
#22 

Solouki et al. 20104 
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Abbreviations: 1000G, One thousand genomes project. QC, Quality control.  

 

 

 

 

 

 

 

Quad Arrays Illumina,  

RS-III: Human 610 Quad 
Arrays Illumina 

Croatia 

Korcula: Illumina CNV370v1 and 

CNV370-Quadv3 

Vis: Illumina  HumanHap 300v1 

Split: Illumina CNV370-Quadv3 

and Illumina OmniExpress 

Exome-8v1_A 

IMPUTEv2 

(phasing using 
shapeit v2) 

1000G Phase 1 integrated v3 
release March 2012 (Vis and 
Korcula) release June 2014 
(Split) 

 

 

Nagahama 
Human 610 Quad Arrays 
Illumina / 
Human Omni 2.5 Arrays Illumina 

MACH 
NCBI build 36, HapMap release 
#28 

 

EPIC-Norfolk 
Affymetrix UK Biobank Axiom 

Array.   
IMPUTE version 

2.3.2. 
1000G Phase 3 (October 2014)  
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Supplementary Table II. All SNPs previously associated with myopia and refractive error. 

SNP Chr Pos Gene Citation 

rs1652333 1 207470460 CD55 Verhoeven et al. 2013 

rs4373767 1 219759682 ZC3H11B Cheng et al. 2013 

rs17412774 2 146773948 PABPCP2 Kiefer et al. 2013 

rs17428076 2 172851936 DLX1 Kiefer et al. 2013 

rs1898585 2 178660450 PDE11A Kiefer et al. 2013 

rs1656404 2 233379941 PRSS56 Verhoeven et al. 2013 

rs1881492 2 233406998 CHRNG Verhoeven et al. 2013 

rs14165 3 53847408 CACNA1D Verhoeven et al. 2013 

rs13091182 3 141133960 ZBTB38 Kiefer et al. 2013 

rs9307551 4 80530671 LOC100506035 Verhoeven et al. 2013 

rs5022942 4 81959966 BMP3 Kiefer et al. 2013 

rs7744813 6 73643289 KCNQ5 Verhoeven et al. 2013 

rs12205363 6 129834628 LAMA2 Verhoeven et al. 2013 

rs7829127 8 40726394 ZMAT4 Verhoeven et al. 2013 

rs7837791 8 60179086 TOX Verhoeven et al. 2013 

rs4237036 8 61701057 CHD7 Verhoeven et al. 2013 

rs11145465 9 70989531 TJP2 Verhoeven et al. 2013 

rs7042950 9 77149837 RORB Verhoeven et al. 2013 

rs7084402 10 60265404 BICC1 Verhoeven et al. 2013 

rs6480859 10 79081948 KCNMA1 Kiefer et al. 2013 

rs745480 10 85986554 RGR Kiefer et al. 2013 

rs10882165 10 94924324 CYP26A1 Verhoeven et al. 2013 

rs1381566 11 40149607 LRRC4C Kiefer et al. 2013 
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rs2155413 11 84634790 DLG2 Kiefer et al. 2013 

rs11601239 11 105556598 GRIA4 Verhoeven et al. 2013 

rs3138144 12 56114768 RDH5 Verhoeven et al. 2013 

rs12229663 12 71249996 PTPRR Verhoeven et al. 2013 

rs8000973 13 100691367 ZIC2 Verhoeven et al. 2013 

rs2184971 13 100818092 PCCA Verhoeven et al. 2013 

rs66913363 14 54413001 BMP4 Kiefer et al. 2013 

rs1254319 14 60903757 SIX6 Verhoeven et al. 2013 

rs524952 15 35005885 GJD2 Verhoeven et al. 2013 

rs4778879 15 79372875 RASGRF1 Verhoeven et al. 2013 

rs17648524 16 7459683 A2BP1 Verhoeven et al. 2013 

rs2969180 17 11407901 SHISA6 Verhoeven et al. 2013 

rs17183295 17 31078272 MYO1D Verhoeven et al. 2013 

rs4793501 17 68718734 KCNJ2 Verhoeven et al. 2013 

rs12971120 18 72174023 CNDP2 Verhoeven et al. 2013 

rs235770 20 6761765 BMP2 Verhoeven et al. 2013 
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Supplementary Table III. Heterogeneity per P-value per SNP for each age group. 

    <10 years 10 - 25 years Combined >25 years 

Variant Ch Gene RA Heterogeneity P Heterogeneity P Heterogeneity P Heterogeneity P 

Allele - - - 0.07 0.08 0.0002 0.0005 

rs1652333 1 CD55 G 0.40 0.25 0.23 0.18 

rs4373767 1 ZC3H11B T 0.18 0.69 0.29 0.38 

rs1741277 2 PABPCP2 A 0.50 0.39 0.46 0.25 

rs1742807 2 DLX1 C 0.26 0.02 0.05 0.70 

rs1898585 2 PDE11A T 0.40 0.86 0.76 0.77 

rs1656404 2 PRSS56 A 0.45 0.15 0.25 0.53 

rs1881492 2 CHRNG T 0.69 0.34 0.45 0.95 

rs14165 3 CACNA1D G 0.48 0.70 0.51 0.26 

rs1309118 3 ZBTB38 G 0.13 0.89 0.94 0.16 

rs9307551 4 LOC100506035 A 0.94 0.78 0.92 0.02 

rs5022942 4 BMP3 A 0.82 0.91 0.94 0.98 

rs7744813 6 KCNQ5 A 0.31 0.66 0.53 0.65 

rs1220536 6 LAMA2 T 0.12 0.07 0.06 0.54 

rs7829127 8 ZMAT4 A 0.24 0.75 0.54 0.92 

rs7837791 8 TOX G 0.82 0.001 0.002 0.12 

rs4237036 8 CHD7 T 0.35 0.94 0.84 0.89 

rs1114546 9 TJP2 A 0.17 0.24 0.38 0.13 

rs7042950 9 RORB G 0.83 0.41 0.70 0.12 

rs7084402 10 BICC1 G 0.58 0.38 0.52 0.83 

rs6480859 10 KCNMA1 T 0.27 0.63 0.62 0.81 

rs745480 10 RGR G 0.38 0.88 0.68 0.10 

rs1088216 10 CYP26A1 T 0.51 0.31 0.45 0.03 

rs1381566 11 LRRC4C G 0.40 0.60 0.49 0.78 

rs2155413 11 DLG2 A 0.21 0.52 0.31 0.29 

rs1160123 11 GRIA4 C 0.58 0.96 0.96 0.05 

rs3138144 12 RDH5 G 0.67 0.72 0.83 0.43 

rs1222966 12 PTPRR A 0.41 0.18 0.06 0.97 

rs8000973 13 ZIC2 C 0.44 0.61 0.65 0.01 

rs2184971 13 PCCA A 0.75 0.19 0.37 0.55 

rs6691336 14 BMP4 G 0.62 0.22 0.10 0.57 

rs1254319 14 SIX6 A 0.76 0.24 0.31 0.78 

rs524952 15 GJD2 A 0.73 0.36 0.52 0.49 

rs4778879 15 RASGRF1 G 0.15 0.99 0.79 0.30 

rs1764852 16 A2BP1 C 0.14 0.52 0.07 0.72 

rs2969180 17 SHISA6 A 0.59 0.24 0.30 0.23 

rs1718329 17 MYO1D T 0.47 0.99 0.83 0.37 

rs4793501 17 KCNJ2 T 0.42 0.03 0.03 0.10 

rs1297112 18 CNDP2 A 0.21 0.34 0.22 0.36 

rs235770 20 BMP2 T 0.24 0.67 4*E-5 0.48 
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Supplementary Table IV Random effect analysis of SNPs with P < 0.05 and heterogeneity P <0.05 

    10 - 25 years  >25 years  

Variant Chr Gene RA Effect (SE) P Effect (SE) P 

GRS - - - - - 0.0048 (0.0007) <0.001 

rs9307551 4 LOC100506035 A - - 0.0066 (0.0034) 0.06 

rs7837791 8 TOX G 0.0062 (0.0073) 0.40 - - 

 
GRS = Genetic risk score
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Supplementary table V 

IPA Analysis of diseases and disorders associated with early and late onset genes for myopia with p-

values and molecules 

Diseases and Disorders of early onset genes 

Name p-value range Molecules 

Auditory Disease 1.80E-02 – 1.13E-05 2 

Organismal Injury and Abnormalities 4.62E-02 – 1.13E-05 11 

Gastrointestinal Disease 4.71E-02 – 5.75E-05 8 

Hematological Disease 1.22E-02 – 1.18E-04 3 

Metabolic disease 4.71E-02 – 1.18E-04 3 

   

Diseases and Disorders of late onset genes 

Name p-value range Molecules 

Connective tissue disorders 4.60E-02 – 1.14E-04 4 

Developmental disorders 4.60E-02 – 1.14E-04 7 

Gastrointestinal Disease 4.66E-02 – 1.14E-04 16 

Skeletal and Muscular disorders 4.60E-02 – 1.14E-04 4 

Cancer 4.66E-02 – 8.24E-04 16 

 

Supplementary table VI 

DAVID pathway analysis of functional annotation with early and late onset genes for myopia with p-

values and molecules 

Functional annotation of early onset genes 

GO Term p-value  Molecules 

Channel activity 1.8E-4 5 

Passive transmembrane transporter activity 1.8E-4 5 

Ion channel complex 3.2E-4 4 

Ionic channel 6.7E-4 4 

Cation channel activity 1.0E-3 4 

   

Functional annotation of late onset genes 

GO Term p-value Molecules 

Neurological system process 5.0E-4 7 

Visual perception 1.0E-3 4 

Sensory perception of light stimulus 1.0E-3 4 

Cognition 1.1E-3 6 

Vision 5.8E-3 3 
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ALSPAC.  

Pregnant women with an expected date of delivery between 1st April 1991 and 31st December 

1992, resident in the former Avon health authority area in Southwest England, were eligible to 

participate in this population-based birth cohort study. 13,761 women were recruited. Ethical 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees. Subject recruitment has been described previously 5. Details of 

the phenotypes available and data access can be found at: 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/. In brief, data collection 

has been via various methods including self-completion questionnaires sent to the mother, to 

her partner and after age 5 to the child; direct assessments and interviews in a research clinic. 

Ocular biometry (IOLmaster) was carried out when participants attended a research clinic visit 

at the target age of 15 years-old. DNA samples were available for 11,343 ALSPAC Children, 

prepared from either blood samples or lymphoblastoid-transformed cell lines.  

BATS 

The Brisbane Adolescent Twin Study is an ongoing study of adolescent and young-adult 

monozygotic (MZ) and dizygotic (DZ) twin pairs (2720 individuals) and their siblings (1179)6. 

Twins were initially recruited to the study from primary and secondary schools in South East 

Queensland in 1992, with new twins added at various intervals. In addition, a small number of 

twins have been recruited through word of mouth, or through the Australian Twin Registry. The 

study was approved by the human research ethics committee at the QIMR Berghofer Medical 

Research Institute. Twins have undergone a variety of phenotypic assessments. A 40-ml blood 

sample is collected from participants and parents at the initial assessment. A subset of 

participants also completed an extensive eye examination as part of the Twins Eye Study in 

Tasmania. Axial length was measured using IOLmaster, and corneal curvature was measured 
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using a commercial automatic refractor/keratometer (Humphrey-598 Automatic 

Refractor/Keratometer; Carl Zeiss Meditec, Inc., Miami, FL).  

GTES 

The Guangzhou Twin Eye Study was launched in 2006, and it has completed eight consecutive 

annual follow-up examinations, with more than 1200 twin pairs participating. In brief, twins born 

in Guangzhou aged 7 to 15 years received annual eye examinations, including  cycloplegic 

refraction, from 2006 onwards. Those with manifest strabismus, amblyopia, nystagmus, post-

refractive surgery, or any ocular disease causing best-corrected visual acuity less than 20/25 

were excluded from the current analysis. The study was conducted in accordance with the 

tenets of the World Medical Association’s Declaration of Helsinki and was approved by the 

Ethics Review Board of the Zhongshan Ophthalmic Center of Sun Yat-Sen University. Written 

informed consent was obtained from the parents or legal guardians of the participants. Axial 

length was measured using the partial coherence interferometry (Zeiss IOLMaster, Jena, 

Germany). Corneal radius was performed under cycloplegia using an auto-refractor (Topcon 

KR8800, Tokyo, Japan). 

Generation R 

Generation R Study, a population-based prospective cohort study of pregnant women and their 

children in Rotterdam, The Netherlands. A total of 9,778 pregnant women were included in the 

study. All children were born between April 2002 and January 2006 7, 8. The children were 

invited at age 5 years with their mothers for examination on the research center by trained 

nurses. Of the 9,778 included pregnant woman 6,690 participated with their children for physical 

examination in the research centre at 5 years of age. The study protocol was approved by the 

Medical Ethical Committee of the Erasmus Medical Centre, Rotterdam (MEC 217.595/2002/20). 

Written informed consent was obtained from all participants. Ocular biometry (AL, corneal 
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curvature (CC) was obtained with a Zeiss IOL-master. Data were collected from right and left 

eyes. Five measurements of axial length were taken of OD and OS and averaged. OD and OS 

measurements were combined to calculate a mean average axial length. Three measurement of 

K1 and K2 were taken of OD and OS, and were averaged. AL/CC ratio was calculated by 

dividing AL(mm) by CC (mm). 

 

RAINE 

The Western Australian Birth Cohort (Raine) Study is one of the largest ongoing prospective 

cohort studies. It was established in 1989 by recruiting around 2900 pregnant women at 16-18 

weeks of gestation in Perth. The original aim of the study was to investigate how events during 

pregnancy and at birth influence the health and wellbeing of the newborns. This cohort has 

gone on to be examined every 2 years by different research groups. At the 20 year follow-up of 

the Raine Cohort were invited to participate in the Raine Eye Health Study (REHS) and 

undertake a comprehensive eye examination. This study was approved by the Human 

Research Ethics Committee at the University of Western Australia. During eye examination, 

post-cycloplegic autorefraction was performed in 1344 participant using the Nidek ARK-510A 

(NIDEK Co.Ltd, Tokyo, Japan) autorefractor. Ocular biometric parameters including axial length 

(AL) and corneal curvature were measured with IOLMaster V.5 (Carl Zeiss Meditec AG, Jena, 

Germany). For AL, five consecutive measurements were taken until the following criteria were 

satisfied: measurements within ± 0.02mm of each other, good waveform – no double peaks, 

acceptable signal-to-noise ratio >2.0. Any measurement outside the mentioned criteria deleted 

and repeated. During keratometry, three measurements within 0.3D within each meridian with 

careful alignment and focus were recorded.  

SCORM 
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This study is a school-based population study performed in Singapore. A total of 1,979 children 

in grades 1, 2, and 3 from three schools were recruited from 1999 to 2001 with detailed 

information described elsewhere9. The children were examined on the school premises annually 

by a team of eye care professionals. The GWAS was conducted in a subset of Chinese children 

of 1,116 subjects10. The phenotype used in the cross-sectional study was based on the SE 

measured on the 4th annual examination of the study (children at age 10 to 12 years). Complete 

post-filtering data on measurements and SNP data were available in 994 SCORM children.  

STARS 

STARS is a population-based survey of Chinese families with children residing in the south-

western and western region of Singapore. Disproportionate random sampling by 6-month age 

groups resulted in the recruitment and subsequent eye examination of 3,009 Chinese children 

between May 2006 and November 2008. Details of the study design and methodology have 

been previously described. 11 A total of 1,451 samples from 440 nuclear families underwent eye 

examinations and were included for genome-wide genotyping. In all, 407 children with SE 

measurement had complete post-filtered genotype data.  

TEST 

Commencing in the late 2000, 1372 participants were recruited to the Twins Eye Study 

Tasmania through various methods including piggy-backing existing studies where twins had 

been recruited, utilizing the national twin registry, word-of-mouth and local media publicity and 

directly approaching schools 12. Ethical approval was obtained from the Royal Victorian Eye and 

Ear Hospital, the University of Tasmania, the Australian Twin Registry (ATR). Axial length was 

measured using IOLmaster, and corneal curvature was measured using a commercial 

automatic refractor/keratometer (Humphrey-598 Automatic Refractor/Keratometer; Carl Zeiss 

Meditec, Inc., Miami, FL).  In children, buccal swabs or Oragene saliva samples were collected. 
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In adolescents, or when repeat examination was conducted several years later, a blood sample 

was taken and those participants who were now adults signed their own consent. 

Rotterdam Study I-III 

The Rotterdam Study is a prospective population‐based cohort study in the elderly living in 

Ommoord, a suburb of Rotterdam, the Netherlands. Details of the study are described 

elsewhere 30. In brief, the Rotterdam Study consists of 3 independent cohorts: RSI, RSII, and 

RSIII. For the current analysis, 5,328 residents aged 55 years and older were included from 

RS1, 2,009 participants aged 55 and older from RS II, and 1,970 aged 45 and older from RS III. 

99% of subjects were of European ancestry. Participants underwent multiple physical 

examinations with regular intervals from 1991 to present . In the fourth visit the examination 

included AL measurement with Lensstar [LS 900]. AL was an average of five measurements of 

OD and OS.  CC was an average of three K1 and K2 measurement of OD and OS. The AL/CC 

ratio was calculated by dividing the mean average AL by the mean average CC. Exclusion 

criteria were bilateral cataract surgery, intra ocular procedures which influence corneal 

curvature or corneal refractive procedures.All measurements in RS‐I-III were conducted after 

the Medical Ethics Committee of the Erasmus University had approved the study protocols and 

all participants had given a written informed consent in accordance with the Declaration of 

Helsinki.   DNA was extracted from blood leucocytes according to standard procedures. 

Genotyping of SNPs was performed using the Illumina Infinium II HumanHap550 chip v3.0 array 

(RS‐I); the HumanHap550 Duo Arrays and the Illumina Human610‐Quad Arrays (RS‐II), and the 

Human 610 Quad Arrays Illumina (RS‐III). Samples with low call rate (0.336), or with sex‐

mismatch were excluded, as were outliers identified by the identity‐by‐state clustering analysis 

(outliers were defined as being >3 s.d. from population mean or having identity‐by‐state 

probabilities >97%). We used genomic control to obtain optimal and unbiased results and 

applied the inverse variance method of each effect size estimated for both autosomal SNPs that 
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were genotyped and imputed in both cohorts. A set of genotyped input SNPs with call rate 

>98%, with minor allele frequency >0.01, and with Hardy‐Weinberg P value >10−6was used for 

imputation. We used the Markov Chain Haplotyping (MACH) package version 1.0.15 software 

(Rotterdam, The Netherlands; imputed to plus strand of NCBI build 36, HapMap release #22) for 

the analyses. For each imputed SNP, a reliability of imputation was estimated as the ratio of the 

empirically observed dosage variance to the expected binomial dosage variance (O/E ratio). 

GWAS analyses were performed using GRIMP. 

EPIC-Norfolk Eye Study 

The European Prospective Investigation into Cancer (EPIC) study is a pan-European 

prospective cohort study designed to investigate the aetiology of major chronic diseases.1  

EPIC-Norfolk , one of the UK arms of EPIC, recruited and examined 25,639 participants 

between 1993 and 1997 for the baseline examination.2  Recruitment was via general practices 

in the city of Norwich and the surrounding small towns and rural areas, and methods have been 

described in detail previously.3  Since virtually all residents in the UK are registered with a 

general practitioner through the National Health Service, general practice lists serve as 

population registers.  Ophthalmic assessment formed part of the third health examination and 

this has been termed the EPIC-Norfolk Eye Study.4  In total, 8,623 participants were seen for 

the Eye Study, between 2004 and 2011.  The EPIC-Norfolk Eye Study was carried out following 

the principles of the Declaration of Helsinki and the Research Governance Framework for 

Health and Social Care.  The study was approved by the Norfolk Local Research Ethics 

Committee (05/Q0101/191) and East Norfolk & Waveney NHS Research Governance 

Committee (2005EC07L).  All participants gave written, informed consent. 

Refractive error was measured using a Humphrey Auto-Refractor 500 (Humphrey Instruments, 

San Leandro, California, USA).  Biometry was conducted using non- contact partial coherence 
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interferometry (IOLMaster V.4, Carl Zeiss Meditech Ltd, Welwyn Garden City, UK). For each 

eye, five measurements of axial length and three measurements of corneal curvature were 

taken. Axial length measurements were repeated if flagged as more than 0.1mm different to the 

others. AL/CR was calculated as described in the primary methods. 

Genotyping was undertaken using the Affymetrix UK Biobank Axiom Array.  SNP exclusion 

criteria included: call rate < 95%, abnormal cluster pattern on visual inspection, plate batch 

effect evident by significant variation in minor allele frequency, and/or Hardy-Weinberg 

equilibrium P < 10-7.  Sample exclusion criteria included: DishQC < 0.82 (poor fluorescence 

signal contrast), sex discordance, sample call rate < 97%, heterozygosity outliers (calculated 

separately for SNPs with minor allele frequency >1% and <1%), rare allele count outlier, and 

impossible identity-by-descent values.  Following these exclusions, there were no ethnic 

outliers.  Data were pre-phased using SHAPEIT version 2 and imputed to the Phase 3 build of 

the 1000 Genomes project (October 2014) using IMPUTE version 2.3.2. 

In total, 6051 participants had complete data for both genotypes and phenotypes; their mean 

age was 69 years and 54% were women. 

Gutenberg Health Study (GHS 1, GHS 2) 

The Gutenberg Health Study (GHS) is a population-based, prospective, observational cohort 

study in the Rhine-Main Region in midwestern Germany with a total of 15,010 participants at 

baseline and follow-up after five years. The study sample was recruited from subjects aged 

between 35 and 74 years at baseline exam. Exclusion criteria were insufficient knowledge of the 

German language to understand explanations and instructions, and physical or psychic inability 

to participate in the examinations in the study center. The interdisciplinary study design 

comprises an ophthalmological examination, general and especially cardiovascular 

examinations, psychosomatic evaluation, laboratory tests, and biobanking for proteomic and 
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genetic analyses. The study was approved by the Medical Ethics Committee of the University 

Medical Center Mainz and by the local and federal data safety commissioners. According to the 

tenets of the Declaration of Helsinki, written informed consent was obtained from all participants 

prior to entering the study.  

In the first follow-up, the examination included biometry measurement with the Lenstar® LS 900 

(Haag Streit, Wedel, Germany). Axial length (AL) was an average of three measurements of OD 

and OS. Corneal curvature (CC) was an average of three K1 and K2 measurement of OD and 

OS. The AL/CC ratio was calculated by dividing the mean average AL by the mean average CC.  

Within GHS, DNA was extracted from buffy-coats from EDTA blood samples. Genetic analysis 

was conducted in the first 5,000 study participants. For these, 3,463 individuals were genotyped 

in 2008 (GHS 1) and further 1,439 individuals in 2009 (GHS 2). Genotyping was performed for 

GHS 1 and GHS 2 using the Affymetrix Genome-Wide Human SNP Array 6.0 

(http://www.affymetrix.com), as described by the Affymetrix user manual. Genotypes were 

called using the Affymetrix Birdseed-V2 calling algorithm. Individuals with low genotyping call 

rate, a too high level of heterozygosity (hetFDR>0.01)), with sex-mismatches, and with Non-

European ancestry were excluded. After applying standard quality criteria (minor allele 

frequency >1%, genotype call rate >98% and P-value of deviation from Hardy-Weinberg 

equilibrium of >0.0001), 689,634 SNPs in 2996 individuals from GHS1 and 701,418 SNPs in 

1,179 individuals from GHS2 remained for analysis (total 4175). Imputation of missing 

genotypes was performed using the software MACH (v1.0.18.c) and minimac (release 2012-03-

14) with the reference panel 1000G Phase I Integrated Release Version 2 Haplotypes (2010-11-

23 data freeze, 2012-02-14 haplotypes) for each cohort separately. Linear regression analyses 

were performed using ProbABEL (v0.4.1) with age and sex included in the model as covariates. 

CROATIA‐‐‐‐Korcula and CROATIA-Vis island Studies  
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The CROATIA-Korčula and CROATIA-Vis studies performed on Croatian islands, are 

population-based, cross-sectional studies in which adult subjects were recruited for genetic 

studies of many medically-relevant traits including ocular biometrical traits (Vitart et al-IOVS 

51,737-743). The studies received approval from relevant ethics committees in Scotland and 

Croatia and followed the tenets of the Declaration of Helsinki. Keratometry (CC) was measured 

on each eye using a NIDEK Ark30 hand-held autorefractometer/keratometer. Axial length (AL) 

was measured together with other biometric measures using a NIDEK A-scan device (Echoscan 

US-1800). Measures on eyes with a history of trauma, intra-ocular surgery, LASIK operations 

were removed. Genotypes were determined using the Illumina BeadStudio software. Samples 

with a call rate below 97 % , potentially mixed samples with excess autosomal heterozygosity or 

gender discrepancy (based on the sex chromosomes genotypes), and ethnic outliers (based on 

principal components analysis of genotypic data), were excluded from the analysis using the 

quality control algorithm implemented in the R package GenABEL. After exclusion of SNP with 

MAF < 0.01, call rate < 98% and HWE deviation p< 10-6, samples were pre-phased using 

shapeit v2(ref  O. Delaneau, JF. Zagury, J. Marchini (2013). Improved whole chromosome 

phasing for disease and population genetic studies. Nat Methods. 10(1):5-6. doi: 

10.1038/nmeth.2307). Imputation was carried out using impute v2 (ref B. N. Howie, P. Donnelly, 

and J. Marchini (2009) A flexible and accurate genotype imputation method for the next 

generation of genome-wide association studies. PLoS Genetics 5(6): e1000529) and the 1,000 

genomes All ancestries phase1 integrated v3 reference panel. The impute2mach GENABEL 

function was used to convert the impute2 outputs to the MACH format that is used in the ABEL 

suite (http://www.genabel.org/packages) and mixed model analyses were run using the 

polygenic functions of the GenABEL package to account for relatedness between individuals 

and fitting independent SNP doses or genetic score as fixed effect together with gender.  

CROATIA‐‐‐‐Split Study  
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The CROATIA-Split study, Croatia, is a population-based, cross-sectional study in the 

Dalmatian City of Split that includes 1000 examinees aged 18-95. The study received approval 

from relevant ethics committees in Scotland and Croatia and followed the tenets of the 

Declaration of Helsinki. Keratometry and A-scan were performed as described for the other 

CROATIA studies.  

Individuals were genotyped with either the 370CNV-Quadv3 (n=500) or the Illumina 

OmniExpress Exome-8v1_A beadchips (n=500). Alleles were called in 

BeadStudio/GenomeStudio using Illumina cluster files. Subjects were excluded if they fulfilled 

any of the following criteria: genotypic call rate <97%, mismatch between reported and 

genotypic sex, unexpectedly low genomic sharing with first degree relatives, excess autosomal 

heterozygosity, or outliers identified by IBS clustering analysis. We excluded SNPs on the basis 

of minor allele frequency (<0.01/monomorphism), HWE (P<10^-6), call rate (<97%). The 

samples genotyped with the denser array (Illumina OmniExpress Exome) were first prephased 

and imputed as described for the CROATIA island studies; the phased data was also used as a 

secondary reference panel to complement the 1,000 genomes All ancestries phase1 integrated 

v3 reference panel for the imputation of the samples genotyped on the less dense array. Doses 

derived from imputations for the two halves of the study were then combined for analysis in 

mixed model analyses using the polygenic functions of the GenABEL package to account for 

relatedness between individuals and fitting independent SNP doses or genetic score as fixed 

effects together with gender.  

Nagahama 

The Nagahama Prospective Genome Cohort for the Comprehensive Human Bioscience dataset 

(The Nagahama Study, n=9,809) is a community-based prospective multiomics cohort study 

recruited from the general population living in Nagahma City. The institutional review board and 
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ethics committee of Kyoto University Graduate School and the Faculty of Medicine Ethics 

Committee, the Ad Hoc Review Board of the Nagahama Cohort Project, and the Nagahama 

Municipal Review Board of Personal Information Protection approved the protocols of this study. 

As part of the eye examination, all participants underwent automatic objective refractometry and 

corneal curvature calculation (Autorefractor ARK-530; Nidek, Tokyo, Japan) and axial length 

(AL) measurement (IOL Master; Carl Zeiss, Jena, Germany). The AL/CC ratio was calculated by 

dividing the mean average AL by the mean average CC. DNA was extracted from blood 

leucocytes and genotyping of SNPs was performed for 3,712 samples using at least one of the 

three genotyping platforms, HumanHap610K Quad Arrays, HumanOmni2.5M Arrays, or 

HumanExome Arrays (Illumina, Inc., San Diego, CA, USA). 
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ABSTRACT 

Purpose: Previous studies have identified many genetic loci for refractive error and myopia. We 

aimed to investigate the effect of these loci on ocular biometry as a function of age in children, 

adolescents and adults.  

Methods: The study population consisted of three age-groups identified from the international 

CREAM consortium: 5,490 individuals aged <10 years; 5,000 aged 10-25 years; and 16,274 

aged >25 years. All participants had undergone standard ophthalmic examination including 

measurements of axial length (AL) and corneal radius (CR). We examined the lead SNP at all 

39 currently known genetic loci for refractive error identified from genome-wide association 

studies (GWAS), as well as a combined genetic risk score (GRS). The beta coefficient for 

association between SNP genotype or GRS versus AL/CR was compared across the 3 age 

groups, adjusting for age, sex, and principal components. Analyses were Bonferroni-corrected. 

Results: In the age-group <10 years, 3 loci (GJD2, CHRNG, ZIC2) were associated with 

AL/CR. In the age-group 10-25 years, 4 loci (BMP2, KCNQ5, A2BP1, CACNA1D) were 

associated; and in adults 20 loci were associated. Association with GRS increased with age; β = 

0.0016 per risk allele (P = 2E-08) in <10 years, 0.0033 (P = 5E-15) in 10-25 year-olds, and 

0.0048 (P = 1E-72) in adults. Genes with strongest effects (LAMA2, GJD2) had an early effect 

that increased with age.  

Conclusion: Our results provide insights on the age span during which myopia genes exert 

their effect. These insights form the basis for understanding the mechanisms underlying high 

and pathological myopia. 

 

 

Key words: myopia, genetic risk, development, SNPs  
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INTRODUCTION 

The prevalence of myopia (nearsightedness) has increased dramatically in developed countries 

in recent decades [Bar Dayan, et al. 2005; Vitale, et al. 2009]. Myopia is a complex, 

multifactorial disease with increasing public health burden due to a strong rise worldwide. In 

particular high myopia is associated with blinding complications such as myopic macular 

degeneration, glaucoma and retinal detachment [Curtin and Karlin 1971; McBrien and Gentle 

2003; Saw 2006]. High myopia mostly has its onset in early childhood before age 10 years 

[Fledelius 2000]. 

The eye’s dimensions alter markedly during the peak development phase between birth 

and the late teenage years, ultimately exerting very strong effects on final refractive error (RE) 

in later adult life. A complex process called emmetropisation aims to coordinate ocular 

development, bringing light into clear focus on the retina. Early life myopia is characteristically 

associated with excessive axial length (AL) increase. This results in a mismatch of the optical 

effects of the various refractive components of the eye, resulting in a focal point in front of the 

retina. Such a mismatch can be described by the ratio of AL to corneal radius (CR), AL/CR ratio, 

which has a high correlation with RE [Hashemi, et al. 2013; Ip, et al. 2007] and is independent 

of cycloplegia which may vary between studies.  

Various studies have examined the heritability of myopia showing increased risk for first-

degree relatives of affected individuals [Farbrother, et al. 2004; Guggenheim, et al. 2000] and 

twins [Sanfilippo, et al. 2010; Young, et al. 2007]. Numerous genetic loci that cause familial high 

myopia (MYP1-18) have been discovered using linkage analysis [Baird, et al. 2010]. More 

recently, genome wide association studies (GWAS) in large cohorts have been performed to 

identify further determinants for REs in the general population. The first single nucleotide 

polymorphisms (SNPs) identified were near GJD2 [Solouki, et al. 2010] and RASGRF1 [Solouki, 

et al. 2010]. Later many more loci were found in studies of large populations (CREAM; 

23andMe)[Kiefer, et al. 2013; Verhoeven, et al. 2013] [Wojciechowski and Hysi 2013]. 
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All previously published refractive error GWAS studies were performed in cohorts 

enrolling participants aged 25 years and older. We aimed to study the effect size of the 39 

GWAS-identified genetic regions associated with refractive error to date, as a function of age.  

  

METHODS 

Study specific analysis 

We included 18 cohorts from 8 different countries in Europe, Asia and Oceania, with a total of 

5,490 children <10 years, 5,000 individuals of 10-25 years, and 16,274 adults, all with 

phenotypic and genome-wide genotypic data available. Age cut off points were based on prior 

knowledge regarding eye growth. The eye has the highest growth rate before the age of 10 

years, and generally does not grow in axial length after age 25 years [Zadnik, et al. 2003]. 

Details on subject recruitment procedures can be found in the supplemental materials. Each 

study participant was genotyped with either an Affymetrix or Illumina SNP array (supplemental 

table I). All studies were conducted according to the Declaration of Helsinki. The studies were 

approved by the local review boards. Written, informed consent for the collection and analysis of 

measurements of all study participants was obtained.  

SNPs 

A total of 39 SNPs were included in this analysis. The SNPs were selected based on their 

known association with RE and myopia in the GWAS carried out by CREAM [Verhoeven, et al. 

2013] and 23andMe [Kiefer, et al. 2013](supplementary table II). An unweighted genetic risk 

score (GRS) was calculated for each participant by summing the dosage of risk alleles (scale 0-

2) for all 39 SNPs. The risk score was normally distributed.   

Ocular biometry 

The ocular biometry measurements included AL and CR, and the AL/CR ratio was calculated. 

Multiple measurements of AL and CR were taken of the right eye and left eye, were averaged to 

calculate a mean AL and CR for each eye. The average AL of both eyes was divided by the 
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average CR of both eyes to calculate the AL/CR ratio. Details of the phenotypic assessment 

protocols/instruments used in each study can be found in the supplemental material. 

Meta-analysis 

All studies performed linear regression models with each SNP or the GRS as determinants, and 

the AL/CR ratio as outcome. Analyses were adjusted for the potentially confounding effects of 

age and gender, and additionally – to account for ancestry differences within the sample – for 

principal components where applicable. A meta-analysis was performed to estimate the beta 

effects using an inversed variance weighted fixed effect model with METAL [Willer, et al. 2010]. 

Meta-analyses were performed in each age stratum separately, and in combined strata of all 

participants <25 years. Several children measured in TEST (Twins Eye Study Tasmania) and 

GTES (Guangzhou Twin Eye Study) had follow up measurements at an older age; therefore, 

only data from the oldest age were used in the combined analysis. In the Asian studies the 

following SNPs were excluded due to low minor allele frequency (MAF) <0.05 in the Chinese 

population: rs17428076, rs1656404, rs14165, rs13091182, rs12205363, rs11145465, 

rs10882165, and rs17183295. 

Pathway analysis 

Loci with significant effects (P <0.05) were further explored to identify differences in effect of 

early-onset genes (significant loci identified in groups <10 years, 10-25 years or the combined 

analysis) and late-onset genes (adult subjects). Data were analysed through the use of 

QIAGEN’s Ingenuity®. 

 Pathway Analysis  (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) and the online 

software tool Database for Annotation, Visualization and Integrated Discovery (DAVID) [Huang 

da, et al. 2009a; Huang da, et al. 2009b]. 
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RESULTS 

Our study sample of children <10 years comprised 5,490 participants derived from 5 studies; 

one of European ancestry (TEST), three of Asian ancestry (SCORM, STARS, and Guangzhou 

Twins), and one of mixed European, African, and Asian ancestry (Generation R). Our sample of 

individuals aged 10-25 years included 5,000 participants derived from 6 studies; 4 of European 

ancestry (TEST, ALSPAC, BATS and RAINE) , and 2 of Asian (STARS, Guangzhou Twins) 

ancestry. Our sample of adults >25 years compromised 16,274 participants derived from 10 

studies; 9 of European ancestry (Croatia Split, -Kurcula and – Vis study, Gothenburg Health 

Study, EPIC-Norfolk and the Rotterdam Study I-III), and one Asian study (Nagahama). General 

characteristics per study are shown in Table I. 

 

Genetic risk score 

The genetic risk score was associated with a higher AL/CR ratio even in children aged <10 

years (table II), and this association increased in magnitude with older age. Specifically, AL/CR 

increased with each age category from β 0.0019 (SD 0.0003) per risk allele in children <10 

years, to 0.0033 (SD 0.0004) in participants aged 10-25 years, to 0.0051 (SD 0.0003) in adults 

(figure I). Only the adult group showed evidence for heterogeneity (heterogeneity P-value 

0.0005) between studies, therefore, meta-analyses for this age category were also performed 

using the random effect model  (β 0.0048; SD 0.0007; supplementary table IV). The variance 

explained by the genetic risk score increased from 0.7% in the children aged 6 from the 

Generation R study, to 3.7% for the adult participants in the RS I-III (Fig II). 

 

Genetic loci 

In children <10 years, 9/39 loci were significant at P <0.05, and 3/39 were significant after 

correction for multiple-testing for 39 SNPs (P <0.00128). The 3 loci significant after Bonferroni 

correction were in the vicinity of the genes GJD2, ZIC2 and CHRNG. The 2 nominally-significant 
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loci with the greatest effect size (beta) were close to the CHRNG and PRSS56 genes. The other 

5 loci were near KCNQ5, SHISA6, KCNMA1, BMP2 and BICC1. Interestingly, the SNP at the 

BMP2 locus had a reversed effect from that observed in adult samples, i.e., the risk allele was 

associated with a lower AL/CR ratio. In individuals aged 10 - 25 years, 10/39 loci showed 

nominally significant association with AL/CR ratio, of which 5 survived Bonferroni correction 

(BMP2, TOX, KCNQ5, A2BP1 and CACNA1D). Five of the 10 SNPs above were already 

nominal significantly associated with AL/CR ratio in children <10 years (GJD2, BICC1, ZIC2, 

BMP2 and PRSS56); of the remaining nominally-significant loci, the variant with the greatest 

effect in 10-25 year-olds was the SNP at the LAMA2 locus. One variant differed significantly in 

effect between children <10 years and those aged 10-25 years. This was the SNP at the BMP2 

locus which, as mentioned above, showed an opposite effect to that expected in children aged 

<10 years (Figure III). One of the loci (TOX) showed evidence for heterogeneity (supplementary 

table III) in effect between study cohorts in the age category 10-25 years (Heterogeneity P = 

0.001). With random effect model the effect of this SNP decreased to β 0.0062 (SE 0.0073; P 

0.40)(supplementary table IV). In the combined analysis of all studies <25 years, BICC1 and 

PRSS56 reached Bonferroni adjusted significance; one additional locus (PDE11A) showed a 

nominally significant effect for AL/CR ratio. In adults, 31/39 loci showed a significant effect, of 

which 19/39 were Bonferroni significant. All loci, except for ZBTB38 (β -0.0004; SE 0.0019), 

showed an association in the expected direction (i.e. risk allele associated with a higher AL/CR 

ratio). As in 10-25 years, one locus significant in adults showed evidence for heterogeneity 

(LOC100506035); with random effect model this locus lost statistical significance 

(supplementary table III and IV). Figure IV displays all estimated effect sizes per age group.  

Pathway analysis 

Pathway analyses were performed to gain insight into the mechanisms for early versus late-

onset eye growth and myopia development. We hypothesized that loci with at least a moderate 

(nominally significant P<0.05) effect in children and adolescents most likely had an early onset. 
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Hence, a locus was defined as early onset when nominally significant (P<0.05) in the group<10 

years of age or the group 10-25 years and no evidence for heterogeneity (in Figure IV all loci 

above the green line). Loci nominally significant in the adult population without a significant 

effect in the group<10 years of age or the group 10-25 years were grouped as late onset genes 

(in Figure IV all loci below the green line). We utilized two types of pathway analysis software. 

Ingenuity Pathway Analysis (IPA) 

IPA is a web-based software to analyse and integrate the identified SNPs based on biological 

functions. Analysis were performed in two separate analysis, one analysis with genes with an 

early onset and one analysis with late onset genes. We used the program’s diseases and 

disorder table to identify associated diseases. Genes with an early onset in the age groups <25 

years were enriched in pathways of auditory disease, organismal injury and abnormalities, and 

gastrointestinal disease (at FDR <5%). The genes that were significantly associated in adults 

predisposed to connective tissue disorders, developmental disorder (e.g. microphthalmia; with 

the genes BMP4 and SIX6), and also gastrointestinal disease (supplementary table V).  

Database for Annotation, Visualization and Integrated Discovery (DAVID) 

The software program DAVID is an online knowledge database to identify overlapping functions  

of genes. We performed the  analyses separately for  early and late onset genes. Using the 

categories defined above, early-onset genes were significantly more than expected annotated  

to ion channels and ion transport. The genes annotated to  these categories were CACNA1D, 

CHRNG, GJD2, KCNMA1 and KCNQ5. Late onset genes appeared to be significantly  more 

related to neuron differentiation and visual perception. The genes involved in these categories 

were RORB, SIX6, RASGRF1, CHD7, RGR, RDH5 and GRIA4. (supplementary table VI). 

 

DISCUSSION: 

This study identifies the age span during which the known GWAS-identified loci for refractive 

error have their greatest effect. The current meta-analysis suggests that specific loci had their 
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greatest effect in young children (CHRNG, ZIC2, KCNMA1), while others reached the greatest 

effect during early teenage years (BMP2, CACNA1D, A2BP1). However, most appeared to have 

a gradual effect during the entire age span of myopia development (LAMA2, LRRC4C, DLX1, 

RDH5, GRIA4, RGR, SIX6).  

Strengths of this study were the large sample size, the comparison across 3 distinct age 

categories, and the precision in measurements of ocular biometry. A drawback was the lack of 

complete cycloplegic refraction in children in several studies, which jeopardized valid 

measurements of RE in this age category. Thus, we used AL/CR ratio as an indicator of RE to 

avoid heterogeneity in the outcome. This ratio has a high correlation with RE [Hashemi, et al. 

2013; Ip, et al. 2007] and was available from all studies in the consortium. Another limitation 

was the lack of power to detect statistically significant differences between the age groups for 

most genes. A pooled analysis would have increased statistical power, but raw data from 

individual participants were not available. Ideally, a study using longitudinal data of the same 

children over different age periods would have the best study design for the current analysis.  

Little has been reported on the development and progression of myopia as a function of 

age; however, a number of studies investigated the relationship between development of ocular 

biometry related to age. Until the age of 25 years, corneal curvature, the crystalline lens, and 

axial length all evolve with age, and thereby influence refractive error. The cornea increases in 

radius until preschool age leading to flattening of the corneal curvature and decrease in 

refractive power [Augusteyn, et al. 2012]; the crystalline lens grows until 10 years of age, also 

reducing refractive power [Mutti, et al. 2012; Mutti, et al. 1998]. This decrease in refractive 

power is compensated by axial elongation which increases from 17 mm in newborns [Lim, et al. 

2015] to 23.3 mm in 12-13 year olds [French, et al. 2012]. The average AL in emmetropic adults 

is 23.5 mm [Fotedar, et al. 2010; Gordon and Donzis 1985]. The highest growth rate of AL 

occurs in the first years of life and relates to emmetropisation; the growth rate after early teens 

is more gradual but mainly relates to myopisation [Gordon and Donzis 1985]. The exact age at 
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which eye growth stops is not known; generally this occurs before age 20 years, but increase in 

AL has been described up to the age of 25 years in university students [Fledelius 2000; 

Midelfart, et al. 1992].  

One of the key detected GWAS-identified loci for refractive error is on chromosome 15 

near the GJD2 gene, that encodes a gap junction protein known as CX36. This protein not only 

processes cone-to-cone and cone-to-rod signals [Lee, et al. 2003] but also directs signaling 

between other retinal cells [Feigenspan, et al. 2001; Hidaka, et al. 2004]. This cell-to-cell 

communication appears to be under regulation of light exposure and dopamine [Bloomfield and 

Volgyi 2009], two factors that have an established role in eye growth and myopia development. 

Our data suggest that GJD2 has an early-onset, indicating that altered retinal cell signaling, 

perhaps via reduced light exposure and low dopamine levels, may be a first step in myopia 

development. As expected, some early-onset genes also had a reported role in eye 

development. Knockout of LAMA2, a gene encoding the large extracellular glycoprotein laminin-

α2; causes growth retardation including smaller eyes with compressed cellular layers [Gupta, et 

al. 2012]. Mutations in the serine protease gene PRSS56  cause a severe decrease of AL 

leading to microphthalmia [Nair, et al. 2011].  Another developmental gene is ZIC2, an 

enhancer-binding factor required for embryonic stem cell specification [Luo, et al. 2015]. This 

gene may be important for development of retinal architecture, as it is known to be involved in 

differentiation and proliferation of retinal progenitor cells [Watabe, et al. 2011], and development 

of retinal ganglion cell trajectories [Herrera, et al. 2003]. Strikingly, several other genes involved 

in eye development, such as SIX6, CDH7, and DLX1, did not show an early onset but were 

more significant after the age of 10 years. Other early-onset genes were ion channels such as 

KCNQ5, a potassium channel present in cone and rod photoreceptors [Zhang, et al. 2011], and 

CACNA1D, a calcium channel present in photoreceptors [Xiao, et al. 2007]. CHRNG has as yet 

an unknown role in myopia development. It encodes the γ subunit of the embryonal 

Page 57 of 65

John Wiley & Sons, Inc.

Genetic Epidemiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11 

 

acetylcholine receptor, which is widely expressed in the retina [Hruska, et al. 1978; Hutchins 

and Hollyfield 1985], and is associated with multiple pterygium syndrome [Vogt, et al. 2012].   

Several remarkable patterns of effect were notable. For instance, the lead SNPs at the 

BMP2,  MYO1D, PTPRR, and BMP4 loci showed an opposite effect in children <10 years than 

in those who were older. This is not uncommon in biology, as such a trajectory has also been 

described for the FTO locus in relation to body mass index in children [Sovio, et al. 2011]. 

Interestingly, gene expression studies of BMP2 in chickens showed that mRNA of this gene in 

the retinal pigment epithelium is up- or down-regulated depending on the location of the image 

plane [Zhang, et al. 2012]. When the image was focused behind the retina, mRNA was 

downregulated and the vitreous chamber enlarged. This underscores a bidirectional role for 

BMP2 in modulation of eye growth.   

Most genes had a late onset. BMP4 has a similar function to BMP2 as it is also responds 

to optical defocus with bidirectional regulation of eye growth [Zhang, et al. 2013]. SIX6 is a 

DNA-binding homeobox and has a SIX domain, which binds downstream effector molecules. It 

is known to influence eye size in zebrafish with knocked down SIX6 expression [Iglesias, et al. 

2014]. Other genes play a less obvious role in myopiagenesis. MYO1D is involved in membrane 

trafficking in the recycling pathway and expressed in oligodendrites [Benesh, et al. 2012]. 

RORB, a gene encoding a nuclear receptor-directing photoreceptor differentiation, is known to 

activate and generate S-opsin [Jia, et al. 2009; Srinivas, et al. 2006]. DLX1 belongs to the DLX 

family of homeobox transcription factors, and produces GABAergic interneurons during 

embryonic development.  

In conclusion, our study suggests that only a small proportion of the currently known 

GWAS-identified loci for RE exert their full effect at a young age. Furthermore, some of the 

pathways previously-identified by GWAS meta-analyses [Verhoeven, et al. 2013] can now be 

separated into early- and late-onset pathways. For example, genes coding for ion channels 

typically had an early onset, while genes related to connective tissue and visual feedback 
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mechanisms appeared to become more important at a later age. As the currently known genes 

play only a minor role in early-onset myopia, we question whether this type of myopia is caused 

by common variants in other genes, or whether rare variants with large effects determine early-

onset. Future research may shed more light on genes for early-onset myopia, and unravelling 

these genes will open up strategies for prevention of high myopia.  
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Table I Participating studies and characteristics stratified per age group 

*GTES= Guangzhou Twin Eye Study, RS I-III = Rotterdam Study I-III, GHS=Gutenberg Health Study 

 

Age <10 years 

Study N AL/CR (SD; range) Age (SD) Gender, % Female 

STARS 207 2.99 (0.150; 2.76 – 3.46) 5.45 (2.11) 47.3 

Generation R 3,874 2.87 (0.083; 2.38 – 3.90) 6.18 (0.51) 50.3 

SCORM 898 3.02 (0.112; 2.63 – 3.45) 7.48 (0.87) 47.7 

TEST 166 2.94 (0.101; 2.65 – 3.25) 7.53 (1.21) 52.4 

GTES 345 2.97 (0.100; 2.62 – 3.45) 8.73 (0.79) 50.1 

Total 5,490  

Age 10-25 years 

STARS 96 3.23 (0.127; 2.95 – 3.60) 12.23 (1.7) 58.3 

GTES 699 3.13 (0.147; 2.58 – 3.82) 14.83 (1.2) 52.9 

TEST 182 2.99 (0.108; 2.68 – 3.51) 15.16 (4.0) 60.4 

ALSPAC 1,996 2.99 (0.099; 2.57 – 3.52) 15.46 (0.3) 53.6 

BATS 983 3.03 (0.106; 2.67 – 3.82) 19.07 (3.2) 53,8 

RAINE 1,044 3.05 (0.104; 2.63 – 3.54) 20.04 (0.4) 48.9 

Total 5,000  

Age >25 years 

Nagahama 2,762 3.13 (0.153; 2.62 – 3.86) 52.05 (13.8) 49.0 

Croatia-Split 730 3.02 (0.128; 2.38 – 3.90) 52.16 (13.0) 61.2 

Croatia Korcula 832 2.99 (0.203; 2.26 – 5.73) 56.62 (13.3) 64.7 

Croatia-Vis 573 2.99 (0.121; 2.50 – 3.83) 55.93 (13.8) 60.4 

GHS 2 936 3.07 (0.160; 2.50 – 4.01) 59.26 (10.6) 50.0 

GHS 1 1,919 3.06 (0.151; 2.30 – 3.88) 60.17 (10.7) 47.1 

EPIC-Norfolk 6,051 3.05 (0.146; 2.42 – 3.95) 68.9 (8.0) 54.3 

RS I-III 2,471 3.05 (0.143; 2.43 – 3.86) 70.02 (8.8) 53.6 

Total 16,274  
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Table II Effect size of myopia related genes in age groups <10 years, 10-25 years, 25> years 

    
<10 years 10 - 25 years Combined >25 years 

Variant Chr Gene RA Beta (SE) P Beta (SE) P Beta (SE) P Beta (SE) P 

Allele Score - - - 0.0019 (0.0003) 10^-11 0.0033 (0.0004) 10^-15 0.0024 (0.0002) 10^-24 0.0051(0.0003) 10^-72 

rs1652333 1 CD55 G 0.0033 (0.0017) 0.05 0.0006 (0.0024) 0.80 0.0026 (0.0014) 0.07 0.0084(0.0017) 10^-6 

rs4373767 1 ZC3H11B T 0.0010 (0.0017) 0.55 0.0032 (0.0023) 0.16 0.0019 (0.0014) 0.16 0.0053(0.0017) 0.002 

rs17412774 2 PABPCP2 A 0.0007 (0.0017) 0.69 0.0010 (0.0023) 0.67 0.0008 (0.0014) 0.57 0.0063(0.0017) 10^-4 

rs17428076 2 DLX1 C 0.0017 (0.0021) 0.43 0.0029 (0.0027) 0.28 0.0024 (0.0017) 0.16 0.0073(0.0021) 10^-4 

rs1898585 2 PDE11A T 0.0022 (0.0019) 0.26 0.0050 (0.0029) 0.09 0.0034 (0.0017) 0.04 0.0057(0.0021) 0.007 

rs1656404 2 PRSS56 A 0.0073 (0.0024) 0.002 0.0067 (0.0033) 0.04 0.0069 (0.0019) 10^-4 0.0079(0.0024) 0.001 

rs1881492 2 CHRNG T 0.0086 (0.0024) 10^-4 0.0039 (0.0031) 0.21 0.0064 (0.0020) 0.001 0.0085(0.0022) 10^-5 

rs14165 3 CACNA1D G 0.0035 (0.0020) 0.08 0.0082 (0.0026) 0.001 0.0055 (0.0016) 0.001 0.0055(0.0020) 0.005 

rs13091182 3 ZBTB38 G 0.0008 (0.0020) 0.69 -0.0001 (0.0024) 0.98 0.0007 (0.0015) 0.66 -0.0004(0.0019) 0.83 

rs9307551 4 LOC100506035 A 0.0007 (0.0019) 0.70 0.0037 (0.0026) 0.16 0.0020 (0.0016) 0.20 0.0051(0.0020) 0.008 

rs5022942 4 BMP3 A 0.0014 (0.0018) 0.44 -0.0016 (0.0026) 0.54 0.0007 (0.0015) 0.63 0.0006(0.0020) 0.78 

rs7744813 6 KCNQ5 A 0.0050 (0.0017) 0.004 0.0081 (0.0023) 10^-4 0.0060 (0.0014) 10^-5 0.0066(0.0018) 10^-4 

rs12205363 6 LAMA2 T 0.0041 (0.0041) 0.31 0.0138 (0.0046) 0.003 0.0094 (0.0031) 0.003 0.0229(0.0036) 10^-10 

rs7829127 8 ZMAT4 A 0.0025 (0.0020) 0.22 0.0019 (0.0028) 0.49 0.0025 (0.0017) 0.13 0.0072(0.0021) 0.001 

rs7837791 8 TOX G 0.0029 (0.0016) 0.06 0.0083 (0.0022) 10^-4 0.0050 (0.0013) 10^-4 0.0042(0.0017) 0.012 

rs4237036 8 CHD7 T 0.0001 (0.0018) 0.96 0.0032 (0.0024) 0.18 0.0013 (0.0014) 0.37 0.0058(0.0018) 0.001 

rs11145465 9 TJP2 A 0.0035 (0.0022) 0.11 0.0027 (0.0028) 0.33 0.0029 (0.0017) 0.09 0.0062(0.0021) 0.004 

rs7042950 9 RORB G 0.0028 (0.0019) 0.14 0.0031 (0.0026) 0.24 0.0027 (0.0016) 0.08 0.0071(0.0020) 10^-4 

rs7084402 10 BICC1 G 0.0035 (0.0016) 0.03 0.0066 (0.0023) 0.004 0.0050 (0.0013) 10^-4 0.0074(0.0017) 10^-6 

rs6480859 10 KCNMA1 T 0.0040 (0.0018) 0.02 0.0037 (0.0023) 0.10 0.0040 (0.0014) 0.004 0.0015(0.0017) 0.38 

rs745480 10 RGR G 0.0007 (0.0016) 0.67 0.0021 (0.0022) 0.34 0.0011 (0.0013) 0.40 0.0055(0.0017) 0.001 

rs10882165 10 CYP26A1 T 0.0012 (0.0018) 0.49 0.0002 (0.0024) 0.93 0.0007 (0.0014) 0.61 0.0011(0.0018) 0.54 

rs1381566 11 LRRC4C G 0.0026 (0.0020) 0.21 0.0040 (0.0034) 0.23 0.0028 (0.0018) 0.12 0.0093(0.0022) 10^-5 

rs2155413 11 DLG2 A 0.0022 (0.0017) 0.18 0.0027 (0.0022) 0.23 0.0023 (0.0013) 0.09 0.0021(0.0017) 0.21 

rs11601239 11 GRIA4 C 0.0011 (0.0016) 0.50 0.0027 (0.0022) 0.22 0.0014 (0.0013) 0.30 0.0055(0.0017) 0.001 

rs3138144 12 RDH5 G 0.0020 (0.0021) 0.35 0.0039 (0.0027) 0.16 0.0028 (0.0017) 0.10 0.0045(0.0019) 0.02 

rs12229663 12 PTPRR A -0.0023 (0.0019) 0.21 0.0046 (0.0026) 0.08 0.0000 (0.0016) 1.00 0.0069(0.0019) 10^-4 

rs8000973 13 ZIC2 C 0.0058 (0.0017) 10^-4 0.0058 (0.0023) 0.01 0.0059 (0.0014) 10^-5 0.0027(0.0017) 0.10 

rs2184971 13 PCCA A 0.0008 (0.0016) 0.61 0.0006 (0.0023) 0.80 0.0009 (0.0014) 0.48 0.0021(0.0017) 0.21 

rs66913363 14 BMP4 G -0.0025 (0.0017) 0.15 0.0040 (0.0024) 0.10 0.0006 (0.0014) 0.68 0.0047(0.0017) 0.006 

rs1254319 14 SIX6 A 0.0007 (0.0017) 0.68 0.0044 (0.0024) 0.07 0.0017 (0.0014) 0.22 0.0054(0.0018) 0.002 

rs524952 15 GJD2 A 0.0069 (0.0016) 10^-5 0.0068 (0.0023) 0.003 0.0067 (0.0013) 10^-7 0.0122(0.0016) 10^-14 

rs4778879 15 RASGRF1 G 0.0018 (0.0017) 0.29 0.0033 (0.0023) 0.15 0.0019 (0.0014) 0.17 0.0051(0.0017) 0.002 

rs17648524 16 A2BP1 C 0.0018 (0.0018) 0.33 0.0079 (0.0024) 0.001 0.0039 (0.0015) 0.01 0.0077(0.0019) 10^-5 

rs2969180 17 SHISA6 A 0.0035 (0.0016) 0.03 0.0017 (0.0023) 0.46 0.0027 (0.0014) 0.05 0.0079(0.0017) 10^-6 

rs17183295 17 MYO1D T -0.0033 (0.0023) 0.16 0.0009 (0.0030) 0.76 -0.0018 (0.0018) 0.33 0.0089(0.0023) 10^-4 
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Values are betas (SE) and P-values, from linear regression models adjusted for sex, age and principal components if applicable meta-analysed 

with inversed variance meta-analysis in METAL. Bold: P <0.05. 

rs4793501 17 KCNJ2 T 0.0029 (0.0016) 0.08 0.0001 (0.0022) 0.95 0.0019 (0.0013) 0.16 0.0041(0.0017) 0.015 

rs12971120 18 CNDP2 A 0.0002 (0.0019) 0.93 0.0048 (0.0026) 0.07 0.0017 (0.0015) 0.27 0.0024(0.0019) 0.22 

rs235770 20 BMP2 T -0.0043 (0.0018) 0.02 0.0121 (0.0025) 10^-6 0.0008 (0.0015) 0.60 0.0043(0.0017) 0.013 
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Figure I. Association between genetic risk score and myopia in the three age groups  

Figure II. Association between non-weighted genetic risk score and AL/CR ratio in children and adults.  

Figure III. Increased effect on AL/CR ratio with age for BMP2 gene.  

Figure IV. Distribution of effects on AL/CR ratio per myopia-related gene in three age groups 
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For Peer Review

Response to Reviewers' Comments 
 
 
We thank the editor and reviewers for giving us the opportunity to revise our manuscript and the nice 
words. We provide a point-by-point response to the comments below. Underlined text represents changes 
according to the previous manuscript. 
 
 
Comments to Author from reviewer: 
Title: When do myopia genes have their effect? Comparison of genetic risks between children and adults 
Authors: Tideman et al. 
In this manuscript, authors investigated role of effects of GWAS identified SNPs on ocular biometry as a 
function of age. The investigators stratified the data into three groups: less than 10 years, 10-25 years, 
and over 25 years. The numbers of participants in each group were substantially large leading to good 
statistical power for associations studied in the paper. Overall, the paper is well-written. Specific 
comments: 
 

1. It is not clear how the age group stratification decided? What is the rationale for the cut-offs of 
10 and 25 years? Was this decided prior to analyses or post-hoc? 
 

The group stratification was decided beforehand based on knowledge of myopia development and eye 
growth. Myopia can progress until 25 years; therefore, we chose this age cut off as the inclusion criteria 
for the adult GWAS study.[Verhoeven, et al. 2013] Mutti et al have shown that eye growth is larger in 6-9 
years (0.69mm in 3 yrs) than in 10-13 years (0.27 mm in 3 years). Therefore, we chose 10 years as a 
cutoff in the children.[Zadnik, et al. 2003] 
 
We added this to the methods: “Age cut off points were based on prior knowledge regarding eye growth. 
The eye has the highest growth rate before the age of 10 years, and generally does not grow in axial 
length after age 25 years” 
 

2. Along the same lines, did you test for interaction between age and GRS (both as continuous 
variable)?  

 
We indeed have tested for interaction between these variables, however, we did not obtain significant  
results  (p-value 0.44). We think this is due to the narrow age range in the largest studies. The SD of age 
in Generation R is  0.5 years and in ALSPAC 0.3 years, which is too small to result in substantial 
differences in AL/CR ratio. The other studies are smaller and do not have enough power to obtain 
significant interaction terms.  
 

3. Can you expand the results of the “Pathway analysis”, page 7 and 8. It is not clear what the 
results are based on what is written. 

 

Thank you for pointing this out. We have expanded this part in the result section page 8 in lines 15 – 50.  
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