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Summary 

This thesis intends to advance our understanding of consumer behaviour, and 

proposes an extension to the theoretical and methodological framework of the 

Behavioural Perspective Model. Drawing on the intellectual tradition of 

connectionism and employing advanced artificial neural network modelling 

techniques, the research programme described here assesses the 

appropriateness of connectionist architectures in explaining consumer behaviour. 

This thesis traces the developments in the fields of consumer behaviour analysis 

to critically evaluate the significance of limitations inherited from radical 

behaviourism, and proposes a hybrid connectionist approach to address these 

methodological constraints.  

The study is both highly quantitative and interpretative in nature, and generates a 

large body of empirical evidence to support the methodological and theoretical 

deliberations. Two types of data are used here: a simulated dataset to assess the 

capacity of the pruning algorithms to reveal the underlying relations within the 

data; and a consumer panel dataset to which the neural network algorithms are 

applied to develop predictive, descriptive, and interpretative connectionist 

models that aim to explain the consumer purchasing decision-making process.  

Even though it is beyond the scope of this research project to propose 

mechanisms to explain all elements of consumer purchasing decision and it will 

therefore remain to be addressed as part of an ongoing collaborative research 

programme, the main conclusion to be drawn from this work is that the 

connectionist framework and artificial neural networks can be considered a 

significant contribution to the extension of theoretical and philosophical 

framework of intentional behaviourism. 
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1. Introduction 

The study of consumer behaviour is an intricate and complex undertaking, and 

may often involve countless factors and variables that have an impact on the 

consumer and their physical and social environment: individuals, groups, and 

organisation participate in a number of processes with a purpose to select 

products, services, experiences, or even ideas that would satisfy their certain 

specific needs. Due to the nature of this complexity, it is a multidisciplinary 

endeavour that draws together elements of psychology, marketing, economics, 

and artificial sciences. The overall goal is of course to explain the consumer 

decision-making process, and provide a plausible model on an individual 

underlying level from both psychological and physiological point of view. Classical 

approach normally would involve a comprehensive interrogation of variables that 

may offer a degree of predictive and descriptive capacity to identify the level of 

linear relationship and significance they may exert over the ultimate consumer 

choice. Approaches that are more recent go a step further to employ advanced 

concepts of distributed representation to examine the consumer behaviour as an 

emergent process as a result of learning continuity. Nevertheless, consumer 

behaviour remains extremely difficult to predict and explain – this serves as a 

motivating factor to continue advancing the research in this direction and as a 

result continuously consider and critically review innovative methods and 

applications to extend the current body of knowledge.  
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The complexity of a subject matter that would benefit from an individual level of 

comprehensive analysis not only on the level of behaviour, but also on the level 

of the consumer learning and the mind and even the neurophysiological level 

information processing, often triggers the process of scientific decomposition of 

complex phenomena to study the comprising elements of the process 

independently – as a result, the scientific account is either fragmented and 

incomplete, or provides a variant of a Black Box Model where certain elements of 

the overall process are either assumed or otherwise effectively disregarded. To 

overcome this, a robust comprehensive theoretical and empirical framework to 

describe and explain consumer behaviour and the underlying psychological and 

physiological factors would be indispensable, and any progress in such direction 

would be not only essential to facilitate progress in the field of consumer 

behaviour, but could also be extended to wider context and provide a 

contribution to explanation and understanding such fundamental phenomena as 

learning, intelligence, and cognition – both human and artificial.  

1.1 The thesis structure and contents 

Chapter 1 introduces the research project and briefly outlines the structure and 

contents. The chapter provides a discussion around the overall motivation for the 

research project, and the focus of the research is succinctly discussed and 

summarised.  
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Chapters 2 and 3 demonstrate a wider context for the research project, which by 

the nature of the research questions addressed here touches upon a number of 

disciplines and research areas in the course of the inquiry as described in the 

chapters below, resulting in a multidisciplinary work that embraces the elements 

of critical behaviourism and cognitive sciences, traditional and neural networks 

modelling approaches, and theoretical frameworks that propose to extend the 

established theory around Behavioural Perspective Model with connectionist 

architectures. Chapter 2 provides an overview of the field of consumer behaviour, 

discusses the theoretical and philosophical frameworks of radical behaviourism, 

and offers Behavioural Perspective Model. Chapter 3 extends the discussion into 

the science of artificial, and introduces the field of artificial intelligence. The 

capacity of symbolic modelling methods are discussed at length and compared 

with the connectionist networks, offering a detailed account of neural network 

modelling techniques and architecture optimisation algorithms.  

In Chapter 4, the research methods are explained in detail. The chapter provides 

an overview of the research questions and research methods employed as part of 

this research project. Here the research questions are proposed, followed by the 

discussion that aims to establish the philosophical position adopted here. Next, 

research method is outlined, where the data structures and variables are 

described. The modelling approach is explained and justified, and research 

process is outlined in a sequential manner. 

Chapter 5 covers the analyses part of the project, providing a comprehensive 

account of the research methods employed. The statistical analyses employed 
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throughout this research project are discussed in detail, and the specifics of the 

models developed in the course of research project are described. The testing 

procedure to support the line of inquiry is explained in detail, offering an 

overview of the results. 

In Chapter 6, the results are discussed and interpreted within the wider context 

of consumer behaviour in general. The opening part of the discussion that 

revolved around the variable contribution and advanced connectionist modelling 

takes place here. The discussion is then extended to argue the appropriateness of 

connectionist modelling to provide the explanatory and interpretative account of 

consumer behaviour employing the pruning algorithms to optimise the network 

architecture to expose the core architecture. Theoretical implications are then 

discussed before the arguments are reviewed in the next chapter.  

Chapter 7 offers a critical assessment of the research project and demonstrates 

precision, thoroughness, contribution, and comparison with its closest rival, the 

tradition of cognitive science.  

In chapter 8, a number of possible future research directions are identified and 

briefly discussed: a number of possible strings of inquiry are identified, ranging 

from purely commercial applications to apply and test the methods proposed 

here in the industry, to highly theoretical and philosophical endeavours that 

would aim to explore the concept of distributed representation further and 

extend the line of inquiry into the field of swarm intelligence.   
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Finally, Chapter 9 provides closing remarks, touching upon the contributions this 

research project aims to offer, and concludes with a summary of the research 

project.  
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2. Consumer behaviour 

The interdisciplinary nature of academic marketing implies the tendency to adopt 

the perspectives and methodological techniques from the established fields such 

as economics and psychology rather than relying on the deliberately developed 

theoretical foundations. Thus, the philosophical and methodological assumptions 

tend to reflect the original body of inquiry and provide for marketing a 

misrepresentative and transitory theoretical foundation. In contrast, consumer 

behaviour analysis is concerned with phenomena central to marketing – the 

explanation of consumer choice – and offers a cohesive philosophical and 

theoretical foundation for the inquiry. Borrowing largely from the already widely 

adopted in academic marketing paradigms of cognitive psychology and 

behaviourism, the behaviour analysis provides a framework for explanation of 

consumer behaviour in its natural environment.  

The research programme generates a body of knowledge concerned with the 

adequacy of radical behaviourism in explaining consumer choice, and involves 

advances in theory and philosophy of behaviour analysis and modelling of 

consumer behaviour, and offers means for consumer behaviour interpretation 

based on empirical research (Foxall, 2005). In doing so, research programme aims 

to determine the degree to which consumer behaviour can be sufficiently 

explained with radical behaviourism, and subsequently offers extension of theory 

from other fields of inquiry. Resulting efforts manifest in development of 

Behavioural Perspective Model (BPM) of consumer choice and lead to empirical 
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research in consumer behaviour analysis and patterns of consumer choice; and 

offer novel ways for interpretation of consumer behaviour and extending the 

theoretical and philosophical base. Thus, it is possible to predict consumer 

behaviour to certain extent, and to demonstrate an insight into what contributing 

factors control it, but not so much to explain the behaviour beyond the 

identification of controlling stimulus conditions.  

The conceptual framework developed in attempt to provide explanation of 

complex human behaviour is discussed in this chapter. Consumer behaviour in 

particular is the focus of this research project, which will draw upon the 

conceptual fields of behavioural economics, psychology, biology, and philosophy, 

aimed at building a unified interdisciplinary model of consumer choice.  

As it may seem that a strictly behaviourist approach would not be able to provide 

a sufficient account of consumer behaviour on the individual consumer level, the 

concepts of intentional behaviourism and super-personal cognitive psychology are 

introduced (Foxall, 2004). This is further developed and explored in 

Understanding Consumer Choice (Foxall, 2005) and Interpreting Consumer 

Choice (Foxall, 2009), where consumption patterns are explored empirically 

employing the above mentioned concepts to expose the role of contextual-

intentional psychology in everyday consumer decision making. In this chapter, the 

underlying philosophical assumptions are discussed in the context of theoretical 

and empirical aspects of consumer behaviour analysis.  
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2.1 Explanation of consumer behaviour 

Even though some consumer behaviours can be identified in a rather obvious 

manner and marketing strategies are used by retailers in attempts to condition 

the customer, psychological approach of radical behaviourism has a lot to offer in 

terms of marketing concepts. It is necessary to explain the consumer behaviour 

employing the social and behavioural sciences and identify the deterministic 

factors that influence the decision environment. Radical behaviourism is primarily 

concerned with explanation of behaviour, assuming that behaviour is explained 

through environmental stimuli that predict the behaviour – the basic notion that 

carries not only the explanatory power, but also the comparative means to 

critically review and consider other methods of explaining consumer behaviour as 

a social, economic, and biological phenomenon. Thus, radical behaviourism can 

be viewed not as a sufficient element capable of providing a comprehensive 

account of human behaviour, but rather as an essential constituent in the 

theoretical and empirical pursuit of developing such system.  

The research programme led by Foxall provides a critical review of radical 

behaviourism, while developing the theoretical framework that suggests the 

possibility of prediction, control, and explanation of behaviour in a process of 

contextualization of behaviourism in a broader scientific explanation. As a result 

of the research program, new theories of human behaviour have been 

introduced based on the principle of identifying the patterns of operant 

behaviour in the selective environment that shapes and maintains the behaviour 
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while surpassing the theoretical constraints of radical behaviourism: intentional 

behaviourism and super-personal cognitive psychology.  

The focus of the research programme in early years revolved around the 

theoretical developments consisting of critique of predominant at the time 

cognitive view of consumer research from the radical behaviourist perspective, 

followed by establishing the basis for the alternative interpretation of consumer 

behaviour – Behavioural Perspective Model (Foxall, 1990). Subsequently, the 

empirical investigation was undertaken to substantiate the proposed argument 

that establishes behaviourist interpretation of consumer choice as a powerful 

alternative to cognitive theory and other non-behaviourist reasoning; and 

provides an understanding what behaviourism and other approaches are able to 

offer exclusively, identifying not only the inadequacies and limitations of radical 

behaviourism that need be supplemented, but also creating a basis for evaluating 

the alternative non-behaviourist approaches.  

Research programme aims to establish the means by which reliable scientific 

interpretation of consumer choice is plausible – but one of multiple 

interpretations in the relativist sense, all subsequently tested with scientific 

method with the purpose of producing a comprehensive body of knowledge.  
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2.2 Intentional Behaviourism explained 

It is important to outline the methodology of Intentional Behaviourism research 

programme before its elements are explained in detail in the following sections, 

which comprises three conceptual stages as shown in Figure 1  (Foxall, 2016).  

 
Figure 1. Methodology of Intentional Behaviourism. 

Stage One is Theoretical Minimalism/Contextual Explanation, and is primarily 

associated with the extensional behavioural science used to delineate the scope 

of behaviourist explanation. Choice is represented at this stage as selection 

amongst alternatives by carrying out one type of behaviour as a proportion of all 

behaviour instances. Reliant on extensional explanation and three-term 

contingency of radical behaviourism, behaviour is evaluated empirically 

employing experimental and statistical methods by deconstructing observed 

behaviour and identifying factors responsible for prediction and control.  
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The purpose here is twofold: as part of delineation of behaviourist explanation of 

consumer choice, it is identified which particular aspects of behaviour are 

inadequately explained by behaviourism, and determined what form would be 

required for the intentional explanation to interpret the behaviour. Often 

stimulus conditions required for prediction and control of behaviour are 

inaccessible, and a number of behaviourist limitations become apparent: inability 

to account for continuity of behaviour, absence of personal lever of explanation, 

and delineation of behaviourist explanation. Continuity of behaviour issue in 

behaviourism occurs when antecedent and consequent stimuli normally used to 

explain behaviour with n-term contingency are inaccessible with interpersonal 

level of explanation. Personal level of explanation is a behaviourist response to 

phenomenological subjectivism aimed to provide a behaviourist account for 

thoughts, feelings, and other private intentional constructs, which cannot be 

explained with extensional terms. Delineation of behaviourism would aim to 

establish the scope and limits for the behaviourist approach to explain behaviour 

(Foxall, 2016).   

Stage Two is the Intentional Interpretation, where consumer is treated as an 

intentional system and attributed with the intentionality to maximise utility 

relying on the learning history within a given behaviour setting. While account of 

behaviour here attributes a set of thoughts and emotions to the consumer as 

part of the intentional interpretation, this is consistent with the results observed 

as part of the empirical modelling programme in Theoretical Minimalism stage. 

The possibility to refer to this empirically grounded foundation serves as a 
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constraining element for the intentional interpretation of consumer behaviour to 

restrain psychological speculation (Foxall, 2016).   

In Stage Three, Cognitive Interpretation, empirically supported model of the 

underlying cognitive structure and functioning is proposed, consistent with the 

intentional interpretation account of behaviour offered in Stage Two. The aim 

here is twofold: develop a micro-cognitive psychological construct consistent with 

both intentional interpretation and sub-personal level of consideration in the 

neuroscientific sense; and define a macro-cognitive psychology that 

demonstrates the consistency of intentional interpretation with super-person 

level as studied by behavioural scientists (Foxall, 2016).   

Although intentionality is not ascribed to sub-personal and super-personal levels 

of explanation, it is an essential point of Interpretative Behaviourism that 

intentional interpretation must be corroborated and supported by the 

extensional account of behaviour typified by empirical scientific method of radical 

behaviourism and neuroscience (Foxall, 2016).  

The elements of Intentional Behaviourism will be discussed in detail in the 

following sections.   

2.3 Radical behaviourism 

Radical behaviourism, the metatheory of behaviour analysis, is established on the 

principle that objective and empirical methods of natural sciences can be applied 

to the analysis of human behaviour; and states that the behaviour is explained 
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when the environmental factors that influence the rate of repeat behaviour are 

identified, and response can be predicted and controlled through the 

manipulation of reinforcement contingencies. Notice that no causal reference is 

made to the internal states or processes or events such as mood or intention or 

personality traits as is common in cognitive theories – they are not ignored in 

behaviourism but rather are classed as responses that require a separate 

explanation, rejecting the incomplete theoretic development reliant on mental or 

conceptual entities that can be said to reside at other than observed behavioural 

level. Such theories can be considered incomplete as they fail to identify the 

factors that account for internal processes and events such as environmental 

precursors causal to behaviour; fictional as they tend to infer the internal causes 

from the behaviours they are supposed to explain; and superfluous as 

behaviourism provides a simpler explanation of behaviour through environmental 

factors that control behaviour without relying on fictional inference.  

In behaviour analysis, the stimuli that are said to control behaviour need be 

explicitly described and related to the rate of response. In the laboratory setting 

of experimental operant psychology with animal subjects, it is possible to 

establish explicitly the discriminative and reinforcing stimuli and their causal 

relationships with response rate in pursuit to identify the elements of controlling 

contingencies, and predict response rates according to the reinforcement 

schedules, thus explaining simple behaviours by reference to their environmental 

antecedents and consequences. The three-term contingency is able to succinctly 

describe the causal mechanisms of behaviour analysis: the (1) discriminative 
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stimuli in the presence of which (2) the response is emitted, and the (3) 

reinforcing or punishing consequence produced as a result.  

In the context of complex human social interaction however, unlike the 

laboratory setting, it may often be impossible to isolate environmental 

contingencies controlling behaviour with any degree of certainty, resorting as a 

result to conceptual extrapolation of learning process derived from animal 

operant conditioning studies. Experimental laboratory operant analysis is said to 

provide the scientific explanation of behaviour, which is then extended to suggest 

not an explanation but rather a plausible interpretation of more complex 

behaviour situations. 

2.3.1 Interpretative Behaviour Analysis 

Skinner (reprinted in 2014) argues that even though it may not be possible to 

determine the contingencies that control response rate in complex behaviours 

with any degree of accuracy and precision comparable to laboratory 

experimentation, it is feasible to offer a plausible account of complex behaviours, 

such as verbal behaviour, based on the extension of the scientific laws formulated 

during the analysis of smaller decomposed problems.  The behaviour analytic 

interpretation, even if unverifiable experimentally, is preferable nonetheless to 

the interpretations that are not supported by the experimental work on smaller 

decomposed phenomena. Astronomy could be used to illustrate the same 

principle, where main source of information about celestial bodies and other 

objects is electromagnetic radiation and numerical models are employed to 
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reveal the existence of phenomena and effects otherwise unobservable. Thus, 

the extension of learning principles of human and non-human operant responses 

derived in the scientific laboratory setting is employed in the extended behaviour 

analytic account (derived from the scientific knowledge) of human behaviour in 

complex social situations.  

2.3.2 Plausibility 

During the process of interpretation, operant analysis is inevitably altered – 

behaviourism speaks of plausibility in terms of persuasive power of the 

interpretative account thus offered referring to the larger body of experimental 

inquiry to support the claim, where interpretation is not equal to extrapolation. 

The consumer behaviour model is then assessed on the explanatory plausibility of 

the variables to provide a persuasive account that demonstrates behaviour 

patterns, and the empirical correspondence and ability to derive operational 

variables useful in further investigation. The plausibility of interpretative account 

relies on its empirical correspondence with the objectively acquired information. 

All science relies on interpretations when explanation is no possible, as it often 

dictates the route of investigation and explanation, and is an inherent component 

in synthesis and amalgamation of information.  

As compared with operant behaviourism that predominantly specializes in simple 

observable behaviours with empirically identifiable determinants such as pigeon 

pecking, interpretative accounts of complexity based on the findings from simpler 

scientific experiments offer qualitatively different type of knowledge. This 
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fundamental difference explains why basic research objectives and technology 

requirements set forth by behaviourists – prediction and control in particular – 

are not the sole focal point while extending the operant principles of explanation 

in the form of interpretative plausible account.  

The BPM is able to demonstrate that only minimal modifications of the basic 

behaviour analytical model are required to offer a plausible interpretation of 

complex behaviours within a critically derived behaviour analytic framework and 

only deviating from radical behaviourism in a manner of extending it based on 

logical criticism and empirical evidence. One of the basic guiding principles of 

BPM is the proposition that human behaviour in any setting can be operant, 

where the continuity of environmental influence in a variety of situations is a 

fundamental assumption. 

2.4 The Behavioural Perspective Model 

The Behavioural Perspective Model extends the framework of behaviour analysis 

by recognising the discriminative stimuli and reinforcers as independent variables 

that determine the response schedule, and relating them to the rate of response 

in a purchasing decision setting as a dependent variable – as a result, the model is 

able to provide an interpretation of complex social consumer behaviour situation 

in a complementary to other alternative approaches (predominantly cognitive) 

manner by considering the ontological and methodological aspects. BPM is 

ultimately aimed to develop a comprehensive account of consumer behaviour 
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that would incorporate a synthesis of both cognitive and behavioural 

explanations in two ways: (1) by providing a plausible reference to 

conceptualization of situational influences on consumer behaviour, and (2) 

suggesting novel consideration of marketing strategy. Cognitive decision science 

assumes a purchasing decision to be a result of goal-directed process where 

consumers deliberately plan the course of action and utilize resources to acquire 

a desired benefit, the process during which external influences on consumer 

choice are not sufficiently taken into consideration and decision setting 

inadvertently decontextualized as a result. Those scarce attempts to explain 

consumer behaviour in terms of external stimuli suggest the prospect of 

developing a unified framework, but fail to propose a model of purchasing 

decision-making that is both based on empirical foundation of operant 

psychology and is relevant to marketing and strategy. Theoretical and conceptual 

framework of BPM is developed to address these concerns. Moreover, the model 

associates the previously identified and described patterns of behaviour with 

appropriate contingencies in a reliable manner, offering behavioural 

interpretation of consumer behaviour that is not postulated in conflict with 

alternative theories of explanation, and embracing the multiplicity of explanatory 

mechanisms in a relativist sense. Current research programme is tasked with the 

synthesis of intrapersonal and environmental causes of behaviour, where the 

relationship between the utilitarian and informational reinforcement and the 

affective cognitive theory is contemplated. The applied nature of BPM offers 

considerable benefit to the field of marketing research as the inherent 
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categorization of contingencies that influence consumer decision-making and 

explanatory variables are practically applied in customer-centric marketing 

strategy.   

Operant behaviourism as a school of psychology, as opposed to cognitivism and 

phenomenology, is better defined in terms of coherent philosophy of science, 

subject matter, methodology, and explanatory power – the notion that suggests 

operant behaviourism as a particularly well suited theoretical approach for the 

field of consumer research. Moreover, it has been shown that economic 

behaviour of animals is operant; and some consumer researchers have 

considered the possibility of employing the behaviour analysis to purchasing 

decision-making and the process of consumption. It is unclear therefore why 

operant behaviourism is not commonly used in explaining consumption in terms 

of situational and environmental influences, and why the comprehensive 

theoretical perspective of consumer psychology able to deal with the situational 

effects on choice has never evolved despite the research on consumer task 

orientation, temporal perspective, antecedent states, and physical and social 

consumer surroundings. Several factors that contribute to attribution of 

oversimplified nature to behaviour analysis may be responsible in this matter.  

Firstly, given the interdisciplinary relativist nature of consumer psychology, it may 

seem odd to have behaviourism excluded as one possible explanation of 

behaviour because of the misattributed idea that behaviourism was superseded 

by the cognitive paradigm due to inherent ontological restrictions of 

behaviourism proving it inadequate as a mental discipline. On the contrary, 
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behaviourism is able to provide a philosophical outlook from which other 

approaches may be critiqued, and encourage empirical data otherwise 

unavailable to be generated – as recognized by consumer behaviour researchers. 

Secondly, researchers have largely failed to account for the great difference 

between human and non-human cognitive capacity and the human ability to 

create and adopt rules that describe contingencies of reinforcement while 

extrapolating from the general findings with animals to human consumer 

decision-making, assuming unwarranted proportion of continuity between animal 

and human behaviour. Thirdly, the overall complexity of the human consumption 

environment and the non-price elements of marketing have been largely 

overlooked, focusing instead almost exclusively on the effects of price on 

demand. Quite the opposite, in advanced modern economies demand is 

contrived and deliberately created by most of the marketing effort in a 

consumption environment that contains the vast amount of choice alternatives 

available to human consumers. Finally, it is a common practise in marketing and 

related disciplines to disregard the philosophical and explanatory implications of 

behaviourism, rather directing research efforts towards the use of reinforcement 

schedules to increase the rate of retail purchasing, often forgetting that 

behaviourism is not the science of human behaviour, but the philosophy of the 

science of human behaviour. Thus, BPM is set to address these issues.  

Unlike marketing and consumer psychology that merely draw upon certain 

aspects of behaviour analysis, the objective of BPM research programme is to 

develop a critical understanding of consumption by developing as complete a 
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model of consumer behaviour based on behaviour analytical method as is 

reasonably possible, establishing in the process the extent to which behaviour 

analysis alone is able to explain consumer behaviour, and determining where it 

may be practical to modify and extend the framework of analysis. Research 

programme is also concerned with the evaluation of the ability of behaviourist 

account to explain complex consumer behaviours, and its contribution to the 

advancement of consumer psychology. In doing so, BPM distinguishes relatively 

closed consumer behaviour setting where the environment is similar to operant 

conditioning, and relatively open consumer behaviour setting where the 

environment is rich with alternative to operant conditioning explanations of 

behaviour. Furthermore, the model recognizes not only utilitarian type of 

reinforcement such as pleasurable and utilitarian consequence of behaviour, but 

also informational reinforcement that can take a form of feedback from other 

members of social system for example. And most importantly, the behaviours are 

attributed to proximal latent internal causal elements such as verbal 

discriminative stimuli in covert rules of behaviour and reinforcement 

contingencies; as well as environmental determinants of consumer behaviour 

that require both analysis and interpretation. Thus, the BPM aims to assess the 

adequacy of behaviour analysis to provide a rigorous scientific account of 

purchasing and consumption phenomena in a complex setting with multiple 

sources of causation. 
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2.4.1 The framework of Behavioural Perspective Model 

Patterns of consumer choice are related to the differing environmental 

consequences in BPM (Foxall, 1990, 2004, 2005, 2009), proposing three kinds of 

consumer behaviour consequence: (1) utilitarian reinforcement representative of 

benefits from buying or owning the product, (2) informational reinforcement 

represented by the social aspects of consumption, and (3) aversive consequence 

posited by such events as relinquishing money and product alternatives (see 

Figure 2). Antecedent events comprised of any physical, social, or temporal 

elements that serve as signals for potential consequence form the behaviour 

setting continuum capable of either facilitating or inhibiting the consumer choice, 

ranging from open setting that offers great freedom for a consumer to act and 

choose to a closed setting where consumer behaviour is largely dictated by other 

than consumer agents. The consumer is represented through their learning 

history that takes into account the aggregate consequence of previous 

behaviours and the present state of the consumer.  

 
Figure 2. The Behavioural Perspective Model. 
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The combination of high/low utilitarian (UR) and informational reinforcement (IR) 

identifies four distinct classes of consumer behaviour (see Figure 3): (1) low 

utilitarian and informational reinforcement constitutes Maintenance and involves 

the satisfaction of basic needs, (2) low utilitarian reinforcement and high 

informational reinforcement constitutes Accumulation such as saving or 

collecting, (3) high utilitarian reinforcement low informational reinforcement 

constitutes Hedonism such as consumption of popular product, and (4) high 

utilitarian and informational reinforcement represents Accomplishment reflective 

of social and economic achievement (Foxall, 2009).  The addition of behaviour 

setting continuum provides eight contingency categories as a functional 

consumer behaviour analysis and as means of interpreting factors of consumer 

behaviour.  

 
Figure 3. Operant Classes of Consumer Behaviour. 

2.4.2 Brand choice 

Contrary to traditional marketing literature that assumes consumers to explore 

the entire spectrum of choice, majority of consumers tend to exhibit multi-brand 
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purchasing patterns from a small repertoire of preferred brands, a subset of the 

entire range. Even though previous research describes consumer behaviour in 

terms of determinants of patterns, few offer discussions on the consumer goals 

or the underlying factors that influence the consumer decision-making. 

Experimental behaviour analysis however is not only able to demonstrate that 

consumer choice adheres to the patterns proposed by behaviour analysis and 

behavioural economics, but also offer a possible theoretical extension of operant 

psychology.  

2.4.3 Verbal and affective response 

Behaviour analysis has traditionally relied primarily on the idea of schedules of 

reinforcement – something that may impose extreme difficulty of 

implementations in an open market environment. Alternatively, interpreting 

complex consumer behaviour in terms of reinforcement pattern can be 

demonstrated with verbal and emotional responses to a consumer situation. Each 

of the eight contingency categories was shown to correspond with a certain 

combination of basic emotional response: pleasure with utilitarian reinforcement, 

arousal with informational reinforcement, and dominance with behaviour setting 

continuum.  

2.4.4 Attitudinal-behavioural consistency 

Psychological research on attitudes may actually be interpreted as behavioural, 

where observed variables often are verbal behaviour in nature: measures of 

attitude and intent tend to be situation-specific, emphasizing contextual 
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determinants of behaviour as a result rather than showing the cognitive causes of 

behaviour. Previous history of behaviour holds a significant role – being the best 

predictor of current or future behaviour, and the adherence to the social 

cognitive paradigm – the two aspects that pose a difficulty for the attitudinal 

researchers to examine the continuity between the environmental factors and 

the verbal and non-verbal behaviour response. For these reasons, recent findings 

in attitudinal psychology may support behavioural rather than cognitive model 

for human behaviour.  

Behaviour analytic approach states that initial behaviour is rule-based, and 

subsequently comes under the contingency control. Foxall argues that the 

process follows a somewhat more complex path, suggesting that initially 

consumer may have no previous experience with a new product or brand. Rules 

associated with other similar product or situation may be utilized however, which 

are deliberately assessed in terms of compatibility and accumulated experience 

before being adopted by the consumer. Repeat successive behaviour and 

accumulation of experience will generate rules that will guide behaviour, 

replacing the deliberation process, and transforming it from rule-governed to 

contingency-based. The difficulty lies in illuminating this transitional process 

without reliance on the implied theoretical structures.  
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2.5 Intentional psychology 

As part of any discussion on behaviourism as a psychological approach, it would 

be fundamental to review how the language is used by its practitioners, and why 

the discussion on intensionality may not be simply circumvented while the usage 

of intensional language is interrelated with intentional explanation.  

2.5.1 Intentionality 

Social cognitive psychology argues that consumer decision-making is guided by 

preferences, likes, wants, and needs, and has a positive attitude or intent towards 

the purchase – the level of explanation that relies on employing the mentalistic 

terms that would not suffice if the aim is to go beyond the cognition-behaviour 

approach and contemplate the philosophical basis for the explanation of 

consumer behaviour. The mentalistic terms used above are all intensionalistic in a 

way that they offer a qualitatively different type of explanation, as they tend to 

implicitly refer to something outside themselves: prefer something rather than 

just simply prefer, want something rather than just want, and so on. Quite the 

reverse, the words that are not essentially mentalistic such as run do not rely on 

the preposition that follows them to provide the precise meaning (i.e. prefer this 

product to that one): it is never run something but rather just run. Precisely this 

intensional use of language where what follows the proposition (i.e. intensional 

operators that added to extensional statement to produce intensional 

statements) cannot be substituted with an equal in meaning term without 

changing the truth-value of the statement is what behaviourists would prefer to 
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avoid in explaining behaviour. This is paramount in extending behavioural 

science, as intensional language is not reducible to extensional language through 

paraphrasing or other means, thus making the extensional account not possible. 

When describing inherently intentional phenomena though such as perceiving or 

believing, it is inevitable that intensional language is being used, and therefore 

intentional explanation is being used – suggesting that in addition to extensional 

behavioural science an intentional explanation may be unavoidable to the 

exposition of science.  

It is possible to argue that radical behaviourism may not be able to fulfil all the 

essential requirements central to explanation of behaviour, and behaviour deals 

on a personal level of inquiry, provides adequate account of behaviour continuity, 

and demonstrates that explanations of complex human behaviour can be 

sufficiently attributed to reinforcement stimuli.  

Radical behaviourism strives to provide account of behaviour in a strictly 

extensional manner, distinguishing itself from cognitivism by deliberate aversion 

of intensional language. The scientific method of behaviourism, the behaviour 

analysis, is focused on prediction and control of behaviour in terms of 

environmental consequences and antecedent stimuli. Assuming behaviour is 

environmentally determined in terms of learning history and reinforcing or 

punishing consequences, behaviourism is able to provide an undeniable capacity 

for explanation of behaviour – it does not necessarily dictate however that 

further conceptualization need be confined to the behaviourist philosophy.  
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Personal level refers to human activities and sensations rather than sub-personal 

physiological processes in the brain and nervous system, and comprises of first-

person (intra-personal subjective experiences) and third-person (inter-personal 

objective experiences) perspectives. Extensional radical behaviourism does not 

consider either one in any adequate manner: first-person perspective 

necessitates the use of intensional language to provide a comprehensive account 

of certain behaviours, and third-person perspective is not considered qualitatively 

distinct and is explained in terms of first-person perspective.  

Continuity of behaviour is central to radical behaviourist theory as it is closely 

interlinked with the concept of behaviour reinforcement and continuous learning 

history formulation. What exactly is learned during the learning process however 

is not evident from the behaviourist theory, as it may be difficult to identify the 

required elements necessary for the learning to occur (discriminative stimulus, 

response and reinforcing stimulus), at which point it is presumed that something 

does happen within the individual (likely on physiological level) that satisfies the 

behaviour continuity requirement.  

Thus, the limitations of radical behaviourism to provide a plausible interpretative 

account of behaviour in a variety of situations in a manner satisfactory of the 

rigorous scientific standard require intentionalistic supplementation to extend its 

significance.  

If radical behaviourist theory were to be extended to consider intentionality, it 

would require appropriate definition in extensional terms. One way to do this is 
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to distinguish two qualitatively separate levels: the physiological level that applies 

to neurological networks and processing, and the level of intentionalistic 

interpretation to which intentional abstractions like beliefs are attributed. 

Whereas the physiological level is commonly well understood, it cannot be said 

the same about the intentionalistic level, as the conceptual description is circular 

at best (i.e. pain is painful). Thus, the intentional level should not be seen as 

providing additional characteristic of phenomena, but rather a qualitatively 

different to the extensional explanation manner of interpretation of the same 

process or event.  

2.5.2 Philosophy of intentionality  

Philosophy refers to intentionality as capacity of the mind where mental states 

refer to or are about something other than themselves.  

Two distinct types of intentionality may be recognized: the intrinsic intentionality 

that exists in a human mind possesses the ability to transfer its inherent 

intentionality into an object (so called representational artefact), at which point 

the derived intentionality emerges. Even though the intentionality may seem to 

be stripped of its analytic ability in the process as seemingly all objects are about 

something, the derived intentionality is nevertheless dependent on the original 

intrinsic intentionality. Thus, the private intrinsic intentionality relates to the 

concept of the subjective mind and includes the experiences of believing and 

desiring, and therefore making it possible to attribute these experiences to a 

third person only because of experiencing them ourselves.  
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The subjective experiential level is dependent on the inherent properties of the 

conscious phenomena: the consciousness that includes the emotions and 

thinking or cognition, the ontological subjectivity that specifies the existence of a 

conscious state only if experienced by the subject, and unity which is required for 

various aspects of consciousness to function in a collective manner to produce 

the experience of the situation.  

Conscious experience could be comparable with Skinnerian private (covert) 

behaviour, but may also be internally augmented by interpretation in addition to 

being externally determined by contingencies. Consequently, different language 

from extensional behaviourism should be used as private (covert) behaviour 

contains intentional behaviour such as believing.  

Speaking of intentionality in terms of objective approach (third-person), it is 

necessary to consider what object may be considered as being or having a mind – 

something that theory of mind considers. Intentional behaviourism necessitates 

only the first-order intentionality. The need for intentional stance all together 

must be considered as well, as the concept of mind is relevant only while 

speaking about human persons where physical, design, or contextual stance may 

prove insufficient; where the experience includes not only the physiological and 

behavioural aspects, and the mind is more than just the brain but also includes 

the subjective consciousness and the cognitive awareness. This creates the 

setting for the first-person experiences such as thoughts and beliefs, and the 

third-person experiences are inferable from analysis of the physiological and 

behavioural factors associated with such experiences.  
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2.5.3 Intentional psychology 

Content does not occur within the neural event itself, but rather is a 

supplementary interpretation of such event, a justification for registering certain 

local content on the personal level. Intentionality describes what extensional 

theory is able to describe, but in a different manner. Thus, the sub-personal 

extensional physiology and the personal intentional explanations belong to 

qualitatively different distinct content levels. Content is added by the 

evolutionary logic principle: findings produced from the natural selection process 

on the physiological level must allow for explanation and prediction of behaviour 

on the intentional (personal) level.  

Dennett (1981) makes a distinction between the three kinds of intentional 

psychology: (1) folk psychology, (2) intentional systems theory, and (3) sub-

personal cognitive psychology. Folk psychology revolves around the causal theory 

of behaviour and presumably provides the source for the other two. Intentional 

systems theory develops the belief and desire aspects of folk psychology to 

predict and explain behaviour semantically on the personal level, but largely 

ignores the internal structure of the complex intentional system. On the contrary, 

sub-personal cognitive psychology deals with the syntactic explanation of the 

brain function. The underlying internal structure is required to provide an 

explanation for components of the informational systems theory to predict 

systemic behaviour on the personal level – something that is the primary task of 

sub-personal cognitive psychology as it identifies the constraints of design and 
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clarifies how personal systems excel in intentional systems. This will be further 

discussed in the sections below.  

2.6 Intentional behaviourism 

In this section, the two prominent accounts of behaviour – the radical 

behaviourism and the intentional psychology – are discussed in attempt to 

provide an overarching theoretical framework that would incorporate the two 

traditionally opposing fields in a unifying psychological model of intentional 

behaviourism.  

The vocabulary of behaviour theory is constrained by design to include purely 

behaviouristic terms to describe and explain behaviour, and behaviourists are 

deemed to face a considerable difficulty while trying to accommodate the 

thinking of cognitive psychologists and therefore tend to adopt one of the two 

routes: either incorporate the language of intentionality, which would inevitably 

lead to means of explanation detached from behaviourist method; or more often 

prefer to stay with the restricted behaviourist vocabulary, and as a result limit the 

range of explanation available to behaviourists, effectively restraining the 

potential level of contribution to the wider discipline of psychology. The beliefs 

and desires assume a central role in intentional psychology and serve as a base 

for cognitive psychology, whereas the opposing behaviourist theory strictly 

excludes any intensional terms deemed unable to provide reasonable means of 

explaining behaviour. As a consequence, while critical behaviourism is able to 
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provide predictive account of behaviour, it struggles to address within 

behaviourist terms such essential notions as personal level of analysis and 

continuity of behaviour – which generally tend to be either ignored altogether or 

inevitably explained with intensionalist terms. The following paragraphs will 

discuss this in detail.  

2.6.1 Cognitive psychology and radical behaviourism 

Before the discussion and critique of theoretical and ontological specificities of 

radical behaviourism can be continued, first of all it is important to acknowledge 

what can be effectively seen as a dualist nature of the current state of the field 

that makes the definitions and any subsequent discussions difficult: the radical 

behaviourism that can be associated with Skinner (1938, 2014) as a central figure 

in refining and expanding the paradigm, as opposed to those who undertake an 

active role in extending the discipline into the realm of intellectual inquiry to 

provide a more comprehensive account of behaviour (for example Rachlin, 1994). 

Even though those behaviourists that belong to the latter category remain with 

the extensional mode of explanation, it is often the case that they go beyond the 

precisely defined constraints of radical behaviourism as described by Skinner, and 

operate past the experimental laboratory setting and in the realm of 

interpretation and theory development. Without explicitly explaining the extent 

of deviation from the Skinnerian radical behaviourism, the explanation leads to 

wider implications as a result of inevitably adopting new forms of language that 

belongs to intentional systems of explanation. Thus, the two fields are taken to 

represent the incommensurably opposing views in explaining the phenomenon of 
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behaviour, and overarching conceptual framework relying on both radical 

behaviourist and cognitivist modes of interpretation would be required to 

provide a more robust and all-embracing account of behaviour – intentional 

behaviourism (Foxall, 2009).  

The essential difference in explaining behaviour employing cognitive and 

behavioural approach is linguistic in nature: whereas radical behaviourism 

unsympathetically evades the use of intensional idioms as explanatory means, 

intentional explanation is inherently imbedded in the underlying philosophical 

structure of cognitivist theory. The reason for avoidance of intensional idioms in 

radical behaviourism is that the extensional and intensional sentences are 

fundamentally different, and since radical behaviourism firmly relies on the use of 

extensional knowledge by definition, the adoption of intensional language to 

explain behaviour warrants the supposition that the very explanatory mode of 

the researcher has effectively gone astray from the radical behaviourist 

paradigm. Moreover, the difference between the extensional and intensional 

sentence types is more fundamental than that – it is not possible to simply 

translate one type of sentence into another type, as reducing intensional 

language to extensional would inevitably require adding additional information in 

the process to maintain the meaning and the truth value of the sentence 

unchanged. If intensional language is employed by researchers to explain 

behaviour, it is by definition a method of explanation that refers to some other 

than radical behaviourism theoretical framework. Extensional language, as 

opposed to intensional, does not contain intensional terms and is referentially 
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transparent in a way that it allows the substitution of any expression within the 

sentence to be replaced by another with same extension without changing the 

truth-value of the sentence:  for example, it may be true that Jones believes that 

the train to London has arrived, but not that Jones believes that the train number 

128 has arrived, even though the train to London is in fact the train number 128 

and the two have the same extension. Nevertheless, the problem lies in the fact 

that these two expressions have two different intensions and therefore different 

subjective meanings, and if the truth-value of the sentence about Jones to be 

preserved, the two are not substitutable. This contradicts with the normal use of 

language for scientific expression, as the use if intensionality presupposes a 

certain degree of subjectivity, and intensional idioms allow themselves to be 

understood only in each other’s terms without the possibility to circumvent the 

use of intensional vocabulary by any other means save entirely abandoning the 

use of intensional language altogether (Quine, Churchland, & Follesdal, 2013).  

2.6.1.1 All-inclusive explanation of behaviour 

When considering complex behaviours however, it becomes readily apparent that 

while radical behaviourism is exceptionally good at controlling and successfully 

identifying the environmental events to predict behaviour, the explanation (in a 

more general sense of a word, not as it is understood and defined by radical 

behaviourists) of behaviour it is able to provide could be insufficient in a number 

of ways. Radical behaviourism is unable to provide an adequate account of (1) 

behaviour on a personal level in addition to behaviour-environment relation, (2) 

continuity of behaviour, and (3) delimitation of behaviourist interpretation. This 
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of course does not require a cardinal change of radical behaviourism – on the 

contrary, the field must continue advancing the behaviourist programme within 

the paradigm and provide a robust predictive account of how behaviour can be 

determined by its consequences. Nonetheless, it should be continuously 

challenged by another theoretical approach to identify the apparent constraints 

which radical behaviourism imposes on the explanation of behaviour in attempt 

to develop a more robust all-inclusive explanation by incorporating useful 

constructs from cognitivist and intentional psychology. The three areas that draw 

attention to the limitations of radical behaviourism are briefly discussed in the 

following paragraphs.  

The notion of personal level explanation of behaviour is twofold in radical 

behaviourism: the matter of first- and third-personal sentences analysis. Talking 

about first- and third-personal sentence structure, in the practice of radical 

behaviourism both types can be and should be analysed and interpreted in the 

same manner following the uniform process of inquiry – first-personal verbal 

behaviour for example is just behaviour to be explained using control variables at 

the time of occurrence, and the verbal behaviour is not seen as a reference to 

something but rather is explained within the history of context in which it 

happens to occur. However, when one says using intentional language, “I can’t 

find my keys” – the statement cannot be translated into extensional language, as 

inevitably new information will have to be provided. Statements like “I am looking 

for my keys” or “I am not succeeding at the task of trying to find my keys” do not 

carry identical meaning to the statement “I can’t find my keys” as the personal 
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subjective dimension that adds to the explanation of the behaviour associated 

with the experience is unverifiable externally. “I can’t find my keys” in fact is the 

only unique description of the behaviour, whether it can be observed to include 

the tasks usually performed by the persons who are trying to find their keys so 

they can leave, or they are just trying to find their keys to put them in the correct 

place to make sure they can leave as soon as they need to in the future and can 

avoid going through this process in the inconvenient time, or perhaps even 

express a general desire that somebody else should perform the task of looking 

for their keys for them – something that only that particular person can be said to 

just know about their behaviour. This first-personal knowing is different to a 

private event as described in radical behaviourist doctrine: although equally 

contingent on learning history, first-personal knowing is not a result of analysis of 

the learning history, but rather an intentional statement that is a product of 

personal experience and therefore is outside the realm of scientific inquiry; and 

translating intentional sentence into extensional would not be possible without 

adding new descriptive value to the statement (or losing certain descriptive 

elements) in the process.  

Continuity of behaviour limitation attributable to radical behaviourism could be 

discussed touching upon a number of points. First, even though it can be said that 

intentionality is unable to provide a conclusive account of continuity of behaviour 

either, it becomes apparent that in a less controlled setting interpretation rather 

than experimental laboratory-type work becomes more essential. It is at this 

point, where intentional language is being adopted by some radical behaviourists 
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– perhaps unknowingly – in attempt to broaden the scope and improve the 

explanatory account. Second, in practical application, it is extremely difficult to 

keep good track of the history of reinforcing contingencies even in a controlled 

laboratory setting – basically impossible in the case with human decision-makers, 

questioning the possibility to carry out a behavioural analysis to the full extent 

altogether without eventual contribution and borrowing from cognitive 

psychology. Third, it has been proposed that eventual physiological findings 

would be able to provide a mechanism that would reveal why the process of 

occurrence of behavioural continuity – the notion which goes against the 

asserted stand-alone non-reliant on other scientific disciplines nature of radical 

behaviourism. It is not to say however that this behaviour is independent in its 

entirety from the external contingencies – what this means is that there is no 

legitimate way to understand and explain this behaviour other than using 

intentional terms; this knowing is intentional, and so is the explanation and the 

expression of it – something that cannot be accounted for within the terms of 

radical behaviourist paradigm. There is an occasional remark in behaviourist 

literature however, that describes the tendency for respondents to develop 

subjective rules on a personal level during operant experimental work that render 

them insensitive to the varying levels of reinforcement. Naturally, such 

interpretations cannot proceed without incorporating intentional terms to 

describe private events such as thoughts, and would inevitably require going 

beyond the delimiting mode of explanation defined by radical behaviourism – as 
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is the case with the discussion of self-rule formulation for example, where the 

description could only be expressed in intentional terms of the individual.   

Finally, the topic of delimitation of radical behaviourist interpretation needs to be 

discussed, as it becomes increasingly difficult to employ the thee-term 

contingency to develop a comprehensive account of behaviour beyond the 

laboratory setting: the plausibility commonly taken to be sufficient for radical 

behaviourist account of interpretative research is not sufficient to meet the 

claims of validity and reliability when applied to complex human behaviour. 

Rachlin (1994) proposes the concept of teleological behaviourism, where 

complex behaviours are interpreted in terms of final consequences of behaviour: 

one might be looking for the keys to leave the house – and to continue, to go to 

work, to earn the salary, to provide for the family, to be a good father, and so on. 

It should be obvious that considering behaviour as such a sequence while 

disallowing intentionality would immediately pose an unsolvable problem in a 

number of ways. Primarily, the necessity to examine the whole sequence of 

consequences to provide a comprehensive explanation of behaviour may very 

well be practically impossible, as it will have to be extended indefinitely. 

Furthermore, even if the final event offering the ultimate cause could be 

identified and the complete sequence of consequences examined and analysed, it 

would nevertheless be an unconvincing method to provide an explanatory 

account for the original behaviour which may be so remote from the final cause 

that no empirical event of the original behaviour had any contact with the final 

ultimate cause. In addition, the very notion of deliberately developing the 
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sequences to arrive at the final cause relies on such inherently intentionalistic 

concepts as rationality, optimisation, maximisation, and others – otherwise what 

else is there that would prevent the sequence to be developed instead as one of 

the following scenarios: looking for the keys to put them in the fridge, or to throw 

them into the rainwater drainage, or any other scenario that does not follow one 

of the rational in one way or another and intentional in nature motivation?  

2.6.2 Intentionality and behaviourism 

As discussed above, the incompleteness of radical behaviourism is dependent on 

the prescribed confinement to exclusively using the extensional language, which 

provides limited benefits beyond the laboratory settings to explain the observed 

behaviour: for example, it is very difficult to say anything more than the basics in 

terms of contingencies of reinforcement about behaviours which are not 

sensitive to schedules of operation without employing the concepts of private 

events. Avoidance of intensional language in radical behaviourism strengthens 

operant class, but as a result only able to provide a description rather than an 

explanation of generalizations, and as such could only be sufficient for prediction 

and control, but not for a comprehensive understanding of behaviour. In 

addition, it is necessary to consider other modes of explanation if comprehensive 

explanation of behaviour is not possible in extensional behaviourist terms – 

modes such as intentionality and intentional idioms. Nevertheless, complex 

human behaviour can be explained not only in terms of contingency shaping, but 

also in terms of rule-governance.  



 

 
40 

 

By incorporating the language of rule-governance for explanation of behaviour, 

the private behaviour and the related private mode of observation, as opposed to 

a public mode, would be assumed, which would necessitate the inclusion of both 

phenomenological experience level and intentional terms as part of explanation 

of behaviour. Intentional behaviourism does not need to be in a direct conflict 

with concepts of discriminative control and learning history in radical 

behaviourism – it is that but also more, as it involves setting variables such as 

discriminative stimuli, motivating operations, and implications they carry in terms 

of reinforcement. However, it would be worth to discuss whether the intentional 

explanations of behaviour could be considered causal. It is commonly understood 

by many philosophy of mind disciplines and is an underlying assumption of 

behavioural analysis as well that experiencing and attitudinizing can be 

recognised to serve as causal factors of behaviour. This can be closely related 

with the notion of reasons such as feelings, beliefs, or desires serving as causation 

of behaviour; and even though it is not entirely clear in what way specifically 

reasons cause behaviour and the mechanics and the process are not yet fully 

understood. Even so, the very existence of causal relationships should be 

undeniable: otherwise, if reasons did not serve as the cause for the behaviour to 

be the effect, and in the absence of the cause there would be absence of effect, 

then causal relationships would not need to exist. However, even if 

philosophically conceived mental constructs were a necessary prerequisite for 

the behaviour that follows afterwards to occur, not all thinking produces 

behaviour: there are myriads of thoughts that do not materialise in any manner, 
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while other non-mental functions such as learning history are able to carry causal 

capacity, thus questioning this account as a plausible explanation of causal 

relations. In science, causality can be demonstrated with an experimental method 

within extensional context – when employed to study human behaviour however, 

the results, as they intermix with mental explanations of causality, require 

deliberate interpretation. As radical behaviourists accept the possibility to 

attribute causal effects to public events, and individuals can be assumed to be 

able to modify these publicly acquired rules, it should be possible to argue that 

private verbal behaviour carries the causal capacity, and the rules formulated in 

such a way are in fact intentionalistic in nature. Nevertheless, this does not 

suggest that intentionality is causal, but rather that behaviour would be 

predictable in terms of radical behaviourist contingencies when the rule-forming 

process agrees with the intensions ascribed. Even though it is not entirely clear 

whether contingencies may or may not be modifiable by the rule formations, it 

should be apparent that the intentionality is able to contribute another 

dimension to the explanation of behaviour.  

2.6.3 Intentional behaviourism 

Thinking and feeling are the personal subjective experiences that can be used to 

ascribe meaning to the observed experiences of others, thus attributing 

description to their behaviour in attempt to explain and predict it. In 

commonsense psychology, even though such relations cannot be proven, they 

can be taken as causation of behaviour nevertheless – something that is seen in 

intentional behaviourism as nothing more than a placeholder rather than a causal 
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element without a proper validation. Intentional behaviourism is not concerned 

with ontology but rather considers thoughts and feelings as linguistic concepts 

that carry the capacity to serve as modules of behavioural explanation employing 

subjective experience: theoretical contributions can be developed from 

contrasting the sentences that use the intentionalistic language with those that 

do not. Radical behaviourism wholly relies on the use of extensional language and 

frameworks, and some behaviourists rely on neuroscience which is expected to 

provide a yet to be discovered physiological neural basis of behaviour. As such, 

intentional behaviourism does not propose to consider anything beyond the 

intentionality in terms only to identify the evolutionarily consistent neural 

functions without attributing causal properties to personal events, and therefore 

does not consider a neuro-physiological level of behaviour. 

Intentional behaviourism is a philosophy of psychology that follows the original 

arguments proposed by Dennett in 1969 (reprinted in 2002) in his attempt to 

resolve the matter of intentionality within the analytical framework of 

conceptualisation, where it is claimed that it is necessary to describe a certain 

dimension of human behaviour with intensional language set against the 

extensional language of radical behaviourism. The use of intentional idioms to 

explain elements of behaviour on a personal level should be seen as adding 

intentional content in a systematic manner on another interpretative level 

entirely – thus contributing to and being consistent with the explanation offered 

by extensional sciences such as neurobiology. Hence, using intentional ascription 

would not be a simple matter of additional interpretation to the extensional 
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description: explanation confined to extensional theoretical framework would be 

able to provide a descriptive and predictive scientific account of the behaviour in 

terms of structures and systems, whereas explanation available from the 

contribution of intentional theoretical framework would be able to offer the 

understanding of the actions and what the behaviour is accomplishing – in 

addition to the extensional explanation of how it is able to accomplish it. It is a 

matter of developing a comprehensive account of behaviour, and intentionality 

would be able to contribute substantially on the explanatory dimension in 

attempt to develop an all-inclusive explanatory account, while extensional 

framework of radical behaviourism has clearly been able to offer an extensive 

programme of predictive and behavioural controlled capability. For example, 

describing the continuity of human behaviour as a pattern with a certain goal or 

achievement in mind is no doubt an intentional in nature type of explanation – an 

explanatory method that radical behaviourists proposed (for example Rachlin, 

1994) or perhaps unintentionally employed before, which is effectively the 

equivalent as the theoretical framework of intentional behaviourism.  

2.7 Super-personal cognitive psychology 

In this section, the link between empirical science of radical behaviourism and the 

philosophical framework of intentional behaviourism is discussed, and 

corresponding model of super-personal cognitive psychology is explained and 

discussed in some detail.  
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One important distinction that sets super-personal cognitive psychology aside 

and differentiates it from intentional behaviourism is that super-personal 

cognitive psychology is able to provide a decision process necessary to influence 

the observable behaviour for those aspects of theoretical framework that would 

benefit from the intentional explanation as identified by intentional behaviourism 

(Foxall, 2009). Thus, super-personal cognitive psychology makes it possible to 

specify the cognitive operations in a manner consistent with physiological and 

behavioural frameworks while exposing the process of decision-making and 

choice. Following on the premise of radical behaviourism that anticipated 

advances in physiology would provide the necessary contribution to the 

explanatory dimension – without a properly defined framework in place such as 

super-personal cognitive psychology or alike there will be no structure to 

facilitate the process of incorporating the explanatory dimension that may come 

from the said physiological advances, nor there would be a mechanism in place to 

direct the physiological research efforts towards the more plausible and likely to 

bring successful results areas of study. Moreover, the framework is also 

necessary to make it possible to recognise and verify these very advances in 

physiological research, and also confirm the potential results as fruitful once the 

research programme reaches its ultimate goal (Foxall, 2009).  

It would be of some relevance to the discussion about super-personal cognitive 

psychology to contemplate in what manner exactly is intentionality able to 

contribute to the explanation of behaviour if it intentions are taken to be non-

causal. The explanatory dimension that intentionality is able to provide comes 
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after the causal relations have been accounted for with extensional methods – 

the causality thus determined provides enough evidence to support the 

explanation of behaviour for particular instances and events, yet it is the 

intentional expressions employing linguistic elements such as thoughts and 

feelings that provide the explanation for the sequences of events and continuous 

behaviour, the personal level of explanation, and the limits of radical 

behaviourism. Even though it has been suggested that super-personal cognitive 

psychology should be useful to explore the possibility to reconcile the temporal 

and spatial disconnection of dependent and independent variables to determine 

causal relations in continuity of behaviour, and to provide adequate account of 

the behaviour-environment relations; the purely linguistic non-ontological nature 

of incorporating intentionality into extensional framework of explanation could 

effectively suggest that these two frameworks would not be able to function as a 

uniform performance theory and rather would have to be discussed using two 

separate linguistic and scientific modes of explanation. To circumvent this 

limitation, the elements of sub-personal cognitive psychology would have to 

serve as the basis for causal theory and carry a sufficient account capable to 

supplement the extensional science employing intentionality in those areas 

where the limitations have been identified in radical behaviourism. This can be 

achieved by demonstrating the crucial role intentional and cognitive entities play 

as part of causal relations that explain behaviour by either including them as 

additional variables of experimental analysis directly, or a more probable scenario 

– developing proxy elements comprised of extensional variables to symbolise the 
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emergent intentional and cognitive properties of behaviour. If this can be 

corroborated experimentally and indeed eventually be taken as a factual case, 

intentional and cognitive elements of super-personal cognitive psychology and 

intentional behaviourism could take a form of explanatory value comparable to 

that of extensional sciences, while functioning on a different level of explanation 

– otherwise be substituted by the eventual future performance theories 

developed within the field physiology or other. Thus, the explanation that the 

extensional account of radical behaviourism is able to offer is predictive in nature 

and demonstrates the causal relations between the variables determined with 

the process of experimental design, whereas the explanation that the intentional 

account of super-personal cognitive science and intentional behaviourism are 

able to offer is not necessarily compliant with rigorous scientific approach of 

radical behaviourism yet imperative to the all-inclusive explanatory account of 

behaviour (such as addressing personal events and continuity of behaviour) and 

therefore can be considered to be interpretative in nature. An intentional system 

therefore is an entity capable of using the intentional dimension on a personal 

level rather than something that can be predicted using the attributes and factors 

that comprise the intentional dimension. 

2.8 Cognitive interpretation of behaviour  

Having discussed the rigorous scientific method of radical behaviourism, and the 

potential benefits that intentional psychology could contribute to the 

understanding and explanation of behaviour, it is important to consider some 
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areas of behaviour that are likely to remain for the time being out of scope for 

the deliberations presented here, and rather within the realm of cognitive 

explanation of behaviour.  

Indeed, some of the frameworks presented above would be as useful with the 

more complex elements of cognitive explanation of behaviour as they are with 

the interpretative elements, and would provide the framework of reference to 

structure the consequent inquiry. In the same way, certain aspects of cognitive 

explanation could be designated as placeholders for future discoveries in 

neuropsychology and physiology. Until that time however, explanation of 

behaviour as it is considered here can be said to form three conceptual phases in 

terms of explanation, as follows.  

First phase would be associated with explanation of behaviour as it is understood 

in the realm of radical behaviourism, which can be explained as a product of 

learned associations between a stimulus and a response, and reinforced or 

punished as a matter of consequence. This is something that was investigated in 

detail as part of earlier research programme (Greene, 2011) where Informational 

and Utilitarian Reinforcement were modelled as comprising elements of the input 

layer, showing significant predictive capacity as part of the connectionist model.  

Second phase deals with interpretative elements of behaviour explanation, and is 

the focus of the research programme described here, which builds upon the 

findings of previous research investigation (Greene, 2011) and now proposes to 

consider Informational and Utilitarian Reinforcement as an emergent property 
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which can be modelled within the hidden layers of connectionist networks to 

study Informational and Utilitarian Reinforcement as an emergent phenomenon 

which is formed as part of a model learning process and is subsequently used to 

develop understanding and explanation of behaviour. This will be described in 

detail in the following chapters.  

Finally, the third phase of behaviour explanation would focus on cognitive 

elements of behaviour, which can often be inherently subjective and not yet 

understood on a sufficient level. Therefore, application of a scientific method and 

any kind of work that would rely on experiments would be inadequate at this 

level. Instead, explanation could come from the area of qualitative psychology 

that relies on phenomenology and meaning-making as part of contribution to the 

wider research programme that aims to understand and explain behaviour.  

2.8.1 Phenomenology 

In philosophy, phenomenology is a school of thought that studies the structure of 

experience and consciousness, attempting to establish necessary conditions for 

the objective study of certain topics which can typically be seen as subjective in 

nature, such as consciousness and the content of conscious experience – for 

example perceptions and emotions (Husserl, 1970, 2012). The structure and 

essential properties of experience are determined through a process of 

systematic reflection – approach that aims to be scientific, yet deemed 

qualitatively different from the method applied in clinical psychology or 

neuroscience. A number of assumptions that form the foundation of 
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phenomenology would juxtapose it with the rigorous scientific methods of radical 

behaviourism – such as the rejection of the concept of objective research; or the 

preference to explore the personal conscious experience over the traditional 

scientific data analysis, to study human behaviour through a unique way it 

reflects the society of a person.  

Phenomenology is generally considered anti-reductionist – even though varying 

degree of reductions are used in many of the methods employed to describe the 

underlying mechanisms of consciousness, the ultimate goal is to explain how the 

different aspects of reductions are constituted as an actual phenomenon as 

experienced by the person.  

Intentionality is of course an important element of phenomenology, and 

stipulates that consciousness is always about something – the object of 

consciousness is referred to as intentional object, which doesn’t necessarily need 

to be a perceptible object and rather could be anything at which consciousness is 

directed and of which it is conscious of, such as an idea or a memory for example. 

Intentional object can be constituted for consciousness in different ways 

(perception, memory, retention, etc.), and even though these different structures 

can be interpreted as different intentionalities that prescribe different ways of 

being about the intentional object, the object is constituted as the same 

intentional object throughout.  

Another central element of phenomenology relevant to the present discussion in 

particular is the notion of intersubjectivity. Perhaps best explained referring to 
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the concept of empathy as it is defined in the context of phenomenology, which 

requires a person focusing on the subjectivity of another person as part of 

intersubjective engagement, relying on the apperception built on the personal 

experiences. Therefore, one person is said to apply their own experience as their 

subjectivity to the experience of another person through apperception, which can 

be constituted as another subjectivity, thus facilitating recognition of another 

person’s ideas, intentions, thoughts, etc. This experience of empathy is essential 

in the phenomenological account where intersubjectivity effectively constitutes 

objectivity: what is experienced subjectively is also intersubjectively available for 

other subjects. Thus, the notion of objectivity is not reduced to subjectivity, nor it 

is sufficient to constitute a relativist position, and instead a person is said to 

experience themselves as a subjectivity in an objective existence.  

For an extended discussion on philosophy of phenomenology please see Husserl 

(1970, 2012).  

In psychology, phenomenology is a study of subjective experience. Even though 

philosophical psychology of late 19th century principally relied upon introspection, 

deliberations concerning the mind based on such observations were largely 

criticised as speculation by emergent research movement that strived to uphold 

psychology to a more rigorous scientific approach – amongst them pioneers of 

radical behaviourism. The central philosophical issue is the problem of qualia, 

which is often referred to as a subjective conscious experience, where it is 

impossible to confirm whether experience of one person such as a feeling or an 

interpretation of meaning about an object is the same as that of another person. 
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To retort these criticisms, it is often claimed that phenomenological inquiry is a 

qualitative approach to study psychological subject matter that deals with the 

process of how meaning is construed and therefore interpretative in nature. 

2.8.2 Interpretative phenomenological analysis 

One of the approaches in phenomenological psychology notable for combining 

idiographic, psychological, and interpretative elements is interpretative 

phenomenological analysis (Husserl, 1970, 2012). Rooted in the 

phenomenological and hermeneutic theory, qualitative research approach strives 

to examine how a phenomenon is experienced by a certain person. Studies 

normally involve only a few participants – sometimes even just one person – 

whose experiences are closely examined using in-depth interview, diaries, or 

similar qualitative unstructured techniques that produce a detailed verbatim 

account for subsequent research analysis.  

Due to the nature of the approach, participants tend to share relevant 

experiences in a particular context around the subject of investigation rather than 

being randomly sampled, thus allowing to scrutinise how phenomenon is 

understood from a shared perspective, and sometimes developing the research 

design further to include elements of longitudinal analysis by collecting multiple 

accounts over time. Hypothesis or theory testing is not normally part of the 

analysis, and interpretative phenomenological analysis would rather be employed 

with research questions that aim to understand and interpret a certain 

experience and explain how it was understood by a particular person. Instead, a 
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reflective and often theory-developing account of hermeneutic inquiry is carried 

out with a focus on meaning-making, as researcher dissects in detail participant’s 

key claims and codes them, offering interpretations of reoccurring theme 

patterns and their implications – thus attempting to interpret participant’s 

interpretations and forming a situation of double hermeneutic.  

As a result, the subject-focused approach that relates phenomena to experiences 

of some personal significance produces an idiographic analysis that interconnects 

phenomenological examination with interpretative elucidations, frequently 

illustrating the points by using participants’ verbatim quotes and contextual 

commentary and details.  

2.9 Summary 

In this chapter, the consumer behaviour analysis is discussed in detail, outlining 

the framework of Behavioural Perspective Model. Radical behaviourism is 

juxtaposed with intentionality and cognitive psychology to explain and identify 

the underlying philosophical and methodological underpinnings of both 

theoretical frameworks. Intentional behaviourism is proposed as a possible 

extension of radical behaviourist framework to address the shortcomings and 

limitations of extensional sciences by employing the intentional linguistic 

elements in attempt to develop a better all-inclusive explanatory account of 

behaviour.  
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Once it is recognised that explaining behaviour is not only limited to predictive 

account of causal relations but also involves the interpretative dimension to 

develop an all-inclusive explanatory account of behaviour explanation, using 

intentionalistic linguistic elements and irreducibly inferential terms as proposed 

by intentional behaviourism should provide as a result an entirely different 

account to what is otherwise available from extensional science such as radical 

behaviourism. It is not a matter of integrating intentional terms into the 

behaviourist approach as it is already the case and intentionality is common in 

behaviourist explanation, but rather a matter of how these intentional terms 

should be integrated into the philosophy of psychology and extensional science. 

Intentional behaviourism is proposed as a competence theory of behaviour, 

specifying the mechanism to explain complex human behaviour by attributing 

interpretative intentional content in a systematic manner consistent with the 

rigorous scientific method behaviour analysis and extensional sciences. Super-

personal cognitive psychology provides a structure and a form for the anticipated 

advances in the field of physiological research to be shaped and centred on the 

crucial questions of radical and intentional behaviourism such as the links of 

intentionality and cognition with the underlying neurophysiological processes, 

and a framework to identify and recognise these advances when the time comes.   
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3. Connectionism and Artificial Neural Networks 

The philosophical underpinnings of artificial neural networks (NNs) have been 

explored by the researchers in the field of artificial intelligence (AI) at 

considerable length (Luger, 2005). To understand the theoretical and 

philosophical foundation of connectionist models, it is important to consider the 

historical developments of the conceptual design that the very fundamental 

structure of connectionist modelling is based on. To do so, the development of 

the field of AI will be reviewed briefly from its very inception and the influences it 

has had on the development of the NNs models and methodology over the years.  

3.1 Why Connectionism?  

For a number of years, research in the field of consumer behaviour relied on the 

traditional statistical methods to generate a substantial amount of empirical 

evidence to support the theoretical framework in. So why consider connectionist 

models at all?  

Curry and Moutinho explore application of neural networks to study and model 

consumer behaviour, and offer a comprehensive discussion of theoretical and 

practical implications (Curry & Moutinho, 1993; Moutinho, Davies, & Curry, 

1996). Authors deliberate application of expert systems as one possible 

alternative, but caution about limitations and potential overoptimistic notions in 

the field. Instead, artificial intelligence based application is suggested: artificial 

neural networks. A typical connectionist structure that incorporates a number of 
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hidden layers brings certain advantages through a more sophisticated platform 

for modelling consumer behaviour, as hidden layers are able to distinguish key 

conceptual phenomena predisposed to indirect measurement. Another relevant 

to consumer behaviour feature is that connectionist models are trained: either 

through a supervised learning process where example connections of input and 

output pairs are fed into the model, or otherwise through relying on clustering 

methods in unsupervised learning. The ability to extrapolate patterns from 

training sample data offers a superior position to connectionist models against to 

rule-based arrangement commonly encountered in traditional systems, making 

neural networks particularly appropriate in tasks that involve notions of cognitive 

behaviour or pattern identification. This is discussed in further detail in the 

following sections.   

3.1.1 The ultimate purpose of AI  

The ultimate aim of AI research is to develop machines (or algorithms) to the 

level of performance and ability comparable to humans in tasks such as vision, 

natural language processing, learning, planning, reasoning, and other. Some of 

these tasks may seem simple enough and even intuitive if considered by a person 

new to the field. If the focus is shifted to machines however, it becomes readily 

apparent how immensely complicated these tasks could actually be. In fact, it is 

currently unclear the extent to which the most ambitious of these are achievable 

at all. Consider driving a car for example – many things need be performed 

simultaneously including at the very least visual recognition of the road and 

obstacles, geographical location and overall direction and the route with the final 
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destination, traffic and participants (drivers, pedestrians, road workers, etc.), and 

the list goes on. This is not even mentioning the adjustments necessary for the 

time of the day, weather conditions, in-car distractions and overall condition of 

the driver, etc. This task poses a serious problem for a machine, and yet millions 

of people perform this with a seeming ease – many on the intuitive level even 

(Gallant, 1993).  

Original approaches of AI to tackle a problem of this sort were mostly concerned 

with decomposing the overly complicated AI task into simpler ones in a 

systematic manner: the road lines recognition with the adjustments for the light 

and weather conditions, followed by three-dimensional figure recognition task 

combined with the geographical positioning and route planning, etc. It however 

becomes apparent that it is unfeasible to account for all possible circumstances 

of the task following this method. Alternative approach is to devise a heuristic 

trick rule such as following the centre line. This however is arguably even more 

fragile: what if there is an accident, or there is no centre line to speak of at all? 

Upon consideration of the complexities it could be tempting to declare these AI 

tasks unsolvable – with the exception that billions of biological creatures perform 

them on a regular basis with seeming ease (Gallant, 1993). 

It became apparent that a novel approach was required that would be able to 

cope with high demands of AI tasks. It is then only natural to consider 

connectionist computational models that are inherently similar if only in structure 

to human information processing faculties. Since it is not entirely impossible that 
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connectionist structures are even required for some of the AI tasks, it is no 

surprise that NNs gained such a widespread recognition in the field of AI.  

This is not to say though that NNs are the computational modelling method for 

AI, as science should always strive to develop better and simpler methods 

(Gallant, 1993). The characteristics of NNs described in the following sections 

however provide a supportive evidence that at least some of the AI tasks can be 

advanced and explanations further developed.  

3.1.2 Networks and symbolic systems 

The traditional approach to cognitive science mostly evolved in such fields as 

cognitive psychology, psycholinguistics, neuropsychology, philosophy, and 

artificial intelligence because they share certain core assumptions of symbolic 

cognitive representation. Connectionism challenges these assumptions and offers 

a new promising approach to cognition via parallel distributed processing and 

neural networks methods in a number of ways.  

The theoretical framework of connectionist networks is based on our knowledge 

of nervous system: the basic idea is that the neural networks comprise of simple 

elementary units with certain degree of activation, which are connected to other 

units thus making it possible to excite or inhibit other units in a dynamic way. 

Depending on the network design, initial input is spread through the network 

until the particular state of equilibrium is achieved – which in cognitive and 

decision-making tasks is in itself a solution to a predetermined problem (provided 

an appropriate interpretation is available). Dissimilar to the symbolic systems, the 
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connectionism based adaptive network systems do not follow the rules based 

approach – which in itself is a rather primitive and simplistic design and will be 

further discussed in later paragraphs. On the contrary, the adaptive neural 

networks follow a rather different system design and focus on causal processing 

where units excite of inhibit each other and for the most part do not take into 

account stored symbols and their governing rule systems.  

3.1.3 The foundations of connectionism 

Initially connectionist models were developed following the basic functionality of 

human brain. Given the very limited knowledge of how the human brain actually 

works, neural networks are not intended to model the brain in its all complexity 

but rather simulate specific cognitive functioning in artificial systems that are able 

to exhibit some of the basic properties similar to those of neurons and synaptic 

connections in the brain. The first models designed to utilize the connectionist 

framework showed how the models consisting of a number of interconnected 

simple computational neurons could solve logical operations and, or and not. 

Furthermore, it was demonstrated that any process that could be performed 

using a finite number of these logical operations could be also performed by the 

connectionist network provided the necessary characteristics are met (for 

example the necessary memory capacity). Further advances came from 

converting the neurons from a binary to activated by a statistical pattern based 

on a number of input units, and as a result significantly increasing network 

reliability through parallel processing which is built as an inherent design feature 

– an early example of distributed representation. Following the string of research 
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that revolved around the formal characteristics of behaviour exhibited by the 

connectionist models, the potential applications for carrying out cognitive tasks 

were examined (Pitts & McCulloch, 1947). One of the central and very frequently 

researched tasks in connectionist modelling is that of pattern recognition. 

Rosenblatt was one of the early researchers to advance the connectionist theory, 

introduced the continuous connection weights to replace the binary nature of 

neurons of Pitts and McCulloch models, and explored the networks where the 

excitations could be sent backwards, referring to these systems as perceptrons. 

He also devised methods to adjust the connection weights effectively establishing 

the procedures to train the network. Through the milestone Perceptron 

Convergence Theorem, it was demonstrated that if a set of connection weights 

capable of producing a correct response existed, it would be possible for the 

network to learn the correct response through a finite number of repetitions 

(Rosenblatt, 1958). The perceptron, being based on statistical patterns over a 

large number of units and accounting for noise and variations rather than logical 

principles, was established as a new type of information processing system that 

was closest in explaining the functionality of nervous system and capable of 

having original ideas. Thus, the feasibility for non-human cognitive system with 

connectionist networks has been established within the field of artificial 

intelligence.  

Another notable early researcher was Selfridge (1958) who explored the pattern 

recognition capacity of connectionist models. His model Pandemonium was 

tasked with the recognition of handwritten letters. The model performed the 
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analysis in parallel and processed the features of the letter through the levels. 

First level dealt with feature recognition task and carried the outcome to the next 

level that gathered the information on the particular features for each of the 

letters. The notable characteristic of the model outlined is that it is still capable to 

perform a reasonable assessment even if some of the features were unordinary 

or missing altogether (Selfridge, 1958). 

In addition to pattern recognition tasks, it was acknowledged early on that 

connectionist networks might be useful in explaining the mechanics of memory 

and how the associations between the different patterns are stored. Hebb (1949, 

2005) suggested that the synaptic connections between the neurons in the brain 

that are jointly active are strengthened – the string of research further developed 

by Taylor (1956).  Taylor explored networks consisting of analog units with 

activations on a continuous range where the outcome suggested that networks 

are able to generate patterns similar to those of the units with which they are 

associated.  

The significance of exploring the concept of cognition with connectionist 

networks should be assessed taking a number of wider research directions – as 

an overall course of inquiry which aims not only with modelling the brain directly, 

but also with the understanding the cognitive performance more generally, 

effectively establishing the foundations for later neural network and artificial 

intelligence research programmes. In the 1960s and 1970s, however the symbolic 

approach remained the predominant paradigm in cognitive science.  
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3.1.4 Symbolic models 

As alluded to before, one of the origins of symbolic models comes from logic and 

philosophy – logical systems comprising rules for symbol manipulation with a 

clear outcome deliverable. Deductive logic aims to identify a set of rules that 

would make it possible to generate the true propositions, and a system of such 

rules is referred to as truth preserving. Therefore, it should be possible to 

develop a system of procedures capable of displaying cognitive behaviour if 

intelligence depended solely upon logical reason. This however is not the case, as 

it is often required of humans to make estimated predictions, which would fall 

within the domain of inductive logic that aims to develop formal rules that lead 

from propositions that are known to be true to those that are estimated to be 

true. Following this, intelligent cognitive process could be thought of as a logical 

manipulation of symbols, where symbols are regarded as ideas with rules to 

govern them. The definition of a symbol has now changed with the application of 

computers in modelling where symbols are stored in memory and are extracted 

and manipulated according to the computer programmes without any 

considerations for semantics. Alternative approach to interpret the semantics of 

the computational model offered by Newell and Simon (1981) views computer as 

a physical symbol system able of not only following the prescribed algorithm, but 

also more importantly capable of using heuristic methods as shown in the work 

on artificial intelligence (Simon, 1977). 

Thus, artificial intelligence research has its origins in cognitive sciences and 

symbolic models, but since has notably deviated through its pursuit of the idea 
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that computers are symbol-manipulating systems in a more general sense. 

Artificial intelligence models represent the closest simulation of human cognition 

and show competence in such tasks as playing chess. From this, the two 

suggested outcomes are possible: on the one hand, the human brain is the only 

true symbolic system and computer is merely a very capable calculator capable to 

execute complex algorithms; on the other hand, the computer is the true symbol 

manipulator and human cognitive faculties are carried out in a different manner 

that merely resemble those of the connectionist models.  

3.1.5 Connectionist models 

The publication of Perceptrons in 1969 (Minsky & Papert) in some way or another 

had an detrimental impact on the direction of research in artificial intelligence. 

The pessimistic predictions outlined in the book contributed to the research 

efforts being concentrated on symbolic models instead – the turn of events 

proven to be unfortunate when later discoveries showed the predictions of the 

book being inaccurate. In the course of the analysis of network models at the 

time a number of criticisms were demonstrated – namely the inability of the two-

layer network to evaluate certain logical functions like exclusive or (A XOR B is 

defined where A is true and B is not, or B is true and A is not). It is necessary for a 

network to include additional hidden layers – which brought upon the additional 

problem, as at the time no training algorithms for multi-layered networks existed. 

As a result, many researchers viewed these criticisms as an indication of a larger 

issue and network models came to be identified with the associationism deemed 

inadequate for effective cognitive modelling.  
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Nevertheless, in the 1980s papers employing network models to simulate 

cognitive processes started to emerge in the published research yet again (for 

example J. A. Anderson & Hinton, 1981), and subsequently increased 

substantially. The network model renaissance was prompted by a number of 

factors, among which are some of the following.  

First, the emergence of new powerful network modelling and training techniques 

and architectures, coupled with the advances in the mathematical descriptions of 

parallel systems directly applicable to modelling of cognitive processes. Second, 

the credibility of researchers newly converting to network models played a crucial 

role. Third, the structural resemblance of network models with the arrangement 

of the human nervous system, facilitated by the increased interest of cognitive 

researchers in neuroscience. The growing diversity and complexity of rule-based 

symbolic models resulted in the nostalgia for the parsimonious theoretical 

ground (much like what behaviourism was set out to offer previously). Finally, a 

growing number of researchers started to scrutinize the limitations of symbolic 

systems that revealed such weaknesses as inflexibility, unwarranted complexity, 

domain specificity, insufficient generalization, and scaling issues due to searches 

in large systems. These and other notions were able to deter some of the 

cognitive scientists from the symbolic models resulting in the increase in the 

increased appeal of network modelling, reaching a sizeable presence by the end 

of 1980s. In response, the symbolic models introduced a number of modifications 

to address the criticisms outlined above, such as using the rules on a smaller 

granularity and employing the selection and weighing criteria, and even started 
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to incorporate some of the network features. Some of the key differences 

between the network and symbolic models remain however, including the 

ordered symbol sequences and consecutive operations of symbolic models that 

are not part of network model structure.  

3.1.6 Argument for symbolic models 

In the field of artificial intelligence, the cognitive models have relied 

predominantly upon the symbolic tradition for a number of decades. With the re-

emergence of connectionism as an alternative approach to cognitive modelling, 

many proponents of symbolic tradition have developed a body of research to 

argue the inadequacy and limitations of connectionist approach.  

Two most prominent critiques of connectionism raised by Fodor and Pylyshyn 

(1988), and Pinker and Prince (1988) are discussed in the following paragraphs. 

3.1.6.1 Symbolic representation with constituent structure 

Fodor and Pylyshyn (1988) argue that connectionist networks fail to fulfil the 

requirements of the representationalist system (intentional, semantic) without 

the capacity offered by a symbolic representation system, and therefore are 

inadequate for modelling cognitive processes. Symbolic representations have a 

language-like character, which Fodor refers to while hypothesizing on language 

of thought (1975), and combinatorial syntax and semantics to govern the 

formation of molecular representations from the constituents. Composition and 

other syntactic rules can be applied irrespective of symbol semantics in a way 

that syntactic engine mirrors the semantic engine (Dennett, 1981) – something 
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that connectionist systems are said to be lacking, as individual or groups of units 

cannot be developed into linguistic expressions that follow syntactic rules and 

composing simple representations into representations of higher complexity 

(Fodor & Pylyshyn, 1988). Thus, it is argued that only a system with symbolic 

representations and constituent structure is suitable for modelling cognitive 

processes - such as a language of thought that requires the following 

combinatorial syntactic and semantic features: (1) the capacity to produce and 

understand propositions from an infinite set, (2) the systematicity of thought that 

manifests in the intrinsic connections between the ability to comprehend  one 

thought and other thoughts, and (3) the ability to make syntactic and semantic 

inferences. On that premise, the localist connectionist networks do not possess 

the necessary resources for cognition. In response, Smolensky's (1988a) criticism 

points out the oversimplification in their analysis of the networks by Fodor and 

Pylyshyn, as units in distributed connectionist systems are able to encode 

representational features and microfeatures, and therefore are more suitable as 

cognitive systems. In reply, Fodor and Pylyshyn argue that the ability of 

distributed networks to recognize the compositional microfeatures of an entity is 

not the same as the ability to identify one syntactic unit as part of a larger 

syntactic unit. Networks lack such syntactic relation, thus reducing connectionism 

to only an account of implementation of the symbolic representational system 

(on the nervous system level). In contrast to Fodor and Pylyshyn's account, 

Rumelhart and McClelland (1985a) distinguish between the level of information-

processing account of behaviour and the level of abstract accounts. As such, it 
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should be possible to suggest the multi-level account where abstract account is 

the subject of such disciplines as linguistics; connectionist and information-

processing systems operate at the hierarchically lower level of analysis that is the 

subject of artificial intelligence and cognitive psychology; and neuro-physiological 

account at an even lower level (contrary to Fodor and Pylyshyn's only two levels 

where connectionism is assigned to the lower level).  

Connectionism not only aspires to provide an adequate account of the 

phenomena that is successfully handled by rules; but also, without additional 

mechanisms, offers an elegant account of other phenomena as well. 

3.1.6.2 Argument for rules 

Pinker and Prince (1988) focus their critique around the children's language 

acquisition that necessitates the use of rules. In response to Rumelhart and 

McClelland's (1985b) connectionist model that simulates acquisition of English 

past tense and applies a uniform procedure for every case, Pinker and Prince 

develop and extensive analysis to determine whether it is a plausible model of 

human language acquisition. As a result, Rumelhart and McClelland's (1985b) 

past tense model was held to a much higher standard than it was intended to 

meet (that no other language acquisition model was able to meet either), 

ignoring the substantial development learning simulation that was attained with 

such a simple network architecture.  

One line of criticism revolves around the type of decomposition of linguistic 

phenomenon in which rule-based and connectionism models differ, where Pinker 
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and Prince (1988) argue that the mechanistic type of decomposition 

implemented in the connectionism model, in contrast to a more abstract 

decomposition employed by symbolic models, is inappropriate. Additionally, the 

ability of the network to analyse the phonological strings for patterning is 

attributed to the Wickelfeature (for an extended discussion please see Coltheart, 

Curtis, Atkins, & Haller, 1993) structure and not the network architecture. They 

also point out that Wickelphones (Coltheart et al., 1993) are limited to encoding 

phonetic information, disregarding syntactic, semantic, and morphological 

information important for past tense formation; thus limiting the ability of 

connectionist model to encoding the input-output patterns and not the abstract 

linguistic information. The fact that regular and irregular past tense forms are 

considered linguistically different in symbolic models, yet learned by the same 

mechanism in connectionist model, is also misguidedly seen as a shortfall.  

Many of these concerns are addressed yet again referring to already discussed 

multiple levels of hierarchy assumed in connectionism: (1) neural processing, (2) 

information processing and (3) abstract level. The last point however is the 

central issue that Rumelhart and McClelland's (1985b) model strives to address – 

the ability to provide account of both regular and irregular forms with a single 

mechanism, irrespective to the linguistic prescription that necessitates different 

decomposition processes for the two forms. Further criticism refers to the 

already acknowledged limitations of the two-layer network. Hidden layers and 

back-propagation learning technique offer significant improvements of the 

network capacity (Rumelhart, Hinton, & Williams, 1985, 1988), and structured 
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networks employ inter-network architectures (Touretzky & Hinton, 1988). In the 

end, Pinker and Prince (1988) reluctantly acknowledge that advances in network 

architecture and learning mechanisms may potentially enable the connectionist 

models to meet the criteria they specified, still unlikely to be able to provide 

more than a mere implementation of standard grammar. 

3.1.7 Argument for connectionist models 

In the next sections, three kinds of connectionist response are considered in 

response to the claims that prescribe the use of rules and symbolic 

representations as compulsory.  

3.1.7.1 Approximationist approach 

One connectionist view relies on the premise that symbolic models are abstract 

accounts of the phenomena and lose some level of detail in providing an efficient 

account of regularities, and therefore are approximates of the connectionist 

model account of cognitive performance that offers the highest level of detail 

(Smolensky, 1988a). Thus, in the case of language, it is the symbolic models that 

perform the task of approximation and connectionist models, once sufficiently 

developed, would be able to provide a full account of language. Rumelhart and 

McClelland (1985b) also promote this position, as in their view symbolic rule-

based systems are too brittle and therefore unable to capture flexibility and 

subtlety of the cognitive process in its entirety, as cognitive behaviour is not 

governed by rules but is rather only approximately described by the rules at best. 

The behaviour is thought to be governed by a unified mechanism at a lower than 



 

 
69 

 

rules level – sub-conceptual level (Smolensky, 1988b) or microstructure level 

(Rumelhart, 1975). Alternative approach would be to develop intricate rule-based 

systems that operate on a lower level and utilize soft constraints for the micro-

rules (Holland, Holyoak, Nisbett, & Thagard, 1986) 

Connectionist models described earlier that are able to attain considerable 

success in extracting the rule-like behaviour without the explicitly defined rules 

(for example past-tense acquisition model, Rumelhart & McClelland, 1985b) 

provide some preliminary evidence in support of the approximationist approach. 

The next step would be a model capable of syntactic processing without the 

reliance on rules at a level of performance comparable to a rule-based model in 

the very least. One such attempt is a network system for processing finite state 

grammar strings by Cleeremans, Servan-Schreiber, and McClelland (1989). One of 

the challenges for their network was the requirement to consider the preceding 

input while the current input is being processed – something a feed-forward 

network is not capable of attaining. To overcome such limitation, a novel 

architecture was devised by Cleeremans et al. (1989) as suggested by Elman 

(1989, 1990) – a recurrent network which, in addition to the regular feed-forward 

architecture, includes a subset of context units. These units do not receive 

external input, but rather receive activation from the hidden layer, making the 

previous interpretation of input by the hidden layer available during the current 

processing. As a result, the network was able to attain a high performance 

parameter and able to identify the preceding input in the string presented with 

appropriate training and network architecture. To better understand the learning 
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process of the network, Cleeremans et al. (1989) used cluster analysis method to 

examine the information encoded by hidden units, which extracts activation 

pattern regularities that occur in hidden layers at specific input sequences to 

construct a tree cluster representation of similar patterns. Using just a few 

hidden units, the network was able to extract close approximations of abstract 

grammar rules - the outcome consistent with the symbolic perspective. 

Increasing the number of hidden units within the network architecture resulted in 

the learning patterns that develop a highly complex structure at different levels 

of cluster analysis, capturing not only the previous state of input but also the 

occurrence within the sequence. What Cleeremans et al. (1989) are able to show 

is that using the back-propagation learning, in the state of limited available 

resources (comprised of only a few hidden units), the networks resorts to 

extrapolation of abstract high-level rule-like patterns akin to that in symbolic 

models. When the network is not constricted however (more hidden units than 

minimally required for the task), it proceeds to extrapolate high-detail lower-level 

patterns that are more elaborate than the abstract rules in the traditional 

symbolic system.  

3.1.7.2 Compatibilist approach 

If the approximationist approach works from the bottom up, the compatibilist 

approach, on the contrary, works from the top down, and assumes at least some 

human explicit symbolic processing. Taking into account success of network 

models that do not use explicit rules, Touretzky and Hinton (1988) believe that it 

does not necessarily suggests the abandonment of explicit representations of 
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rules in reasoning tasks entirely. Instead, embedded symbolic representation is 

implemented within a distributed subsymbolic connectionist architecture to 

achieve a powerful, parallel, fault resistant system of reasoning. As a result, 

instead of the usual training process where the network is left to its own devices 

to extract the patterns from the available data, in compatibilist approach the 

network is designed to implement the rules from the top down. In production 

system, (J. R. Anderson, 1981, 1983a), symbolic expressions are manipulated by 

explicit production rules. Touretzky and Hinton (1988) aimed to develop a 

connectionist implementation of production system – a system capable of using 

rules for symbol manipulation rather than approximationist network that 

generates approximate behaviour without reliance on symbols or rules. For 

exhaustive description of the Distributed Connectionist Production System, please 

see Touretzky and Hinton (1988). 

3.1.7.3 Using external symbols for symbolic processing 

Third alternative to approximationist and compatibilist approaches was proposed 

by Rumelhart, Smolensky, McClelland, and Hinton (1986) that revolves around 

the idea of networks developing the capacity to interpret and produce external to 

the network symbols. Natural language as a symbolic system fulfils a dual 

purpose as an internal and external tool – external symbolic formulations 

internalized through the conscious rule interpreter, which is a separate entity 

from the intuitive processor that operates on the inherent subconscious level 

(Smolensky, 1988b). Thus, it may be tempting to assume that humans need to 

function inherently as a rule processing system in order to operate as conscious 
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rule interpreters. From the connectionist view, however, it may be possible to 

provide an alternative explanation of this account. Human developmental 

process occurs largely in social environments saturated with external symbols. As 

part of this developmental process, we learn the capacity to interact with 

external symbols by means of lower-level processes devoid (at least initially) of 

the symbol internalization ability, i.e. learning how to use external symbols. Even 

if it may appear that the use of symbols is eventually internalised to aid the 

reasoning faculties in mature adults, it is unclear in what way it is internalised 

exactly. Connectionist systems aim to identify and explain the causal relations of 

symbolic processing on a subsymbolic level – the step necessary to confirm that 

processing mechanisms at a higher symbolic level are in fact necessary. An 

alternative outcome could then suggest that connectionist pattern recognition 

ability may be sufficient to account for the symbol processing. Either way, the 

network approach to study external symbols may seem like a promising research 

direction.  

The general idea here is dissimilar to compatibilist approach for the following 

reason: instead of developing a rule system, the network is trained to use a 

system that may contain the symbolic information such as rules. In such a sway, 

network is required to exhibit the usual behaviours such as pattern recognition 

working with the external symbols, and possibly benefiting from external storage 

function and other elements. Rumelhart, Smolensky, McClelland, and Hinton 

(1986) argue that the ability to simultaneously manipulate the environment and 

process the environment that is being created in the process using external 
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symbols to solve difficult complex tasks by decomposing them into smaller 

simpler ones is the real and primary symbol processing function that humans are 

capable of performing. Thus, a system can learn to process and manipulate 

external symbols that are arranged according to some logical order. As it pertains 

to external symbol internalization, it is suggested that an internal mental 

representation of the external symbol environment is constructed, and the 

mental procedures operate on the internal representation instead. The output of 

mental model is used as input for the next mental procedure, and the output of 

that procedure used as input for the mental model, maintaining series of mental 

operations as a loop. Symbols are understood as patterns in the network, where 

the stable states of the network are symbols on a subsymbolic dynamic level.  

The symbol manipulations are therefore treated as a learned capacity initially 

performed in the external environment, where symbols are the human artefacts 

that may be internalized similarly to nonsymbolic information.    

3.1.8 The appeal of connectionist systems 

One of the principal reasons why network models have generated an increasing 

interest within the cognitive science community is the demonstration of many 

properties that exhibit similar behaviour to human cognition which are not 

observed in symbolic models. There are a number of qualitative differences that 

set NNs apart from other AI approaches, namely the learning and 

representational abilities. Other distinguishing features worth noting are inherent 
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parallelism and nonlinearity, and the ability to exhibit exceptional performance 

with noisy data (Gallant, 1993). 

The next paragraphs provide some details on that aspect. 

3.1.8.1 Natural plausibility 

It should not be a surprise that network models are compatible with what is 

known about the human nervous system. After all, network models were initially 

designed to model the human nervous system and the brain: network activation 

and propagation is based on the elements that can be observed in nervous 

system. Other elements of connectionist network models do not resemble the 

biological elements of a natural nervous system, establishing a stronger position 

for the artificial and cognitive nature of network systems. Here, network models 

are examined as systems of the artificial tasked with modelling a cognitive 

process, thus the natural plausibility is not as useful as it would be otherwise in a 

discussion concerned with the neurophysiologic aspects of nervous system.  

3.1.8.2 Soft constraints 

A connection between the units in the network system, much like the rules in a 

symbolic system, constitutes a constraint between the two units: if the first unit is 

active, the second unit is constrained to be active as well (in an excitatory 

connection). Rules however are of deterministic nature, so if the antecedent for 

the rule is satisfied – it is to trigger the consequent action is sure to occur. 

Network connections serve similar purpose, but, unlike the rules, receive input 

from a multitude of other units and therefore represent the situation with 
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multiple constraints. Thus, the best solution is determined by multiple constraints 

and therefore does not necessarily constitute an optimal solution for each of the 

individual constraints imposed – this is usually referred to as soft constraints.  

Soft constraints seem to be better suited for cognition modelling in a number of 

tasks: decision-making is but one such case where a person is often confronted 

with multiple alternatives. In network models, soft constraints provide a natural 

way to account for competing alternatives without specifying the underlying rules 

that govern the competition, at the same time not limited by the constraints of 

linear models in symbolic systems. Another benefit that soft constraints are able 

to provide is the improved performance of the system while dealing with 

information previously not encountered. The implementation of soft constraint, 

which is an inherent characteristic of network models, provides the ability to 

overcome some of the difficulties of symbolic models, such as exceptions to the 

rules (particularly in psycholinguistics) or common mistakes for example. Soft 

constraints of connectionist models tend to override these limitations and 

account for both – the regular behaviour that can be governed by rules, and the 

exceptions – with a single mechanism, where different connections carry out 

different functions in alternative contexts. Thus, connectionist network models 

that employ soft constraints are able to overcome some of the limitations of the 

inflexible rule-based symbolic models.  
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3.1.8.3 Graceful degradation 

Network systems exhibit a range of features similar to the functionality of a 

human brain when it reaches the limit of performance. Normally a very reliable 

system, while under overwhelming strain or physical damage, human brain 

begins to show less than optimal performance rather than crashing – some of the 

requests or parts of information are ignored, affecting performance according to 

the level of overload. Similar behaviour can be seen in connectionist networks: 

when elements of the system are destroyed, it is very rare indeed to observe the 

total loss of specific function, and instead manifested as a nonspecific gradient 

loss of functionality and increasing limitation of abilities – the effect generally 

referred to as graceful degradation.  

Symbolic systems are not able to perform in such a manner. If a rule is 

eliminated, the system loses the functionality this rule is able to provide 

completely. Redundancy and error-checking mechanisms are able to cope with 

system damage to some extent – still failing to exhibit the full effect of graceful 

degradation nonetheless. Whereas destroying connections or even units in a 

connectionist network, on the contrary, does not significantly deteriorate the 

performance of the system overall. Deleting particular units would remove the 

locally encoded information, but deleting connections would result in graceful 

degradation. Subsequently, the network would still be capable to offer plausible 

solutions using the available information and learning rather than crashing.  



 

 
77 

 

System that employs distributed representation would even be able to exhibit 

only slightly warped behaviour if some of the units were disabled. With additional 

damage, system response accuracy would deteriorate further but would still be 

able to produce a response according to its current distorted pattern. Thus, 

connectionist systems possess an inherent ability of graceful degradation as a 

consequence of the network architecture.  

3.1.8.4 Content addressable memory 

The information that can be retrieved from memory using the cues that 

constitute parts of the memory itself is usually referred to as content addressable 

memory. Modelling this type of information system using the symbolic models 

poses a considerable difficulty. An example would be a filing system, where 

information is organized and stored according to some rule – usually a one-

dimensional (chronographic for example), or two-dimensional (chronographic 

and alphabetic for example) at most. Accessing the information in any other way 

(not chronographic or alphabetic but rather performance based for instance) 

poses a considerable problem, as the information system was never designed for 

such a way and therefore would involve a serial search. Indexing systems could 

help to some extent, but this would require determining all possible paths for 

information retrieval on the onset, which could be unworkable.  

Connectionist networks however, as discussed above, provide natural means to 

develop the content addressable memory system. It is even capable of dealing 

with certain inaccuracies with the cues and is able to provide the best alternative 
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solutions if precise answer is impossible to determine due to inaccuracy. The 

effect is particularly apparent in distributed representation systems, where 

remembering a previous state effectively is no different from the process of 

making inferences and constructing a new state. 

3.1.8.5 Learning from experience 

Network models are capable of learning from experience by adjusting the 

connection weights, which will be discussed in detail in the following sections.  

Symbolic models have been shown to be particularly suitable to represent 

learning that follows strict isolated rules such as instructions, whereas network 

models are particularly adept at large scale conceptual frameworks such as 

language acquisition. Further research is required to examine the usefulness of 

network models at acquiring instruction type memory. 

3.2 The Neural Network architecture  

Connectionist networks are adaptive systems comprising of simple computational 

units. Often containing thousands of interconnected units, unlike the traditional 

models with sequential processing, networks models are capable of displaying 

complex behaviour even with just a few units due to its parallel architecture.   



 

 
79 

 

3.2.1 Neural Network model structure 

To illustrate connectionist processing, consider a model designed to simulate the 

functionality of a content-addressable memory system: the hypothetical dataset 

describes two groups of people with demographical and occupational attributes.  

3.2.1.1 Network components 

To have this data encoded, the connectionist network uses a number of distinct 

components. A set of (1) computational units is joined by (2) connections, and at 

certain times units examine its input and computes (3) activation as an output, 

which is passed to other units along the connections. Each connection carries a 

certain signed (4) weight, which determines whether the activations influence the 

receiving computational unit in a similar or opposite way according to the sign of 

the weight; and size of the weight determines the magnitude of the influence 

upon the receiving computational unit. Connections and weights are the 

imperative parameters of the model and determine the model behaviour.  

3.2.1.1.1 Activations  

Activation values for the units are determined by the equations. Initially set to a 

certain value, activations change once the simulation is run and are adjusted 

accordingly in response to the effects of external input, propagation of 

activations exhibited by other units in the system, and decay over time. Only the 

input layer could be affected by the external input – units in the hidden layer 

(each unit representing the group member for example) are only affected by the 

propagation of activation from other units and decay over time.  
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3.2.1.1.2 Connections  

Weighted connections transfer the activations between the units. In the 

hypothetical dataset described above, the units for each of the group members 

with each of their attributes are excitatory connections. As a result, property unit 

propagates activation to the unit that represents a group member that possesses 

such attribute. To those units that represent a group members that do not 

possess such attribute the connection is inhibitory, as are the connections 

between the mutually exclusive attributes. Thus, if certain age group is activated, 

all the units that represent other age categories will become less active (due to 

inhibitory activations between the mutually exclusive properties) and units that 

represent group members that are of the appropriate age will be activated 

(excited) and those that are of a different age will not (inhibited).  

3.2.1.2 Dynamics of the network 

To illustrate the functionality of the network, consider a sample task of memory 

retrieval. The external input is supplied to one or several input units of the 

network. As a result, the excitatory connections will transfer the activation to the 

units associated with the input unit supplied with external activation and 

inhibitory connections will decrease the activations with the units that are not 

associates with the externally activated unit. Thus, if the unit representing group 

member’s name is activated externally the activation will be carried to all the 

units that represent group member’s characteristics, and will decrease activation 

with all the other units that represent other group members and characteristics 

other that the associated with the particular group member that is being 
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externally activated. These effects will continue to reverberate throughout the 

network across numerous cycles until the system achieves the state of 

equilibrium where additional cycles no longer improve the performance. All the 

attributes associated with the externally activated group member will now have 

high activation values, thus recovering group member’s characteristics from the 

system.  

A more practical query may be the reverse to the one described above is the task 

of content-addressable memory, where the group member’s name is retrieved 

through activating the characteristics. Simultaneously activating a number of 

characteristics will activate the hidden unit that represents the group member, 

which in turn will activate the group member’s name unit. Moreover, it will 

activate all the units in the hidden layer that represent the group members that 

have excitatory connections with externally activated attributes, thus activating 

all the group members’ name units to a varying degree – behaviour of the system 

that offers high level of generalization.  

The process outline above is able to produce more subtle effects similar to 

human performance tasks of categorization and prototype formation. The 

network is able to obtain category instances with the external input to one of the 

category units, highlighting all group member units. During this process, all group 

members are characterized as to how well they represent the category. As 

category unit is activated, the activation is propagated to all member units, which 

in turn propagate the activation to all their characteristic units. Therefore, the 

most common group member characteristics become activated the most, 
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sending their activation back to the individual member units thus forming the 

prototype.  

Another example shows the practical example of utilizing regularities. If multiple 

characteristics units are activated externally, they will immediately propagate 

activation to those individual member units that share the activated externally 

characteristics, thus changing the activation for those members. In turn, the 

member units will propagate activation to other properties that are characteristic 

to the activated member units. This then will activate additional member units 

that do not possess the initial characteristics activated externally, but would 

identify the other group members who are most likely to show the best fit with 

the primary group. This network behaviour effectively allows making inferences 

from known characteristics to other characteristics.  

3.2.2 Neural Network architecture design features 

Illustrated in the previous network architecture may very well be very fitting to 

the memory retrieval tasks and provides attractive network behaviour associated 

with the task. This design however is not particularly suitable for most other 

applications. Other connectionist architectures may be distinguished with regard 

to the four features: (1) the way units are interconnected, (2) unit activation 

mechanisms, (3) learning procedures that alter the connections, and (4) the 

semantic interpretations of the system.  
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3.2.2.1 Connectivity pattern 

Connectionist networks may be divided into two major classes in respect to the 

way the units are connected: (1) feedforward networks that have one-way 

connections where the activation goes from the input layer to the output layer 

and activation is forward propagated, and (2) interactive networks that have two-

way connections where dynamically changing activations reverberate between 

the units in the network over many cycles.    

3.2.2.1.1 Feedforward networks 

Units in a feedforward network are arranged into distinct layers – the simplest 

two-layer configuration consists of only input and output layers. All input units 

are connected to all the output units and once the connection weights are 

configured appropriately, the network is able to produce a suitable response to 

the input pattern with a distinctive output pattern and for that reason is 

sometimes referred to as pattern associator. Pattern associator could be used as 

a classification device where inputs are sorted into few output categories. The 

limited architecture of two-layer network however is insufficient to address 

certain problems such as XOR (exclusive or) function. To accommodate such 

limitation, it is necessary to introduce the hidden layer into the network 

configuration. Situated between the input and output layers, hidden layer 

modifies the information processing and provide considerable additional 

functionality to multi-layered feedforward networks. A number of modifications 

are possible in the multi-layered networks. One such modification connects units 

not only to the next layer, but also to the units in the layers beyond the next one 
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– so in a three-layer network input units would not only connect to the units in 

the hidden layer, but also directly to the units in the output layer in addition to 

the connections between the hidden layer and the output layer. Another 

modification establishes the recurrent network, where the system receives the 

input in a sequential manner and response is altered according to the information 

of previous steps of the sequence. The pattern achieved on a higher layer is fed 

back into the lower layer and serves as a form of input.  

3.2.2.1.2 Interactive networks 

In contrast to feedforward networks, interactive networks include at least some 

number of two-way connections and input is processed across multiple cycles. If 

processing units are organized into layers, the processing could go forwards and 

backwards.  

3.2.2.2 Activation rules 

Another difference characteristic to network models in addition to the pattern of 

connectivity is the rules that govern the unit activation values. Activations values 

could be grouped into classes that include (1) discrete activations that typically 

involve a binary value (for instance 0 and 1) or (2) continuous activations, either 

bounded (a range of -1 o +1) or unbounded. Activation rules specify the 

calculation for the level of activation for each of the units. The following 

paragraphs will discuss the rules in detail. 
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3.2.2.2.1 Activation rules in feedforward networks 

The input is composed of the two components: the external input and the effect 

of activity in other connected units. In a two-layer feedforward network, input 

layer units are dedicated to receive external input and take the input pattern 

value as activation and therefore does not require an activation rule. On the 

contrary, the output layer units are dedicated to receive activation from other 

units in the network. The output from the input layer units is sent to the output 

layer units, where it is multiplied by the connection weight – summative output 

from all the input layer units provides the total input for each of the output layer 

unit. Additionally, a bias could be introduced to regulate the responsiveness of 

each output unit as an additional input for the output layer units that are 

unaffected by the dynamics of the network: low value will result in conservative 

response of the output unit whereas high value will do the opposite. Activation 

for each of the units is then determined by applying the activation rule using the 

summative output from the input layer units. If linear activation rule is used, 

activation equals the summative output of input layer units – provided certain 

constraints are met. Introduction of hidden layers provides the additional power 

necessary to violate the constraints, making it necessary to change the activation 

rule accordingly to a nonlinear function – logistic for instance.  

These rules could be adapted to be used with discrete rather than continuous 

activation values (for networks that use binary units). With the linear activation 

rule, the continuous output of the unit is compared with the specified threshold 

value unit and depending on the result; the continuous output of the unit is 
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converted to binary (either 0 or 1). It is possible to use the threshold units within 

the hidden and output layers of feedforward networks, as well as in interactive 

networks. If the logistic activation rule used in a feedforward network with binary 

units, the binary activation takes the probabilistic form where the equation 

determines the relative frequency of the discrete result.  

3.2.2.2.2 Activation rules in interactive networks 

In addition to the equations used in feedforward networks, interactive networks 

necessitate the parameter for time (t) or cycle(c), as activations are updated 

numerous times for each of the units in response to the particular input. Unit 

activations may be updated once per cycle if synchronous update procedures are 

employed, or each unit is updated separately according to some random 

determinant in the case of asynchronous update procedure being employed 

(which helps with preventing the unstable oscillations of the network). Another 

difference is that each update requires a separate application of activation rule to 

be performed; unlike to feed-forward networks where there is only one forward 

wave of activation changes and once for each of the units. Hopfield nets for 

instance (Hopfield, 1982) comprise of linear threshold units where on each input 

unit acquires an activation of 1 if the input is above the threshold – otherwise 

activation is set to 0. Asynchronous update procedure is then employed for units 

to determine a random time to update activation according to the state of input 

of the network at the time of an update until none of the units would receive an 

update that would lead to a change of the activation. It is then the network is said 

to achieve the state of equilibrium, which constitutes the network's identification 
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of the initial input (if the network indeed settles into the equilibrium and does not 

rather oscillate between multiple configurations). 

An imperative role in acceptance of the model played the fact that Hopfield 

(1982) demonstrated the measure of the network state (energy, E), showing the 

analogy between the network ability to achieve equilibrium with that of the 

physical system - state of lowest energy in thermodynamic system. The E 

measure could be adapted to show the goodness of fit (G) of the network’s end 

state of equilibrium (Rumelhart et al., 1986). Hopfield nets are increasingly useful 

in a number of optimization applications where the connections represent the 

constraints for possible configurations of network equilibrium (a solution to 

supplied input).  

One of the difficulties Hopfield nets demonstrated is that the network can settle 

into local minima – the stable state where different parts of the network settle 

into incompatible configurations and as a result, the network is not able to 

achieve the overall state of lowed possible E value. To reduce such network 

tendency, Hopfield net has been adapted by Hinton and Sejnowski in their 

Boltzmann machine (1985; 1984). The difference with the Hopfield net is that it 

employs a stochastic activation function rather than a deterministic one – 

essentially, it is a probabilistic version of logistic function discussed in paragraph 

on activation rules in feedforward networks above.  

Anderson’s spreading activation models (1981; 1983b) that utilize negative 

exponential function of current activation to achieve nonlinearity in semantic 

networks, using decay function for interactive processing. Used in a service of a 
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production system, the networks allows parallel processing within the system 

architecture by tolerating a number of similar to some degree active processes to 

run simultaneously in competition (similar to notion of soft constraints). 

Spreading activation models could be distinguished from the network models on 

the following criteria. 

First, spreading activation models maintain the structure of control, whereas 

connectionist networks are dedicated to retain no control over cognition 

modelling other than internal decentralized local control of the network. Second, 

certain types of distributed representation is emphasized in connectionism 

(McClelland, Rumelhart, & Group, 1986). Third, propagation equations contain 

differences.  

To summarize, all the different types of networks have certain common 

elements. New activation of a unit is dependent upon net input received from 

other units, which in turn is determined by the connection weights. Connectionist 

networks usually have the ability to alter their connection weights in adaptive 

manner through a process that is often referred to as learning. Different learning 

procedures are discussed in the following sections.  

3.2.2.3 Learning procedures 

In connectionism, the process of learning signifies the ability of the network to 

modify connection weights between the units. The weights determine in some 

measure the end state a network could reach as a result of the processing, and 

therefore transform the network characteristics. It is the goal of a learning 
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procedure to define a basic procedure for the network capable to achieve the 

desired output without the external control system – that is a local system of 

weight change control. Readily available inputs of each of the units include the 

current value of the weight itself and the activations of the units to which it is 

connected.  

Donald Hebb proposed an idea that suggests that learning occurs in the nervous 

system through strengthening of the connections between the neurons 

whenever they fire simultaneously. Based on this proposal, one of the simple 

learning procedures in connectionism specifies the weight of the connection 

between the two units is increased (or decreased) in proportion to the product of 

their activations – the Hebbian earning rule. Consequently, when both units have 

the same sign the weight is increased proportionately to the product of their 

activations or decreased in the same way when the signs are different. Although 

capable of producing impressive results, Hebbian rule is presents some serious 

limitations. A number of differing learning procedures will be discussed below – 

all however based on the same principles that specify learning as procedure of 

changing connection weights employing only the information available locally. 

3.2.2.4 Semantics of connectionist systems 

If a connectionist network is to simulate human behaviour or cognitive 

performance, one must consider the representation of the concepts of that 

domain in the network. It is possible to either designate each unit to a particular 
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concept in localist networks; or designate multiple units to represent the 

concept, as is the case in distributed networks.  

3.2.2.4.1 Localist networks 

In localist networks, each concept is represented by a designated unit. One of the 

obvious advantages that this offers is the considerable ease with which 

researchers could monitor the network performance in terms of the domain and 

objects studied. This however carries a possible caveat in a way that it is easy to 

forget that the appointed to each unit concept only carries meaning to the 

researcher and not the network itself. It is necessary to rely on external system 

employed for semantic interpretation, which could limit the performance of the 

network by the design of the architecture. Despite this, it is may be even more 

difficult to design a distributed network, and localist networks may be preferable 

in a range of tasks. Concepts are represented by units, and constraints between 

those concepts are represented by the connections – positive connection 

emphasizes the condition of the network where both units have the same 

activation, whereas negative connection emphasizes the preference towards the 

opposite activations. The state that the network achieves at its global minimum is 

the state that best satisfies the soft constraints.  

3.2.2.4.2 Distributed networks 

In the distributed networks the situation is quite different, as the concept is 

represented by an activation pattern across a number of units rather than a 

single unit representing the concept. One way to design a distributed 
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representation of a concept in a network is through featural analysis of the 

concept (method often employed in the field of psychology) to encode across the 

appropriate units. The separate features derived such an analysis are usually 

encoded as individual units in the network architecture – so are a localist 

representations of the features that form a distributed representation of the 

concept. On way to obtain a workable featural analysis of a concept is to rely on 

established theoretical framework, as often connectionists are not concerned so 

much with the features of the concept but rather with how the network utilizes 

the distributed representations. Another way is to allow the network to perform 

the analysis. During the learning process when only input and output parameters 

are identified by the researcher, hidden units of a multi-layered network will 

develop sensitivity to certain features of the concept. Network learning is 

effectively an intricate feature extraction mechanism, and usually networks do 

not attain the apparent from the input localist solutions but rather each of the 

hidden units develops sensitivity to a complex and understated regularity 

commonly referred to as microfeature. This, hidden layers are able to provide 

distributed coding of input.  

Such distributed representation design carries additional benefits to the model 

architecture. Once the concept is distributed pattern across units, the processing 

capacity of the network is also distributed and therefore is capable to 

compensate for the missing, partial, or even inaccurate data through processing 

in other units. Thus, the system is more resilient to failure. Moreover, the system 

is able to learn new information or provide a response to previously unseen 
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input. This network capacity is akin to human process of making generalizations – 

ability to infer some of the unknown properties of the entity based on the known 

properties – and therefore may be particularly suitable in such tasks (McClelland 

et al., 1986).  

Another technique employed in distributed networks is coarse coding, and is 

discussed elsewhere (Touretzky & Hinton, 1988).  

3.3 Machine learning 

Machine learning broadly refers to ability of a model to improve its performance 

based upon input information. It is generally considered that research on 

machine learning presents the highest potential to eventually develop models 

able to perform complicated AI tasks, as algorithms that learn from training and 

experience are superior to those based on a subset of contingency rules 

developed by human scientists. Machine learning may be divided into supervised 

and unsupervised learning.  

Supervised learning is a learning algorithm that analyses a training data (i.e. 

labelled data: pairs of input and output values) to produce an inferred or a 

regression function able to predict the correct output for any input. It is required 

for the learning algorithm to make certain generalizations from the training data 

that could be used to analyse previously unseen data – a process that is 

analogous to concept learning in human and animal psychology. Unsupervised 

learning refers to the machine learning problem aimed to determine the 
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underlying structure of unlabelled data. In unlabelled data there is no error signal 

to evaluate possible solution, and therefore relies on techniques such as 

clustering that examine the core features of the data – the self-organizing map 

(Kohonen, 1990, 1998) is one such algorithm often used in NNs models (for a 

strategic marketing application, see Curry, Davies, Phillips, Evans, & Moutinho, 

2001).  

The capacity of Neural Network Models to learn is one of the features most 

notable to researchers. This complex question requires particular attention, and 

learning algorithms, both connectionist and other, are discussed here. Certain 

philosophical issues concerning the connectionist learning are also addressed.  

3.3.1 Traditional approaches  

Following the two distinctive philosophical approaches to learning, the 

theoretical findings in disciplines such as psychology and linguistics (and others) 

have customarily been divided to follow one of the two major intellectual 

traditions: the empiricism or the rationalism.  

3.3.1.1 Empiricism 

The philosophical empiricism (largely based on the work of Bacon, Locke, Berkley, 

and Hume) refuses the excessive reliance on established principles of reasoning, 

and views the sensory experiences as primary requirement for the acquisition of 

knowledge. Certain integral elements of the theoretical framework however pose 

a particular interest. Associationism, for instance, describes the sensory processes 

to result in simple ideas, which in turn are composed into complex ideas through 
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the spatial contiguity that produces the association. Temporal contiguity is 

viewed as an integral part to the concept of causation, as idea of a cause would 

elicit the associated idea of effect. Simple ideas that are sensations are composed 

into complex ideas through simple additive mechanisms, and therefore are 

sufficient to predict the properties of complex ideas. 

Behaviourist models employed a kind of associationism in such a way that the 

entities involved in the association were limited to those available for the 

observation – the environmental events and the behavioural responses. During 

the period dominated by the behaviourist theories, learning was one of the 

central research domains. In behaviourism, learning could be defined 

operationally as a change in response frequency. Researchers investigated 

different ways of arranging the environment and employed mathematical 

modelling to establish the theory, for the large part deliberately ignoring the 

internal processes and mechanisms of the system. This and some other 

limitations made behaviourists susceptive to the emergent information 

processing theories.  

3.3.1.2 Rationalism 

The other major philosophical tradition that influenced the development of 

cognitive sciences is rationalism (represented by Decartes, Spinoza, and Liebniz). 

Contrary to empiricism, ideas in rationalism are not restricted to experiences but 

rather are innate:  what is important is how these ideas are used in reasoning. In 

psycholinguistics, Chomsky (1957, 1968) introduced the concept of innate 
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Universal Grammar, arguing that the amount of information that children receive 

in their early years would not be sufficient to develop the grammar rules of a 

child (poverty of the stimulus argument, in review of B. F. Skinner’s Verbal 

Behaviour, 1959). Following the Chomskian tradition, the child is said to be born 

with a set of default parameters that could be reset according to experience.  

Neither empiricists nor rationalist frameworks were able to provide a convincing 

account of the mechanisms of the language acquisition process.  

3.3.1.3 Contemporary cognitive science 

Unlike empiricists and rationalists, cognitive psychologists and artificial 

intelligence researchers have for the most part seemed to ignore the learning 

process until recently, addressing other areas where immediate result could be 

made using symbolic rule-based models (information representation, memory 

systems, etc.). The rise of connectionist approaches to learning in the 1980s 

generated and increased interest to learning. Research area known as machine 

learning emerged within the artificial intelligence framework that focuses on 

developing strategies for the machines to learn from experience. In rule-based 

systems, learning strategies focus on addition or modification of the rules – a 

rather challenging task, as modifying the rules to accommodate certain 

circumstances may result in a drastic deteriorating effect elsewhere. Another 

critique is that adding and modifying rules is arguably too rudimentary of a 

mechanism to capture the learning process.   
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Therefore, in the 1990s, empiricists continue to develop increasingly 

sophisticated methods to modify the symbolic rules; rationalists offer novel 

interpretations of adjustments to innate grammar system in language acquisition; 

and connectionists develop new algorithms that are able to provide the sub-

symbolic network architectures of the learning process.  

3.3.2 Neural Networks approach 

Learning in connectionist models is a process of adjusting connection weights 

between the units, which would have an effect on subsequent processing of the 

input by the network. While the network is trained, the activations and weights 

change on each trial – subsequently after the network training is complete, the 

network is tested to examine the effect of the input on the activations only. Both 

weight and activation changes are determined based on the local information 

available immediately to each unit: remote units in the network are affected by 

spreading local propagation. A number of learning procedures in connectionist 

networks have been developed, and employ either supervised (classified 

according to specified input-output) or unsupervised learning (no feedback on 

input-output provided).  

3.3.2.1 Two-layer feedforward network learning procedures 

The objective of the learning procedure is to determine the weights to allow the 

appropriate response of the network to a number of cases. Each case is 

comprised of the input layer pattern of activations and output layer of pattern 

activations that form the n-dimensional vectors, where n is a number of units. 
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The learning ability is normally assessed during the training and testing stages. 

During the training, the weights are successively modified according to the 

constraints of the set of cases. Depending on the learning procedure used and 

the difficulty of the set of cases, it may require a large number of epochs for a 

network to achieve the desired state and, once the level of acceptable 

performance is attained, should be able to respond to the input patterns with the 

appropriate output pattern. Some particular learning procedures are the Hebbian 

and delta rules. 

3.3.2.1.1 The Hebbian rule 

The two-layer feedforward network that uses the linear activation and Hebbian 

rule to a set of input-output cases forms a learning system referred to as linear 

associator. During training input and corresponding output pattern is presented, 

and Hebbian rule is used to adjust the connection weights: the activations of the 

two connected units are multiplied with the learning rate. Consequently, if the 

two unit activations are both positive or negative, the connection weight will be 

adjusted by the amount specified; if one unit is positive and another is negative, 

the connection weight will decrease according to the negative equation value. 

During the testing stage, only the input patterns are presented. Hebbian rule 

offers good results as long as the input patterns are not correlated – a 

requirement that imposes a substantial limitation.  
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3.3.2.1.2 The least mean square rule 

Similar to Hebbian rule in a way that it considers the input and relevant output 

unit for a change in weight, but substantially more powerful, is the least mean 

square (LMS) learning rule. During the training stages, the LMS rule generates the 

actual output pattern using the input pattern and compares it to the desired 

output pattern, and changes the weight accordingly to minimize the discrepancy 

for each of the units. Thus, the rule effectively is an error correction procedure.  

Once the discrepancy for each of the units is calculated, they are squared and 

added together to compute the pattern sum of squares (pss) value. By summing 

all the pattern sum of squares values a total sum of squares (tss) value is 

obtained, which indicates the level of potential improvement still obtainable until 

the perfect performance is attained on the whole set of input-output cases. Thus, 

the essential principle is to change the connection weights as to minimize the 

total error, and LMS rule need not be restricted to the uncorrelated only sets of 

input patterns.  

When the two rules are contrasted, the difference that gives the LMS method 

substantial increase in performance over the Hebbian rule is that the LMS 

method is able to utilize the discrepancy between the actual and desired output 

to change the connection weights during the training stages; whereas Hebbian 

rule is only able to use it for evaluation purposes during the test stages. Even 

though the two-layer network could be quite powerful given that certain 

conditions are met (linearly independent set – i.e. none of the input patterns are 

a linear combination of other patterns): it is capable of learning the inclusive or 
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(OR) function. It is however not capable of learning the exclusive or (XOR) 

function as there is no set of weighs capable of generating the correct output. 

The network will however aim to minimize the tss and will learn to generalize to 

new input patterns based on their similarity to the input patterns of the training 

stage. As a result, the network will do a good job in identifying the acceptable 

output pattern.  

In the 1980s, the new powerful training algorithms for training hidden units such 

as back-propagation finally allowed to overcome the linear reparability 

constraint, leading to major breakthrough of connectionism.  

3.3.2.2 Back-propagation learning procedure in multi-layered 

networks 

By introducing the hidden layer between the input and the output, the 

information flow becomes increasingly more sophisticated. This allows the 

network to process intermediate results obtained from the input activations that 

are then used in the output. The network architecture becomes substantially 

more complex as well, as now there are a number of ways available to the 

researcher pertaining to the network design that need to be addressed. Number 

of hidden layers and hidden units in each layer is one such question, and 

researcher may choose to perform some exploratory analyses to determine the 

optimal model size. With multiple layers present in the network structure, it is 

necessary to consider the extent of interconnectivity between the layers in the 

network, as now not only the successive connections are possible (input-hidden-
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output), but also additional connections (input-output in addition to input-

hidden-output). In addition, the more intricate network architecture requires a 

more sophisticated nonlinear activation rule. Finally, the learning procedure 

capable of handling the now available hidden units is essential, such as modified 

LMS procedure where the activations propagate forward and then error and 

weight adjustments propagate back through the network (back-propagation).  

Despite the questions of the design, the actual network response is developed 

through the learning process by adjusting the connection weights and not 

determined by the researcher. An example of such network is NETtalk model 

(Sejnowski & Rosenberg, 1987) that was tasked with reading English. By supplying 

the continuous speech corpus of 1,024 words with desired output consistent with 

the phonetic speech, network was able to achieve 80 percent accuracy after 

10,000 training trials, and 95 percent after 50,000 words presented to the model, 

with 78 percent accuracy on a previously unseen text. The voice synthesizer was 

actually able to produce recognizable speech using the model output. Further 

analysis exposed the functional features of hidden layers in the network being 

relevant to theoretically appropriate elements of language.  

Some of the shortcomings of the back-propagation learning procedure that have 

been identified are concerned with a rather high computational demand and the 

fact that the network may take a long time to learn; as well as inability to 

distinctively attribute back-propagation to any known biological process. If 

viewed on a psychological level of analysis however, back-propagation is a 
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mechanism that allows a multi-layered network to achieve gradient descent, i.e. 

learning by reducing the output error.  

3.3.2.3 Boltzmann learning procedure 

Interactive networks (such as Boltzmann machines) have their own distinct 

architecture different to that of the feedforward networks: each input pattern 

triggers numerous cycles of activation processing across the network, which 

maintain the interaction across the cycles until the network settles into the state 

of thermal equilibrium. Unlike the learning epochs in feedforward networks, the 

cycles do not involve the modification of weights but rather computation of 

activations, and respond to a single input pattern. One issue that may arise is the 

tendency of the network to settle into local minima – a stable state that 

nevertheless does not satisfy the constraints in the best possible way (addressed 

with the help of the simulated annealing technique that involves the gradual 

decreasing of the designated parameter in a stochastic function).  

Boltzmann machines can be trained using a learning technique conceptually 

similar to that of a back-propagation (McClelland et al., 1986). While in training 

mode during stage one, the input and output units are fixed and other unit 

activations are updated in a random order using the stochastic equation with the 

simulated annealing until the network reaches the thermal equilibrium. Each of 

the input-output cases is then processed and simultaneous activation time is 

recorded as an expected probability of unit activation. In stage two, essentially 

the same process is carried out but only the input units are fixed this time and the 



 

 
102 

 

output is determined by the network. The variation of the probability obtained in 

the two stages determines the connection weight change which will result in 

minimization of output units error (given the learning rate parameter is set 

sufficiently slow). Thus, the underlying reasoning is similar to that of the LMS 

procedure where discrepancies between the desired and actual output direct the 

adjustment of connection weights. One of the drawbacks of the procedure is the 

slow learning rate due to the time required for the network to settle into the 

equilibrium for each input pattern. 

3.3.2.4 Competitive learning 

Another type of learning procedure is competitive learning that is a variation of 

unsupervised learning, where a network is presented with input patterns and is 

tasked to identify regularities to allow grouping the patterns into clusters of 

similar patterns with no feedback on the correctness of the procedure. The 

simplest architecture would have a fully connected input and output layers, and 

the number of units in the output layer specifies the number of clusters for a 

network to identify, and the activation rule is set to ensure only one unit is 

chosen inhibiting the other units at the same time. Learning rule reallocates the 

weight of the chosen unit in a way that increases the connection weights with the 

active input units and decreases the weights with the inactive ones keeping the 

total weight constant.  

Inclusion of more than one set of competing output units (possibly with a 

different number of units specifying a different number of clusters) would 
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increase the complexity of the network behaviour. Multiple layers would also 

result in behaviour that is more complex and allow the network to identify higher 

order regularities.  

3.3.2.5 Reinforcement learning 

In reinforcement learning, the network is given the information on whether or 

not the output pattern was close to the desired pattern without supplying the 

actual desired pattern – therefore only the global performance indicators are 

used to adjust the weights. The procedure may not seem as advanced as back-

propagation; nevertheless, it does satisfy the basic notion central to 

behaviourism and modifying behaviour through reinforcement. Essentially the 

network performs a large number of trials with varying weight combinations 

recording the global reinforcement delivered with each trial. The weight 

combinations that deliver higher reinforcement gradually become recognized, 

resulting in increased consequent trial frequency that leads to the weights that 

highest global reinforcement.  

Reinforcement learning is much simpler of a procedure compared with the back-

propagation since the error calculations for each of the weights are omitted; but 

may take a long time to produce the result and does not scale very well. It does 

however offer a substantial theoretical benefit of relating the connectionist 

method to the field of traditional learning theory.  
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3.3.3 Difficulties with machine learning  

Some of the criticisms of connectionist models of learning are discussed in the 

following paragraphs. 

3.3.3.1 Associationism 

One of the critiques of connectionism is that it is essentially a return to 

associationism, which would have an adverse effect on the progress of cognitive 

science and the advances made by the symbol manipulation systems. It is not 

however merely a return to associationism, but is rather based on the core 

principle of associationism that suggests that contiguities produce connections. 

Connectionism employs the powerful idea and develops it with unmatched 

sophistication with such mechanisms and concepts as distributed representation, 

hidden units capable of capturing microfeatures, back –propagation procedures, 

supervised learning with error reduction function and other. A simplified 

connectionist network that uses Hebbian learning rule is most similar to classical 

associationism where simple units were ideas and, based on the contiguity, 

associations are increased or decreased between these ideas. The more 

sophisticated multi-level connectionist networks could attain deeper level of 

associationism as hidden units can decompose ideas into microfeatures and 

propagate their activity within the network to achieve contiguity in a different 

manner.  

Rule-like systems could also be modelled with connectionist architecture on a 

micro level. Therefore, connectionism provides the mechanism that can operate 
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on a fine level of detail and using the cognitivist high-level description of the 

cognitive process. Moreover, connectionist models of learning offer a novel 

approach to the process of concept and cognitive skill acquisition. Ability to 

provide plausible explanatory models of rule-like behaviour and offer powerful 

learning mechanisms may play an imperative role in cognitive science through 

the integration of associationism and cognitivism that may carry broad 

implications for the field.  

3.3.3.2 Poverty of stimulus 

In Chomsky’s criticism of Skinner’s verbal behaviour and language acquisition, the 

central nativist argument revolved around inability for a child to learn the 

language from available experience – the poverty of stimulus. The argument 

however should not be construed in a form whether anything in the organism is 

innate or exist prior to the sensory experiences, but rather what is innate since 

any kind of learning presupposes some sort of structure to be present within 

which the learning could occur. In the case of symbolic approach for example, at 

least some of the initial functionality in symbol manipulation could be considered 

innate.  

In connectionism, nativism is rarely regarded as an issue – possibly due to the fact 

that connectionism has the roots in associationism. Something else to consider is 

that most challenging connectionist problems are statistical and computational 

and deal with the science of artificial in one way or another, and therefore are 
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not concerned with nativism. Extended discussion on this topic could be found 

elsewhere (McClelland et al., 1986; Shepard, 1989). 

3.4 Pattern recognition 

Chapters above provide an overview of what connectionist networks are capable 

to achieve by mapping one set of patters onto another by encoding statistical 

regularities in connection weights modified by the network learning process. This 

chapter provides a discussion on the claim that networks are particularly 

appropriate for modelling behaviour, which entails that patterns are central to a 

variety of human faculties and connectionist networks are particularly 

appropriate for it.  

Pattern recognition could be defined as mapping a specific pattern onto a more 

general pattern. Another type of mapping is pattern completion, which is 

mapping an incomplete pattern onto the same but completed pattern. Pattern 

transformation is mapping one pattern onto a different related pattern. Pattern 

association is mapping a pattern onto a different unrelated pattern.   

In human behaviour, pattern recognition is most apparently evident in 

perceptions, where local classifications are combined into higher order patterns, 

which in turn serve as inputs for high-level recognition faculties and abstractions 

that are recognised by human languages. Thus, categorization does not only refer 

to semantically interpretable cognitive level of pattern recognition, but also to 

lower-level sensation and perception (McClelland, 1979). 
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3.4.1 Pattern recognition algorithms 

The following sections demonstrate mapping abilities of connectionist networks. 

3.4.1.1 Pattern recognition in two-layer networks 

For a system to be considered capable of pattern recognition, it should display a 

consistent response to the instances of pattern presented to it. Two-layer 

networks are quite competent at such tasks and can learn to recognize the 

pattern using the learning rules discussed above. Moreover, while doing so the 

network would develop a good generalizing capacity. It not only will be able to 

respond well to input patterns seen in training, but also to patterns previously 

unseen – producing an output closely resembling the output of the similar known 

input pattern.  

This however is somewhat different to the typical human learning process as the 

exposure is not restricted to the perfect examples but rather is an assortment of 

similar cases with varying levels of distortions. Therefore, the network was tested 

using the distorted inputs and output patterns. As a result, the network was able 

to provide a qualitatively correct response very close within the numeric values to 

a desired output – even to previously unseen patterns. Thus, the simple two-layer 

network is able of learning to recognize several input pattern categories, and can 

handle distortions in the pattern and respond to new patterns quite well and in a 

natural manner.  
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3.4.1.2 Pattern recognition in multi-layer networks 

Mapping input patterns directly onto output patterns is not sufficient for some 

pattern recognition, and may require additional intermediate layers to facilitate 

the information extraction. One such early interaction model was designed to 

recognise visual patterns – four-letter words in a certain font (McClelland & 

Rumelhart, 1981; Rumelhart & McClelland, 1982). Input layer contained 

individual elements of letters, intermediate layer contained letters, and output 

layer contained four-letter words. The intermediate layer in this particular model 

is not a true hidden layer as the containing features were designated by the 

researcher rather than being extracted as the result of the network learning 

process. Instead, the intermediate layer was set up as a sort of an extra output 

layer, where the network is able to report on either the letter or the words 

depending on the task parameters. In a true multi-layer network with hidden 

layers there is usually little reason to report the hidden layer as it normally 

contains a sophisticated set of microfeatures extracted by the network that are 

not easily interpretable. 

Even though the network was designed decades ago and before the back-

propagation learning procedures were developed, it is able to accommodate in a 

very human manner a range of conditions such as low contrast and missing 

elements, and exhibit graceful degradation due to multiple soft constraints that 

the network is aimed to satisfy.  
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Another fascinating aspect of human pattern recognition addressed by the model 

is word superiority effect where letter recognition is improved when presented in 

a context of a word (Reicher, 1969). Explaining the underlying processing that 

considers the actual word in the course of letter recognition was something that 

presented a challenge for researchers. McClelland and Rumelhart’s model (1981; 

1982) provides one auspicious explanation where word recognition may affect 

component letter recognition. As described earlier, the network contains a layer 

of letter features, layer of letters, and layer of four-letter words. Each of the 

feature units is positively connected to those letter units that contain the 

features and negatively to those that do not. In the same manner, letter units are 

positively connected to those word units that contain the letters in the 

appropriate position, and negatively to those that do not; and word units are 

positively connected to the letter units that the words contain. Additionally, all 

competing combinations are negatively interconnected. When the input to the 

network is supplied by activating all the feature units for all four letters of the 

word, they excite the letter units to which they are positively connected, which in 

turn excite appropriate word units. Word units will send the activation back to 

the letter units, and the activation propagation in the interactive network will 

continue for a number of processing cycles. This activation propagation direction 

forward and in reverse is critical in our discussion of word superiority effect, as it 

shows how the letter layer is activated from feature layer and from the word 

layer in reverse direction. Thus, if feature units do not readily identify a word 

through the letter units, the word unit with the best fit for the features would 



 

 
110 

 

activate those letters that are able to form a word. This allows the network to 

deal with inconsistent and partial data such as misspelled or unclear words. If 

there is one best fitting solution, the network will identify that word by activating 

the missing letter unit through many cycles.  

If however there are a number of possible solutions that fit, network behaviour is 

even more interesting. The partial feature input would initially equally activate all 

letters that fit, and once the activations would start going in reverse order the 

word units would be able to exert activation onto letter units. Since certain words 

are more frequently encountered, they would carry higher resting activation and 

therefore would be able to inhibit other word units and therefore the appropriate 

letter units, eventually being identified by the network as a solution. Thus, this 

illustrates how a higher-level knowledge is able to exert influence on the lower-

level letter and feature units, suggesting that additional layer that would consider 

word units in a context could have an effect on resting activations and therefore 

on the overall network behaviour. This demonstrates the ability of network 

models to complete patterns by predicting what is missing in addition to already 

discussed pattern recognition ability. A more advanced network design could use 

sensory inputs as lower-level units and theoretical or philosophical statements as 

higher-level units, which could with the help of learning procedures exert 

influence on lower-lever sensory units to facilitate the pattern recognition 

process.  

The network performance illustrated here is remarkable, and shows how the task 

can be accomplished with the use of connection weights and activation functions 



 

 
111 

 

rather than the use of rules. Since, more sophisticated multi-layer networks have 

been developed that make use of learning procedures such as back-propagation 

and proper hidden layers able to extract microfeatures from the input patterns 

useful in advanced information analyses.  

Networks have also been used for semantic categories recognition modelling, as 

discussed next. 

3.4.1.3 Generalization and similarity 

One of the key performance faculties that the networks exhibit is their ability to 

generalize. Once the network is trained to classify the input patterns into certain 

classes, when presented with a previously unseen pattern, it will provide a 

response comparable to the response to a similar known pattern. What 

constitutes this very similarity is a fascinating contemplation. One explanation 

would rely on the properties shared between the two or more entities, which 

bring upon the philosophical argument that any two entities share an infinite 

number of properties. Thus, assessing similarity in terms of number of shared 

properties is deficient unless constraints are imposed.  

Humans however are quite adept at judging similarity. Networks also have a very 

clear way of doing so – the similarity structure is an inherent component of the 

weight matrix. Similarity however is a complex concept, and does not necessarily 

have an objective measure or device capable of assessing it: if a network 

generalizes in a manner dissimilar to human reasoning, it is natural to assume a 

failure. However, it is crucial to consider the possibility that network may be 
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capable to generalize on a different level, perhaps not readily comprehensible or 

qualitatively different. In fact, considering that current connectionist network 

architectures are rather quite simplistic compared to the neurophysiologic 

complexity of human brain, it should not be surprising to observe dissimilar 

behaviours in the networks and in the mind. Environment has been shown to play 

an important role in the developmental process of human cognition, and the 

connectionist network devoid of such experiences may be unable to comprehend 

entirely the sense of similarity in the same manner as humans do.  

The fact that networks generalize following the same mechanism as the process 

of pattern recognition should be considered a benefit as it does not need to 

involve the extensive philosophical discussion briefly touched upon here.  

3.4.1.4 Pattern recognition beyond perception 

In connectionist networks, pattern recognition plays an imperative role at all 

levels of analysis – sensational level to reasoning – without clearly defined 

boundaries between the concepts of perception and cognition. In contrast, some 

symbolic theories (for example Fodor, 1975) consider symbolic processing as 

isolated from the sensational processing and is not regarded in terms of pattern 

recognition. Some other symbolists (for example J. R. Anderson, 1983a) are 

similar to connectionist networks as the pattern recognition does occur at all 

levels of analysis. Any system substantially reliant on pattern recognition is a 

prospective candidate to offer a plausible account for the intentionality of mental 

states. This notion is discussed in detail in the following section.  
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3.4.2 Intentionality of pattern recognition 

In philosophy, intentionality refers to the notion that mental states have meaning 

and content. Intentional states are concerned with the phenomena that are 

outside the cognition, and it has been one of the more testing tasks in cognitive 

philosophy to describe how mental states become associated with the specific 

phenomena and acquire the intentionality. The difficulty revolves around the 

relation between the mental state and the external phenomenon that is unlike 

any other. If one person believes something about the other, the first person 

seems to have a relation to the other, and both need to exist for a relation to be 

true. However, the other person very well may not exist at all, and yet the belief 

could still be possible. For that reason, such a connection cannot be handled by 

the means of relation alone.  

Trying to solve the intentionality issue with the traditional symbolic approach to 

cognitive modelling is particularly difficult, as the representations employed by 

the symbolists are formal and the best that can be achieved is describing the 

objects to which the symbols refer. This, however, only repositions the issue, as it 

is now necessary to explain how the symbols used in the description relate to the 

external phenomenon. The difficulty in explaining intentionality lies in finding a 

way to relate representational states to the real phenomena. One such approach 

is to consider the causal mechanisms that generate symbols in terms of the 

transmitted information and how the symbol relates the information about the 

object. Thus, when the symbol is activated without being caused by the referent, 

it is still by the object that would cause activation in normal circumstances. This 
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framework however does not provide a plausible account of representing 

nonexistent objects. Another problem with the symbolic approach in trying to 

relate representational states to explain intentionality is that the arbitrary 

treatment of symbols, resulting in the inability to relate the symbol to the 

referent and the symbols becoming context-free. This is also evident from 

psycholinguistics where meaning of certain words is dependent on the context – 

much like referent may vary with the context. Explaining such causal relation with 

symbolic models poses a problem in trying to explain significant variations in 

intended referents depending on the use of the symbol within a different 

context. Employing a more complex system of symbols to account for varying 

contexts is one possible solution of addressing the issue. Another proposal 

(Barsalou, 1983) suggests that concepts are not fixed, but rather are construed 

each time from the individual elements appropriate to the context.  

This proposal would be appealing to the connectionist perspective, where 

symbolic elements could be treated as microfeatures spread across the units in 

the network and additional input units could account for the context sensitivity. 

Connectionism proposes the occurrence of processing within the system is 

uninterrupted with the processes taking place in the external environment, 

avoiding the separation of the sensation and perception in symbol processing. 

Hence, the cognitive processing is position as occurring within the external 

environment, where individuals use skills and behaviours to interact with objects 

at varying level of abstractness. Pattern recognition networks capture the 
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regularities in behaviours at different abstractness levels suggesting a good fit 

with the system and the external environment.   

One of the key differences that separate connectionism from traditional symbolic 

approach is that the connections that represent the interface of the system with 

the external environment are not arbitrary, but rather are the result of the 

learning process where only the relevant connections are defined as a pattern 

that represents the interaction of the system with the external environment. 

Consequently, a two-layer pattern recognition network would modify the 

connection weights to reflect the input-output relation dictated by the 

environment directly, whereas multi-layer network in addition would encode the 

higher-order information such as microfeatures into the hidden layers. The input 

in most cognitive modelling networks however is specified by the researcher and 

does not incorporate the environmental parameters, and therefore would not 

provide a sufficient evidence for the claim that network representations are 

directly linked with the object. It is quite a common practise in other disciplines 

though (for example engineering) where the networks are supplied with the 

ability to receive a limited input about the outside environment, and in that case 

the representation is very much about the external object.  

A point of the essence to be made here is that representations in the hidden 

layer are the result of network accommodating to the environment, and do not 

constitute causal connection with any sensory input which makes them arbitrary 

from the standpoint of system functionality. Connectionist learning systems are 

designed to perform specified tasks, which involves functioning in a certain 
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external environment. The learning procedure defines a goal for the network 

(error minimization in determining output pattern to a given input pattern), and 

representations constructed in the hidden layer serve these goals by embodying 

the external to the system information for the system, thus making these 

representation about the external environment.  

System response to a particular input is not necessarily context-free. Information 

used in unit activations may correspond only to a general body of information 

about the environment (contextual and other) in which the system is present; 

and, depending upon the goals set, system learns to identify it through the 

responses to the patterns. Therefore, system response is a complex combination 

influenced by numerous factors some of which are only partly related to task at 

hand and yet exerting influence on the general patterns of activation from within 

the system. This versatility allows the system to adjust the response in relation to 

other information available.  

Connectionist approach to modelling cognition is able to provide knowledge 

about the intentionality of mental states, where representational values 

constitute the network’s response to the input pattern. Since the network is 

adapted to the input pattern, the network state could be directly link to the 

external environment if properly connected (sensory input units). Sensitivity of 

the representations to the external and internal context makes even better of a 

case in attempting the explanation of the nature of representations.  
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Discussed earlier instance of explaining the mental states that represent 

nonexistent object could be resolved by the symbolic models with a relative ease 

(employing a symbol for nonexistent object), still unable to provide an 

explanation as to why the arbitrary symbol is linked in such manner. In 

connectionist networks, it is possible that the output pattern will be the result of 

internal network activity, thus providing an output that does not necessarily 

correspond to any of the input patterns and therefore would represent a 

nonexistent object. Such outputs would still be based on the featural elements 

defined by the system and for that reason be a representation of such objects 

and not the others.  

This shows the important role that pattern recognition can play in intentionality. 

Related to this philosophical discussion is a string of research in cognitive 

psychology on the formation of semantic categories, which is discussed in the 

following section. 

3.4.3 Categorisation with connectionist models 

This section outlines the progress in the body of psychological research on 

concepts and categorization, and how symbolic and connectionist models could 

be of relevance.  

In categorization, methods of symbolic and connectionist modelling does not 

differ to the high degree. It is possible to assign a symbol to the category, but 

even do the symbols could serve little purpose without some sort of distributed 

representation that relate the features to the categorical assignment – generally 
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referred to as exemplars. For that reason, even within the symbolic approach to 

cognitive modelling categorization has been handled in a conceptually similar way 

to pattern recognition: exemplars assigned to semantic category according to 

their featural compound. Thus, a lot of research on categorization conducted 

within the symbolic approach could be transferable to connectionist networks 

modelling techniques. Both approaches acknowledge the primary dissimilarity 

between the pattern recognition and assignment of exemplars to semantic 

categories to be for the most part concerned with the featural level of 

abstraction: low level (strokes in handwritten word recognition task) versus 

intermediate level (possession of gills in animal classification task). Contrary to 

the symbolic models, distributed representation across features may be sufficient 

to represent the semantic category in a connectionist network, i.e. it does not 

require a designated symbol or unit to denote the category.  

To demonstrate how the connectionist pattern recognition model is able to 

accommodate the classification mechanism, consider a two-layer network. Input 

units represent specific features of the exemplars, and the particular pattern 

across the inputs is a distributed encoding of the exemplar across the appropriate 

features. In the same way, the output units represent the distributed encoding of 

the probable categories, where the connection weights appropriate exemplars to 

the suitable category – uncharacteristic to the category features would have low 

connection weights with the category. Once presented with the exemplar, 

network would propagate the input activations along the connections, and each 

output unit would receive a summative activation from its inputs. Additive 
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combination of features is a modelling technique not a uniquely distinctive 

characteristic of connectionist networks but rather is quite common to a whole 

class of characterization models. 

The method of distributing categorical representations across features and their 

utilization have been a major research interest within the field of psychological 

categorization modelling. The classical view follows the philosophical analysis, 

where it is assumed that categories identify the sets that are defined by the 

necessary and sufficient conditions; and knowing those conditions constitutes 

knowing the categories. Consequently, the view suggests that all categories are 

processed in a comparatively similar manner and exemplars are treated equally.  

In the 1970s however, fundamental changes were proposed by Rosch and others 

(for example Rosch & Lloyd, 1978) that challenge both consequential views. It 

was demonstrated that in class-inclusion hierarchy one level among others is the 

basic level and therefore is processed and acquired more easily; and categories 

have a ranking structure where some exemplars are recognized as better 

representatives of the category (Rosch & Lloyd, 1978; Rosch & Mervis, 1975). In 

addition, it was demonstrated that prototypicality played an important role 

across many information-processing faculties, and recognition and categorization 

of typical exemplars shows better results as far as time and accuracy.  

The typicality of the exemplars to the category is judged based on the features 

shared. The features though do not necessarily follow the classical definition of 

the category, nor need they be common among all member of the category or be 
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distinctive. Moreover, the typicality could be demonstrated among such 

obviously defined categories as odd and even numbers (Armstrong, Gleitman, & 

Gleitman, 1983), which indicated that typicality must depend on elements other 

than classical definition. Therefore, categorization should consider category 

definitions along with the typicality effects, which may still be insufficient to 

represent knowledge structure on categories in an adequate manner.  

Early cognitive models adopted the classical approach to represent knowledge of 

categories, relying on logical statements and necessary and sufficient conditions. 

With similarly aims, semantic networks (for example J. R. Anderson, 1974; 

Norman, Rumelhart, & Group, 1975) implement highly localist structures where 

units encode semantic concepts interconnected by a small number of 

connections conveying the relations between those concepts. Hence, cognitive 

propositional model and semantic networks represent two approaches for 

symbolic knowledge architecture. Following the discussion on the prototype, the 

semantic networks approach could be adapted to accommodate the idea that 

mental representation revolves around the prototype rather than propositional 

logics that determine the category: some representatives of the category may 

have distinctively differing qualities than the others and therefore would lack the 

corresponding connections. To account for effects of typicality, semantic 

networks adopted the process of spreading activation (J. R. Anderson, 1983b; J. R. 

Anderson & Pirolli, 1984), which signified a significant breakthrough in the 

advancement of network models in the later years (having particularly high 
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resemblance with the localist connectionist networks and both can account for 

typicality by the means of summative weighted features).  

Prototype and abstraction models specify a somewhat different theoretical 

position where belonging to a category in exemplars is assessed based on their 

similarity to prototype. Multidimensional scaling of lists of features could be 

employed to represent conceptual frameworks that comprise of features with 

varying parameters, suggesting a characteristic rather than a defining feature 

(including both continuous and discrete features in the model). Exemplar models 

that followed inherited the probabilistic view of categorical structure, but 

contrary to the prototype models, the category is represented in more detail by 

the exemplars rather than the prototype (Medin, 1989). Individual featural 

representations for every exemplar are stored and weighted, and therefore 

similarity computations may involve weighted summative feature analysis as in 

connectionist networks.  

In categorization tasks, exemplar models present a direct competition to 

connectionist models, providing an alternative way of distributed representation 

across features in prototype extraction and categorization tasks. The distinctly 

dissimilar assumptions regarding storage and processing in exemplar and 

connectionist models may result in essentially different result of computation. 

Connectionist networks retain information about exemplars only if this has an 

effect on the weight matrix, and shift to prototype extraction for similar 

exemplars as the exemplar numbers increase (retaining as much information 

about exemplars as possible), using feature vectors for temporary activation 
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patterns. Exemplar models store information about particular exemplars as 

feature vectors, which are used to compute the prototype. Ability of 

connectionist network to model the information about exemplars and prototypes 

within the same framework may offer certain advantages – especially considering 

the much broader application in modelling a variety of cognitive tasks, and not 

only categorization.  

Categorization, as proposed by (Barsalou, 1983), could also be interpreted not as 

a stable mental grouping of fixed entities stored and retrieved from memory 

(Rosch & Mervis, 1975) as required but rather are produced as the particular task 

is being performed – idea supported by the fact that people are able to construct 

new categories upon request. The emergence of these concepts then relies on 

vast amounts of continuous knowledge stored in long-term memory, which is 

used to form temporary relevant to immediate context concepts in working 

memory. Unlike symbolic models, connectionist framework is able to interpret 

these findings in the following manner: concepts could represent stable patterns 

of activation that determine further processing. However, on a different 

occasion, the resulting patters could be altered due to activity elsewhere even 

using the same weights. This may represent the continuous knowledge in long-

term memory. 

Thus, pattern recognition capacity of connectionist networks is able to perform 

categorization tasks, exhibiting typicality and task-sensitive variability effects – 

some of the requirements that must be met by a successful model of human 

categorization.  
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3.4.4 Pattern recognition in mental processes 

Human cognitive abilities go far beyond the relatively lower-level tasks of 

perception and semantic categorization and classification: phenomena could be 

contemplated sans the actual perception taking place, a person could perform a 

hypothetical planning of future behaviour, and other higher-lever tasks usually 

construed in terms of performing logical inferences on symbolic representations. 

On the condition that pattern recognition actually underlies much of cognitive 

faculties that necessitate reasoning, connectionist framework would be able to 

provide a plausible account of higher-level tasks in similar manner as in the case 

with the lower-level tasks already discussed above. 

One possible structure that may enable the relation between the pattern 

recognition and all-inclusive account of cognitive ability is to utilize the stable 

state representing one pattern as an input for the next level pattern recognition 

system of higher order. Thus, the reasoning steps of cognitive performance could 

be represented as a sequence of multiple levels of pattern recognition. The work 

of (Margolis, 1987) supports the proposition that human function could be 

explained in terms of pattern recognition, where humans decompose complex 

situations by recognizing something and invoking the most suitable to the 

situation pattern, which is then used to recognize something else and therefore 

modified to reflect the situation to a greater degree, constituting the learning 

process. In addition to the process making a judgement through the process of 

reasoning, the process of reasoning why it is the case. This review of the process 

of reasoning and making a judgement is in itself a separate pattern recognition 
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event that may provide and insight into the pattern recognition process on a 

broader spectrum, and result in a modification of the pattern recognition 

mechanisms based on the acquired learning.  

The two arguments that (Margolis, 1987) offers to substantiate his claim revolve 

around the seeming human limitation in logical and statistical faculty, and the 

example describing the ability to adopt new scientific paradigm by some 

scientists and resistance to such change by other. The first, based on the work of 

Tversky and Kahneman (1973, 1974), describes the human difficulty to perform 

an accurate statistical probabilistic evaluation – the fallacy that occurs according 

to Margolis due to the inability to elicit appropriate pattern and is, therefore, not 

a statistical but rather a pattern recognition error. 

The second example is drawn from the adoption of the evolution of scientific 

paradigm. Margolis argues that the ability to adopt and embrace the new 

scientific paradigm requires learning to recognise new patterns. Developing new 

patterns often requires the abandonment of the old established patterns and 

may result in temporal deterioration of performance. This however does not 

constitute that cognition comprises exclusively of pattern recognition faculties – 

merely suggesting connectionism as one plausible explanation of cognitive 

function, and without the use of symbolic rules. For a discussion on the 

mechanism that illustrates how higher-order cognitive tasks may be performed 

using the pattern recognition function rather than logical reasoning of a symbolic 

system please see Rumelhart et al. (1986).  
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3.5 Knowledge representation in connectionism 

The propositional knowledge representation that revolves around the idea that 

knowledge is expressed and therefore can be transferred in propositions such as 

sentences is accepted in a quite intuitive way. It is generally accepted by the 

cognitive science disciplines (cognitive psychology, artificial intelligence, etc.) that 

knowledge is represented in propositions: it is transmitted by books and lectures 

that consist of sentences formed from mental sentence-like structures. Many 

report a kind of an internal dialogue when describing their thought process, and 

traditional information-processing models of cognition and language share the 

assumption that propositions are what is processed. Connectionism on the 

contrary, poses a challenge to this general assumption regarding the knowledge 

representation, and networks are able to encode the knowledge in a qualitatively 

different manner without the necessity to employ propositions, effectively 

rendering the concept of propositions for cognitive modelling unnecessary. 

3.5.1 Knowledge representation in Cognitive Science 

Earlier efforts to model cognitive representations have relied on unstructured 

declarative statements arranged according to predicate calculus rules: predicates 

followed by a number of arguments that were seen as basic conceptual parts. 

Propositions were connected through the rule of repetition and involved 

recurring concepts. Further research by psychologists and artificial intelligence 

researchers revealed the need for higher order structures sufficient to organize 

the propositions, initially called schemata (Rumelhart, 1975) or frames (Minsky, 



 

 
126 

 

1975). Schemata represent the structured framework of knowledge where 

propositions are allocated appropriate location. Once activated in the course of 

cognitive process, schemata offered a response by default unless contradicting 

information was available as a substitute and an update of the schemata tailored 

to the immediate environment. Schemata and other higher order structures of 

proposition organisation introduced to the propositions representation a limited 

ability and characteristic of a pattern recognition system, where some knowledge 

parts are semantically connected to other knowledge parts to make possible 

further knowledge processing.  

In 1970s, one of the challenges to dominant at the time propositional approach 

came from the researchers that argue that knowledge was represented as images 

– analogue and iconic in form in contrast with the abstract and arbitrary 

propositions (J. R. Anderson, 1987). These distinctions between the literal 

pictures and non-literal representations in visual and spatial form prompted the 

emergence of multi-code models (J. R. Anderson, 1983a; Paivio, 2013) with 

modality-specific knowledge representation, where visual information is encoded 

as images and literal information as a verbal code – challenging the claim that 

propositional representations are sufficient to encode all knowledge. Further 

studies with clever design were able to establish linear relations between the 

analogue dimensions and the response reaction time (Kosslyn, 1980); and even 

suggested that analogue representations are useful in carrying out inferences by 

employing mentally ordering objects in spatial array (Huttenlocher, Higgins, & 
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Clark, 1971), challenging the purely propositional knowledge representation 

further.  

Until the re-emergence of connectionism, cognitive scientists held models of 

pictorial knowledge representation as alternative to propositional models – as 

complementary only and useful in representing certain types of knowledge rather 

than able to completely substitute propositional representation models. 

Connectionism on the other hand, aims to provide a plausible account to some or 

possibly all cognitive performance without any use of propositional 

representation, thus occupying an opposite position to the traditionally 

established approaches.  

While considering connectionism as a model of cognitive performance, it is useful 

to consider the concept of cognitive performance itself outside the propositional 

representation theoretical framework of knowledge representation.   

3.5.2 Types of knowledge 

The distinction between the knowing how and knowing that developed by Ryle 

(2009) is based on the human ability of not only knowing certain facts, but also 

on knowing how to perform certain activities. The capacity to possess both types 

of knowledge therefore is also different: knowing that requires the storage and 

consecutive retrieval of the specific or relative proposition from memory. 

Whereas knowing how may require a specific knowledge of the process and the 

control of associated perceptual and motor systems necessary to complete the 

activity successfully, such as  planning, execution, monitoring, etc. Thus, the 
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propositional knowledge represents only a portion of human intelligence and is 

not primary; and it is often the success rate in performing certain activities, both 

physical and cognitive in nature, we are interested in while assessing the level of 

intelligence. In fact, the intelligent practise or and theorizing itself is but one of 

the activities that could be conducted in an intelligent or a stupid manner.  

The behaviouristic account of Ryle’s knowing how consists of the disposition to 

perform the activity in the appropriate circumstances, without specifying the 

internal mechanisms involved. In cognitivism, it may be appropriate to attempt 

an explanation of knowing how in terms of learning how to perform the activities 

and what mental activities obtaining such knowledge involves. Cognitive science 

provides an account of knowing how from the rule-based systems point of view, 

where it is referred to as procedural knowledge. People often learn how to 

perform new activities from others by receiving verbal instructions on what to do, 

thus receiving procedural knowledge that enables them to perform the said 

activity. As such, procedural knowledge is rule-based and propositional, 

specifying the set of actions to be taken – for instance generative grammar in 

linguistics (Chomsky, 1957), where the rules are used as abstract representations 

of the competence level rather than a performance model. Verbal instructions 

alone however are not sufficient to perform the behaviour in a satisfactory 

manner, and require practice – actual or mental (Newell, 1994). Even though 

adapting the cognitive rule-based models initially developed to work with the 

propositional knowledge to accommodate the procedural knowledge has shown 

considerable success, it does not necessarily provide an explanation of knowing 
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how in qualitatively different terms from the knowledge based on declarative 

propositions.  

Connectionist networks on the contrary, are not ordered in strings but rather 

consist of interconnected units, and in many instances these units cannot be 

straightforwardly interpreted in terms of symbols. The knowing how may refer to 

the propagation activation in the network models, and therefore is more like a 

dynamical processing in connectionism rather than a sequential application of 

propositional rules.   

3.5.3 Expert knowledge 

Expert systems received a considerable amount of interest from the cognitive 

psychology and artificial intelligence researchers over the years. Many different 

tasks have been studied extensively, involving such complex activities as playing 

chess, medical diagnosis and other (J. R. Anderson, 1981). The typical approach 

aims to formulate a set of rules capable of achieving performance levels 

comparable to a human expert through interviewing the experts and surveying 

their methods and processes, which is then encoded as a computer programme 

that simulates human expert performance. Many expert systems show high levels 

of competence both theoretical and applied, which supports the notion that it is 

possible to incorporate the knowing how into the propositional systems initially 

designed to provide an explanation for knowing that. Not everybody is convinced 

however, and Dreyfus, Dreyfus, and Athanasiou (2000) after carrying out an 

extensive analysis of human skill acquisition and performance concluded that 
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expert systems approach is inadequate in simulating the human expert 

performance, as expert systems are inherently limited in the level of performance 

they are potentially able to achieve. Based on their analysis, a five-level scale of 

skill development is proposed, where only the highest levels manifest the true 

expertise:  

1. Novice. 

2. Advanced beginner. 

3. Competent performer. 

4. Proficient performer. 

5. Expert. 

Dreyfus, Dreyfus, and Athanasiou (2000) argue that the work on expert systems is 

capable of addressing only the first three levels with the symbolic modelling 

where the major cognitive tasks can be grouped into assessment of 

circumstances, choosing the appropriate response and managing the rules to 

accomplish the objectives. Developing additional cognitive tasks of the same level 

or combining them to produce ones that are more complex would not be 

sufficient to advance the competent performer to a level of an expert.  

3.5.4 Vision knowledge 

Knowing how to see is generally considered such a basic function that many 

philosophers did not believe it may actually require knowledge to execute. 

Sensation and perception was considered in terms of evaluating the observation 

sentences to assess the truth-values, and the truth determination process 
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considered unproblematic as a simple visual recording mechanism. This 

assumption however was challenged by Kuhn claiming that what we see depends 

upon what we know: someone familiar with FMRI would see FMRI machine for 

what it is, whereas somebody unfamiliar would see it as ‘some sort of a device or 

an assembly’ instead. Thus, the epistemological threat to the objectivity of the 

scientific process is revealed if the theory determines what the researchers will 

see during the observations, effectively introducing relativism into science. What 

is applicable here though is the notion that perception is a learned function and 

therefore relies upon knowledge that is not represented propositionally. Hanson 

(1958) accumulated a body of knowledge against the viewpoint that perception is 

simply a recording mechanism, and argued that all people rather than all seeing 

the same thing, each individual sees it from one of the dimensions first and then 

may adopt to see it from another dimension. Thus, FMRI technician would see 

the FMRI machine for what it actually is first, whereas layperson would first see it 

as some sort of a device and can then make an inference; which is dependent 

upon the learning, as to layperson needs to learn what the FMRI technician 

knows first before being able to see what the technician sees.  

What remains to be explained now is the process that determines a mechanism 

for learning a set of propositions to facilitate perception, i.e. for perception 

system to see what it would not be able to otherwise see as a result of learning. 

This of course cannot be the bottom-up process of inference. Kuhn (2012) also 

supported the notion that perception needs to be tuned to the discipline and in 

case of significant shifts as a course of scientific progress, it is necessary for 



 

 
132 

 

scientists’ perception to be re-learned. This suggests that at least part of 

practicing science consists of knowing how to perceive objects and events. Thus, 

the actual process that describes in what manner does knowing how have an 

effect on the perceptual system, and how this type of knowledge is acquired, 

remains unsolved. Connectionism may be able to offer a way to resolve this. One 

of the features of connectionist pattern recognition system is the ability to 

perform even in situations with altered variations, as precise matches are not 

necessary between the current and already learned patterns. Non-obvious subtle 

regularities (often not easily describable in words) are extracted to identify 

exemplars and prototypes and are stored in connection weights – a 

nonpropositional way to encode the necessary for the task knowledge.  

3.5.5 Logical inferences 

Symbolic perspective designates logical inferences to be a lower level cognitive 

ability. The normal process of learning the logical inference rules for symbol 

manipulation consists of learning the rules and learning how to apply them as 

part of subsequent practice. Practise improves the outcomes, but the process 

does not become flawless and mistakes still happen. One possible explanation 

suggests that some rules may be learned incorrectly as separate rules are 

collapsed into one general rule later to be split into distinct separate rules. As a 

result, the general rule may be still incorrectly utilized on some occasions. This 

can be modelled by attaching the probabilistic parameters to the utilization of the 

rules, where learning is expressed in terms of changing the said parameter (J. R. 

Anderson, 1983a). Observations reveal however, that learning how to apply the 
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rules is an essential part of the overall learning process as it develops the knowing 

how part in addition to knowing that – the explicit rules. Rule-based models are 

usually designed to incorporate certain functionality of pattern recognition. 

Would it perhaps be possible to eliminate the rules entirely, leaving the 

connectionist network and pattern recognition to do all the work?  

One of the challenges in developing a simulation model of consumer behaviour 

lies in identifying the features and information that is used in the decision-making 

process – one option is to rely on the established and developed theory that 

specifies what is necessary. 

Important to note that networks may require large number of training trials due 

the fact that network models normally start from zero (tabula rasa) – unlike 

humans that possess certain prior knowledge and training that may be applicable 

to certain extent. Moreover, networks, alike to humans, are capable of attaining 

high performance values as a result of repeated learning and error corrections in 

the course of pattern recognition activity not reliant on proposition-like rules. 

Thus, a distinctive differentiation between the knowing how and knowing that is 

made apparent in the ability to apply pattern recognition processes to linguistic 

symbols.  

3.6 Summary 

In this chapter, the arguments against the connectionist networks were discussed 

that outline the inadequacies of the connectionist networks to model cognition 
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as opposed to the symbolic models. In response, the three connectionist 

approaches were presented that include:  (1) the approximationist approach that 

argues that network models do provide a more accurate account of cognition 

than symbolic models, (2) the compatibilist approach aimed at building symbolic 

architecture into the networks, and (3) the external symbols approach. In this 

paper we are for the most part concerned with the kind of combination of the 

first and the third, as they offer a novel plausible explanation of cognition 

opposing the traditional symbolic approach.   
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4. Methods 

This section provides an overview of the research questions and research 

methods employed. The data and analysis are described. The modelling approach 

and variables used are explained and justified, and research process is outlined in 

a sequential manner.  

4.1 Overview 

It is important to establish the boundaries of this research project, and discuss 

the overall goals it is set to achieve. Firstly, as further discussed in the following 

sections, the research objectives are set to explore the field of consumer 

behaviour, a primarily positivistic field of study (P. F. Anderson, 1986b), and 

attempts to model and examine the underlying architecture of the consumer 

decision-making process employing connectionist NNs models. It is argued here 

that utilitarian and information reinforcement are latent emergent variables that 

are represented by the input items and thus need to occur at the level higher 

than input level of independent variables (Foxall, 2009). Traditional methods such 

as regressions do not have any levels other than Input and Output, whereas 

connectionist network structures are able to incorporate a number of levels as 

hidden layers – where the utilitarian and informational reinforcement should exist 

conceptually as emergent concepts and representations. This is then principally 

an attempt to develop explanatory modelling that would allow examination of 
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such higher-order attributes, and potentially offer a method to evaluate and 

approximate utilitarian and informational reinforcement quantitatively.  

It is important not to overlook the predictive capacity of the model, and its ability 

to extract important patterns from the data, together with other dimensions 

considered as well, such as explanatory dimensions, including both descriptive 

and prescriptive application (Bryman & Bell, 2007). The overall context for the 

extended discussion here is of course the extension of theoretical framework of 

BPM to incorporate connectionist view as one possible direction to go forward. 

To provide a comprehensive account of this research process, this section will 

focus on the following: (1) research questions and hypotheses, (2) philosophical 

position, (3) theoretical justification and evaluation of the approach and possible 

alternatives, (4) research methods, which includes a sequential account of 

research process, and (5) a concluding remark.  

4.1.1 NNs models and linear models 

Linear regression is undoubtedly one of the most widely used and important tools 

to describe possible relationships between variables in behavioural science. Many 

factors account for such widespread adoption – the seeming ease and 

intuitiveness of interpretations certainly being one of them. Linear regression 

models are usually fitted using the least squares approach designed to minimize 

the lack of fit, allowing either to quantify the relationship strength between 

variables or to develop a predictive model as a result. One of the most common 

applications is trend line estimation in time series data to show change over time 
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– simple technique that does not require a control group or sophisticated 

experimental design. Furthermore, predictor variables are often intuitively 

transformed to improve the function fit, making linear regression an 

exceptionally powerful inference method indeed – as is the case with polynomial 

regression that can be too powerful and may often show tendency to overfit the 

data. Employing the interactive variables is able to further improve upon the 

modelling results, providing the possibility to examine nonlinear relationships. 

Even so, considerable difficulties may be encountered when interactive variables 

are employed to examine the relationships in large datasets with many variables, 

and when relationships between three or more variables are examined, as the 

number of interactions increases exponentially, and readily becomes 

impractically large. Given n predictors, the number of items in a linear model that 

includes a constant, predictors, and every possible interaction is 2n – with only 10 

variables for example, total number of only 2-variable (excluding those of 3 and 

more) interactions to examine and evaluate is 1024, and the selection process is 

very tedious and manual, and oftentimes impossible. As a result, researchers may 

examine only a few interactive variables that first come to mind, or none at all. 

Another issue is the possibility of running out of degrees of freedom.  

NNs, on the other hand, are inherently designed to examine dynamically all 

possible interactions within the data during the learning process. All interactions 

that carry predictive capacity are captured in the final network architecture by a 

learning algorithm, and pruning methods systematically simplify the network to 
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expose the core explanatory architecture by removing the connections that do 

not offer sufficient predictive capacity.  

4.1.2 Architecture of NNs models 

In the simplest form, where the number of hidden layers is set to zero (that is a 

NNs model where the input layer is connected to the output layer with no hidden 

layers between the two); NNs model develops a structure similar to the structure 

of a logistic regression. As a result, the coefficient numerical values of logistic 

regression would be identical to those of the weights in NNs model. Thus, 

referring to the common ‘black box’ argument, it should be clear that NNs 

models in the very least are able to provide level of explanatory capacity 

equivalent to those of traditionally employed linear methods such as logistic 

regression. This however has already been explored in greater details elsewhere 

(for comparative analysis please see Greene, 2011), and in this paper NNs models 

of higher structural complexity are examined. 

In the high-level task of pattern recognition while examining complex behaviour 

phenomena, linear models could only be useful in explaining linear relations. For 

the purposes of the present discussion however, this would be insufficient as 

consumer behaviour and the process of decision-making in a modern market and 

socio-economic environment is without a doubt a very intricate and multifarious 

phenomenon composed of a multitude of interrelated developments, where 

simple changes in one part of the system are able to produce complex effects 

throughout. It has been indeed a common practice to attempt to decompose the 
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larger phenomena and isolate the process into individual elements for the 

following analysis controlling for all other variables. The learning thus obtained 

could then be propagated to the higher level of the process. This method 

however is very inefficient and poses a serious scalability problem – that is of 

course in addition to the limitation concerning the ability of researcher to identify 

the individual parts of the process correctly (the task some believe to be 

impossible). A better method would be to examine the relations between all 

components simultaneously.  

NNs are able to examine all variables and account for nonlinear relations within 

the data once the hidden layers are introduced into the model structure. This 

results in high predictive ability, but also the weights could be examined for 

explanatory purposes and are able to provide an insight into the intrinsic nature 

of the process. Consumer decision making is an intricate continuous behaviour 

exhibited by persons that NNs seem to be particularly suited for as a method of 

analysis for a number of reasons. First, a NNs model framework as a method of 

analysis resembles physiological inner workings and structure of a human brain – 

making it a particularly good fit to study human processes. Second, 

connectionism (the theoretical framework of NNs) is a set of approaches in the 

fields of artificial intelligence and cognitive psychology that is particularly suited 

for modelling behaviour as the emergent processes of interconnected networks 

of simple units from the conceptual point. The hidden layers and nodes that are 

developed in the process of training a NNs model (NNs models are repeatedly fed 

data and adjust the weights in the process up to a point of equilibrium where the 
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model cannot improve anymore – method commonly referred to as training as it 

indeed resembles the process of training in the traditional sense) are not like 

input and output variables that come from the data, but could rather represent 

underlying abstract concepts identified in the process of training that play a 

major role in explaining the relation between the input and the output layers 

(independent and dependent variables).  

This paper will contemplate the idea of interpreting the NNs models number of 

hidden layers and nodes and weight values in attempt to provide an explanatory 

account of consumer behaviour. Previous findings will be summarized and 

synthesized, and original models developed and assessed (both predictive and 

explanatory capacity).  

4.2 Research questions and hypotheses 

The discipline of consumer behaviour encompasses contributions from a number 

of complementary fields of study, including psychology, philosophy, marketing, 

and economics (Bashford, 2009; Calder & Tybout, 1987; Holbrook, 1987; McKee, 

1984; Pachauri, 2002). It is a common practice to produce research which is 

highly quantitative in nature (for example Cornwell et al., 2005; Cunningham, 

Young, Moonkyu, & Ulaga, 2006; Güneren & Öztüren, 2008; Lu Hsu & Han-Peng, 

2008; van Kenhove, Vermeir, & Verniers, 2001; Watson & Wright, 2000), and is 

also the case for this project.  
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As discussed above, the central aim of this research project is concerned with 

extending the theoretical framework of BPM into the realm of Connectionism 

with the help of NNs models, assessing the ability of connectionist models to 

predict and explain the underlying psychological factors that influence and drive 

observable consumer behaviour. One way to operationalise this is to assess the 

capacity of a connectionist model to predict and explain the consumer disposition 

to pay more or less for a unit of product they eventually receive. 

Therefore, the hypotheses are proposed as follows:  

H1: Artificial neural network models with pruning offer means to simplify 

network architecture, while maintaining a level of predictive capacity 

comparable to unpruned neural network models 

H2: Consumer behaviour models based on connectionist framework offer 

means to examine the latent or emergent variables that represent 

complex consumer behaviour structures, which traditional linear models 

such as logistic regression are unable to elucidate 

The ability of connectionist models to develop the latent variables employing the 

distributed representations during the learning phases is given a particular 

attention in the discussion chapter, as this capacity offers unparalleled 

opportunity to develop this project further.  
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4.3 Philosophical position 

There are a number of ways to obtain what we generally recognise as knowledge 

of consumer behaviour – ranging from a simple observation to a controlled 

laboratory experimental work (1988). As such, researchers tend to consider 

certain methods more suitable than others as applied to study particular 

phenomena. It is therefore important for the purposes of present research 

project to disclose and deliberate at least some underlying philosophical 

assumptions and perspectives generally adopted here. For illustrative and 

comparative purposes, the key philosophical aspects of each of the perspectives 

are juxtaposed and the manner in which they may influence the general direction 

of research are discussed: underlying ontology, epistemology, and axiology. 

Potential challenges that either of perspective presumes are identified. The 

section is then concluded with a summary remark.    

4.3.1 Consumer behaviour position 

For the most part, it could be considered a general knowledge that the field of 

consumer behaviour is predominantly lies within the domain of positivism 

(Marsden & Littler, 1996; Prus & Frisby, 1987).  

As early as 1690 Locke (reprinted in 1997) argued that the method in social 

sciences should follow the same principle as it is the case in physical sciences, 

allowing for variances in prediction accuracy of course due to the obvious 

complexities of the subject matter. It was hundreds of years later the concept 
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was adopted and further developed as School of Positivism by the likes of 

Quételet, Saint-Simon, and most notably Comte.  

As proposed by The law of three stages, phenomena are to be explained through 

religion, metaphysics, and positivism, employing scientific laws, reason, and 

empirical data (Bernard, 1995). In modern positivism, Comte’s original ideas are 

still present in the following form: scientific method is the optimal approach to 

generate effective knowledge with a reasonable degree of control, which can be 

used to improve the general human existence. Logical positivism is one of the 

later developments by Vienna Circle, also recognised as logical empiricism and 

instrumental positivism, stipulates that social science is to become a purely 

statistical exercise (Fullerton, 1987; Hunt, 1991).  

Durkheim rejected most of Comte save the method, which was retained and 

advanced to establish methods and techniques for scientific research (Durkheim, 

1964). Later alternative perspectives emerged as a result of critiques of positivism 

by Popper (1959), Kuhn (1996), and Foucault (1995), one of which is relativism.  

In the following paragraphs, the two perspectives are compared and discussed in 

further detail.  

4.3.2 Ontology 

Ontological assumptions revolve around the concepts of what constitutes the 

nature of reality and of social beings.  
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4.3.2.1 Positivism 

In positivism it is generally assumed for a single objective physical reality to exist, 

independently of one’s perception (Peter, 1992).  

Again, irrespective of individual perception, a single objective social reality is said 

to exist. Reality is composed of parts and interconnections, and it is separable 

and detachable; and it is possible to measure reality in a valid and reliable 

manner. Thus, to achieve a greater understanding of the subject examined, it is 

possible to control some of the other variables; and while individual inquiry may 

only be able to provide an estimation of reality, collective effort should allow 

developing a greater understanding and representation of reality. This implies the 

concept of decomposition of complex phenomena, where parts of the 

phenomena are taken out of the complexity and examined individually in 

isolation one part at a time to determine the intricate relationships and broader 

context.  

A number of assumptions can be identified in positivism when it comes to the nature of 

social beings. It is possible to interpret human behaviour as reactive: in behaviour 

analysis for example behaviours are said to be reinforced by external factors acting upon 

the individual, and reinforcers systematically change the frequency of reinforced 

behaviour (Hildum & Brown, 1956; Insko, 1965). Similar predeterminism by outside 

factors is suggested by a cognitive view: rather than reinforcers directly affect behaviour 

it is the internal rationalization of the person that allows to make an optimum decision 

based on the available information and experiences previously processed by the 

individuals (Slovic, Fischhoff, & Lichtenstein, 1977). 
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4.3.2.2 Relativism 

In relativism, subjective or objective reality exists only relative to the relativiser: a 

person, a theory, or other. If the relativiser is a person, it may be a perceptional 

judgment that is relativised and claimed to be true for that particular person – 

referred to as semantic relativism. A perception which is claimed to be real for 

that particular person is referred to as ontological relativism, and these two types 

of relativism are not always explicitly distinguishable (Long, 1998). When all 

judgments a person makes are true for that particular person, it can be described 

as full semantic relativism – thus not only the truths but also the whole reality is 

relative, which is in direct contradiction with positivism. By the same logic, what 

leads a person to construe a judgement as truth also lies within this same reality 

(Hunt, 1990). Therefore semantic relativism entails a version of ontological 

relativism, where that which constitutes truth for the person is within the full 

semantic reality (Nola, 1988).  

Perceptional experiences could reveal ontological relativism as well: every person 

has their own perceptual experiences that no other person has had, and these 

individual perceptual experiences are subject to a prompt change. This would 

suggest perception dependency on the perceiver, or that every person exists 

within his or her own world of perceptual experiences. In the context of scientific 

inquiry it could then be claimed that concepts exist only relative to certain 

scientific theories, paradigms, and scientific frameworks (Nola, 1988).  
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Constructivism could be said to be interrelated with relativism in the context of 

what accounts for existence of phenomena: if researchers play an active role in 

creation and unravelling of scientific theory, their activities could be interpreted 

as relativistic in terms of what objects are considered by the theory (Goulding, 

1999). It is then possible for positivists to agree that researchers indeed play an 

active role in the process – at the same time rejecting the implication that 

researchers actively impact the objects of theories (Nola, 1988). Socially 

constructed realities could then be seen as a product of relativism, as they are 

dependent on other entities – contrary to the positivist view of a single, objective 

reality.  

4.3.3 Epistemology 

As any other social science, positivism and relativism hold certain assumptions 

around the concepts of what constitutes knowledge, the nature of causality, and 

position of the researcher relative to the subject of inquiry.  

4.3.3.1 Positivism 

Positivism ultimately aims to derive the abstract generalizable laws that could be 

applied to a wide range of individuals, situations, and phenomena. In other 

words, positivists focus on determining the generalisations irrelevant of time and 

space that are context-free as much as reasonably possible. Single events do not 

hold any particular value unless they can be extended across systematic or 

sequential generalizable instances (Bernard, 1995).  
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The meaning of causality plays a central role in positivism. Fundamental to the 

underlying goals and values of the perspective, it is generally assumed that clear 

linkages could be established between behaviour and prior events that led to it. 

The deterministic nature of social beings is closely interrelated with the concept 

of causality, as external events that act upon the individual are presumed to 

affect individual behaviours or serve as  affective factors otherwise (Bernard, 

1995).  

It is generally recognised in positivism that it is possible for researchers to largely 

remain outside the research, and consistently strive to distance oneself from the 

subject matter not extend any significant influence over the experimentation 

criteria. The researcher, drawing upon expertise and research methodology, is 

capable of manufacturing a hypothetical observation deck and, hidden by 

impartiality and detachment, remain objective. The position of the researcher in 

relation to the subject of study is then naturally assumed to be largely detached 

(Hunt, 1993). 

4.3.3.2 Relativism 

A number of ways illustrate epistemological relativism. Firstly, as suggested 

above, epistemology is inherently relativistic at least to some extent in a way that 

what is known is relative to the underlying theory, framework, culture, person, 

and so on. Therefore, what is known in relativist terms is dissimilar to what 

constitutes knowledge in positivist terms, as relativist knowledge is relative to 

something or somewhat rather than being seen as an absolute concept in 
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positivism (Nola, 1988). It is then should be possible to reinterpret a positivist 

statement of What is believed to be true, could be true or false using the relativist 

terms as follows: That which is believed to be true is true for whoever believes it to 

be true.  

Secondly, epistemological relativism occurs naturally due to inherent variability in 

perceptual capacities, and the concept of incommensurability develops at the 

level of observation in relativism – as opposed to positivist view that stipulates 

the possibility of objective observation (T. S. Kuhn, 1996). Feyerabend’s (1975) 

view on methodological anarchism draws upon precisely this notion of 

epistemological relativism where it is applied on the level of methodological 

procedure. Epistemological relativism assumes that any observation follows a 

presupposed theoretical framework and therefore is inherently relative to that 

particular theory, and thus unable to generate objective data which would enable 

extrapolation of universal laws or rules (Nola, 1988).  

Thirdly, one of the largely popularised Fayerabend’s (1975, 1978, 1987) 

arguments claims there are no methodological rules. He challenges a single 

perspective approach on the grounds that it would effectively limit the scientific 

inquiry serving as a framework of constraints, whereas theoretical anarchism to 

the contrary would facilitate the scientific progress. Adhering to the rules of a 

single given perspective not only does not aid, but at times may even hinder the 

scientific process. General scientific description cannot be described through 

philosophical consideration, which would make it impossible to devise a method 

to differentiate between science and pseudo-science (Nola, 1988).  
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Feyerabend (1975, 1978, 1987) goes as far as to say that a universal scientific 

method does not exist, and any form of inquiry does not require a predetermined 

methodological process. Scientific reason does not need to follow any prescribed 

form of regulation that specifies a privileged perspective, as procedures designed 

to establish a prescriptive system would result in offering different incomparable 

ranking systems none preferable to the other. Admittedly, it may be possible to 

achieve this within a certain constraint – no universally applicable method could 

exist however. This key concept lies in direct contradiction with positivist notion 

of universal laws that could be applied to general phenomena.  

4.3.4 Axiology 

What constitutes value by either of the perspectives is discussed in the following 

paragraphs. 

4.3.4.1 Positivism 

The overall goal of positivism is prediction through derivation of universal laws 

that may be able to explain behaviour (P. F. Anderson, 1986a). The understanding 

of phenomena is tied to systematic demonstration of underlying associations 

between the variables selected to represent the phenomena. The accurate 

identification of these variables and antecedents that are related to the 

dependent variables is central to positivist perspective, as it would offer a degree 

of certain predictive capacity to be developed based on the results of the 

analyses (Kerlinger, 1964). 
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4.3.4.2 Relativism 

In relativism, the methodological criteria are selectively employed by the 

scientific community and interpreted in response to empirical and social factors – 

as opposed to the criteria in hypothetico-deductive methods generally employed 

in positivism (Holbrook, 1989; Holbrook & Hirschman, 1982; Holbrook & 

O'Shaughnessy, 1988). Relativism is quintessentially descriptive, as relativists 

strive to develop a full comprehensive account of the phenomena rather than 

extrapolating universal law-like relationships that could be applied to general 

phenomena. It is not associated with any one particular method of inquiry – the 

theoretical framework is based upon empirical and qualitative evidence, and may 

include data of qualitative, quantitative, historical, and social nature along with 

any other sources that could prove useful in the attempt to develop a 

comprehensive representative account of the phenomena (P. F. Anderson, 1983, 

1986a, 1988a, 1988b; Lutz, 1989; Siegel, 1988).  

4.4 Research methods justification 

In this section, the method of inquiry is reviewed and justified against 

alternatives.  

4.4.1 Assessment of the quantitative method 

Some of the limitations of quantitative method that researchers should consider 

may include inappropriate application of statistical methods and techniques to 

carry out the analysis, which may in extreme cases reduce the research project to 
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the level of a purely statistical exercise that does not carry any other purpose. 

Highly technical and demanding, quantitative methods could be exhausting not 

only in terms of computational resources, but may also be limiting for the 

researcher in terms of the skills. This could lead to the quantitative method being 

susceptible to mistakes and inaccuracies that may result in errors and drawing of 

wrong conclusions altogether. On a separate note, there are some researchers 

who are not comfortable with research findings that derive meaning from 

numbers, employ quantitative and standardized data, and statistical modelling 

(Saunders, Lewis, & Thornhill, 2009). 

Provided the researcher’s philosophical position is aligned with the quantitative 

method, many potential limitations outlined above could undoubtedly be 

interpreted as an advantage. The concepts that deal with validity, reliability, and 

generalizability are often better accounted for by quantitative method as they are 

inherently imparted in the design (Ghauri & Grønhaug, 2005). One other major 

significant advantage is that any academic research publications are expected to 

be described following the positivist method, irrespective of the actual 

perspective employed (Wolcott, 2002).  

4.4.2 Theoretical justification 

Considering the nature of research questions set in this research project, it could 

be argued that no other than positivist theoretical framework may be suitable: it 

is unlikely any other researcher than positivist would even consider examining the 

capacity of connectionist framework to accurately predict consumer behaviour 
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for example. Moreover, it could be said that research questions discussed here 

are inherently interrelated with the core values of the positivist theoretical 

position and thus form and inseparable part of it, as other than positivist 

researchers would not concern themselves with such positivistic notions as 

predictability, and would not therefore choose predictability as a central measure 

of research questions to begin with (Alvesson & Deetz, 2000). 

It is uncommon however to encounter consumer behaviour research that is not 

based on quantitative method (for example see Haigh & Crowther, 2005; 

Holbrook, 1989; Kaynak & Kara, 2001; Kehret-Ward, 1988; Kumcu, 1987; 

O'Shaughnessy, 1985; Sanders, 1987). In fact, researchers continuously engage in 

an ongoing debate on whether positivism and quantitative method are 

appropriate at all to study consumer behaviour. Haas (1987) for instance argues 

that the subjective and social nature of consumer behaviour are obscured by 

positivism and its objectivity. He would argue that human consumer behaviour is 

above all a social process, and meaning derived from the interaction of 

individuals should be preferable to that which is based on a quantitative method: 

individuals do not respond to stimuli in a mechanistic manner as prescribed 

according to the theoretical assumptions of the school of behaviour analysis, but 

rather construct activities in a meaningful intentional manner. Behaviour is 

individualistic, and is a product of perceptions, interpretations, and judgement 

statements within a certain context, and therefore requires to be explained 

through the perspective of the individual (Haas, 1987). Denzin and Lincoln (2000) 

go as far as to state that all research is essentially interpretative, as it is 
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fundamentally conducted in a manner that reflects the researcher’s 

weltanschauung – a set of beliefs and feelings about the world, and how to 

understand and study it. Therefore, an interpretative approach would be 

preferred to positivism, being capable to produce a profound and thorough 

understanding of behaviour.  

4.4.3 Alternative approaches 

Considering the nature of research questions proposed here, it is quite possible 

no other approach could be suitable without significant alterations to original 

goal of this research project for a number of reasons.  

As discussed above, the very formulation of the research questions proposed 

here would likely not happen employing any other approach: predictive capacity 

and behaviour modelling are inherently positivist notions, and are central to 

critical behaviourist approach. Any attempt to consider the subject matter 

employing any other alternative approach would inevitably require the 

modification of research questions, as research questions contemplated here are 

completely and profoundly interconnected with the quantitative scientific 

method of inquiry and with the underlying theoretical and philosophical aspects 

of positivist approach.  
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4.5 Research method 

This section describes the research methods and design specifics employed: 

includes a comprehensive description of the sample, explains the research 

design, and describes statistical methods employed.  

4.5.1 Sample 

The Homescan data used here was acquired from the National Office of Statistics 

panel that comprises results from a survey of about 35,000 households and 

contains barcode scanned records of all their food purchases (was also used for 

example by Heravi & Morgan, 2014a; Heravi & Morgan, 2014b). The data arose 

from a market research data set supplied by Taylor Nelson Sofres (TNS), part of 

Kantar World Panel.  

The subset selected for the analysis here covers only one product group: wine. 

This resulted in a subset with 170,989 cases, which cover purchases of 4,939 

individual households over the time period from October 2002 through 

December 2005. A total of 224 variables are present in the dataset that include 

transactional, demographic, and product attributes – not all the attributes are 

usable however and many repeat variables are included (only usable for other 

product groups) which were omitted in the analyses here.  

Data supplied by TNS UK Limited. The use of TNS UK Ltd data in this work does 

not imply the endorsement of TNS UK Ltd. in relation to the interpretation or 
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analysis of the data. All errors and omissions remain the responsibility of the 

authors. 

4.5.2 Research design 

In previous work, informational and utilitarian reinforcement data acquired from 

matching studies (Foxall, Wells, Chang, & Oliveira-Castro, 2010) was integrated 

with the consumer behavioural data, effectively appending two additional 

variables to the dataset on a transaction level to reflect the informational and 

utilitarian reinforcers each brand was able to offer. As a result, for every case in 

the dataset that describes a brand purchasing decision, utilitarian and 

informational reinforcement parameters were used as independent variables 

(Greene, 2011). Even though it was shown that these additional reinforcement 

variables were able to contribute to the modelling, significantly improving the 

predictive capacity of the model, it is argued here that informational and 

utilitarian reinforcement as described in BPM (Foxall, 1990, 2004, 2005) are 

higher order latent variables that are formed using the regular variables such as 

product attributes and consumer demographics, and therefore ought to be 

represented by hidden layers in NN architecture.  

4.5.2.1 Variables 

Usually the process to identify the predictive variables to explain the relations 

with the dependent variable tend to be tedious and time-consuming: researchers 

start with a set of independent variables and identify the most predictive one, 

then begin to add more variables systematically and assess the model with R2 or 
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preferably adjusted R2 and AIC value to decide whether it is worth adding the 

extra variables to improve the model. This process is very much a manual 

approach, and depends entirely on the perceptions of the researcher which 

variables to consider and in what order. There is also a matter concerning 

interactive variables, where interactive variables are sometimes produced and 

incorporated into the model – but even on those occasions only a few 

interactions between variables are considered. Once the interactions are 

considered, the choice of interactive variables to include into the model increases 

exponentially with the number of independent variables, and the manual process 

is unable to examine any kind of exhaustive list of interactions by any measure. 

This is one major drawback of the traditionally employed methods of analysis, as 

they all require predetermined structure specified during the modelling phase. 

Neural Networks on the other hand do not require any predetermined structure 

– connectionist models take complete input data and, during the training process, 

networks determine the best predictive variables and inherently examine all 

possible variables interactions, thus eliminating the otherwise necessary 

requirement to specify the network architecture beforehand. Various pruning 

methods are then able to strip the model further, producing the lean underlying 

structure that can serve as best estimation of underlying patterns within the data.  

Price is an obvious choice for a dependent variable for any predictive modelling 

exercise, but from a purely semantic consideration, it becomes apparent that a 

straightforward price prediction may not provide a robust platform for the 

analytical work of explanatory nature. As previously discussed, consumer choice is 
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a probabilistic value in behaviourist terms, and required to be operationalised as 

a proportion of instances of choosing one product over the other in a given time 

frame. Price alone could be overrepresented by the utilitarian reinforcement 

variables, as the majority of wine purchased by absolute volume or bottle count 

in the dataset used here would be a regular table wine. As such, the willingness of 

the consumer to pay more or less per litre of wine proposes a better modelling 

opportunity from the semantic and explanatory point of view as discussed in 

detail in the following chapters. Instead, considering the context of the BPM and 

theoretical framework adopted for this research, a new variable was generated 

as a ratio of expenditure to pack volume to be used as a dependent variable here: 

price paid per litre.  

Connectionist models developed in such a way would then be useful in providing 

an insight into what underlying factors influence consumer choice situation and 

to what extent, and be able to assess quantitatively the changes to price per litre 

that the consumers are willing to pay based on the information available from 

independent variable values. Models could eventually contribute to the 

development of connectionist framework able to explain the consumer 

purchasing decision.  

4.5.3 Apparatus 

Statistical and data manipulation software employed during this research project 

include Microsoft Office Excel 2007 (Microsoft-Corporation, 2006), SPSS 17.0 

(SPSS-Inc., 2007), R version 3.1.2 (R_Core_Team, 2014), and R studio (R_Studio, 
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2012). Initial compiling and appending of data was done in SPSS, which is most 

suitable to handle large data in addition to a reasonable degree of statistical 

analytical capacity – still inadequate for the connectionist modelling required 

here however should be noted. Excel was often used to quickly view the data due 

to its versatile nature – must be said it was completely useless for most of the 

statistical analyses however. R on the other hand is an exceptionally powerful 

application capable of performing advanced analyses – still, additional coding and 

package development was required to enable pruning and connectionist network 

visualisation. Developed by statisticians as an open source project, R consistently 

benefits from the contributions of worlds’ leading analysts, which was used to 

developed and consequently assess all modelling work here. R Studio software 

merely packages R and provides a very user-friendly interface and additional 

functionality, which makes it much easier to use R.  

4.5.3.1 R package development: RSNNS and NeuralNetTools 

A large number of R packages were used, but the two most notable are the 

RSNNS (Bergmeir & Benítez, 2012) to do all the modelling and pruning, and 

NeuralNetTools to plot the connectionist network architecture once developed.  

RSNNS was well developed to incorporate the functionality of the original 

Stuttgart Neural Network Simulator (SNNS) software (Zell et al., 1994; Zell, 

Mache, Sommer, & Korb, 1991a, 1991b, 1991c; Zell, Mache, Vogt, & Hüttel, 

1993) into the R package as far as NNs modelling, but was lacking the pruning 

element – as did any other NNs package at the time. It was then essential to get 
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involved with the original package developers, and introduce pruning as well 

which was implemented in the original software. For that, author performed the 

necessary coding in C++, which was then supplied to the package developers, 

who were able to code the necessary wrapper to integrate it into the R package. 

As a result, with a new update of the RSNNS, it now provides the pruning 

functionality to anybody who may be interested to pursue the connectionist 

modelling route as this author.   

Somewhat similar events took place around the NeuralNetTools package, which 

was able to plot the connectionist architecture but not as far as the part when 

pruning occurred. After the collaboration of this author with NeuralNetTools 

package developers, it is now possible to plot pruned connectionist networks as 

well – a great way to represent visually the underlying architecture of the 

network as a result of model learning process.  

4.5.4 Sequential account of the research process 

This project builds upon previous work, and develops the subject further by 

addressing some of the limitations expressed heretofore (Greene, 2011). As such, 

the initial phase of this research project is consolidating the previous findings and 

identifying the line of inquiry that would be able to deepen the understanding of 

consumer behaviour. Extensive literature evaluation paired with ongoing 

discussions with specialists in the field of consumer behaviour is carried out to 

provide a comprehensive account of developments in theoretical framework of 

BPM as it is applied in empirical work. The connectionism is discussed in detail, 
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giving particular attention to the philosophical developments and application of 

NNs models in consumer behaviour.   

The second phase is largely revolving around the software development to enable 

the types of analyses and modelling work required here as described above. As a 

result, two R packages are improved to provide additional functionality.  

This is followed by the next phase, which involves the models being developed. 

Some regression models are developed during the exploratory stages to learn the 

dataset, but their development is not progressed further as it is not within the 

scope of this research project – moreover, previous work already carried out the 

comparative analyses of logistic regression with NNs models (Greene, 2011). 

Instead, NNs models of varying architectural complexity are developed to 

examine the process of formulation of items in hidden layers of NNs model that 

could be interpreted as distributed representation of informational and utilitarian 

reinforcement as described in BPM.  

Final phase built upon the modelling results acquired in the stages describe 

above, and encompasses a comprehensive discussion of implications on 

extending the BPM framework into the realm of connectionism. Future 

opportunities and research directions are identified, discussing the limitations of 

this research project.   
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4.6 Summary 

This chapter focuses on unfolding the comprehensive account of research 

process in sequential manner to provide a thorough view as it is employed in this 

research project: an extended overview outlines the overall direction and goals, 

followed by a discussion on research questions, clarification of philosophical 

position, and justification and description of research methods with a sequential 

account of the process.  
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5. Analysis 

This chapter discusses the statistical analyses employed, describes the specifics of 

the models developed in the course of research project, explains the tests in 

detail, and provides an overview of the results.  

5.1 Preliminary data manipulations 

The dataset was made available by TNS UK and the fieldwork was carried out as 

part of the Kantar World Panel and was originally obtained for the purposes of a 

different research study (Heravi & Morgan, 2014a, 2014b). The master database 

contains a large amount of data for a number of product categories:  consumer 

household descriptive database contains all the household descriptors such as 

consumer demographics and household details, a transactional database contains 

all the purchasing data on individual transaction level, and product attributes 

database describes all the product SKUs in detail. The size of the database in MB 

was so large that it caused certain logistical problems while simply moving the 

files from one machine to another. As such, it was decided to focus on one 

product category – wine was selected for no other reason than author’s previous 

experience in the wine industry, which involved working with wine data on a daily 

basis, thus offering a degree of familiarity with the data from the onset. Together 

with the colleagues from Cardiff Business School (Heravi & Morgan, 2014a, 

2014b), the data was consolidated into a transaction level database, where 

household descriptors and product attributes were appended to the database. As 
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already described above, this resulted in the initial database with 170 989 cases 

in total, and 319 variables. Even though the data contained an incredible number 

of descriptors, many of the attributes – product attributes in particular – were 

either not available or duplicated, no doubt used for other than wine product 

categories. Data manipulations initially were carried out on a superficial level 

only, without adjusting the values in any manner – only to ensure the data is 

easily transferable between different software applications employed here and 

would not cause any issues. During the exploratory analysis, many of the 

unusable variables – obvious duplicates and empty categories – were removed 

after initial examination, leaving the dataset with a total of 182 variables. 

Normally it would be beneficial to preserve the data as complete as possible, but 

the variables removed would not offer any contribution whatsoever and would 

rather create unnecessary noise and clutter.  

5.2 Exploratory analysis  

The compiled dataset contains a number of variables that describe individual 

households, product attributes, and more importantly the transactional data for 

every purchase occasion totalling at 170 989 cases: this makes it a transactional 

level data, as opposed to consumer level data where each case would represent 

individual consumer or household, most likely summarising the individual 

purchasing decision to some sort of an average or a sum value.  
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In the past author carried out similar research focusing on consumer loyalty as a 

dependent variable, which was operationalised with an additional variable 

calculated as a proportionate value of a money spent on the most often 

purchased product variant divided by the total amount spent on all product 

variants in a given time frame. This time however research questions deal with a 

decision-making process where the consumer makes a conscious decision to give 

up a certain amount of money in exchange for perceived utilitarian and 

informational reinforcement that the product – in our instance wine – would be 

able to provide. In particular, we are interested in the emergent process of 

assigning value to the unit of product, and therefore the operationalisation is as 

follows: dependent variable is the price per litre paid by the consumer, which is 

then predicted with different modelling methods using any consumer, product, 

and transactional independent variables. This new to the dataset dependent 

variable is calculated by dividing the total amount paid by a consumer household 

during each single transaction by a total number of litres of wine purchased, 

which produces a numeric monetary value. Important to note here that, unlike 

previous research that mainly focused on the predictive capacity of NNs models 

as opposed to traditionally employed methods such as logistic regression for 

comparative purposes (Greene, 2011), this research takes a step further and aims 

to model the emergent process and examine the explanatory capacity of NNs 

models in attempt to ultimately explain and even visualise the decision-making 

process.  
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5.3 Regression and NNs comparative analysis 

To examine the relations in the data, some exploratory regression analyses were 

carried out.  

To facilitate the modelling and avoid taxing the computational resources too 

much, a subset was selected for exploratory regression analyses by geography: all 

of Wales and West, which included 13787 total observations, 13782 once the few 

cases where price was 0 were removed. Price per litre variable was calculated 

here using the total amount spent divided by volume, and rounded to two digits 

(pennies). All transactions were then assigned to either low spender or high 

spender category, effectively converting price per litre into a new binary variable 

as follows: price 3.99 identified as a dividing point between the two very distinct 

types of purchases.  

Variable conversion into binary is of course necessary for logistic regression 

analysis – it is a method of choice in extensive marketing research literature, and 

has been proven to offer consistent level of insight when it comes to modelling 

relations in the data (Adya & Collopy, 1998). Starting with a logistic regression 

establishes a solid basis for the ongoing analysis, and R (R_Core_Team, 2014) 

offers ample solutions with multitude of packages that provide the logistic 

regression functionality to examine the data.   

Zelig (as described in Crosas, King, Honaker, & Sweeney, 2015) is one useful 

package in R to build regression models, and is used here for comparative 



 

 
166 

 

purposes. Using only eight independent variables to predict the binary high or 

low spender dependent variable, a regular least squares regression model is 

developed with the following results: multiple R-squared of 0.07001, and 

adjusted R-squared of 0.06947. Rather low R-squared values are expected 

however while trying to predict what type of spender consumer may be from a 

few simple descriptive attributes, and may indicate a challenge regression model 

faces using the consumer behaviour dataset working with the dependent variable 

converted from the probabilistic to binary. Price per litre is a numeric monetary 

value, and when converted to either low or high value binary in nature is bound 

to have an effect on R-squared values. Low R-squared values may also be due to 

the fact that relevant variables are not available or were not measured in a 

suitable manner, or that the model is not able to account for other effects, such 

as nonlinearity. In validating models of consumer behaviour however, the R-

squared value may not be as important as other measures: within-sample 

prediction accuracy for instance, or the coefficient values and the properties of 

the consumer response promptness to price changes. As this research is not 

particularly concerned with the R-squared value itself, but rather with its 

determinants and underlying structural effects, the inherent nonlinear effects of 

NN models are expected to provide quite the improvement with connectionist 

models discussed later.  

The data is then randomly split into two subsets for validation – regression-NNs 

validation subset 1 and regression-NNs validation subset 2 – and models are 

developed using both subsets independently in parallel. As a next step, Logit 
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regression models are developed with Zelig package for each of the subsets using 

the same variables as with least squares regression described above, and all 

variables are statistically significant as shown in Figure 4 using regression NNs 

validation subset 1.  

 
Figure 4. Regression coefficients and significance levels for regression-NNs validation subset 1. 

Even though linear regression models and NNs parallel connectionist models are 

fundamentally different, it is beneficial nevertheless to try to bring them to the 

same level of analysis as a benchmark and compare the regression variable 

contribution parameters that the logistic regression model provides with the 

weights of the NNs model. Connectionist models are very powerful algorithms for 

a number of reasons – not the least is inherent parallel nonlinear configuration 

that requires no predetermined model structure. For the purposes of 

comparative exercise, it is possible to isolate this nonlinear capacity and limit the 

NNs models to only 2 layers of nodes, effectively constraining the model to a 

linear function: input and output layers. Thus, using the same variables, the 

simplest 2-layer NNs model is developed using a simple and elegant nnet package 

in R that offers functionality to satisfy the NNs modelling research in most cases 
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(Venables & Ripley, 2002) – no hidden layers, just two layers for input and output 

nodes. As a result, the 8-0-1 NNs model contains 8 weights as shown in Figure 5. 

 
Figure 5. NNs model results for regression-NNs validation subset 1. 

What immediately becomes obvious once the regression and NNs results are 

examined is that NNs mode weights are identical to regression coefficient values 

– the simplest NNs model with no hidden layers performs in exactly the manner 

as logistic regression.  

This is confirmed by using regression NNs validation subset 2 as well, and NNs 

model weights are again identical to those of logistic regression coefficients as 

shown in Figure 6 and Figure 7. 

 
Figure 6. Regression coefficients and significance levels for regression-NNs validation subset 2. 

This demonstrates how a simplistic NNs model with no parallel nonlinear 

processing performs exactly as logistic regression would, and provides connection 

weights identical to regression coefficient values.  
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Figure 7. NNs model results for regression-NNs validation subset 2. 

To increase the validity and reliability of the test, this procedure was replicated 

1000 times: random split into 2 new subsets each time which are then used to 

build logit and NNs models to compare the regression coefficient values with NNs 

connection weights, providing analogous results every time.  

5.4 Exploratory NNs modelling 

Following the exploratory analysis with traditional methods such as regressions, 

initial NNs modelling was carried out. This phase was mainly concerned with 

testing the software capacity to select a suitable package in R to carry out the 

modelling. Upon examination of the common R packages that offer NNs 

modelling functionality, it became apparent that only a few offered the capacity 

to use multiple hidden layers, and – more importantly – none offered the 

capacity to carry out pruning. This meant that author was facing a few options: 

either abandon R in preference of another software, develop a new package from 

scratch, or work with one of the existing package developers to advance the 

functionality and expand it to include pruning. First option was easily dismissed, 

as R is one of the most advances statistical modelling platforms: if something was 

not available in R, very likely this was not available in other software packages 

either and would have taken significantly longer to develop and roll out to make 

it available than it would take to do the same in R, as the statistical programming 
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environment for R is structured around developing new packages by researchers 

for other researchers. Second option implied the authors would be highly 

proficient with coding, which was not the case and developing the skill would 

require significant amount of time and could be considered a research project in 

its own right. Thus, the third option was pursued where collaborating with coders 

and developers additional functionality for the existing R package was developed 

to allow pruning the networks.  

5.4.1 RSNNS 

RSNNS (Bergmeir & Benítez, 2012) was an R package that allowed multiple 

hidden layers, and Bergmeir, package developer, was very responsive to the 

initial communication and general questions regarding the R package. This author 

proposed a collaboration project to develop the R package to include pruning, 

and Bergmeir offered assistance with wrapping the R code and updating the 

package once the coding is complete. The underlying functionality and low-level 

interface was done in C++, which meant this author had to develop a sufficient 

enough level of understanding and skill to do the necessary coding. This 

alternative however was the most feasible and an optimal choice. 

Package development began with familiarising with the low-level interface, which 

was based on C++ coding and already available for NNs training functionality, but 

not pruning. Using the SNNS manual and the ad hoc assistance of package 

developer that involved adding missing low-level functions to the package, with 

considerable effort this author was able to compile initial code capable of 
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carrying out pruning using the low-level interface, which was then implemented 

and updated by Bergmeir in the official package and made available to anybody 

within the wide scientific community.  

As nnet package only allows connectionist networks with a single hidden layer 

and no pruning capability, RSNNS package is used for all consecutive 

connectionist modelling from here on. 

5.4.2 NeuralNetTools 

NeuralNetTools (Beck, 2015) is a rather recent package used to visualise the NNs 

architecture. When it was first encountered, this author found the flexibility in 

visualisation for a number of NNs R packages extremely useful, including package 

nnet described above, which was also used extensively in previous research 

(Greene, 2011), and package RSNNS as well. Even though initially NeuralNetTools 

was great for visualisation of the NNs architecture, it was unable to 

accommodate the pruning process. When this author contacted the 

NeuralNetTools’ package developer Beck with an inquiry, he was not aware 

pruning was in fact available at all in R – not surprisingly so, as pruning in RSNNS 

was only introduced from this author’s collaboration with RSNNS’ Bergmeir 

(2012) very recently. NeuralNetTools’ Beck was happy to advance and develop 

the visualisation capacity further, and after collaboration with this author, 

NeuralNetTools had a new functionality that allows visualising pruned NNs model 

architectures as well.  
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5.5 Advanced connectionist models: hidden layers 

The simplistic NNs model described above did not use any hidden layers and 

therefore did not develop any capacity to account for nonlinearity in the 

architecture. Next, hidden layers are introduced in the connectionist modelling to 

provide a nonlinear dimension and build advanced models of consumer 

behaviour. For illustration purposes, number of variables used in the model is 

increased as reflected in a more complex input structure, and a single hidden 

node is introduced to the network architecture as shown in Figure 8. Black 

connections identify reinforcing connections, whereas light grey connections 

identify inhibiting connections – line weight corresponds with the connection 

weight. A single node in the hidden layer would not be expected to contribute to 

the explanation as compared with what a regression would normally be able to 

offer however, so the number of nodes is gradually increased.  

 
Figure 8. Connectionist network 54-1-1 architecture using consumer data with 1 hidden layer and 
a single neuron, 1000 iterations, no pruning.  
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Figure 9. Connectionist network 54-2-1 architecture using consumer data with a single hidden 
layer and 2 neurons, 1000 iterations, no pruning. 

Figure 9 shows 2 nodes in the hidden layer: simply increasing a number of nodes 

to a total of 2 results in a dramatic change in the network architecture, as now 

the hidden layer is able to examine the nonlinear relations within the data.  

If the number of hidden nodes is increased to 4 as shown in Figure 10, the 

architecture becomes even more complex, but at the same time provides the 

network with an additional capacity to extract microfeatures.  

 
Figure 10. Connectionist network 54-4-1 architecture using consumer data with a single hidden 
layer and 4 neurons, 1000 iterations, no pruning. 
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Figure 11. Connectionist network 54-4-2-1 architecture using consumer data with 2 hidden layers 
and 4-2 hidden neurons, 1000 iterations, no pruning. 

As discussed above, in addition to increasing the number of hidden neurons 

within a single hidden layer, another way to increase the connectionist model 

complexity is by increasing a number of hidden layers and distributing the hidden 

neurons among multiple layers. Figure 11 shows connectionist network with the 

54-4-2-1 structure, where a total of 6 hidden neurons are distributed among 2 

hidden layers, and Figure 12 shows the network that incorporates yet another 

hidden layer for the total of 3, with 14 hidden neurons in a 54-8-4-2-1 network 

structure. This of course provides an innumerable number of options how the 

initial network architecture could be arranges – in the following sections some of 

this will be examined and explored in attempt to assess which type of network 

architecture could be more suitable for either predictive or explanatory purposes.  
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Figure 12. Connectionist network 54-8-4-2-1 architecture using consumer data with 3 hidden 
layers and 8-4-2 hidden neurons, 1000 iterations, no pruning. 

It is of course not the complexity in itself that we are after here, but rather the 

sufficient flexibility and functional size of the initial network architecture to allow 

the further developments such as pruning to be carried out in the best possible 

manner, and provide optimal result. Nevertheless, this capacity to account for 

such a level of complexity is what makes the connectionist networks such a 

powerful pattern recognition algorithm as it allows extracting microfeatures that 

may very well even be incomprehensible to human researchers, which at the 

same time makes the interpretation extremely difficult or perhaps even 

impossible. A number of variable contribution analysis methods exist that 

attempt to examine the network connection weights and interpret the results will 

be discussed later, but here the focus is on pruning methods as a preferred 

method for the connectionist network to systematically eliminate some 

connections that do not contribute to the explanation.  
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5.6 Pruning 

The dataset used here is still the same subset for Wales and West as above, but 

only 1024 cases are randomly selected to test the models on initial development 

stage. Reason for a somewhat conservative number of cases is that it takes quite 

a long time to process the model computationally: could be only a few seconds 

for a simple model as above with 1000 iterations and a couple of nodes in the 

hidden layer, or considerably longer for a for a large model with 3 hidden layers 

and 100 000 iterations with retrain pruning cycles – as long as several days of 

non-stop processing.  

Before advancing to modelling with consumer data however, it would be worth 

to examine and assess pruning process with simulated data and tasks – i.e. train a 

NNs model using more weights than the task requires, and examine how well 

pruning deals with eliminating the unnecessary parts to trim down the model and 

expose the underlying core architecture to explain relations in the data.  

5.6.1 Assessing pruning performance using simulated data 

Before proceeding with modelling consumer data, it is important to assess the 

pruning capacity to isolate and remove unnecessary connections. It would not be 

feasible to test this with consumer data in which the relations and patters are not 

yet established – in fact, this is something this research project aims to achieve to 

an extent. Thus, simulated data would be used.  



 

 
177 

 

Simulated dataset would contain X1 and X2 values, which are randomly 

generated figures between 0 and 1, 1000 items each. Y would be the following 

function with some noise added in R:  

y = sin (x1 - 2 * x2) + 1 + rnorm (1000, 0, 0.2) 

 
Figure 13. Visual representation of y = sin (x1 - 2 * x2) + 1 + rnorm (1000, 0, 0.2) 

In Figure 13 the data is visualised in a 3-dimensional plot, showing that the cases 

may seem to form a linear relationship in a 2-dimensional a surface, whereas a 3-

dimensional representations shows the data to be organised around a surface 

rather than a line – to solve this, the connectionist model would require at least 

one hidden layer with just 2 nodes, making all extra nodes unnecessary and 

redundant. If that is indeed the case, pruning algorithm should eliminate the 

unnecessary superfluous architecture, leaving the bare minimum core necessary 

to solve the problem: 2 nodes in a single hidden layer. To test this, a simplified 

connectionist model with excessive 2-2-2-2-2-1 architecture is developed – that is 

a connectionist network with 4 hidden layers in addition to input and output 

layers containing 2 nodes within each of the hidden layers. As suggested above 
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however, this problem only requires a single hidden layer with 2 nodes, thus 

pruning should strip out the rest of the network exposing the core network 

architecture.  

 
Figure 14. Connectionist model with 2-2-2-2-2-1 architecture design, no pruning used in model 
development. 

No pruning was used to build the network shown in Figure 14 – as a result, it is a 

fully connected network that uses all the hidden layers and nodes, even though it 

would not be required to solve this particular computational problem. This 

illustrates the issue with predefined model architecture as it is difficult and even 

impossible to know what exactly would be required to solve the task with 

consumer data before the data is actually examined – a case of circular logic 

even. With the synthetic artificial data used here it is well known what is required 

to solve the task, and are able to say definitively that the predefined network 

proposed here for illustrative purposes that incorporates excessive and 

redundant architecture is able to solve the task just fine, but at the same time 

makes it particularly difficult to examine the network architecture in attempt to 

explain and define relations between the variables and interpret the results.  
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Figure 15. Connectionist model with 2-2-2-2-2-1 architecture design, pruning used in model 
development. 

For the model shown in Figure 15 exactly the same steps are taken to develop the 

connectionist model using the same synthetic data as for the model shown in 

Figure 14 above, but now employing pruning methods to optimise the network 

architecture during the model learning process. Optimal Brain Surgeon algorithm 

displayed better results with consumer data when all available in RSNNS pruning 

methods were tested, and is used for pruning here (Hassibi & Stork, 1993). Using 

Optimal Brain Surgeon algorithm offers substantial benefits for connectionist 

models: improved generalisation, simplified network architecture, reduced 

computational capacity required and improved processing time as a result, and – 

crucial for the research questions postulated here – improves network rule 

extraction capacity as a result. It now becomes apparent that the core 

architecture necessary to solve the task is in fact much simpler than shown in 

Figure 14 and indeed only requires a single hidden layer and 2 nodes – extra 

neurons within the first, second, and third hidden layers are all redundant now, 

as the 2 neurons within the last hidden layer are sufficient to solve the 

computational problem. The level of architecture complexity required for the task 

here overall is rather low, as we only have 2 nodes in the input layer and few 

hidden nodes – yet it is apparent that the pruned network architecture is 
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substantially more clear and easier to examine and interpret as a result. Pruning a 

highly complex network architecture that would be trimmed to the core network 

as a result should, potentially removing multiple nodes, should provide a 

substantial benefit in explaining network architecture.  

Since the synthetic dataset was designed for a network that would only require a 

single hidden layer with only 2 nodes, we could assess performance of the 2 

models above and compare it precisely with that model architecture: a simple 

model with only 2 hidden neurons within a single layer. As a result, the network 

architecture is as shown in Figure 16: fully connected with 2 hidden nodes. 

Effectively, this architecture is similar to the one described above after the 

pruning was carries out (shown in Figure 15) as pruning removed all but the 2 

hidden nodes in the last layer only.  

 
Figure 16. NNs model with 2-2-1 nodes in a single hidden layer, no pruning. 

It would be useful to compare model performance of all 3 models described 

above: 2-2-2-2-2-1 model with no pruning (Figure 14), 2-2-2-2-2-1 model with 

pruning carried out (Figure 15), and then 2-2-1 model with a single hidden layer 

(Figure 16).  

Using RMSE, pruned 2-2-2-2-2-1 models (Figure 15) show RMSE output around 

0.28, similar to 2-2-1 models with a single hidden layer and no pruning RMSE 
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output around 0.27 (Figure 16) – interestingly enough, 2-2-2-2-2-1 models with 

no pruning (Figure 14) provide RMSE that varies between higher values around 

0.53 and similar to other models 0.27. This procedure was replicated 1000 times, 

providing consistent results.  

This should serve as a convincing argument that pruning connectionist models is 

an optimal approach to develop robust representative models to extract and 

describe representative patterns within the data, and would be exceptionally 

useful to examine and potentially explain consumer behaviour and decision-

making process of consumer choice. Moreover, the tests carried out suggest that 

pruning is not ably able to substantially simplify the network architecture and 

reduce the network size by eliminating the inessential connections, but able to do 

so while the maintaining the level network predictive performance on a similar or 

better level as compared to models where no pruning was carried out.  

5.6.2 Assessing pruning performance with consumer data 

Now that it is established that pruning is an effective and efficient way to remove 

unessential connections to extract relevant patterns in the data and reveal the 

core relations that may be able to explain consumer behaviour and decision-

making process, it would make sense to proceed with consumer data modelling.  

Using the same Wales and West consumer data sample subset as in the section 

describing comparative analyses above but with additional input variables, the 

connectionist modelling is carried out to develop a predictive and explanatory 

representation of consumer behaviour. For the first set of exploratory models, 
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only 1024 randomly selected cases are used – this is of course to speed up the 

modelling process where a number of preliminary starting model architectures 

are examined. Even with a method of analysis that does not require the final 

model architecture to be predetermined and thusly to a large extent defined by a 

researcher, there is still a matter of initial model architecture which needs to be 

defined by the researcher nevertheless – i.e. the number of hidden layers and 

computational nodes to be used and consequently pruned. This will be discussed 

in detail in the limitations section later.  

Number of iterations (and number of retrain cycles with pruning) plays an 

important role as well: using 3 hidden layers with 8 neurones within each layer it 

takes 10.15 sec with 1000 iterations, this goes up to 63.40 sec with 10 000 

iterations, and up to 637.25 sec with 100 000 iterations. This network is depicted 

in Figure 17 where the 54-8-8-8-1 structure contains an input layer with 54 nodes 

(some of the non-numeric inputs are automatically dummy coded and therefore 

appear as separate input nodes here), 3 hidden layers, and an output layer can be 

clearly seen. Even though the connection weights are clearly identified by the 

connection line weight, it is nevertheless very difficult to comprehend such a 

complicated network visualisation displaying 256 connections between 79 

neurons, making any attempts at interpretation problematic. This is not to say 

that the network shown here is extremely complex – in earlier research, 

substantially higher numbers of neurons were examined to assess the predictive 

capacity in relation to connectionist model size, going as high as 200 neurons 

within a single layer. Thus, it is possible that a more complex starting network 
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architecture would be required here to eliminate the possibility of inadvertently 

limiting the final network architecture by setting too small of a starting point – 

this of course assuming that pruning algorithm should consequently be able to 

eliminate any number of redundant connections and neurons within the overall 

architecture.  

 
Figure 17. Connectionist network 54-8-8-8-1 architecture using consumer data with 3 hidden 
layers and 8 neurons each, 100 000 iterations, no pruning. 

This is a rather straightforward network architecture as far as number of hidden 

layers and neurons – as a next logical step, it would be useful to introduce 

pruning and examine the effects. Figure 18 shows a model described above: 

three hidden layers with 54-8-8-8-1 architecture, using 1000 iterations and no 

pruning: it takes only 10.15 sec to complete and produces 568 connections in 

total with 79 neurons. Once pruning is introduced with 1000 iterations and only 

100 retraining cycles, it takes considerably longer to calculate: 306.25 sec. The 

resulting network architecture however makes it abundantly clear how helpful 

the pruning process really is even from just looking at the network in Figure 19 as 

compared to network architecture in Figure 18 where no pruning was done – a 

large number of connections is pruned out decreasing the total number to just 
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85, a number of neurones are also pruned out leaving a total of 74, and the 

connection weights appear to be higher.  

 
Figure 18. Connectionist network 54-8-8-8-1 architecture using consumer data with 3 hidden 
layers and 8 neurons each, 1000 iterations, no pruning. 

 
Figure 19. Connectionist network 54-8-8-8-1 architecture using consumer data with 3 hidden 
layers and 8 neurons each, 1000 iterations, pruning with 100 retrain cycles. 

 
Figure 20. Connectionist network 54-8-8-8-1 architecture using consumer data with 3 hidden 
layers and 8 neurons each, 1000 iterations, pruning with 250 retrain cycles. 
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With 250 retraining cycles as shown in Figure 20, it now takes 736.28 sec to 

complete, and the network architecture is further optimised down to 66 

connections in total with 74 neurons.  

It is clear from these few examples the general direction the modelling process 

should take, and suggests that pruning could be of great help in reducing network 

architecture complexity to improve the simplify the data interpretation for 

explanatory purposes.  

5.6.3 Pruning different network architectures 

As described above, the connectionist network determines and defines the final 

network architecture during and as a result of the learning and pruning process. 

Researcher however does need to define the initial design of connectionist 

network: number of hidden layers and number of computational neurons within 

each hidden layer are set before the model learning process begins. Given the 

nature of research questions this research project is mainly concerned with, it is 

important to examine the effectiveness of pruning different connectionist 

network architectures. It makes sense to proceed with a sufficiently large initial 

network architecture not to limit the model capacity from the onset, but a 

compromise is necessary between including a larger dataset than used in 

previous tests described above and keeping the modelling time reasonable. Thus, 

the overall network size will be limited to 12 computational units here – this will 

keep the network size reasonably constant and will allow focusing on 

manipulating network architecture. There are a number of network designs to 
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allocate hidden neurons within 1-, 2-, and 3- layer networks, which will be 

discussed in the following paragraphs.   

To begin with, the network architecture with a balanced 54-4-4-4-1 layout is 

examined. Using a larger consumer data subset this time that includes all of 

Wales and West regions with a total number of 13787 cases, it takes 503.84 sec 

to complete and produces a fully connected 54-4-4-4-1 network with 67 neurons 

linked by 252 connections as shown in Figure 21, and produces RMSE of 0.9087.  

 
Figure 21. Connectionist network 54-4-4-4-1 architecture using consumer data with 3 hidden 
layers and 4 neurons each, 10000 iterations, no pruning. 

Using the same data and 54-4-4-4-1 network structure, the connectionist 

network is developed applying pruning with 100 relearning cycles. It now takes 

quite a bit longer to train and prune the network – a total of 1709.36 sec – but as 

a result produces a network with much leaner architecture, only 59 neurons and 

56 connections, and RMSE of 0.9538, which is comparable to the unpruned 

network shown in Figure 21. In fact, as can be seen in Figure 22 where the 

network architecture is shown, the pruning was successfully able to effectively 
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remove a few hidden layers leaving only 2 nodes in the first hidden layer. The 

network architecture shown in Figure 22 is the outcome of one of the first 

modelling attempts, and indeed the result is extremely promising as far as 

theoretical implications go, and what it may mean for the discussion of using 

connectionist models to substantiate and extend the theoretical framework of 

BPM.  

 
Figure 22. Connectionist network 54-4-4-4-1 architecture using consumer data with 3 hidden 
layers and 4 neurons each, 10000 iterations, pruning with 100 retrain cycles. 

This of course needs to be validated, with the procedure replicated numerous 

times to see if consecutive models continue providing consistent results and 

similar patterns in the network architecture can be observed.  

To examine the changes in the network architecture as a result of pruning, a 

number of different architecture types are examined here for exploratory 

purposes. Using the same number of neurons within the network as in the model 

shown in Figure 22, 3 different network architecture types are explored: 54-6-4-

2-1 network that funnels the connections through the hidden layers, 54-4-4-4-1 
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network which analogous to the one shown in Figure 22 used for validation and 

benchmarking, and reverse funnel 54-2-4-6-1 network that imposes a bottleneck 

within the first hidden layer but allows growing the network slightly throughout 

the successive hidden layers. Each of these network types was developed as a 

trained (no pruning) and pruned variant, and replicated 100 times with 10000 

iterations and 100 retrain cycles (Optimal Brain Surgeon pruning algorithm shows 

remarkable performance with pruning and does not actually require many 

retraining cycles) for validation purposes, producing a total of 600 models as a 

result. Figure 23 shows one of the most common architectures as a result of 

pruning the 54-4-4-4-1 network, which was optimised from 67 units with 252 

connections down to 64 units with only 67 connections. It is clear that the 

network effectively eliminated certain neurons altogether by pruning their 

connections.  

 
Figure 23. Connectionist network 54-4-4-4-1 architecture using consumer data with 3 hidden 
layers and 4 neurons each, 10000 iterations, pruning with 100 retrain cycles. 

Due to the nature of the data employed here with a large number of input 

neurons, the initial architecture of the network with 54-6-4-2-1 contains 
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substantially more connections (between input and first hidden layer) – as a 

result, the common network architecture type obtained here was optimised from 

67 units with 358 connections down to 67 units with only 78 connections as 

shown in Figure 24.  

 
Figure 24. Connectionist network 54-6-4-2-1 architecture using consumer data with 3 hidden 
layers and 4 neurons each, 10000 iterations, pruning with 100 retrain cycles. 

 

Figure 25. Connectionist network 54-2-4-6-1 architecture using consumer data with 3 hidden 
layers and 4 neurons each, 10000 iterations, pruning with 100 retrain cycles. 

Models with initial 54-2-4-6-1 network architecture design contain 67 units and 

146 connections, and can be pruned down to 63 units with only 25 connections, 
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as shown in Figure 25. Here, the bottlenecked network did not show the capacity 

to sufficiently develop within the subsequent hidden layers, normally leaving a 

number of hidden neurons unused.  

These results support the premise that even the smaller neural network models 

should be able to extract the highly complex patters from the consumer decision-

making data and represent it with a visually straightforward network architecture, 

while being able to carry a substantial amount of predictive and explanatory 

capacity. If this is indeed the case, a simplified version of the network 

architecture with a few hidden nodes should serve as a great explanatory model 

of consumer behaviour – say a network with a 54-2-1 architecture as discussed in 

the following section.  

5.6.4 Assessing explanatory capacity of a connectionist 

model with a single hidden layer and 2 neurons  

The simple approach would be to include only 2 hidden nodes – this way, the 

model is able to account for nonlinear relations within the data, and all possible 

interactive combinations of input nodes would be accounted for and linked to the 

output node through the 2 hidden nodes. It then should be possible to argue that 

the 2 hidden nodes in this simple connectionist architecture represent utilitarian 

reinforcement and informational reinforcement following the BPM framework. 

Figure 26 shows this 54-2-1 network, where only 2 hidden nodes are used with 

1000 iterations – very simple straightforward network that only took 5.69 sec to 
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run and uses 57 nodes (54  of which are input nodes as can be seen in Figure 26) 

and 110 connections. 

 
Figure 26. Connectionist network 54-2-1 architecture using consumer data with a single hidden 
layer and 2 neurons, 1000 iterations, no pruning. 

 
Figure 27. Connectionist network 54-2-1 architecture using consumer data with a single hidden 
layer and 2 neurons, 1000 iterations, pruning with 100 retrain cycles. 

Once pruning is introduced in the network shown in Figure 27 with 100 retraining 

cycles – it takes 20.04 sec to run and pruning algorithms removes all but 21 

connections as a result. Obviously, this is a very straightforward and easy to 

interpret – any one of the input nodes can be traced to one of the hidden nodes, 

and to output – not only visually, but also quantitatively, as every connection 

carries the connection weight of course. This should allow the examination of the 

architecture in detail and assess the variable contribution level. The 
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interpretation of result should be very transparent as well, where all connections 

are represented visually.  

However, would it allow sufficiently robust network to develop before it is 

pruned? Previous research projects carried out by the author indicate that the 

connectionist network with a single hidden layer provides substantially improved 

modelling capacity over traditionally employed methods such as logit, being able 

to extract nonlinear patterns from the data (Greene, 2011). It is important to 

keep in mind that this relatively simple network architecture is nevertheless 

extremely powerful and capable to solve complex tasks in efficient and effective 

manner as shown above.  

 
Figure 28. Connectionist network 54-2-1 architecture using consumer data with a single hidden 
layer and 2 neurons, 10 000 iterations, pruning with 100 retrain cycles.  

There are a number of ways possible however to increase the model complexity 

while at the same time maintaining the underlying agenda to develop the 

network architecture open to interpretation. One way is to increase the number 

of iterations and retraining cycles, allowing the network to learn everything there 

is to learn within the given network architecture with only 2 hidden node. 

Network shown in Figure 28 is identical to the one in Figure 27 with the exception 
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of increasing the number of iterations from 1000 to 10 000 – it takes only 42.07 

sec to run and as a result pruning algorithm removes all but 15 connections, 

making it even easier to study and use the network architecture to explain the 

relations within the data.  

5.7 Connectionist model predictive capacity 

The original comparison of a regression model with the neural network model in 

section 5.3 can now be revisited and supplemented with the assessment of 

predictive capacity that a neural network with hidden layers and pruning is able 

to offer. Previous research programme (Greene, 2011) focused on a comparative 

assessment of a traditional method of analysis represented by a logistic 

regression, which is widely common in the marketing and consumer behaviour 

literature, with a connectionist model in the form of a feed-forward neural 

network with a single hidden layer – as a result, neural network model shows 

superior predictive capacity than a logistic regression model.  For that reason, the 

emphasis here would be to assess predictive capacity of various connectionist 

architectures only, focusing on pruning capacity. Logistic regression is only able to 

show level of performance comparable to the simplest network architecture with 

no hidden layers as shown in section 5.3, and therefore is not considered here.    

Using the same dataset as in the analyses carried out in section 5.6, a number of 

neural network architectures are assessed in terms of predictive capacity and 

model fitness.  
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Connectionist network 54-4-4-4-1 architecture is assessed, examining unpruned 

and pruned variants. Limiting to 1000 iterations, network models without pruning 

take as little as 54 sec to run, and produces 252 connections between 

67computational units. Once pruning algorithm is introduced, it models take 

substantially more time to run – one of the lowest at 660 sec, with most running 

into 1000+ sec. As a result however, networks with as few as only 29 connections 

are developed, making it considerably easier to examine and interpret the 

network architecture and connections. While examining the RMSE figures for 

networks with and without pruning, the differences are comparable: networks 

without pruning show RMSE figures as low as 0.79, while models with pruning 

show RMSE figures that are able to reach levels as low as 0.82, which is very 

comparable considering only 1000 iterations were used to develop the 

connectionist models.  

When connectionist networks with 54-6-4-2-1 architecture are examined in the 

similar manner, the observed results are similar to the 54-4-4-4-1 networks. 

Networks without pruning and 1000 iterations take at least 58 sec to run, and 

produce 358 connections between 67 units. Network design with architecture 54-

6-4-2-1 allow more connections between the input layer and first hidden layer 

which here contains 6 rather than 4 units in 54-4-4-4-1 architecture, and 

therefore provides higher total number of connections. Once pruning is 

introduced, it takes 1676 sec to produce a network with substantially simplified 

architecture (certain model runs take even less time, but fail to reduce the 

network architecture complexity to the similar level, and thus are omitted here). 
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As a result, it is possible to reduce network architecture to as few as 47 

connections amongst 62 computational units, which again provides a 

substantially simplified network for subsequent examination and interpretation. 

RMSE figures for unpruned 54-6-4-2-1 networks could be as low as 0.83, whereas 

models with pruning show RMSE figures that can reach 0.87 – again, quite 

comparable performance, especially considering that only 1000 iterations were 

used to run the models.  

When looking at bottleneck networks with 54-2-4-6-1 architecture, models that 

do not use pruning produce 46 sec to run with 1000 iterations, and produce 146 

connections between 67 units. Number of connections is substantially lower than 

in 54-6-4-2-1 and 54-4-4-4-1 network architectures – again, it is the reduced 

number between the input layer that contains the majority of neurons with our 

data, and hidden layer that now contains only 2 units that provides lower number 

of total connections as a result. Introducing pruning increases model run time to 

311 sec, and reduces the number of connections to as few as only 9 connections, 

pruning out most hidden layers as a result. Occasionally the model would take 

substantially less time to run, but as a result it would fail to reduce the 

architecture complexity to the full potential – generally speaking with models 

that use only 1000 iterations, the longer it takes to run, the simpler the network 

architecture would be as a result, suggesting that pruning requires certain 

computational effort to be carried out properly. As a result, networks without 

pruning show RMSE starting at 0.90, whereas networks with pruning show RMSE 

figures as low as 0.95.  
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Figure 29. Connectionist network 54-2-1 architecture using consumer data with a single hidden 
layer and 2 neurons, 10 000 iterations, no pruning. 

 
Figure 30. Connectionist network 54-2-1 architecture using consumer data with a single hidden 
layer and 2 neurons, 10 000 iterations, pruning with 100 retrain cycles. 

Considering a substantially simplified network architecture as suggested in the 

previous section with 54-2-1 design, it takes as little as 38 sec for network 

without pruning to go through 1000 iterations, producing 110 connections 

between 57 units. Pruning 54-2-1 network takes 175 sec to run and can eliminate 

majority of connections, leaving fewer than 10 connections. RMSE figure of 0.85 

can be observed with models when pruning was not used, and when pruning is 

carried out RMSE figures of 0.88 are possible.  
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When number of iterations is increased to 10000, the results over multiple model 

runs are more consistent compared to 1000 iteration models, but do not seem to 

show better RMSE figures. Increasing number of iterations to 100000 does 

improve RMSE figures. It also becomes apparent that the difference in time it 

takes to run models without and with pruning is reduced with more iterations, 

suggesting that pruning more complex models with higher number of iterations 

takes only marginally more time, which is a very positive feature in terms of 

scaling model size.  

It is then should be apparent that pruning is able reduce the number of 

connections and network architecture substantially, while maintaining 

comparable level of predictive capacity. The ability to expose the core 

architecture of the data after all possible interactions were explored during 

model training would greatly simplify the task of exposing relations within the 

data that can be used not only for interpretation and explanation (as can be seen 

by comparing Figure 29 and Figure 30), but also for more transparent predictive 

modelling.  

5.8 BPM connectionist model  

So this brings us to the main question which is as follows: would it be possible to 

train a connectionist network that provides a sufficient predictive capacity, and 

then use the connection weights and hidden nodes as a distributed 

representation of informational and utilitarian reinforcement to develop the 
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explanatory model sufficient for interpretation of the decision-making process as 

proposed by the theoretical framework of BPM? In addition, would pruning the 

network architecture reduce the model complexity and as a result provide a 

clearer explanatory framework while offering a comparable level of predictive 

capacity? In the following section, this is explored in detail. 

5.9 Summary 

In this chapter, results of the statistical testing methods employed as part of this 

research project were presented. First, results of preliminary data manipulations 

and exploratory analysis were described. Then regression and connectionist 

models were compared to establish a connection between the two methods of 

analysis on a computational level. This was followed by a discussion of the results 

from connectionist models of varying complexity. Finally, the capacity of pruning 

algorithms to optimise the network architecture and expose the predictive core 

were assessed in its attempt to provide a plausible account of representing 

informational and utilitarian reinforcement within the hidden layers as part of 

emergent distributed network architecture.  

In the following chapter, results are discussed and interpreted.  
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6. Interpretation of results 

In this chapter, the obtained results as described above are discussed and 

interpreted within the wider context of research questions posed here, and the 

field of consumer behaviour in general.  

6.1 Informational and Utilitarian Reinforcement 

For the sake of clarity before we proceed with the discussion of results, and to 

restate how the concept of utilitarian and informational reinforcement is 

operationalised and defined here following the connectionist frame of inquiry, it 

would be useful to summarise how informational and utilitarian reinforcement 

were examined in conjunction with connectionist modelling as part of the 

research programme to date. Prior to this research project, the theoretical 

approach was substantially different from the course identified here, as 

informational and utilitarian reinforcement were previously introduced into the 

neural network model in the form of additional input variables (Greene, 2011), 

and even though results demonstrated that doing so significantly improved 

model performance and corroborated previous findings (Foxall, Yan, Oliveira-

Castro, & Wells, 2013; Yan, Foxall, & Doyle, 2012a, 2012b), subsequently it was 

identified and proposed that an entirely different modelling approach was 

required to explore the concept of utilitarian and informational reinforcement 

using connectionist networks (Greene, 2011). It was speculated that one reason 



 

 
200 

 

for such improvement could be due to the process of assigning the informational 

and utilitarian reinforcement values to each brand available for selection, as it 

effectively allowed to capture in the quantitative manner some of the 

information on consumer decision-making setting and learning history which 

possibly be lost in otherwise the process of transforming the brand-level data for 

statistical analyses. This time however as part of the present research project, the 

informational and utilitarian reinforcement are not added on the input variable 

level as before, but rather are examined as a part of the artificial neural network 

learning process on the level of connectionist weights, and it is argued that the 

informational and utilitarian reinforcement are formed during the model learning 

process following the principle of distributed representation, and thus are the 

emergent entities within the hidden layers of the connectionist model.  

6.2 Results discussion 

Consumer behaviour modelling employing the NNs is able to offer as a result a 

substantial amount of information open for interpretation and further analyses. 

In the following sections, these essential aspects will be discussed in detail.  

6.2.1 Exploratory data examination 

It is important to note a few points regarding the data employed here: the 

synthetic datasets developed to test the modelling capacity, and the actual 

consumer data that contains transactional purchasing information, household 

descriptor database, and product attribute database.  
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Considering the vast amount of data available in the wine subset of the consumer 

dataset that was obtained from the Kantar World Panel, it is quite reasonable to 

expect that it would have been sufficiently robust for the purposes of this 

research to develop and test consumer models with sufficient level of predictive 

and explanatory capacity. Indeed, this was the case in previous research (Greene, 

2011) where only consumer data was employed for comparative purposes to 

assess the adequacy of traditional and connectionist approaches to model and 

predict consumer situation and consumer decision-making faculties. This time 

however, as nonlinear connectionist models of higher complexity with multiple 

hidden layers developed here require new software solutions to be developed in 

parallel to the research process, these very algorithms themselves needed to be 

assessed at the outset, before they can be employed to examine and model 

consumer data. Thus, additional synthetic datasets were devised, which would 

allow the relations in the synthesised data to be defined by design. Relations in 

the consumer data, on the other hand, are not defined and thusly are not 

suitable to be used to assess the adequacy and performance of algorithms and 

software solutions – it is in fact the overarching purpose of this very research 

project, to identify and extract the patterns in the consumer data, which could 

then be useful to explain consumer behaviour and purchasing decision-making 

process.  

6.2.2 Results of regression and NNs comparative analysis  

It is of course a widespread misconception that NNs models do not provide 

sufficient explanatory capacity as by design they lack the computational and 
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processing transparency, and thus are not able to offer to researchers a glimpse 

into the model development process. This may complicate the capacity of 

researcher to interpret and explain the results thus obtained, but it is commonly 

assumed that researchers may accept this limitation because the model is able to 

offer predictive superiority as a sufficient trade-off. It is however not the model 

inherent design that makes it difficult to interpret the results, but rather the 

intricate nature of the relations within the data that the NNs model aims to 

unravel that human researchers may struggle to comprehend and explain in 

simple terms. In fact, this is the very reason why researchers employ nonlinear 

parallel modelling in the first place – to decompose complex phenomena and 

reduce the dimensionality of the problem and make it easier to comprehend and 

interpret.  

Moreover, it is argued here that connectionist models are not only adequate to 

explain the relations between variables within the data as compared to 

traditional regression models, but are superior not only in predictive but also in 

explanatory capacity when the research problem and data complexity is high, 

thus refuting the back box misconception commonly attributed to connectionist 

modelling. One major reason for this argument is of course the inherent 

capability of connectionist models to provide a comprehensive account of 

nonlinear interaction between the variables in the data, something where 

traditional methods could have serious capacity limitation – in particular an issue 

with scalability when large datasets with many variables are involved, as number 

of interactions to consider increases exponentially with the number of variables. 
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Connectionist networks, on the other hand, are able to deal with all interactions 

within the data as part of a learning process, while the network architecture is 

developed to represent the patters within the data rather than being pre-

specified by a researcher as require with traditional methods of analysis.  

To address these points, traditionally employed in marketing and consumer 

literature regression analysis is compared with the NNs model of the simplest 

network architecture. The problem type is transformed to a dichotomous for this 

particular task only – to align the distinctly different modelling approaches to an 

even level, as it is not the actual model performance that is being compared at 

this point, but rather the ability of the connectionist model to offer a level of 

performance equal to that of its corresponding traditional model. As a result of a 

series of comparative assessments that involve multiple random splits and 

replications of the procedure to increase the validity of results, it is clear that the 

connectionist model with the simplest network architecture that includes no 

hidden layers is able to perform identically to a regression model – the method of 

choice in traditional marketing and consumer literature and fields of study. 

Connectionist models with simplified architecture with no hidden layers 

developed and examined in the first stage of research project here were able to 

show performance levels equal to performance of logit models: NNs models that 

comprised solely of the input and output nodes, and incorporated no hidden 

nodes, were able to offer connection weight values identical the coefficients in 

logit models. No hidden layers of course means the simplified straightforward 

NNs models were not able to account for any nonlinear relations within the data 
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– it can be said then that connectionist models display not only the predictive 

performance levels equal to that of logit model counterpart, but also provide a 

equivalent level of explanatory capacity on variable contribution dimension. Thus, 

a clear link is established between the connectionist architecture of NNs and the 

traditionally employed logit modelling as a method of analysis while working with 

consumer data, and offers a solid starting point from which the two methods of 

analysis can be shown to contrast substantively both in underlying architecture 

and design, and levels of performance. The following paragraphs outline a 

number of important points to support this.  

First imperative point to discuss is the required predetermined structure of a logit 

model, and the lack of thereof by design in connectionist models. The simple 

models developed at this stage could of course be advanced and developed 

further as required – both logit and NNs. Common way to improve a logit model 

is to examine the variable contributions and pick the optimal set that includes the 

variables that offer best predictive capacity, while at the same time introducing 

the interactive variables to account for possible nonlinear relations within the 

dataset. This task however is rather manual and tedious, and requires not only 

computational resources, but also human resources as it may take researcher a 

considerable effort to continuously test and assess alternative models to select 

the optimal predictive set. Additionally, large datasets with numerous variables to 

consider pose an even larger issue as number of possible interaction 

combinations increases exponentially. As noted elsewhere (Bishop, 1995), the 

fact that traditionally employed methods of analysis require a predetermined 
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model structure is an inherent weakness when compared with the connectionist 

models. Whereas connectionist models, on the other hand, are able to determine 

its own structure and network architecture following a statistical method (as 

much as this term can be applied to artificial entities) during the modelling 

process while extracting the patterns from the dataset. Therefore, to increase the 

capacity of the NNs model and advance its complexity and capacity, it is only a 

matter of increasing the number of computational nodes and (hidden) layers – 

the optimal architecture is then determined during the network learning process 

and there is no need for researcher to specify or define it beforehand. The 

increased network complexity by introducing hidden layers introduces the 

network capacity to account for nonlinearity, which considerably improves the 

performance of the NNs model with complex consumer data.  

Second, it is important to touch upon the theoretical implications that the 

predetermined model architecture may postulate. As discussed above, variable 

selection process to form the model structure is not only tedious and taxing, but 

also could be studied as a research question in its own right (for example see 

Greenland, 1989). Underlying theoretical or philosophical framework could 

dictate the models structure as well. It is however a common practise with 

traditional methods of analysis such as logit to develop the model structure and 

carry out the variable selection process often relying on predictive capacity alone 

to be used for all subsequent analyses – generally a goodness of fit criteria such 

as R-squared, or another purely statistical measure. Depending on the underlying 

theoretical framework, this may bring either positive or negative consequences. 
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On the one hand, the predetermined model structure may be used to control the 

exclusion or inclusion of variables that may be of particular interest during the 

operationalisation or research questions. The pre-programmed model structure 

could also make the process of understanding and explaining the phenomenon 

somewhat more straightforward. On the other hand, it is safe to assume that the 

predetermined model structure would inevitable have an effect on the 

interpretation of the results obtained this way. Thus, the positivistic aim for a 

researcher to be largely removed from the subject matter could be said to be 

compromised – in extreme cases rendering the results and meaning derived from 

such results as nothing but a statistical artefact (Harris & Hahn, 2011). The nature 

of predetermined model structure may play even larger role depending on the 

type of research – for example, research questions that aim to provide a 

descriptive account of a process of the phenomenon would be greatly influenced 

if the model structure is in fact determined or even selected by the researcher, 

potentially compromising the overall objective, rather that developed to reflect 

the patterns in data. For such tasks, it should be more appropriate to employ 

such method of analysis where the model structure and underlying architecture is 

a product of analysis rather than an initial requirement – such as NNs models.  

Third, the results described here address and carry a serious challenge to the 

black box model claim. In marketing literature discussions and in the industry, it is 

frequent to encounter the arguments against connectionist models that revolve 

around the difficulties to explain and interpret the modelling process: the model 

manipulates the input data according to certain rules and provides an output, but 
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makes it difficult to examine and interpret the modelling process with simple 

terms (Gevrey, Dimopoulos, & Lek, 2003; Olden & Jackson, 2002; Olden, Joy, & 

Death, 2004). As discussed above, the empirical evidence offered here suggest 

otherwise and argues this claim to be untrue: if simplifies input-output 

connectionist model is capable of generating results identical to those of a logit 

model, it should be reasonable to infer that the explanatory power that simplified 

connectionist model carries is comparable in the very least with the explanatory 

capacity attributable to a logit model. The fact that the connection weights 

offered by the NNs model are identical to the coefficient values of the logit model 

supports this argument, and explanatory capacity of NNs models could be 

considered to be on the same level as regression model is able to offer. Complex 

connectionist models follow the same theoretical assumptions and statistical 

rules as simplified model described above – it is these NNs models of higher 

complexity that are often referred to as black box models, as complex patterns 

extracted from the data become less obvious to researchers, and therefore less 

straightforward to explain and interpret in simple terms. Nevertheless, this does 

not point to the flaw of the model but rather to the boundaries of human 

understanding, and the limited ability to consider complex multi-dimensionality, 

and thus the black box analogy is hardly suitable for connectionist models.  

In summary, simpler problems do not require complex algorithms, and are easier 

to explain and interpret. Simple algorithms are inadequate when applied to 

complex phenomena however, which require complex algorithms and models – 

but complex phenomena are difficult to explain and interpret no matter what 



 

 
208 

 

algorithms and models are employed, as it is the complex nature of the problem 

that makes it difficult to comprehend, not the method employed. This is a 

fundamental notion here, as all consecutive modelling development follows this 

very same principle by adding the necessary complexity to the connectionist 

network architecture as dictated by the increasing complexity of the research 

questions, and the need to examine relations in the data and phenomena of 

higher informational density.  

6.2.3 Exploratory NNs modelling results and discussion 

Now that it is established that simplified NNs models are able to perform on par 

with logit models and provide analogous level of explanatory power, the 

connectionist models are developed further. Introducing additional hidden layers 

between the model input and output provides the ability for the connectionist 

model to account for nonlinear relations in the data. It should be safe to assume 

that transactional data on consumer purchasing decision in a particular marketing 

setting is complex, and therefore it is expected to contain a substantial extent of 

nonlinear relations – models able to account for such relations should provide 

considerable advantage over linear models in both predictive and explanatory 

capacity. Low adjusted R described above may indicate relatively weak logit 

model performance due to a number of factors. There is of course always a 

possibility that the particular dataset does not in fact carry any predictive capacity 

and is therefore not particularly useful in answering specific research questions 

irrespective of the statistical methods employed to analyse it. In fact, even 

though connectionist models do not require a predefined model structure and 
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architecture, researchers may be limited to what can be included nevertheless as 

the data collected may have followed a particular philosophical position or 

framework – whether explicitly stated or not. Thus, the data collected in such a 

way would inherently only include the variables according to this philosophical 

position or framework, limiting the ability of connectionist model to extract 

patters from the data from the onset. Here however secondary data is used, and 

the number of variables included is very large to say the least. Another possibility 

for the relatively weak performance of logit model could be that the relations 

between dependent and independent variables that are being described are in 

fact not linear. If so, appropriate method of analysis should be able to improve 

upon the results obtained with logit models by being able to account for 

nonlinear relations within the consumer dataset.  

Previous research carried out by this author examined the effect of network 

complexity provided encouraging results – the focus at the time was on the 

number of hidden neurons, and was limited to a single hidden layer (Greene, 

2011). The dataset employed in the previous research programme was 

sufficiently large (around 75 000 cases for a single product category) to make 

sure connectionist network with many hidden neurons are not able to learn the 

entire dataset to attain a nearly flawless prediction power. The effect of model 

size on model performance was examined with networks with size starting from a 

single hidden neuron and progressively increasing to a 100 hidden neurons total 

(and even a few select models that used as many as 200 neurons within a single 

hidden layer) and compared with the performance of a logit model (which of 
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course could not be developed further beyond the initial input variable selection). 

The results showed gradual performance improvement as the connectionist 

network size increased and more neurons were employed in the network 

architecture, providing better means for the model to identify the nonlinear 

patterns in the data. This suggested that connectionist models were suitable to 

study complex datasets and consumer behaviour data in particular.  

It should be expected for the model performance to flatten out at some point, 

where increasing model size would not provide substantial improvement in the 

model capacity – it was not observed with the dataset employed in the previous 

research project (Greene, 2011), and as the dataset employed here is 

considerably larger and more complex yet, it should be safe to assume this 

limitation would not be an issue here either. It was then further discussed that 

with sufficiently large datasets it would be beneficial to extend the scope of 

research project to explore performance with multiple hidden layers – something 

that may easily be a substantial research project in itself. This was of course for 

the most part an exercise to assess the relation of the size of connectionist 

network and predictive capacity; whereas here it is the explanatory capacity 

which the network architecture may be able to provide is the focus of research 

questions, and thus the notion of assessing the network architecture 

performance with multiple hidden layers will be address only partially and from 

an explanatory modelling point of view.  
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6.2.3.1 RSNNS and NeuralNetTools 

It is noteworthy to remark upon the importance of collaboration within the 

scientific community in the field of social science that not only builds upon the 

previous work and research findings, but also goes into the wide-ranging efforts 

of tools development. As should be obvious at this point, the necessary tools to 

carry out the complex statistical and computational methods were absolutely 

crucial to the investigation of the research questions posed here, and it is the 

collaborative nature of researchers from various fields that made it possible. 

Moreover, as a result now, the advanced tools and methods are available to any 

and all other researchers out there through a free platform and statistical 

environment.  

6.3 Advanced connectionist models results and 

discussion 

In the following sections, the investigative analyses that focused on comparing 

the connectionist network architectures of various sizes from both predictive and 

explanatory point of view are discussed in detail.  

6.3.1 Connectionist network predictive capacity 

Previous work showed connectionist models to be vastly superior to traditionally 

employed forecasting and predictive analysis methods such as logistic regression 

(Greene, 2011). A number of analytical directions were discussed as part of 
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previous research programme that are now able to contribute to the present 

research which builds upon those findings and focuses on the identified and 

proposed areas of further development. Consumer data was employed at that 

time, thus the findings should be applicable for the purposes of present 

discussion – even so, additional analyses were carried out here as well 

nevertheless as described in the previous chapter, addressing some of the 

proposed in the previous research areas of potential development (Greene, 

2011).  

As identified and proposed in the earlier research programme, the nature of the 

task revolves mainly around the concept of optimal architecture selection, and 

could be recognised as twofold: on the one hand, the methodological procedure 

to explore and assess the extent of potential network architectures is required; 

and on the other hand, a decision mechanism which could be employed in 

architecture selection process. Considering the model generalisation capacity and 

the primary function of the connectionist model, one of the common approaches 

to determine the optimal network architecture is a deliberate exploratory 

analysis where a limited number of suitable architectures are explored and 

assessed, such as the analyses carried out in previous research that examined and 

compared the predictive capacity of the connectionist network depending on the 

number of hidden neurons within a single hidden layer (Greene, 2011), which 

have been extended here as described in the particular sections above that 

examine the effect of the size and structure of the connectionist network with 

multiple hidden layers on the overall network predictive and explanatory 
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performance.  This approach however requires a considerable computational 

effort to explore a limited group of networks, which could present a number of 

limitations as a result. Moreover, using a broader group inclusion criteria as 

employed here to study the connectionist models with varying architecture 

structures and multiple hidden layers increases the feasibility of reaching the 

computational limit (Bishop, 1995). In fact, many models described here have 

been considerably restricted by limiting the network and sample size due to 

computational limitations, otherwise resulting in consistent crashes of some of 

the algorithms employed here. Additionally, another obvious drawback of this 

approach is the requirement to train a large number of networks with varying 

architectures to compare and select the optimal architecture that satisfies 

primary and secondary requirements, be that predictive or explanatory capacity.  

A considerably better approach that would be able to account for some of these 

limitations at least to some extent is to remove computational neurons and 

synaptic connections from a large complex network architecture in a systematic 

manner, exposing the core network architecture while minimising the network 

size – these methods are commonly referred to as pruning algorithms (Bishop, 

1995). Pruning method employed here is the Optimal Brain Surgeon as described 

in previous section and elsewhere (Hassibi & Stork, 1993; Hassibi, Stork, & Wolff, 

1993) in greater detail.  

Alternatively, it is possible to go in a reverse order and start with a relatively 

simple connectionist network only to sequentially expand its architecture by 

gradually adding more computational neurons that would form new connections 
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and hidden layers – a group of method commonly referred to as growing 

algorithms (Bishop, 1995). Potentially this could be combined with the pruning 

method employed here: growing the initial complex network architecture and 

subsequently pruning it to expose the core structure that carries the best 

predictive and explanatory function.  

Another approach involves aggregating a number of networks to function 

together as a single entity – this method is commonly referred to as a network 

committee. It employs a divide and conquer strategy in which the response of 

multiple constituent networks is combined to provide a superior single expert 

response (Bishop, 1995) – particularly suitable to study phenomena that allow 

themselves to be decomposed and subdivided into smaller isolated tasks to be 

examined separately.  

Number of computational units and the synaptic topology are able to exert a 

considerable influence over the network performance, and these connectionist 

network architecture optimisation methods would be expected to improve the 

modelling process significantly and provide means to develop a network 

architecture with superior predictive and explanatory abilities while using the 

optimal network structure and size. 

6.3.2 Variable contribution analysis and explanatory models 

From the discussion above it should be clear that connectionist models offer 

substantive predictive capacity and pattern recognition function. This research 
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project however is primarily concerned with the explanatory dimension 

connectionist networks are able to offer.  

Previous research programme offered a rather limited review as the explanatory 

dimensions of connectionist models was largely out of scope of the project 

(Greene, 2011), whereas here it is the primary focus. Variable contribution 

discussion would make sense here – on the one hand, to address further the 

argument that connectionist models are black box models, and on the other 

hand, to explain the logic in undertaking the sequence of analytical account that 

is to follow in the next sections. The black box argument is of course completely 

unwarranted as already discussed to some extent earlier, and variable 

contribution analysis is another good approach often employed to further refute 

these unfounded claims. One such framework was proposed in the field of 

ecological research (Gevrey et al., 2003; Olden & Jackson, 2002; Olden et al., 

2004) and this author previously proposed to evaluate its usefulness with 

consumer behaviour data. Essentially, it can be contended that connectionist 

models are able to provide a comparable level of explanatory capacity with the 

traditionally employed methods such as regression analysis. Even more so, it can 

be argued that it is in fact the connectionist methods that are able to provide a 

robust account of behaviour when it comes to the explanatory dimension – on 

the contrary, it is the traditionally employed methods such as regression analysis 

that are not able to provide an adequate explanatory of behaviour. In regressions 

for example, normally the partial regression coefficients are assessed to interpret 

variable contribution – this is only true for statistically significant variables 
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however, and even then very little is provided by the model besides the 

coefficient value and the sign for the independent variables that signify the 

direction of the relation, while no further information could be extracted. 

Whereas the situation is quite the opposite with connectionist models – variable 

contribution analysis algorithms could be employed to provide the explanatory 

account and determine relative variable contribution and contribution profile of 

the input factors. In addition to pruning algorithms which are discussed in great 

detail in the following sections that improve both predictive and explanatory 

capacity of the connectionist networks as part of learning process, there are also 

variable contribution algorithms for connectionist models that focus on 

explanation and interpretation only and aim to estimate the relative contribution 

of independent variables and determine what relative contribution each input 

variable is able to provide in relations to the output of the model.  

Gevrey, Dimopoulos, and Lek (2003) examined 7 methods that potentially could 

be useful to perform variable contribution analysis with consumer behaviour 

data: (1) the PaD method calculates the partial output derivatives according to 

the input variables (Dimopoulos, Chronopoulos, Chronopoulou-Sereli, & Lek, 

1999); (2) the Weights method uses the connection weights (Garson, 1991); (3) 

the Perturb method performs input variable perturbation (Scardi & Harding, 

1999); (4) the Profile method is a successive variation of one input variable while 

others are kept at a fixed value (Sovan Lek, Belaud, Baran, Dimopoulos, & 

Delacoste, 1996; S Lek, Belaud, Dimopoulos, Lauga, & Moreau, 1995; Sovan Lek, 

Delacoste, et al., 1996); (5) the classical stepwise method observes the change in 
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the mean square error value by sequentially adding or removing input neurons 

(Maier & Dandy, 1996); (6) Improved stepwise - method a is the same as (5), but 

the input eliminations occur while the network is trained (Gevrey et al., 2003); 

and (7) Improved stepwise – method b evaluates the change in the mean square 

error by sequentially setting input neurons to the mean value (please see Gevrey 

et al., 2003). They used a multi-layer feed-forward network architecture to 

compare the variable contribution analysis methods – as a result, all methods had 

the ability to order the variables by importance of their contribution to the 

output, but the PaD and Profile methods were able to also order of contribution 

and mode of action. The PaD method employs partial derivatives and real dataset 

variables values and was identified as the most robust and coherent 

computationally, followed by the Profile method where a representational matrix 

of the data is constructed.  

It should be safe to assume that ecological systems are complex enough to 

provide data with complex relations, so the promising results that the techniques 

surveyed by Gevrey and colleagues show should be applicable to consumer 

behaviour data as well. Many additional factors should be taken into account of 

course – the more obvious one is whether these variable contribution analysis 

methods would be able to perform on a comparable level with much larger 

sample sizes that contain a multitude of input variables. Relatively small sample 

size and the 10-5-1 network structure used by Gevrey et al. is largely different 

from the datasets used here, but nevertheless there are some important 

learnings that can be extrapolated from the study as far as the further 
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developments, and it potentially this could be an important area to consider in 

future work with employing the variable contribution analysis algorithms to a 

pruned network architecture to assess the effectiveness and efficiency of the 

algorithms, and whether they are able to contribute to explanation of behaviour 

after pruning connectionist network. It is of some concern however that the real 

ecological data was used in the comparative study to assess the variable 

contribution algorithms – similar concerns expressed elsewhere (Olden et al., 

2004) contend that true relations and variable order are not known in the 

empirical dataset employed by Gevrey et al. and therefore there is no 

straightforward way to assess the accuracy that each method is able to offer. 

Some of the other methodological issues were identified with the research design 

by Olden and colleagues (2004) which prompted Gevrey et al. to redesign the 

original study and use a synthetic simulated data instead to re-assess the variable 

contribution analysis methods, adding an additional connection weights algorithm 

(Olden & Jackson, 2002) at the same time. This time around, connection weights 

algorithm was identifies as optimal as a result, showing the best level of 

performance with simulated data.  

The variable contribution analysis could be a great area for further research to 

explore elsewhere, but it is out of scope of present research project. The concept 

of using the simulated data however is not, and it makes all the sense to for the 

research design perspective to incorporate the simulated data for the initial 

assessment of the pruning efficiency and effectiveness in attempt to simplify the 

network architecture for consecutive interpretative and explanatory account of 
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consumer behaviour and decision-making process. In the following sections, it is 

the synthetic simulated data that is reviewed and evaluated first, which is then 

followed by the discussions of the models that employ real consumer behaviour 

data.  

6.4 Interpreting connectionist model output 

parameters and architecture 

A number of ways may provide an insight into what happens inside the NNs 

model and help interpret the result. Some of the most commonly used methods 

assess how the number of hidden layers and nodes affects the predictive and 

explanatory capacity of the model. A number of algorithms have been devised to 

make use of the weight values from NNs model output. Model architecture 

pruning techniques have also been shown to have a positive outcome in 

developing models with improved out of sample testing faculties. In the following 

sections, these methods will be briefly discussed and supported by the empirical 

research.  

6.4.1 Number of hidden layers and nodes 

Generally, a larger model would have better resources at its disposal to analyse 

extensive datasets and show better predictive capacity, but would also have 

considerable limitations as discussed in the following paragraphs. 
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6.4.1.1 Model structure optimization 

Once the models are developed it is imperative to have a look into the optimal 

model structure. It is indeed true that the larger models would offer higher 

predictive capacity and increase in the model fit, but at the same time, larger 

models need to be penalized according to the Occam's razor principle. One 

method to evaluate the model performance and select the optimal structure is 

described by Huang, Chen, Hsu, Chen, and Wu (2004). Before carrying out the 

analyses that would employ the neural network method for modelling, the 

authors optimised the backpropagation models for multiple markets by 

identifying the optimal input variable sets that included financial variables 

following an approach that would resemble a process similar to that of a step-

wise regression model: once a simple initial model was constructed to represent 

the financial markets, financial input variables were removed one at a time and 

replaced with a remaining variable in attempt to examine the effect it would have 

on the overall predictive capacity of the model. This process was repeated 

numerous times until improvement could no longer be observed – the final 

neural network architecture obtained in such a way was said to be optimal for 

each of the financial markets. When these models were tested with 10-fold cross-

validation method, the prediction accuracy that these 2 models were able to 

offer was estimated to be optimal as well, and these 2 fine-tuned models were 

then used for all consecutive interpretative analyses (Huang et al., 2004). This 

method eliminates the independent variables that carry the least predictive and 

explanatory capacity and therefore can be excluded altogether from 
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consideration in the model or replaced with other potential input variables to 

improve the overall predictive capacity. Thus, the model structure is simplified 

and therefore is more preferable – it is expected to show higher AIC values as 

well, as method described above penalizes model size to keep the connectionist 

model architecture as simple as possible while at the same time striving to 

maximise the overall model performance.  

Even though apparently effective, it is difficult to estimate how effective it really 

is, as it was tested using the empirical data where the relations between the 

variables are not known, therefore making it practically impossible to assess the 

method efficiency and effectiveness at simplifying the network architecture while 

at the same time maintaining comfortable level of predictive and, more 

importantly for the purposes of research project here, explanatory capacity. 

Moreover, the process seems to be somewhat manual still, and potentially may 

require substantial effort to sequentially and systematically test yet more and 

more variables – the stopping mechanisms are not clearly defined either. It may 

seem the researchers may be faced with a similar issue as with input variable 

selection for the regression analysis, where in attempt to achieve high level of 

validity and test a large number of variable combinations and interactions, the 

truly robust process may prove to be excruciatingly taxing on both researcher 

time and other resource allocation. Moreover, this approach of course cannot be 

scalable in any reasonable manner – as dataset get larger, the amount of effort 

and resources required increases exponentially. In this sense, the elegant pruning 

algorithms could be a considerably more favourable solution to optimise the 
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connectionist network architecture in attempt to streamline the interpretative 

and explanatory functions of the connectionist model.  

6.4.2 Interpreting model weights 

A number of methods have been shown to be useful in interpreting the weight 

values of connectionist models.  

Variable contribution analysis methods have been examined and compared by 

Gevrey, Dimopoulos and Lek (2003). One of the seven methods they surveyed 

included a computation that used connection weights to provide explanatory 

dimension to a NNs model using ecological data. First proposed by Garson (1991) 

and later further investigated by Goh (1995), the procedure is set to determine 

the relative importance of the inputs by partitioning the connection weights. 

Essentially, hidden-output connection weight of hidden neurons is partitioned 

into components associated with the input neurons (for further details see 

Appendix A of the Gevrey et al., 2003). Authors concluded that method that uses 

connection weights was able to provide a good classification of input parameters 

even though it was found to lack stability.  

One of the concerns conveyed regarding the otherwise extensive investigation of 

different methods was that the dataset originally employed in 2003 study (Gevrey 

et al.) was empirical, and therefore did not allow to ascertain the factual precision 

and accuracy of each method as the true  relations between the variables are not 

known (Olden et al., 2004). Instead, the artificial dataset was created using the 

Monte Carlo simulation and employed to assess true accuracy of each method 
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using the dataset with defined and therefore knows relations. Results show that 

weights method that uses input-hidden and hidden-output connection weights 

displayed consistently best results out of all methods assessed, contrary to 

Gevrey et al. original findings (2003). Additionally, the weights method was able 

to accurately identify the predictive importance ranking, whereas other methods 

were only able to identify the first few if any at all (Olden et al., 2004).  

Olden and Jackson (2002) also used ecological data to demonstrate the predictive 

and explanatory power of NNs. A number of methods surveyed, including Neural 

Interpretation Diagram, Garson’s algorithm, and sensitivity analysis, aid in 

understanding the mechanics of NNs, and improve the explanatory power of the 

models. Interpretation of statistical models is imperative for acquiring knowledge 

about the causal relationships behind the phenomena studied. They also propose 

a randomization approach to statistically evaluate the importance of connection 

weights and the contribution of input variables in the neural network – method 

discussed in further details in the sections above.  

Nord and Jacobsson (1998) have also addressed the issue of explaining and 

interpreting NNs structure and developed algorithms for variable contribution 

analysis. The study compared the proposed novel algorithmic approach for NNs 

model interpretation with the analogous variable contribution method of partial 

least squares regression. Sensitivity analysis is also performed through setting 

each input to zero in a sequential manner. Linear regression coefficients for each 

of the input variables have also been generated for the purposes of examining 

the variable contribution direction. The results of the two approaches are then 
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reviewed and compared with the results of the partial least squares regression. 

What the study is able to reveal is that in the linear dataset both the partial least 

squares regression and NNs models show similar performance in the variable 

contribution task, whereas with the nonlinear dataset the differences in 

performance is apparent (Nord & Jacobsson, 1998). 

The recently increasing interest in variable contribution in NNs models is 

understandable, as this information could be useful to develop the optimal NNs 

model structure or to enhance model explanatory capacity. The methods 

commonly used examine the connection weights of the NNs model, which are 

used to interpret the model performance – analysis of the first order derivatives 

of NNs model with respect to input units, hidden units, and weights. For a more 

extensive discussion on measures of relative importance and relative strength of 

inputs please see Garson (1991). It is also possible to use the connection weights 

in attempt to extract the symbolic rules to interpret the models. Huang, Chen, 

Hsu, Chen and Wu (2004) use Garson’s contribution measures to assess the 

relative importance of the inputs in NNs three-layer backpropagation model. 

Even though Garson’s method emphasises connection weights between the 

hidden and the output layers and does not consider the direction of the 

influence, a comparative analysis revealed the method to improve understanding 

of the financial process being modelled. The contribution analysis employing 

Garson’s method identified the input variables contribution to the output 

variables, which increased the understanding of financial input factors in the NNs 

model (Huang et al., 2004). 
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Lek, Belaud, Baran, Dimopoulos, and Delacoste (1996) examined model response 

to each of the variables. Functions derived by the NNs models during the learning 

stages are very complex and pose a serious problem for each variable 

contribution analysis. One of the ways to cope with such issues is to isolate a 

complex phenomenon and separate it into smaller less complex phenomena to 

be examined independently. Authors propose an experimental method to 

examine the model response to each of the variables by applying typical 

variations to a single separate variable while the other variables are held 

constant. Using the environmental data, all but one variables were sequentially 

set to their minimum, first quartile, median, third quartile, and maximum values 

providing a response. The operation is then repeated for each of the variables, 

performing it n times, where n is a total number of variables (Sovan Lek, Belaud, 

et al., 1996). 

Relatively few studies are carried out with the aim of developing methods for 

variable contribution analysis in NNs models in particular – perhaps at least in 

part due to seeming complexity of the task at hand. Song, Kong, and Yu (1988) 

have developed a partial correlation index method that employs sequential 

removal of variables one at a time. Results obtained under standardized training 

conditions are used to estimate the relation between input and output variables. 

Nord & Jacobsson (1998) proposed alternative method based on the sequential 

zeroing of weights. Andersson, Aberg, and Jacobsson (2000) examined two 

methods to study variable contribution in NNs models: (1) a variable sensitivity 

analysis and (2) method of systematic variation of variables. Variable sensitivity 
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analysis is based on setting the connection weights between the input and hidden 

layer to a zero in a sequential manner, whereas the systematic variation of 

variables method is based on keeping the other variables constant or 

manipulated simultaneously. In the course of the study, it is shown that there is a 

high similarity between the method proposed by the authors for the variable 

contribution analysis in NNS models and the nature of the processes used to 

develop the synthetic datasets used. Thus, it is shown that the NNs models are 

suitable not only for the function approximation in nonlinear datasets, but are 

also able to accurately reflect the characteristic qualities of the input variables. As 

a result, a transparency of highly interconnected NNs models could be 

demonstrated in response to the ‘black box’ argument as well. Presented method 

is then able to generate information about the variables that could be useful in 

examination and interpretation of variable contribution and relations. Nord and 

Jacobsson’s method (1998) mentioned above is based on the saliency estimation 

principles (such as brain surgeon) as it estimates the consequence of weight 

deletion on prediction error. The difference with the method proposed by 

Andersson, Aberg and Jacobsson (2000) is in the way estimation is carried out 

(theoretical calculation in saliency estimation methods as opposed to 

experimentally derived values offered by Andersson et al., 2000), and builds upon 

the findings of Nord and Jacobsson (1998). In the course of analysis, a systematic 

variable contribution analysis is carried out on a highly interconnected network 

structure, including the signal separation exercise, employing a number of 

synthetic and empirical datasets to provide additional information on the 
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methods considered, including the ability to graphically reveal the variable 

interdependencies. Previous research is considered there as well that is based on 

the principle of systematic variable variation and not the connection weights. 

Information obtained in such a way could constitute an analytical basis for a 

comprehensive variable contribution analysis and variable selection procedure 

survey (Andersson et al., 2000). 

6.4.3 Pruning connectionist models 

Model architecture plays an important role in a model adaptive performance. The 

type of a task closely related to the connectionist model pruning effort that 

attracted larger interest in the literature as discussed above is variable selection 

method, which is mainly concerned with the methodical improvement of the 

connectionist model architecture by systematic reduction of the input variables 

(Andersson et al., 2000). There are a number of notions that variable selection 

methods could consider: for example a method that examines the connectionist 

model weight values (Ametller, Garrido, Stimpfl-Abele, Talavera, & Yepes, 1996) 

employing the variance and saliency measures. Other approaches considered 

employing various other methods such as F-test, principal component analysis, 

decision tree methods, connectionist weight evaluation methods (Cibas, Soulié, 

Gallinari, & Raudys, 1996; Proriol, 1995), and optimal brain damage algorithm 

(LeCun, Denker, Solla, Howard, & Jackel, 1989). Despagne and Massart (1998) 

discussed variable selection methods, and among a number of the different 

approaches reviewed, which include a modified variant of Hinton diagram, 

saliency estimation method, and two other methods that provide a means to 
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estimate the extent to which the variance of the predicted response corresponds 

with the variable contribution of each input. Similar to the method proposed by 

Nord and Jacobsson (1998), both methods revolve around the notion of  

cancelling variable contribution in the trained connectionist network by either 

zeroing input variables (Despagne & Massart, 1998) or connection weights  (Nord 

& Jacobsson, 1998).  

While exploring how environmental conditions have an effect on fish population 

to identify patterns that may be useful in future predictions, Olden and Jackson 

(2001) compared traditional statistical approaches with NNs models. In the NNs 

mode structure, the connection weights between neurons are the associative 

links that signify the relation between the input and output variables and 

therefore are the key to solving the problem. Connection weights signify the 

influence each input variable is able to exert on the output, and dictate the 

direction of the influence. Input variables with large connective weights carry 

higher signal transfer capacity and therefore affect the output variable to a 

greater extent. Excitatory effect (incoming signal increased with positive output 

effect) is represented by the positive connection weight and inhibitory effect 

(incoming signal reduced with negative output) is represented by the negative 

connection weight. In recent work, some research supports the notion that it is 

possible to use the connection weights to interpret the input variable 

contribution in the task of predicting the network output (Aoki & Komatsu, 1997; 

Chen & Ware, 1999; Özesmi & Özesmi, 1999). Others used the connection 

weights to quantify the variable contribution ranking (Garson, 1991), or employ 
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sensitivity analysis to examine the input variable contribution range (Guégan, Lek, 

& Oberdorff, 1998; Sovan Lek, Belaud, et al., 1996; Mastrorillo, Lek, & Dauba, 

1997; Mastrorillo, Lek, Dauba, & Belaud, 1997). Even if it is possible to assess the 

overall contribution of input variables employing these approaches, the 

interpretation of interactive relations within the data presents an increasingly 

difficult undertaking, as the interactions between the variables in the network 

require immediate examination. Even a small network would contain a large 

number of connections, making the interpretation increasingly difficult: 10 (input) 

– 5 (hidden) – 1 (output) network would have 50 connection weights to examine 

between the input and hidden layers. One way to manage this is through pruning 

where connections with small weights that do not exert significant influence over 

the network structure and output are removed (Bishop, 1995). Deciding which 

weights to remove and keep however is a task that requires substantial effort. 

Following the connectionist approach, Olden and Jackson (2001) were able to 

develop a randomization test to address this task, which aims to randomise the 

response variables to subsequently proceed with constructing a connectionist 

network using this randomised dataset, at which stage all connection weights 

between the input, hidden, and output connection nodes are recorded.  This 

process is replicated 10,000 times to ensure the estimated probability values are 

stable to obtain a null distribution for the input, hidden, and output nodes, which 

are then compared to the observed values – this allows to calculate the 

significance levels which serve as the basis for the objective pruning test that 

allows elimination of the connection weights that exert a minimal influence of the 
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network overall output and performance, and as a result helps identify those 

input variables that are able to provide the best predictive capacity contribution 

to the overall connectionist network performance. In the similar manner as was 

carried out as part of the present research project, Olden and Jackson (2001) 

considered varying levels of learning rate and parameters during the 

connectionist network training stages to maximise the probability of global 

convergence, and also considered varying numbers of training cycles to identify 

the optimal level as far as network training and performance balances with the 

resource allocation and training times. All input variables used to develop the 

connectionist networks were standardised in the preliminary data manipulation 

and exploratory analyses stages to avoid any possible occurrence of unnecessary 

variances between the input and output variables due to the differing variable 

scales. As a result, Olden and Jackson (2001) were able to provide a predictive 

and explanatory insight into nonlinear complex relations of  ecological data (a 

task that poses a serious problem for traditional statistical approaches as species 

often exhibit nonlinear response to environmental conditions). In the course of 

detailed evaluation of NNs and traditional models it was shown that partitioning 

the predictive performance of the model into measures such as sensitivity (ability 

to predict the presence) and specificity (ability to predict the absence) allows for 

a more efficient way to assess the model strengths, weaknesses, and applicability. 

It is also shown that NNs are a useful approach for examining the interactive 

effects and factors. Both empirical and simulated datasets were used for 

comparative purposes, and show superior predictive performance of NNs models 
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over traditional regression approaches (Olden & Jackson, 2001). Building upon 

the work described thus far, approach that Olden and Jackson (2002) propose in 

their following publication provides the facility to eliminate irrelevant 

connections between neurons whose weights do not significantly influence the 

network output (i.e. predicted response variable), thus facilitating the 

interpretation of individual and interacting contributions of the input variables in 

the network. The approach is able to identify variables that provide a significant 

contribution to network predictive capacity, which effectively constitutes a NNs 

variable selection method.  

One aspect worth discussing however is the approach to identify the optimal 

number of neurons to use within the hidden layer of the network architecture: it 

was determined by Olden and Jackson (2001) following the empirical 

investigation where the performance of connectionist networks of varying sizes 

(ranging from 1 to 20 hidden neurons) were compared to identify and select the 

one with the network architecture that offers best predictive capacity for the 

overall connectionist model. This approach is similar to the research work carried 

out previously by this author (Greene, 2011) that revolved around the extended 

comparative study of network architecture size where a number of networks 

were developed and consequently compared on the basis of connectionist model 

predictive capacity, with numbers of neurons within the hidden layer ranging 

from 1 to as many as 200. The results were rather promising and naturally 

suggested that large model sizes are able to provide increasingly better predictive 

capacity as compared with traditionally employed methods such as logistic 



 

 
232 

 

regression and systematically selected connectionist networks with simpler 

network architectures. The process to carry out this type of a comparative study 

was rather tedious and required not only a lot of time to program the coding for 

the connectionist modelling, but also was very computationally demanding with 

modelling process running for weeks non-stop. This approach of course readily 

identifies an issue with scaling possibility, as with larger networks the training and 

testing time would be expected to increase exponentially. Another concern is 

methodological, as the models tested and compared are nevertheless selected by 

the researcher – together with the scaling issue where connectionist networks 

with complex model architecture that incorporates multiple hidden layers would 

pose a serious obstacle that would be extremely difficult to circumvent, and 

instead would most likely simply remain as an effective limitation of the 

approach. Moreover, it is important to consider using simulated synthetic data 

for the methodological testing to determine the optimal approach and 

architecture as an additional research stage before the actual investigation of the 

data is carried out to make sure there is no bias in approach selection that is an 

artefact of the data itself, which is then used to study this very same data during 

the main stage of the experimental research project.  

Here the approach to evaluate the model capacity was developed and carried out 

quite in the manner as proposed, and simulated data was used to assess the 

effectiveness and efficiency of the pruning method employed to simplify and 

optimise the network architecture before developing and retraining connectionist 

networks using the actual consumer data.  
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6.4.4 Pruning connectionist models: simulated data 

To address the concerns expressed above while assessing the connectionist 

network performance capacity as part of the comparative analyses that aim to 

determine the optimal network architecture, before the consumer behaviour 

dataset is examined, the models are compared and evaluated using the simulated 

synthetic dataset instead. This should circumvent at least some of the most 

commonly encountered points of concern as covered in previous paragraphs 

while discussing and critiquing research design of some of the previous studies.  

The overall purpose of this testing and evaluation stage using simulated data is 

twofold. On the one hand, it is essential to carry out a proper empirical analysis 

to test and assess the performance of the new pruning capacity that was 

developed as part of this research project in the statistical package RSNNS, which 

is now available for any researcher to use through the statistical programming 

language and environment R, before we employ these techniques with consumer 

data here. On the other hand, since the structure and form of simulated data is 

notably less complex than the consumer behaviour dataset which will be used in 

the subsequent analyses, it would make sense to carry out some of the analyses 

on the simulated data initially – this should not make any difference semantically 

since these preliminary analyses and the results deal for the most part with 

technical and applied systematic aspects of research design, and therefore the 

conclusions and learning they are able to offer should be general enough to be 

applicable to any connectionist model irrespective of connectionist network 

architecture complexity or the datasets employed.  
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A number of functions were identified as described in the results section above to 

test the effectiveness of pruning functionality, and carried out in a manner that 

would provide sufficient levels of validity and reliability through replications and 

randomisations. Essentially the test was constructed to allow for a connectionist 

network to develop an architecture that would be largely excessive for the task at 

hand, as it could be expected that the connectionist network during the training 

stages would tend to use all available computational neurons and connections to 

build a best possible network within the constraints which are set, irrespective of 

network architecture complexity or size – this of course would essentially be 

reflected in higher computational demand and network learning time as a result. 

This also makes it difficult to examine and assess the variable contribution values 

to assess which of the input variables carry the highest levels of predictive or 

explanatory capacity in relation to the model output. Whereas pruning algorithm 

should account for all these factors and systematically force the connectionist 

network to develop a concise essential network architecture, removing in the 

process inessential connections weights, which can even result in isolating some 

of the computational nodes and even bypassing some of the hidden layers 

altogether. It is essential of course to maintain a sufficiently high level of 

predictive and explanatory capacity not to sacrifice large proportions of modelling 

ability in a trade-off for the optimised structure – to address this, the RMSE levels 

of all models would be consistently recorded.  

When the test were carried out, it is apparent that the results were entirely as 

expected: the connectionist network that otherwise would be rather large and 
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use all available computation and network architecture resources even to 

maximise the network capacity to the fullest extent, would be substantially 

trimmed down by the pruning algorithm which would be extremely successful at 

removing the inessential connection weights to optimise the network 

architecture – all while the connectionist network predictive and explanatory 

capacity remained substantially high and uncompromised by the network 

structure optimisation efforts. Moreover, the pruning algorithm was not only able 

to effectively remove the inessential connection weights, it also successfully 

nullified multiple hidden layers – essentially all superficial connectionist network 

architecture that was not essential for the task at hand was pruned out to leave 

the bare-bone architecture required at the very minimum to solve the problem.  

6.4.4.1 Pruning connectionist models with Optimal Brain Surgeon 

algorithm 

The test of course was merely designed to assess the capacity of coding and 

method of using the pruning algorithm in the statistical programming package 

RSNNS – and was not designed to test the pruning algorithm itself, which would 

be way beyond the scope of this research project (this would inevitably take 

research direction towards the field of machine learning – something that could 

be potentially explored in collaboration as part of the future work). As already 

mentioned above, the pruning algorithm used through the research project here 

is the Optimal Brain Surgeon (Hassibi & Stork, 1993; Hassibi, Stork, Wolff, & 

Watanabe, 1994; Hassibi et al., 1993) – the very positive results with pruning and 

optimisation of the connectionist model structure using the simulated data as 
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discussed above could be largely credited to the sophisticated and elegant design 

of this pruning algorithm. Hassibi, Stork, and Wolff set out to investigate the use 

of information available from the second order derivatives of the error function 

to prune the network architecture by removing unessential connection weights 

from the trained connectionist model in attempt to optimise and simplify the 

network to reduce the computational demands, reduce the training and 

retraining time, and – more importantly – improve generalisation capacity and 

even further develop the network ability to extract patterns from the data. In the 

same manner as contemplated here, Hassibi, Stork, and Wolff embarked upon a 

central problem of pattern recognition and machine learning that revolves largely 

around the notion of minimising the system complexity, and could often be seen 

as a problem of regularisation in connectionist modelling: without an appropriate 

mechanism to minimise a number of connection weights, neural network models 

could either be prone to overfitting and poor generalisation as a result; or on the 

contrary could be unable to learn the dataset in an adequate manner if the 

number of connection weights is insufficient. It is then common to proceed 

initially with training a sufficiently large connectionist network to a minimum 

error, and eliminate the inessential weights in a systematic manner to the point 

where the neural network architecture is optimal – this is where the pruning 

algorithms specify which connection weights are to be eliminated and the 

remaining weights are to be adjusted for best performance in the most 

computationally efficient manner. It was uncovered that Optimal Brain Damage 

and magnitude-based methods have a tendency to eliminate crucial weights – 
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something that Optimal Brain Surgeon never does and is able to maintain a 

perfect level of performance after pruning is carried out. As a result, Optimal 

Brain Surgeon algorithm is shown to be vastly superior to other magnitude-based 

methods and Optimal Brain Damage (LeCun et al., 1989) – some of which were 

discussed and critiqued above: for the same training set error, Optimal Brain 

Surgeon algorithm permits pruning of more connection weights than other 

methods which also often end up removing the wrong weights, thus producing 

better results with generalisation of test data. Method does not require 

subsequent retraining – a typically slow cycle after pruning is carried out with 

other algorithms.  

Employing Optimal Brain Surgeon pruning algorithm here with simulated data 

offered very promising results and showed excellent performance in 

connectionist network optimisation to improve the clarity of the network 

architecture, which should facilitate the development of exploratory and 

interpretative accounts with consumer behaviour data. Moreover, the  

6.4.5 Pruning connectionist models: consumer data 

Having ascertained that the work to implement the coding in the RSNNS performs 

as it should to enable pruning facility, and the Optimal Brain Surgeon algorithm is 

able to deliver the positive result to optimise the connectionist network 

architecture with simulated data, the second stage is to develop the 

connectionist models using the consumer dataset.   
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Considering that the most commonly employed traditional approach in marketing 

research is a logistic regression, any type of a connectionist network that 

incorporates hidden layers could be considered a more advanced method: as 

already discussed earlier, the simplest connectionist network with no hidden 

layers shows identical level of performance as a logistic regression. Introduction 

of a hidden layer within a connectionist model opens an entirely different level of 

performance and capacity. Simulated data was modelled using a connectionist 

network with multiple hidden layers, but with just a few neurons within each – as 

was demonstrated, the type of data and a problem only required a single hidden 

layer with 2 nodes to solve, thus the rest of the network architecture was 

superficial and therefore was expected to be pruned out by the algorithm. The 

pruning algorithm performed very well by removing all but the core network 

architecture required to solve the problem, which was then attempted with 

actual consumer behaviour dataset rather than the simulated data.  

6.4.5.1 Optimal network architecture size 

Consumer dataset from Kantar World Panel is of course a lot more complex and 

includes a number of variables that operationalise transactional, household, and 

product attributes to describe the purchasing situation and decision-making 

environment in a comprehensive manner – after the data was normalised and 

dummy coded, the variables that were selected for the modelling stages that 

followed ended up being represented by 54 input variables as a result. Keeping in 

mind that in the traditional marketing literature it is perfectly acceptable and is 

common practice indeed to study the relations within the consumer behaviour 
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data with logistic regressions – a method that does not have any sufficient 

capacity to account for the complex relationships that hidden layers are able to 

capture, and even the available capacity to explore the interactive variables is 

rarely considered for the reasons that make the process of developing and testing 

the models exceptionally tedious and poorly scalable – it should be safe to 

assume that a connectionist network with a single hidden layer with only a few 

hidden neurons would seem to be able to provide a substantially more advanced 

model architecture as a result. Thus, 54-2-1 network architecture should be 

considered to possess a sufficient enough level of complexity to warrant the use 

of connectionist framework to explore the aspects of informational and utilitarian 

reinforcement as emergent properties within a hidden layer. Before this claim 

can be argued however, at this stage it is important to establish that 54-2-1 or 

architecture of similar level of complexity is indeed sufficient to provide a level of 

model functionality necessary to satisfy the minimum conditions required for the 

emergent properties of information and utilitarian reinforcement phenomena to 

occur.  

One of the major critiques of the traditionally employed methods of analysis 

commonly used to study complex social phenomena such as the act and process 

of consumer decision-making as argued above is of course the necessity to 

specify the model architecture and framework by selecting the input variables for 

the modelling – or just as importantly choosing to not select certain variables or 

not produce interactive variables. Optimally, all possible variables and 

interactions of all levels and combinations are considered and analysed, and 
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those that do carry the predictive and explanatory capacity are omitted – this is 

something that traditionally employed methods of analysis such as logistic 

regression cannot do, whereas something that connectionist models such as 

neural networks inherently possess as an inseparable part of the computation 

algorithm, and therefore excel at carrying out each and every time. For that 

reason, building upon the previous research work carried out by the author and 

following the research design of others as discussed above, the next experiment 

was devised as follows: a sufficiently large network architecture is developed to 

make sure it could train and learn the relations within the data freely, and 

subsequently pruned to optimise and expose only the core essential network 

architecture removing all unessential connections. If it is assumed that 54-2-1 

network should essentially be sufficiently complex to allow the examinations of 

the emergent properties of informational and utilitarian reinforcement, the 54-8-

8-8-1 network architecture was first examined to see if it would provide 

sufficiently large and excessive levels of complexity. And it did – in fact, almost 

too excessive if nothing else: the 54-8-8-8-1 network generates 568 connections 

between 79 neurons. When pruning is introduced with a few hundred retraining 

cycles, the model is optimised down to only 66 connections from the original 568 

suggesting that perhaps the 54-8-8-8-1 network architecture could be trimmed 

down quite a bit for all consecutive analyses. In summary however, it is important 

not to overlook the very successful application of the optimisation algorithm that 

is able to provide substantial simplification the network architecture, and 
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connectionist methods of training and subsequently pruning the network appear 

to be a particularly fitting approach to develop the model of consumer behaviour.  

6.4.5.2 Pruning different types of connectionist architectures 

In the next set of experimental exercises, a few examples of various network 

architectures are explored. For reasons of simplicity and to optimise the 

modelling time required – given the lessons learned in the previous set of 

experimental work that a leaner network architecture would be able to provide a 

sufficiently complex structure nevertheless, and the fact that each neural 

network model takes quite a bit of real time to calculate even using a high 

powered machine with one of the best CPUs available on the mass market at the 

time, and the fact that to improve the reliability and validity of experimental work 

these models were replicated hundreds of times – a simpler network architecture 

(excessively robust nevertheless) was selected that would comprise a more 

manageable number of 12 hidden neurons distributed among the 3 hidden 

layers.  

Interestingly enough, one of the first connectionist model with 54-4-4-4-1 

network architecture was optimised with a pruning algorithm down to a model 

structure with 54-2-1-1-1 neurons – effectively supporting the initial argument 

that 54-2-1 network structure is in fact the core architecture that is required to 

model the relations within the data that represent the consumer purchasing 

decision-making. Even though this demonstrates that at least in some cases the 

model naturally removes all but 2 hidden neurons, this was not the most 
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common final optimised network architecture that was observed amongst 

hundreds of retest connectionist models. In fact, it was observed that with a 

starting 54-4-4-4-1 network architecture, pruning algorithm was most likely to 

remove only a few neurons out of the 12 initially available: often a single neuron 

in one or multiple hidden layers, if any neurons were removed at all. Every time 

pruning algorithm was able to remove a substantial number of connections 

irrespective if this would result in pruning the hidden neurons at the same time 

as well: while a fully connected 54-4-4-4-1 network would contain 67 neurons 

and 252 connections, pruning algorithm would be able to optimise network 

architecture down to a much more manageable number of connections, with as 

few as 67 connections remaining in some pruned connectionist networks.  

As it would seem that the shape of the network architecture is able to exert a 

certain level of influence, it would make sense to test a few different shapes as 

well to examine what effect this would hold over the performance of the 

connectionist model. Thus, in addition to the 54-4-4-4-1 network architecture, 2 

more types are examined: a funnel-type network architecture with a 54-6-4-2-1 

design which could essentially represent a more complex version of the 54-2-1 

design; and a reverse version of the funnel that would compress the connection 

into 2 nodes initially and then allow to grow the network again, with a design of 

54-2-4-6-1. First, consider a network architecture with a 54-6-4-2-1 funnel-type 

design: even though the number of hidden neurons compared with the 54-4-4-4-

1 design, number of connections in the initial network before pruning naturally 

was substantially higher at 358 (as opposed to 252 in 54-4-4-4-1 network) due to 
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the fact that now the many input units were immediately connected to a total of 

6 neurons within the first hidden layer rather than 4 neurons as was the case with 

the models of the previous 54-4-4-4-1 design. This time, starting with a much 

larger initial network architecture, pruning algorithms was able to trim it down to 

78 neurons in the best-case scenario. Even though the absolute number of 

connections that remained after pruning with the 54-6-4-2-1 network 

architecture was higher than with the 54-4-4-4-1 network architecture, the 

pruning efficiency improved substantially. The network architecture that followed 

the reverse-funnel type design with 54-2-4-6-1 naturally produced lower number 

of connections initially at 146 total due to having only 2 hidden neurons in the 

first hidden layer to which the input neurons could connect. Pruning algorithm 

however was able to eliminate more connections than with the other 2 

architecture designs, leaving only 25 connections in the best-case scenario. This 

means that both network architecture types 54-6-4-2-1 and 54-2-4-6-1 were able 

to achieve higher pruning efficiency than the original 54-4-4-4-1 network 

architecture design. It became apparent however that network architectures with 

a funnel type design almost never removed neurons entirely during the pruning 

stage; and connectionist networks architectures with a reverse funnel type 

networks, once compressed to only 2 neurons in the hidden layer, almost never 

used all the neurons in the second and third hidden layer, usually pruning out 

around half of them entirely. Therefore it would suffice to propose here that for 

exploratory and interpretative purposes it would seem that the optimal 

connectionist network architecture design would be of a funnel type: either a 
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relatively simple 54-2-1 design which provides the best possible level of clarity 

and should be easiest to use for explanatory and interpretative purposes; or 

something more complex such as 54-4-2-1 or even 54-6-4-2-1 as examined here 

to develop a more advanced connectionist model of consumer decision-making 

process that would be able to extract higher number of patterns and 

microfeatures from the data, but would of course be more difficult to interpret.  

6.4.5.3 Adaptive model learning strategy 

Important to note here that the models with 54-6-4-2-1 initial architecture design 

type systematically did not prune out any neurons – unlike the models with other 

2 initial architecture design types, even though the efficiency of removing the 

number of connections was comparatively high across all initial architecture 

design types. This may suggest that depending on the available resources within 

the network architecture, connectionist models are able to adopt different 

learning strategies, and therefore are able to prioritise identification and 

extraction of different patterns and microfeatures as a result of this selection. It 

should be obvious that network architecture design would play an important role 

in the future research, and perhaps would be an interesting research topic in its 

own right. This is similar to the results reported elsewhere (for example 

Cleeremans et al., 1989), and may be a very promising line of inquiry to 

investigate within the dimension of artificial learning, and what implications this 

may carry for the field of artificial intelligence in general.  
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6.4.6 Concise explanatory connectionist model  

It should be apparent that it is a particularly challenging task to identify a 

straightforward way to explain and interpret consumer behaviour. On the one 

hand, simpler models such as traditionally employed in marketing literature 

logistic regressions are easier to interpret, yet they are arguably not robust 

enough to capture the complexity of behaviour – in other words, the explanation 

may be easy because there isn’t much the model is able to offer that needs to be 

explained really. On the other hand, sophisticated models are robust enough to 

capture the complex relations within the data and extract the patterns that may 

offer means to explain behaviour, but at the same time they are not easy to 

interpret – to some extent, because we tend to employ decomposition as a 

method to simplify the complex phenomena and make them easier to 

comprehend, which of course would not be an option here because this very 

complexity is what makes the models robust in the first place. As a compromise, 

it would seem to be a good option to use a connectionist model with a single 

hidden layer that would contain only a few hidden neurons – this way the 

relations between the input neurons and the hidden neurons are clear and 

quantified with connection weights, and the hidden neurons could be interpreted 

as an emergent properties that represent an intricate combination of all the 

relevant microfeatures extracted from the input variables, and therefore can be 

treated in a similar manner as the concept of utilitarian and informational 

reinforcement as proposed here following the connectionist method of analysis 

and interpretation – in actuality, these concepts are most likely to be too complex 
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to make the clear identification possible, but this is probably as close as it would 

get to a robust model of consumer behaviour. Once the theory is sufficiently 

developed to provide the plausible interpretative account using these emergent 

properties located within the hidden layer, it may be possible to consider 

connectionist models of higher complexity with multiple hidden layers to explore 

a more complex mechanism of extracting the microfeatures and patterns from 

the data.  

6.4.7 Predictive connectionist model and pruning 

It should be clear that pruning connectionist models which are primarily 

developed for explanatory purposes offers a range of benefits such as simplified 

architecture and exposed core relations within the data that can reduce the 

complexity of interpretation. When it comes to predictive capacity however, the 

answer is not entirely straightforward as was shown above using consumer 

dataset: on the one hand, connectionist models with pruning show lower RMSE 

figures than models without pruning; on the other hand, RMSE figures that can 

be achieved by connectionist models with pruning are only slightly lower and are 

very much comparable to the figures achievable by connectionist models that do 

not employ pruning algorithms. It must be noted however that it is the 

explanatory capacity of connectionist modelling which is of primary importance in 

this research project, and predictive capacity is used as a secondary characteristic 

to assess performance level of modelling as a benchmark. Thus, it is safe to argue 

that indeed connectionist modelling with pruning algorithms is able to simplify 

substantially the network architecture optimising it for explanatory and 
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interpretative purposes, while maintaining comparable level of predictive 

performance benchmarked against connectionist models that do not employ 

pruning algorithms. Still, if predictive capacity was a primary objective, it should 

be possible to explore to what extent pruning algorithms can be optimised with 

aim to improve overall predictive capacity of the model, perhaps holding 

explanatory capacity as a secondary measure to provide some sort of constraint 

to make the modelling relevant for a particular behaviour and context; or indeed 

employ artificial synthesised dataset where relations are known and defined to 

assess predictive capacity to the fullest extent – this however would have to be to 

be explored elsewhere. Thus, for a balanced exploratory capacity with a relatively 

high predictive performance, a connectionist network that employs pruning over 

a simplified 54-2-1 network could be identified as an optimal model to produce 

an interpretative account of consumer behaviour in a given context.  

6.4.8 Pruning network architecture for interpretation 

Even though it is not within the scope of this research project to go as far as 

develop specific algorithms that could adopt pruning for interpretative purposes 

specifically, perhaps it would be useful to illustrate with a few examples how 

useful pruning can really be while attempting to provide an interpretative 

account of behaviour. For illustration purposes, two types of network 

architecture are developed and interpreted following on the discussions above: a 

large connectionist network with 3 hidden layers that does not employ pruning, 

and the same connectionist network that takes full advantage of pruning 

algorithms.  
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Using the same data subset as above for Wales and West that contains 13787 

cases, a fully connected 54-4-4-4-1 network is developed. To assure the learning 

procedure is sufficient to explore the dataset, 100 000 iterations are used here to 

develop the models. For a 54-4-4-4-1 fully connected connectionist network it 

takes 4643 sec when pruning is not involved, being able to achieve RMSE of 0.90 

as a result. Yet, in a fully connected network with 252 total number of 

connections (as shown in Figure 31), it is difficult to identify any patterns or draw 

any conclusions by examining the network architecture – indeed, additional 

statistical analyses and possibly even adaptive algorithms would be required to 

examine variable contribution in an efficient manner, which can be used for 

interpretation of consumer behaviour.  

 
Figure 31. Connectionist network 54-4-4-4-1 architecture using consumer data with 3 hidden 
layers and 4 neurons each, 100 000 iterations, no pruning. 

Whereas when pruning algorithms are employed, it is quite the opposite 

situation: it takes 5355 sec to achieve a comparable RMSE of 0.95, and produces 

a substantially optimised connectionist architecture that now only has 51 

connections. As shown in Figure 32, pruning algorithms was able to effectively 
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remove 2 entire layers which ultimately were not necessary to model the data 

and illustrate the pattern within the data used here.  

 
Figure 32. Connectionist network 54-4-4-4-1 architecture using consumer data with 3 hidden 
layers and 4 neurons each, 100 000 iterations, pruning with 100 retrain cycles. 

Upon closer examination, it could be clearly seen that connectionist network that 

employed pruning was able to establish during the learning process 3 emergent 

features, which are represented by the 3 computational units within the first 

hidden layer: 2 excitatory and 1 inhibitory units. Moreover, it is possible to 

examine which input units contribute towards each of the hidden units which 

would help to explain what the emergent properties represented by the hidden 

units may signify, and in what manner in particular. For example as shown in 

Figure 32, input units for private label wines have excitatory connections with 

hidden unit H1 and inhibitory connection with hidden unit H3, input unit for other 

country of origin (normally cheaper wines) also has an inhibitory connection with 

H3, and input unit for age has an excitatory connection with H3 – this may 

suggest for example that hidden unit H3 may be interpreted to represent a type 

of Informational Reinforcement; whereas hidden unit H1 which has excitatory 
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connections with for example inputs units for not in work (employment status) 

social class C1 and certain types of wine that offer additional benefits such as 

sparkling or fortified wine may be very well interpreted to represent a type of 

Utilitarian Reinforcement. In addition to the illustration of the inhibitory or 

excitatory connection, connection weights for every connection are also readily 

available of course for a more precise examination, which can also be used with 

advanced variable contribution analysis algorithms developed to take advantage 

of pruned connectionist network output.  

It is obvious here that 3 hidden layers are not in fact necessary for this data since 

pruning effectively nullified 2 hidden layers entirely, thus corroborating one of 

the previous recommendations that even a simplified neural network with a 

single hidden layer (for example with 54-2-1 network architecture) could in fact 

be an extremely powerful method of computational analysis due to its inherent 

capacity to examine all possible interactions within the data as part of the 

learning process.   

This effectively illustrates the ability of the connectionist network to identify the 

relevant microfeatures within the data while going through thousands of 

iterations and exploring any possible interactions between variables, which then 

can be said to emerge as a representation of higher order faculties that can 

effectively represent elements of consumer psychology which are used in the 

decision-making process, or perhaps even be interpreted as a proxy for rule-

governed behaviour established as a result of thousands of iterations that can be 

used as proxy for consumer experiences.   
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6.5 Theoretical implications  

Once convinced that evidence presented above provides a substantiated 

argument that connectionist models offer extensive predictive capacity in 

modelling consumer behaviour, it is important to consider what level of 

explanation and interpretation they are able to provide, and discuss the 

theoretical implications as well.  

It should be apparent at this stage that it is no easy task to produce a truly 

comprehensive robust explanatory interpretative model of consumer decision-

making behaviour. On the one hand, the traditionally employed methods such as 

logistic regression offer an easier solution open to interpretation – but it is their 

inherent limitation that makes it impossible to actually capture those truly 

complex relations within the data that makes the interpretation easier, as the 

simpler model is unable to capture the complex parts. On the other hand, the 

connectionist models are inherently designed in a manner that explores all 

possible combinations and interactions within the data, and through many 

training iterations learns the data by extracting the complex relations – the 

process makes it possible to produce robust and comprehensive models capable 

of capturing accurately the complex relations within the data, but at the same 

time this very complexity makes it difficult to interpret the results obtained in 

such a manner. There is just no straightforward way to describe a complex 

phenomenon such as consumer decision-making process in simple terms without 
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inevitably losing part of the explanation, meaning, or interpretation – simpler 

terms would ultimately only refer to incomplete and simpler concepts.  

Having said that however, it does not mean that there will not be a method to do 

so in the future. The work carried out here is largely theory developing, where a 

novel approach is proposed to examine and extend a well-defined and 

established concept of BPM with a connectionist approach. It is argued and 

supported with empirical work that connectionist models are well suited to 

extend the theoretical framework of BPM by providing an empirical evidence to 

some of its claims and propositions, and proposing structures and processes to 

continue developing the field further. Indeed, what the author asks is a shift in 

the level of understanding – from traditional view where input variables which 

are selected to operationalise a certain phenomenon are expected to link directly 

into the output variable possibly with a few interactions along the way; to a 

connectionist fully linked view where input variables are decomposed by the 

modelling process into microfeatures, which are in turn combined and 

reassembled in the best possible manner during the training process to form 

complex patterns that describe relations within the data. These emergent 

patterns when extracted from the data can then be called the underlying factors 

that explain the behaviour – this is where concepts like informational and 

utilitarian reinforcement can be expected to reside. In this sense, informational 

and utilitarian reinforcement are the theoretical placeholders, as practically it 

may not be entirely possible to separate the two, as they seemingly tend to form 

a uniform info-utilitarian reinforcement in most observed cases – the temporarily 
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termed entities to make it possible to develop the explanatory account of 

consumer behaviour. These patterns very well may describe the utilitarian and 

informational reinforcement to some sufficient extent, but will also most likely be 

something a lot more than that, something that is difficult to describe or name 

because it is a concept that is difficult to comprehend for a human mind: too 

many variables and interactions are considered simultaneously, and there is no 

other analogous simpler concept that could help the comprehension. Thus, 

connectionism is able to provide a theoretical framework and structure, and 

develop an empirical highly predictive model, but it does not provide any feasible 

way to decompose the phenomenon into smaller pieces that may be easier to 

comprehend – simply because this very complexity and the interconnected 

essence is what we are attempting to explain and interpret.  

6.6 Summary 

In this chapter, the research findings are discussed and interpreted. First, the 

concept of informational and utilitarian reinforcement was revisited in 

connectionist terms, followed by a discussion of results from the exploratory 

modelling and comparative tests of regression and neural networks. Next, 

connectionist models predictive capacity and the research around the variable 

contribution analysis were reviewed. Finally, the advanced connectionist models 

were developed and discussed, concluding with a conversation about the 

theoretical implications that identified certain areas for future research direction.  
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7. Critical assessment of the research project 

In this chapter, the precision, thoroughness, and contribution of the method 

employed here will be concisely discussed; and the connectionist approach will 

be critically reviewed and compared with its closest rival – the cognitive science. 

7.1 Connectionism and cognitive science  

Even though it is increasingly common to encounter connectionism while 

attempting to model mental or behavioural phenomena as the emergent 

processes of interconnected networks of simple units in many scientific fields 

such as artificial intelligence, cognitive psychology, cognitive science, 

neuroscience, and philosophy of mind, nevertheless, connectionism cannot be 

considered a discipline – but rather a set of consistent approaches that span 

across these many fields. Connectionism emerged as an approach that integrates 

the symbolic school of thought, and the behaviourist school of thought: each 

carry their own scientific framework and philosophy. When applied within a 

context of a specific field, each school of thought provides a paradigm that 

defines establishes goals to guide research, and provides its own set of 

assumptions and techniques. Cognitive science proved to be a great collaborative 

accomplishment over the years while applying the symbolic approach across 

many fields of inquiry, whereas connectionism is in a position to question the 

very foundation of cognitive science and its comprising disciplines as 
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connectionist models provide a plausible alternative explanation to symbolic 

models.  

Towards the end of 1970s, the symbolic systems became a method of choice in 

cognitive science and its two central disciplines – cognitive psychology and 

artificial intelligence – as behaviourism seemingly became dated. Soon after 

however it became apparent that systems solely reliant on symbolic 

representations and operational rules possessed a number of irreconcilable 

limitations: the rigid inflexible structures tend to be fragile and offer an 

inadequate solution to model the process of learning or pattern recognition. This 

served as an opportunity to reintroduce the network models developed years 

earlier that would rely on sub-symbolic interpretations and connectionist 

networks comprised of large number of interconnected computational units, 

emphasising the distributed representation and statistical modelling. Symbolic 

systems nonetheless have also been progressively developed to exhibit a 

reasonable level of flexibility and resilience, learning ability, and subtleness – 

contrary to connectionist models however where statistical methods are 

employed to extract patterns from the data, symbolic models maintained the use 

of ordered strings of symbols.  

It should be out of question that connectionist models are now an essential part 

of cognitive psychology and artificial intelligence, and even more so in 

engineering and other related fields – this has become more apparent in the 

recent years in particular as advances in technology reduce the limits of 

computational ability, and offer the additional capacity that large connectionist 
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models may require. Attempts to reconcile the symbolic and connectionist 

models over the years inadvertently cultivated an environment susceptible to the 

idea of hybrid models that would be based on the synthesised framework, 

incorporating the elements of both connectionist and symbolic systems. 

Nevertheless, it will still take some time until it is the case that the hybrid systems 

approach could be considered universally accepted – some additional steps are 

required such as points argued here for example that behaviourist approach 

could benefit from incorporating the elements of intentionality to form 

intentional behaviourism. The level of willingness to modify one’s research 

framework depends on a number of factors that are distinctly dissimilar within 

the two disciplines – such as the overall purpose of modelling for example.  

7.1.1 Artificial intelligence 

The primary goal of artificial intelligence is to develop an algorithm that would be 

able to exhibit a level of performance that could be said to act in an intelligence 

manner – ultimately an artificial general intelligence that would be capable of 

successfully performing any intellectual task that a human being can perform. In 

fact, considerable efforts are now increasingly directed at simultaneous 

development and containment of artificial general intelligence, as it is 

hypothesised that genuine artificial general intelligence would be capable of 

recursive self-redesign, resulting in an event of intelligence explosion where 

intelligence growth would be exponential, quickly exceeding intellectual capacity 

of any human, and eventually exceeding combined intelligence of all humans. 

Because it is hypothesised that the capacity of this superintelligence may be 
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incomprehensible for a human-level intelligence, the point beyond which events 

may become unpredictable to human intelligence is commonly referred to as 

technological singularity. On the one hand, an optimistic outcome is possible 

where superintelligence would create a utopia for all humans using its superior 

capacity to solve all world problems; on the other hand however, an opposite 

outcome would be an event of global human extinction – hence the efforts to 

contain the superintelligence, and even prevent any chance of its emergence 

altogether.  

Not all research in the field of artificial intelligence is devoted to modelling 

however, and it is essential to understand that contemporary state artificial 

intelligence is not only a product of intellectual tradition rooted in the 

interdisciplinary nature of philosophy, cognitive science, and psychology, but also 

is a fundamental constituent of it. For example, artificial intelligence 

contemplates and offers a considerable contribution to central themes such as 

nature of intelligence and knowledge, theoretical framework of knowledge 

representation, considering whether certain models can be considered artificial 

or rather a simulation of human cognitive process – pondering upon these and 

similar questions is an essential part of the artificial intelligence discipline. 

Furthermore, it should be possible to view computational algorithms as scientific 

experiments in a traditional sense, where an algorithm is developed and run, and 

researchers examine the results to subsequently redesign the algorithm and re-

run the experiment – in pursuit to determine whether the algorithm can be 

considered an adequate representation of intelligent behaviour.  
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Newell and Simon (1976) argued that any system capable of general intelligence 

would prove upon analysis to be a physical symbol system of sufficient size, which 

can be further developed to exhibit general intelligence comparable to the extent 

of general human intelligence appropriate for any real context and adaptive to 

the environment within the reasonable limits of processing speed and 

complexity. In subsequent years, researchers in cognitive science and artificial 

intelligence explored the research field delineated by this hypothesis, adopting a 

number of essential methodological commitments: (1) symbols and systems of 

symbols are used to develop a descriptive account of the phenomena; (2) search 

mechanisms are designed to explore the inferences that symbol systems could 

potentially support; (3) it is assumed that a properly designed symbol system 

would be able to provide a complete causal account of intelligence on its own, 

effectively removing the need for a cognitive architecture; and finally (4) in 

attempt to explain intelligence by developing working models of it, the field of 

artificial intelligence could be considered empirical and constructivist. In the same 

manner as they are used in natural language where it is understood that symbols 

refer to or reference something other than themselves, the use of symbols in 

artificial intelligence is extended to represent the reference to all forms of 

knowledge, intention, and causality within the environment and context of an 

intelligent entity – working on the premise that symbols and their semantics can 

be implanted in formal systems in a constructive manner, introducing the notion 

of a representation language. To model intelligence as a computer algorithm, it is 

essential to be able to formalise a symbolic system: formal systems allow the 
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assessment of such issues as complexity and comprehensiveness, as well as 

deliberate the structural organisation of knowledge and complex semantic 

relationships. The issue of grounding of meaning however has been seen as a 

hindrance by both advocates and opponents of symbolic systems in artificial 

intelligence and cognitive sciences – it queries how symbols can have meaning, 

and whether traditional artificial intelligence systems that operate on the 

principle of linking once set of symbols to some other set of symbols would 

actually have any ability to interpret these symbols in a meaningful manner in the 

absence of supporting semantics that are normally available to humans from a 

social context. As a result, the methodology of traditional artificial intelligence 

systems focused on exploring the pre-interpreted states and their context, which 

come pre-encoded by the architects of the artificial intelligence system with 

contexts and semantic meaning and therefore serve as a function of this 

particular type of interpretation – as a result, such artificial intelligence systems 

are able to demonstrate very limited capacity to extrapolate new meaningful 

associations while exploring their environment. Therefore, the most successful 

applications that tend to abstract away from the social context to capture the 

core factors of problem solving with pre-interpreted symbol systems nevertheless 

remain inflexible, unable to demonstrate generalised interpretation capacity, and 

lack resilience and ability to recover.  

As discussed at length throughout this research project, explicit symbol systems 

are not the only way to represent intelligence – connectionist frameworks 

provide useful functionality to understand intelligence in a scientific and 
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empirically reproducible manner. Connectionist networks are models of cognition 

that do not necessarily rely on pre-determined and specifically referenced 

symbols to describe it, since the knowledge representation in the network model 

is distributed across the architecture of the network, and it may be difficult – if 

not entirely impossible – to isolate specific concepts to particular computational 

neurons and synaptic connection weights within the model, as any part of the 

model may be instrumental in the representation of various phenomena. 

Therefore, connectionist networks serve as a challenge to the argument of 

Newell and Simon (1976), and in addition to symbolic representations provide a 

new string of research around the concepts of adaptive modelling and learning 

for the field of artificial intelligence. Because the structure of the connectionist 

network is formed by the process of learning as much as by the design, it does 

not require an explicit symbolic model and rather is a result of interaction within 

its environment. In such a way, connectionist models are recognised for a 

number of substantial contributions to understanding of intelligence – more 

importantly within a context of this research project (but not limited to) a 

plausible model of underlying mechanisms that describe a learning processes and 

behaviour, from the viewpoints of both artificial intelligence and cognitive 

neuroscience. This very inherent nature of connectionism that is so distinctively 

different from the tradition of symbol models in artificial intelligence is precisely 

the reason why connectionist networks may be particularly suited to address 

some of the questions that may be outside of the competence of expressive 

functionality of symbol models – for example the pattern recognition capacity of 
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connectionist models dealing with noisy data, where distributed representation 

enables a properly trained network to demonstrate performance similar to 

humans employing extrapolated elements of similarity rather than logical rules in 

task such as classification of previously unseen data. It is apparent that neither of 

the approaches is likely to emerge as dominant, and hybrid solutions that 

incorporate both symbols and network are necessary to develop truly robust 

models of intelligence and cognition. 

7.2 Distributed representation 

In machine learning as a model of information processing, using one 

computational unit to represent one element is the most straightforward method 

– commonly referred to as local representation – is easy to understand and 

interpret, as the network structure corresponds to the structure of the 

knowledge it embodies. There are other implementations however – they are 

more complex, but at the same time offer notable emergent properties 

unavailable with local representations. In the following paragraphs, a few notable 

features of distributed representation as an inherent feature of connectionist 

models will be discussed – it should make it clear that distributed representation 

is particularly suited to the task of explaining complex phenomena such as 

consumer purchasing decision-making process.  
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7.2.1 Memory 

Thinking about consumer decision-making process, the standard metaphor for a 

memory system is typically a hypothetical warehouse for mental copies of items 

with some sort of storage and retrieval facilities that find a copy of an item using 

descriptors provided – this process however is inefficient and contradictory to the 

process of human memory where acceptable results could be produce even with 

missing or incorrect descriptions. Another way to view memory is not as a 

traditional content-addressable search mechanism using available descriptors, 

but rather as an inferential process: the memory is retrieved by constructing 

every time a pattern of activity using microfeatures and their connections to 

represent the most plausible concept consistent with the available cues. 

Connectionist network models are inherently based on these principles and 

therefore would be particularly suited to handle elements that are responsible 

for memory storage and retrieval as part of the consumer decision-making 

process.  

7.2.2 Generalisation 

Constructionist concept of memory is related to another feature of consumer 

decision-making process – the instances when the new items are learned and 

subsequently stored in memory. To accommodate this in a connectionist model, 

while at the same time making sure the existing items are not deleted, many 

connection weights could be adjusted a little – this would have a transferred 

effect for all related items, while ignoring the unrelated items. This type of model 
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behaviour epitomises the concept of distributed representation, and while doing 

so invokes the most remarkable of properties – generalisation. Rather than using 

local representations, a distributed representation system would store 

information by automatically extracting and decomposing the phenomena into its 

constituent microfeatures, where specific microfeatures could relate to multiple 

phenomena simultaneously. When new information is acquired, it is 

automatically propagated throughout the distributed representation system to 

modify activation patterns for all related patterns, thus making it available 

throughout the system in a similar manner humans are able to make 

generalisations.  

7.2.3 Learning history and behaviour continuity 

In attempting to formulate a plausible explanatory account of consumer 

behaviour, being able to attach arbitrary descriptions to units using local 

representation may seem more intuitive and therefore be considered an 

apparent advantage over distributed representation systems. There is a matter of 

efficiency that distributed representation systems offer however, which not only 

allows assigning particular descriptions to the distributed representation clusters 

in the similar manner as in the local representation systems, but also makes it 

possible to construct new concepts – a feature that can clearly be useful to 

facilitate the future development of theoretical frameworks for such concepts as 

learning history and continuity of behaviour.  
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7.3 The implications for consumer behaviour 

It can be said without a doubt that consumer decision-making process is a 

complex phenomenon that can normally be attributed to intelligent behaviour – 

in fact, it could serve as a reasonable test to assess a level of artificial general 

intelligence: if an artificial system (likely embodied with the use of robotics) could 

just go out at any unspecified established location and purchase a few required 

items, all on its own while learning the environment and making other decisions 

as necessary to reach the final purchase goal, it could be said to act in an 

intelligent manner comparable to that of a human consumer. Thus, working to 

develop plausible models of consumer behaviour could not only serve to satisfy 

the immediate questions that deal with the purchasing decision-making process 

per se, but also serve as a substantial contribution to modelling cognition and 

intelligence.  

7.3.1 Utilitarian and informational reinforcement, and NNs 

In the course of this and previous research projects, it became apparent that a 

method to empirically define and measure informational and utilitarian 

reinforcement within the data would be extremely helpful (Greene, 2011). One of 

the reasons of course is that previous research required a substantial amount of 

work to consider and define the level of utilitarian and informational 

reinforcement – for each of the brands within the data. This requires not only an 

extensive familiarity with the market situation, but also a significant amount of 

time and resources: if at all possible, a qualitative study is carried out to identify 
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and validate brand perception attributes, which are useful to operationalise 

utilitarian and informational reinforcement in a subsequent quantitative survey 

research. Then, traditionally a quantitative investigation would be carried out 

which would aim to survey a number of individuals and collect brand perception 

data where each brand is evaluated by respondent with a standardised 

questionnaire, and with a substantial sample size, both utilitarian and 

informational reinforcement values can then be attributed to brands to be used 

in all consecutive research.  

To streamline and optimise this process, it was hypothesised that this task could 

be carried out by a connectionist model that should be able to extract the 

utilitarian and informational reinforcement for each brand from the data during 

the pattern recognition (learning) process and subsequently provide a method to 

quantify them by assigning a numerical score to each brand. Instead, it became 

apparent that utilitarian and informational reinforcement in fact belong to a 

qualitatively different level of explanation, and could be modelled in a very viable 

manner as emergent entities using distributed representation of hidden layers in 

neural networks (Greene, 2011). 

7.3.1.1 Consumer behaviour modelling process 

The inherent nature of a neural network as a method of analysis makes it 

qualitatively different from traditionally employed methods such as logistic 

regression. For the purposes of this discussion, let us pay no attention to the 

methodological differences and instead consider the semantics. Neural network 
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model with no hidden layers essentially is no different from a logistic regression 

as it too only incorporates the input and the output layers. Once the hidden 

layers are introduced between the input and output layers, the neural network is 

capable to develop unique features that are of particular interest in the 

discussion of behaviour analysis.  

In the case of regression, the analysis only considers pre-specified by the 

researcher input and output variables, whereas a neural network learns the 

structure as part of the process. Complex neural networks that incorporate 

hidden layers determine connection weights between the variables and the 

hidden layers, depending on the network architecture. The key difference with 

the traditional method is the meaning of hidden layers and neurons that emerge 

from the learning process – network characteristics that are not defined by a 

researcher but rather are the product of a learning process. In the context of 

consumer behaviour and using the established framework of BPM for explanatory 

purposes, it is the central hypothesis of this research project that the hidden 

layers may be interpreted as emergent representation of utilitarian and 

informational reinforcement, along with other factors that may influence 

behaviour otherwise inconceivable to the researcher as identified by the neural 

network in the process of learning and extracting the patterns from the data. 

What is argued here then is that within the modelling of consumer decision-

making process, the utilitarian and informational reinforcement should be 

positioned on a different semantic hierarchical level to the traditionally employed 
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inputs such as product parameters, consumer demographics, decision 

environmental parameters, etc. 

Thus, it makes it possible for the product characteristics and demographics to be 

connected not solely to the output variables directly, but rather to intermediary 

abstract entities following the distributed representation principle, which are 

shaped by the learning process of the neural network. These abstract 

characteristics are not easily interpretable however, and it may in fact prove 

quite difficult – if not entirely impossible – to assert reliably whether the 

constructs represented by the hidden neurons and connection weights truly 

represent utilitarian and informational reinforcement. Within the theoretical 

framework of BPM, utilitarian and informational reinforcement is defined in 

terms of money allocation as a function of brand reinforcing attributes (Oliveira-

Castro, Foxall, & Wells, 2010). This issue however is not absent elsewhere either, 

as it is not possible to say to what degree the utilitarian reinforcement could truly 

be represented for example by the additional desirable product attributes such as 

sausage in baked beans versus plain baked beans (Oliveira-Castro et al., 2010). 

This assumption may not holds for all consumers, or even may very well be the 

opposite case for some – consumers may receive higher utilitarian reinforcement 

from plain baked beans as for example in their particular situation plain baked 

beans may be used in a wider variety of dishes for example. Thus, the real issue is 

the matter of operationalization, and is not unique to neural networks.  

Even though it should be reasonably possible to conclude that testing this using a 

pruned and optimised connected network where input units are connected to 
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hidden layer that would contain two hidden neurons to represent utilitarian and 

informational reinforcement as proposed here in the previous chapters as the 

preferred option to reduce the level of difficulty while interpreting the final 

neural architecture, a number of other network architecture types were explored 

and presented here in attempt to identify the optimal type most suitable for 

explanation of consumer behaviour, may that be for predictive or interpretative 

purposes. The abstract characteristics that emerge during the learning process 

within the hidden layers however are not easily comprehensible or interpretable 

for a number of reasons. For once, the network capacity allows exploring the 

incredibly complex interrelations within the data, and able to identify subtle 

unexplainable patterns. These patterns however could be too multidimensional 

to comprehend for a human mind – something a researcher would not be able to 

think of on their own as would be required in the case of regression analysis 

where all variables and the structure must be predefined from the onset.  

7.4 Cognitive process simulation 

Thus far, relatively simple connectionist networks have been discussed here that 

model isolated cognitive processes with simple input and output. But what about 

modelling higher cognitive processes that would necessitate complexity in both 

the processing and the input and output of the network? The two networks 

discussed next are developed as possible models of higher cognitive processes.  
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7.4.1 Past-tense acquisition model 

Ability to construct an infinite number of grammatically correct sentences is 

based on grammatical rules used in a natural language. In psycholinguistics, it is 

assumed that either an innate knowledge regarding the rules of grammar is 

available or humans follow a process of hypothesis formation and subsequent 

testing based on the experiences and linguistic information available. The product 

is assumed to be a mental structure in the human mind that contains 

representations of linguistic rules. Rumelhart and McClelland (1985b) propose a 

mental structure capable of processing natural language that does not require 

explicit representations of the rules. English past tense acquisition is a well-

studied phenomenon, where a U-shaped learning course is characterized by the 

three stages. First, past tense for a small group of verbs (mostly irregular) is 

acquired. This is followed by the acquisition of past tense for a larger group of 

verbs (mostly regular) where the rule seems to develop (add -ed to verb stem) – 

as a result it is also incorrectly applied to some of the irregular forms. In the final 

stage, regular and irregular forms are used correctly suggesting that exceptions 

to the rule are learned. Irregular verbs could be further grouped into 

subcategories, which could explain some of the errors produced by human 

learners. It is important to set the limits of what is being modelled to simplify the 

model considerably yet enabling it to achieve the substantial level of simulation. 

The model of Rumelhart and McClelland (1985b) consisted of three connected 

networks, where the first network translated the phonological input into the 

appropriate format for the second network, the pattern associator. Pattern 
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associator output was again translated by the third network into the final 

phonological output. Networks are quite different from the traditional methods, 

and therefore pose certain difficulties for traditionally employed strategies. For 

example, ordered mapping of phonemes would not work as easily in network 

architecture – instead, context sensitive phonemes were employed. An issue of 

network efficiency was solved by replacing the representation of all phonemes 

with the features of the phonemes, which substantially decreased the number of 

units necessary to encode the problem. This offered distinctive enough 

representations yet allowing the degree of generalization for a network to 

generate past tense forms for previously unseen verbs. Thus, the network 

functionality is not tied to the verb stems in particular but rather to the 

distributed phonological features, at the same time identifying similarity between 

the verbs and determining which of the verbs require the application of the 

regular past tense rule. Even though this model is able to achieve high levels of 

performance, one critique argues that much work is done in the featural 

decomposition of phonemes, which is based on the adaptation of traditional 

linguistic featural analysis (Pinker & Prince, 1988). Even though this may be true 

to some extent, the contribution of the connectionist network lies in the pattern 

recognition process not reliant on rules, which is necessary for learning to occur 

in the network. 

For the simulation, encoded verb stem is supplied to the two-layer feedforward 

network that employs a stochastic version of logistic activation function. After 

obtaining the pattern of activation, error correction procedure facilitates learning 



 

 
272 

 

through the adjustment of connection weights by comparing the obtained 

pattern with the desired output pattern. This network however is not particularly 

suitable for the purposes of examining the behaviour in detail due to its size, as it 

was primarily tasked with simulation of the stage-like learning process of past 

tense acquisition observable in children (U-shaped learning function). Smaller 

purpose built networks with fewer weights can be scrutinized to examine the 

emergence of behaviour and the underlying factors that influence it.  

7.4.1.1 Overregularization in a simpler model  

To examine the processing that occurs inside the network, a simplified model is 

considered by McClelland and Rumelhart (1988) that comprises of eight input 

units and simple enough rule used to transforms the input pattern for the output 

of 18 cases in total. Predictably, due to a systematic nature of the input-output 

relation, the network was able to achieve absolute performance without actually 

relying on the rule. Then, one of the cases was transformed to be in conflict with 

the rule employed to transform the input patterns. To simulate the children 

learning process, the network was presented with only two cases: regular (that 

follows the devised rule) and irregular. The network achieved good learning level, 

but was not able to extrapolate the rule from just two cases properly. When the 

remaining 16 cases were introduced, the network was able to extrapolate the 

transformation rule. At that stage, overregularization could be observed with the 

one irregular case (signified with the increased errors), which subsequently 

followed by learning to incorporate the irregular case. Thus, the network learning 
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process closely resembles the stage-like learning process of children described 

earlier.  

7.4.1.2 Past-tense acquisition simulation  

The learning simulation of Rumelhart and McClelland (1985b) consisted of stage-

like process where ten most frequently encountered verbs were supplied to the 

network first, followed by a set of verbs of average frequency of usage, which 

was finally followed by a set of verbs with low frequency of usage. The model was 

able to achieve high level of performance (between 80 and 85 percent) on the 

first set of verbs after 10 epochs, when the second set of verbs was introduced. 

This resulted in a temporary drop of performance (around 10 percent) on 

irregular verbs – a characteristic feature of Stage 2 in children learning process, a 

result of interfering with learning the regular pattern. By epoch 20, the 

performance started to improve, and by epoch 160 the performance of the 

model was around 95 percent features correct – the model was able to learn the 

irregular forms as exceptional to the rule cases. Mistakes of the model in the 

general direction of overregularization, as expected (for example, –ed added to 

the stem of the irregular word to forms such as comed or camed). Thus, the 

network is able to simulate the stage-like learning and the effect of 

overregularization without the use of rules. Testing the model on the previously 

unseen set of verbs with low frequency of usage showed high level of 

performance (92 percent correct feature activation for regular and 84 percent for 

irregular verbs). The ability of the network to generate past-tense form to novel 
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verbs was less than optimal, but comparable to human performance in similar 

task, suggesting comparable limitation of the model to the native human speaker.  

The in-depth analysis revealed that many of the distinct subclasses of regular and 

irregular verbs (for example, nine subtypes of irregular verbs described by Bybee 

& Slobin, 1982) could be identified in the simulation results. The simulation 

showed similar ranking of the performance within each of the subclasses, even 

though variances were less dramatic. This could be due to the fact that the 

explanations responsible to performance variations were not present in the 

simulation, and therefore may provide a superior account of human 

performance. In addition, it became apparent that the error type propensity 

(comed vs camed) differed across verb subclasses.  

Based on these findings, Rumelhart and McClelland (1985b) argue that it is 

possible to simulate the essential characteristics of human learning behaviour 

with relatively simple network architecture and without the use of explicit rules.  

7.4.1.3 The role of input 

In past-tense learning, the role of input in both human and network simulation 

models is not entirely understood. What requires further examination is the 

comparison of the input conditions of children and simulation models, and the 

range of conditions under which U-shaped learning can be present in networks. 

7.4.1.3.1 The role of input in children 

Some researchers argue that supplying discontinuous input for the network is not 

a proper mechanism to attain a U-shaped learning curve, as there is no sudden 
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change in vocabulary size or verb type and therefore it should be a factor to have 

an effect on overregularization (Ullman, Pinker, Hollander, Prince, & Rosen, 

1989). If not change in input, then what activates Stage 2 learning? Research 

indicates that during Stage 1 irregular type verbs outnumber regular type (Bloom, 

1970; Nelson, 1973). In Stage 1, children produce the stems for most verbs, but 

also tend to use incorrectly some of the irregular past-tense forms instead of the 

stem (Kuczaj, 1977). In Stage 2, proficiency of using past tense in appropriate 

context improves for most verbs, with the exception of about one-third of 

irregular verbs where overregularization occurs. If the same type of mechanism 

was responsible for learning in Stages 1 and 2, it would not be able to control the 

word production initially and only use the verbs as input, gradually developing 

the network mapping as more verbs (largely regular, as regular verbs surpass 

irregular by the end of Stage 2 as suggested by Ullman et al., 1989) become 

available. As the mechanism progressively matures following the developmental 

process that improves the coordination of previously separate competencies 

(Bates, Bretherton, & Snyder, 1988), it gradually develops the capacity to control 

the production of verbs. Therefore, it supports Rumelhart and McClelland's claim 

that these changes facilitate the transition from Stage 1 to Stage 2. The 

simplification of the process for the simulation model could be further justifiable 

in light of lack of understanding how the process actually occurs in children. The 

two suggested developments could either examine in greater detail the child 

acquisition data, or the network behaviour. 
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7.4.1.3.2 The role of input in networks 

When the network is trained on a small subset, it is capable of achieving high 

performance by learning the whole dataset without extracting the patterns. In 

the case of learning the past-tense verbs, it may seem to be just that, as the initial 

set of verbs available to a child normally contains a rather small number. Once 

more verbs paired with past-tense forms become available, the network begins 

to develop the evidence of a systematic structure in weights. As the systematic 

structure becomes more pronounced in network weights when more verbs are 

made available for inputs, the inclination towards overregularization becomes 

evident as well - even if only half of the input verb pairs exhibit the pattern 

explicitly.  

Plunkett and Marchman (1989) performed a number of past-tense formation 

simulations where the network was presented with a complete set of verbs at all 

training epochs, effectively eliminating the input change altogether. Regardless, 

U-shaped learning was obtained for some individual verbs. They employed a 

much simpler distributed coding for the verbs as well compared to which was 

used by Rumelhart and McClelland (1985b) and therefore did not promote 

generalization as much.  

7.4.1.4 Past-tense formation model summary 

Rumelhart and McClelland (1985b) argue that relation between the verb stem 

and past-tense form is described by a set of general rules, but it is the mechanism 

of distributed processing across the network weights that governs the relation. 
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Moreover, both standard and exceptional cases are encoded within the same 

single network architecture, and network learning process shows similarities to 

the learning process of children.  

7.4.2 Kinship knowledge model 

In psycholinguistics, the ability to handle kinship relations is a common test to 

assess the model. (Hinton, 1986) developed a multi-layer connectionist network 

for such a task, where the information on 24 individuals is analysed by a five-layer 

network with three hidden layers. Individuals are divided between two families 

with isomorphic family trees that include 12 relationship types. Inputs contain 

Person 1 and a relationship type, and the model provides the encoding for Person 

2 on the output. The first hidden layer contains 12 units: six units receive input 

from 24 Person 1 units, and six from 112 relationship type units. The second 

hidden layer contains 12 units that are fully connected to the first hidden layer, 

and provide the input for the third hidden layer that contains six hidden units and 

provides the input for the output layer that specifies the output for Person 2. The 

network is forced to extract the relevant features for the distributed 

representation as the input information follows through the layers that contain 

fewer units (36-12-12-6-24 network structure), and then use the extracted 

features to identify the output. Out of the 104 possible Person 1 - relationship - 

Person 2 cases, a back-propagation network was trained on 100 cases and tested 

on the remaining four cases. The network was able to provide a correct output 

for all four cases in the first run and for three out of four cases in the second run, 
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suggesting a high performance capacity without the reliance on propositional 

representations or inferential rules.  

When the weights matrix is examined, it becomes apparent in what way was the 

network able to accomplish the cognitive simulation task. For example, the 

connection weights between the input units representing Person 1 and the first 

hidden layer suggest the extraction of features relating to the family symmetry, 

such as which of the two families or generations (younger or older) the person 

belongs to. Thus, the network was able to identify the kinship structure only from 

the cases of specific relationships presented to it through the restructuring of the 

information and feature extraction procedures. Based on the internal featural 

distributed representation developed as a result of the training process, the 

network was able to learn the nature of relationships and use this knowledge to 

make inferences. It is imperative however to be aware of the hidden unit 

interpretation, as in most cases, even if it may seem quite natural to assume 

certain labels from the examination of network behaviour, the hidden units 

represent a very complex interrelated combined subset of subtle features 

extracted by the network that may not be straightforwardly explained.  

Many questions remain however that revolve around the interpretability of 

hidden units, and whether the interpretation is even necessary or beneficial; the 

training and testing procedures; and questions that deal with the type of higher 

cognitive tasks that can be simulated with networks.  
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7.5 Phenomenological critique of computational 

models of intelligence 

One type of critique originates in phenomenology, and disputes the established 

computational approach of modelling intelligence. On the basis that the process 

of skill acquisition has been misunderstood, Dreyfus (1992) argues against 

general approach to modelling intelligence which was undiscerningly adopted by 

early Artificial Intelligence researchers – the same approach that forms a 

fundamental part of the research programme described here. Building upon the 

work of Heidegger (for extended discussion please see for example Heidegger, 

1988), Dreyfus supports his opposing view with an assertion that humans are in 

fact experts at carrying out a multitude of tasks within varying situational context 

as part of everyday life. This type of expertise is arguably overlooked in traditional 

approach to computational intelligence modelling, and instead is taken to be an 

assumed foundation upon which all subsequent learning and rule formulation 

occurs. Dreyfus argues quite the opposite by stating that humans begin with a 

pre-formulated set of explicit rules, which are applied and specialised to a 

multitude of particular contextual situations. The key element of critique 

postulates that computational algorithms do not generate meaning or sense, but 

rather appear as meaningful when taken within the context of human everyday 

expertise. Thus, Dreyfus asserts that the understanding of intelligence with the 

use of computational modelling would inevitably entail revisiting the fundamental 
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principles of meaning that originally identified the need for these computational 

and technological artefacts, and how it reflects upon the human identity. 

Certainly, these arguments may hold true while considering human intelligence, 

but would they be appropriate in the same manner to explanation of artificial 

intelligence? In fact, some of the aspects of intelligence that are taken to be 

virtues with human intelligence, such as human everyday expertise as discussed 

above, could be seen as a limitation and a constraint when speaking in terms of 

just any general intelligence that is not tasked primarily with closely replicating 

the way human intelligence occurs, and instead developed to achieve certain 

level of performance by optimal means, which does not necessarily need to be 

similar to that of a human intelligence. Positively, this research direction is further 

supported by recent technological advancements that constitute a substantial 

progress already, and computational models are eventually expected to reach 

performance levels comparable to the most advanced currently known 

information processing entity, the biological human brain – and indeed surpass 

not only performance level of individual humans, but ultimately surpass the 

combined collective intelligence of all humans. Certainly, this would entail 

inherently different way for intelligence to emerge. 

7.6 Summary 

In this chapter, the concise assessment was offered to critically assess the 

connectionist approach against the established tradition of cognitive science. 
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Some of the inherent features of both disciplines and their modelling approached 

discussed to evaluate both advantages and disadvantages in relation to the task 

of explaining the process of consumer decision-making.  

The following chapter will consider a few potential direction for future research.   
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8. Future work 

It is clear that even though the experimental work carried out as part of this 

research project is able to offers a substantial amount of data for all subsequent 

analyses carried out and discussed here, there is a multitude of unanswered 

questions that could extent this line on enquiry further, and in a number of 

potential directions. A few of these potential areas of inquiry will be discussed in 

this chapter.  

As a continuation of the explanatory modelling approach predominantly 

discussed here, it could also be advantageous to continue developing explanatory 

capacity by taking it in a number of different directions, some of which are 

discussed next.  

Once an acceptable level of explanatory capacity is achieved, it then becomes 

possible to explore the prescriptive direction and normative consumer behaviour 

modelling in attempt to optimise the connectionist modelling and develop a 

certain level of prescriptive capacity to achieve specific objectives that may be 

desirable for a number of reasons. Some of these are discussed in the following 

paragraphs.  

8.1 Individual respondent level of behaviour analysis 

One obvious option to advance the research undertaken here would be to 

consider individual respondent level rather than a multi-respondent prototype 
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defining method of analysis carried out here. Obviously this is outside the scope 

of this research project, but would seem a natural evolution of this line of inquiry, 

which is further corroborated by some of the other potential directions to 

advance the work discussed here as proposed and discussed in the next 

paragraphs.  

The problem of demonstrating individual behaviour in a scientific manner is 

reasonably well understood and comprehensively described (for an extended 

discussion please see Skinner, 1953), and over the years has been applied to a 

wide range of contextual and behavioural settings which resulted in producing 

general descriptive accounts of mechanisms that govern and foster many 

observable individual forms of behaviour. Thus, the research process that carries 

out an applied behaviour analysis on an individual respondent or consumer level 

is a self-monitoring and self-evaluating method of scientific inquiry to study 

behaviour in experimental applied manner. The pragmatic nature of behaviourist 

theory is evident in the application of behaviour analysis, where the verbal 

description of non-verbal behaviour by the respondents themselves would not be 

acceptable, and the focus of the research programme is in fact revolves around 

what subjects can be brought to do rather than brought to say – that is unless 

verbal behaviour of interest of course.  

It would be customary to expect for a consumer behaviour to be composed of a 

number of a sequences of physical events, and precise measurement of these 

events is required for a scientific examination – this bring upon the problem of 

reliable quantification of the behavioural response which cannot be easily 
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circumvented in applied consumer behaviour research, whereas in non-applied 

consumer and other research there may often be an opportunity to select a 

behavioural response item which is easier to quantify and measure in a reliable 

manner from the onset. Behaviour analysis normally requires a demonstration of 

sequential events that are said to be responsible for the manifestation of the 

behaviour, and researcher is required to demonstrate an evident degree of 

control over the said behaviour by either being able to increase or decrease the 

frequency or duration of behaviour – something which is reasonably achievable 

within the experimental laboratory setting by either replication or satisfactory 

probability levels derived from the statistical analyses and modelling of grouped 

respondent data, yet may pose a difficulty in an applied context of consumer 

decision-making situation in a market environment. The two types of research 

design that are commonly used to demonstrate with a certain degree of reliability 

the behaviour control can be referred to as the reversal and the multiple baseline 

methods.  

The first method assumes a continuous tracking of behaviour for an extended 

period of time to ensure the clear measurement stability is achieved before the 

experimental variable is applied. The behaviour continues to be monitored and 

measured to determine if the experimental variable is able to exert any 

significant observable change of behaviour – if it is indeed the case, the 

experimental variable is discontinued or otherwise altered to examine whether 

the observed behavioural change is dependent on the experimental variable, as it 

should result in the observed behavioural change to diminish and reverse (hence 
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the naming convention) to the levels as initially determined in the first stage of 

the experimental research design. The experimental variable is then 

reintroduced, yet again to observe if this would recover the behavioural change 

to the level as previously observed in the second stage of experimental research 

design. The reversal procedure with a subsequent measurement could be carried 

out a number of times if the experimental research setting permits the multiple 

reversal stages to improve the validity and reliability of the obtained results – 

something that is unlikely to be the case in the applied context of consumer 

decision-making situation in an actual market environment. In fact, it may be 

difficult to carry out even a single reversal cycle, particularly when the 

behavioural change caries a positive measurable commercial impact and one may 

be reluctant to abandon the favourable results and revert to the original level for 

the sake of experimental design. In contrast with experimental laboratory setting, 

the dynamic market environment may also be difficult to control and 

contaminate the applied research design as naturally occurring changes may be 

brought upon by other external factors that lie outside the control of the 

researcher. It may also be unethical to reverse some of the valuable behaviours 

that are able to demonstrate as a result particularly positive and beneficial effects 

– for example research programme that aims to improve the consumer 

purchasing consumption decision-making habits in attempt to decrease the 

incidence of certain diseases or other serious health risks. Moreover, it should be 

expected while producing a valuable behaviour in a social setting to generate a 

degree of extra-experimental reinforcement from the social setting itself; and as 
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a result, the valuable behaviour may cease to be dependent upon the 

experimental design and behaviour control that was set up to produce this very 

behavioural response in the first place.   

The second method of multiple baselines may be particularly useful as an 

alternative to reversal method as it could allow to overcome the difficulties within 

the applied context of consumer decision-making in an actual market 

environment and circumvent some of the potential issues described above. To do 

so, a number of behavioural responses are identified and measured over time to 

determine the baselines for all consecutive research work. Once these multiple 

baselines are reliably established, the experimental variable is introduced with 

one of the identified behaviours – the resulting behavioural change is recorded 

while other baselines are monitored in parallel to identify any other concurrent 

change that is not associated with the experimental variable. In the case of 

success with the first application of experimental variable where the significant 

observable behavioural change can be identified, rather than discontinuing or 

altering the first experimental variable to reverse the newly created behavioural 

change, instead the experimental variable is introduced to one of the other yet 

unaffected baselines. If the significant behavioural change can be observed again 

with the second baseline, this would increasingly demonstrate the effectiveness 

of using the experimental variable to control behavioural response as opposed to 

change occurring as a natural or random variance – at this point to improve the 

validity and reliability of the results thus obtained, the experimental design can 

be systematically extended for the remaining baselines by introducing the 
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experimental variable to yet another baseline at a time while monitoring and 

tracking baselines for all behavioural response items in parallel. Even though 

arguably the multiple baselines research design is better suited than reversal for 

studying consumer decision-making within the applied context of market 

environment and allows circumventing some of the potential limitation due to 

practical and ethical issues, the element of qualitative judgement is still necessary 

nevertheless to assess the suitability of inferential statistical analysis: for example 

to determine and specify the number of baselines (the same in the case of 

reversals) required to provide a convincing and satisfactory account of  

demonstrating a reliable behavioural control.  

These two research designs are of course the core foundations upon which more 

complex composite and combined designs could be constructed – indeed it may 

be required to decompose each successful demonstration into its comprising 

elements to be studied and examined separately, perhaps employing certain 

variable contribution analyses to determine the extent of contribution of each 

component to the overall behavioural control; or perhaps introducing additional 

elements to assess the generality of behavioural change as able to remain 

durable over time; or perhaps examine the sequence of variables required to 

improve the generality of behavioural change in the best possible manner. While 

using secondary data, it may be increasingly difficult or perhaps even impossible 

to identify the suitable cases where the behavioural change can be observed, but 

perhaps some of these difficulties could be bypassed by a robust research design 

and advanced modelling techniques that are inherently based on the principle of 
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individual stand-alone subsystems which are able to exert behavioural change as 

a matter of collective contribution, such as swarm intelligence methods discussed 

later.  

8.2 Multi-category behaviour analysis 

Certain practical and ethical limitations pertaining to research design described in 

the preceding paragraphs above may also be true in attempt to study and model 

consumer behaviour employing multiple product categories simultaneously and 

in parallel. The scope of this research project is limited to a single product 

category – wine, and proposition to examine multiple product categories 

simultaneously would substantially increase the analytical complexity required, as 

it would inevitably introduce the need to account for the dimension of interactive 

cross-category consumer choice. There are a number of other reasons to follow 

the boundaries set here as well that prescribe the inclusion of a single product 

category – not the least of them is a high computational requirement that is 

necessary to process the large amounts of data, which is the case even with a 

single product category. If the computational power was not an issue where 

parallel and distributed computing that links multiple processing units or even the 

use of supercomputers can be employed, it could be beneficial to explore the 

capacity of connectionist networks to develop cross-category models. On the one 

hand, connectionist model generalisation capacity could be assessed where 

connectionist model trained on one category could be tested to predict 

behaviour with an entirely different product category to carry out a true out-of-
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sample validation. On the other hand, the connectionist models could be trained 

on multiple categories from the onset, which could enable the extraction of 

mode general non-specific to product category patterns that represent consumer 

behaviour more accurately, in turn making the connectionist models perform 

better with single and multiple categories as well.  

The notion of considering multiple product categories to develop better 

understanding of behaviour has been reviewed over the years by many authors in 

the different yet closely related thread of research that revolves around the 

concept of market basket choice (for an extended discussion please refer to Chib, 

Seetharaman, & Strijnev, 2002; East, Hammond, & Wright, 2007; Manchanda, 

Ansari, & Gupta, 1999; Russell & Petersen, 2000). Without a doubt, as the 

technological advancements facilitate the inevitable improvements in data 

collection by refining the methods and growing the number of participants in the 

panel data to improve the extent of representative sample and improve the 

product and behaviour coverage on both longitudinal and individual levels, 

researchers are increasingly involved in developing statistical modelling 

techniques of basket-level multi-category consumer decision-making behaviour. 

Global data providers are now able to offer truly massive integrated databases 

(such as the complete dataset of Kantar World Panel which only a single category 

was employed for the research programme described here) that include 

longitudinal data and information on a household level for a number of observed 

behavioural transactional variables such as store choice, category incidence, 

brand choice, and quantity purchased – all this is of course supplemented by an 
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extensive household demographics, product attributes, and purchasing decision 

environment (store and venue attributes). Indeed, the field of consumer 

purchasing behaviour and consumer choice modelling spans a number of 

decades, and over the years a multitude of models and methodologies have been 

proposed, even some that attempt to develop comprehensive models that cover 

a number of behavioural variables concurrently (for example an attempt to 

model simultaneously incidence, brand choice, and purchase quantity by 

Chintagunta, 1993); the bulk of choice modelling research however has been 

limited to a research design that considers a single product category at a time – 

very much like the research programme described here which is deliberately 

constrained to a single product category, wine. In endeavour to extend the choice 

modelling research by addressing the limitation of a partial single-category 

consumer behaviour line of inquiry and providing a plausible account of 

interdependencies between the multiple product categories, the notion of 

market basket choice not only attempts to model the multiple purchase outcome 

variables simultaneously, but also across multiple product categories – that is, 

develop an understanding of choice behaviour across multiple, and ultimately all, 

product groups that comprise the total shopping basket. The interest to extend 

the multiple category choice research is not exclusively motivated by reasons of 

academic research, but also commercially driven, and maybe even to the higher 

extent: retailers strive to maximise total basket spend, organisation that hold 

significant presence within multiple product categories increasingly optimise 

multi brand portfolios and minimise cross-cannibalisation of profit and return, 
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and customer acquisition and cross- or up-selling initiatives require cross-

category models to improve targeting and segmentation analyses. Another 

limitation that contributed to the historical restriction of choice modelling to a 

single product category that can now possibly be overcome at least to some 

extent as a result of technological advances is of course the very high 

computational demand to carry out the multi-product modelling – naturally it is 

not simply a matter of additive computation burden where multiple categories 

would result in a linear increase in computational requirements dependent on 

the number of categories modelled simultaneously, but the computational 

requirements would rather increase exponentially, as the very point of the efforts 

to carry out a multi-category choice modelling is to consider all possible inter-

category relations within the data. Nevertheless, recent advances in multiple 

product category modelling have been able to propose a number of approaches 

as discussed in the following paragraphs. 

Multi-category purchasing incidence research surveys the dichotomous consumer 

decision-making situation by considering the notions of product substitutability 

and complementarity within a constraint of a limited disposable monetary 

resource. The research indicates that simultaneously modelling the incidence of 

higher number of product categories with multivariate probit and logit models 

may mitigate otherwise overestimated effect of purchasing situation and 

environment (Chib et al., 2002; Manchanda et al., 1999). Moreover, it is 

suggested there may be a consistent positive correlation among all product 

categories, which may be indicative of an inherent inclination for simultaneous 
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incidence across all product categories. Building upon the dichotomous choice 

models to explore the effect of time-sensitive price elasticity of multi-category 

purchasing incidence, multivariate additive risk models can be employed (Ma, 

Seetharaman, & Narasimhan, 2005) to model the purchasing frequency variable. 

Another research direction emphasises the prominence of underlying product 

attributes to describe consumer multi-category purchasing behaviour (Chung & 

Rao, 2003), while studying the bundled multi-category products. It should be 

apparent that these and other comparable approaches are able to contribute 

incrementally to the understanding if the multi-category purchasing incidence, 

and these learnings could potentially be amalgamated to develop a cohesive 

integrated framework of multi-category purchasing incidence.  

Cross-category brand choice models investigate the relevance of marketing mix 

sensitivity and cross-category brand choice correlations in the context of multi-

category purchasing. Employing decomposition methods to differentiate 

between household-specific and category-specific components of the marketing 

mix to examine whether the inclination of the household to  stability of variety in 

its brand choice would carry over multiple product categories, Ainslie and Rossi 

(1998) discover high levels of cross-category correlations suggesting it to be the 

case indeed, and propose that those household which exhibit strong brand 

loyalty in their choice behaviour over extended time periods in one category are 

likely to exhibit similar behaviour across categories and not pursue brand variety 

in another category. This notion could become rather useful in a situation where 

the information about consumer behaviour is only available for a particularly 
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product category and is limited or inadequate for other categories – because of 

the high degree of correlations of household price coefficients across product 

categories, it is possible to extrapolate and predict the consumer behaviour and 

purchasing information from a well-understood product category to another 

related less-understood product category (Iyengar, Ansari, & Gupta, 2003; Singh, 

Hansen, & Gupta, 2005). Modelling cross-category correlations of household 

brand volume purchasing shows high consistency in choice of store and some but 

not all national brands (Russell & Kamakura, 1998), and branded products show 

high correlation across multiple categories (Erdem, 1998).  

In attempt to combine some of these models and develop a more comprehensive 

approach to cross-category purchasing behaviour, computational requirements 

would be substantial and require as a result a certain set of theory-driven 

restriction to be imposed – flexible statistical model with unlimited parameters, a 

better computational framework is required. Perhaps one way to structure the 

approach in such a way that it would be able to offer a reasonable account of 

multiple and cross-category consumer choice is to decompose the system of 

individual consumer behaviour into multiple sub-systems that would model 

consumption for a specific product category, while at the same time interacting 

with other sub-systems that represent the consumer choice for a different 

category of the same individual consumer, and also interact on a higher level with 

other composite systems that represent other consumers, and the elements of 

the consumer decision-making situation in a market environment. The swarm 
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intelligence methods could perhaps suggest a plausible solution to these 

concerns, as discussed in the following sections.  

8.3 Swarm intelligence methods 

The term swarm intelligence first introduced by Beni (1993) is commonly referred 

to a concept that can be described as a collective behaviour of natural or artificial 

stand-alone self-organized sub-systems or agents. The inspiration for the artificial 

smarm intelligence came from biological systems encountered in nature such as 

ant colonies and bee hives which typically consist of a population of simple agents 

interacting with each other and their environment. The individual agents are said 

to follow simple procedures, and while the centralised control structure that 

would specify how stand-alone agents should behave collectively is effectually 

absent, the global collective behaviour that can be said to be intelligent can 

eventually be observed to emerge as a result of sequences of random local 

interactions of the stand-alone agents between themselves and the environment. 

Artificial swarm intelligence systems and algorithms have been adopted to utilise 

these principles and used in predictive analytics in the context of forecasting 

tasks.  

The universal prosperity of biological swarm systems such as ants, bees, or 

termites could be attributed to a number of wide-ranging characteristics: (1) the 

flexibility required to adapt to a changing environment, (2) the collective 

robustness of the system that diminishes reliance on individual contributing 
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agents and offers the effect of graceful degradation in the worst case scenario, 

and (3) the principle of self-organisation that eliminates the requirement of a 

global control and local supervision. These characteristics are general enough to 

be applicable beyond the world of biological systems, and can be desirable 

descriptors of systems and organisations not only from the academic research 

point of view, but could also bring substantial rewards if applied in the industry as 

well. Without a doubt, there should be no issue with embracing the first two 

principles almost universally, whereas the third principle may seem 

counterintuitive to the traditionally established ways of working and 

hierarchically structured systems in place. Nevertheless, the success of biological 

systems and the effective pioneering applications of the swarm intelligence 

principles in the industry should promote the consideration and acceptance, 

while encouraging growing interest to develop these systems further.  

The usefulness of swarm intelligence should not be limited to the obvious 

application of biological foraging models to inspire specific types of optimisation 

algorithms that are able to provide superior solutions with large complex tasks 

that deal with high levels of ambiguity such as a probabilistic optimization 

algorithm ant colony optimization (Dorigo, 1992) or an optimization algorithm 

based on the foraging behaviour of the swarm of honey bees artificial bee colony 

(Karaboga, 2005) – for example, it could also be successfully engaged to provide 

robust solutions with more general tasks such as complex problem 

decomposition based on the principle of flexible specialised labour allocation in 

the colony or hive. The captivating notion here is of course the reliance on the set 
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of relatively simple operational rules that govern the local behaviour of individual 

stand-alone agents, successful application of which would result in emergent 

complex collective intelligence behaviour.  

Consequently, at least to some extent for artificial systems, the key problem 

revolves around determining and accurately defining these sets of rules to 

facilitate this self-organised global intelligence behaviour, which of course 

naturally emerged and was refined in biological systems over millennia in the 

process of natural evolution. With complex systems, it may be extremely difficult 

to predict and subsequently assess the modelled outcome of final global 

emergent behaviour based on the set of simple rules – especially if it is an 

adaptive dynamic system designed to respond quickly to undefined 

environmental input factors. A number of key principles to keep in mind while 

considering a swarm intelligence system are as follows: first, very simple rules are 

able to generate unpredictable and often counterintuitive collective behaviours; 

second, seemingly minor modifications to these simple sets of rules can result in 

radically altered collective behaviours as a result; and third, even though the 

complex task of predicting collective behaviour that may very well be beyond the 

extent of human intelligence capacity, it is nevertheless possible to observe and 

predict the modelled collective behaviour in simulated artificial systems. These 

artificial systems can prove to be invaluable tools to advance and improve our 

understanding of collective behaviour, and ultimately help predict what collective 

behaviours would emerge within a certain set of constraints. In an organisational 

setting, these simple rules may be modelled to predict how simple sets of rules 
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can affect staff knowledge acquisition rates, productivity, loyalty, personnel 

turnover, and so on – many of which would also apply to consumer environemnt. 

Indeed, as the global organisations continue to evolve following the technological 

and communication advancements and ever increasing reliance on the user-

provided content and input in the product design and innovation processes, the 

very notion what constitutes an organisation and its ways of working may be 

redefined in the future – and swarm intelligence methods could play an 

imperative role to establish the decentralised self-organising governance rules for 

such organisations. Another essential consideration when assessing the efficiency 

and effectiveness of particular rules in a swarm intelligence system – biological or 

artificial – is the activation mechanism employed to communicate and transfer 

information between the stand-alone agents or sub-systems, particularly in 

relation to the overall aim and desired outcome that the emergent swarm 

intelligence should strive to develop and maximise.  

Nevertheless, there are numerous obstacles to adopting swarm intelligence 

methods – it may be difficult for some to understand the mechanisms and 

structure of swarm intelligence who are unfamiliar with self-organising systems, 

the emergent nature of collective behaviour could be increasingly complex to 

describe and predict, or drawing parallels between groups of individuals such as 

human consumers and the swarms of insects may not be an appealing concept 

from the social point of view. Nevertheless in certain circumstantial 

environments, the collective human behaviour is constrained in a similar manner 

to the biological swarm systems, and parallels can be drawn to illustrate not only 
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the conceptual, but also practical implications that may be useful to optimise the 

process and behaviour to achieve higher level of organisation and strategic 

governance. The swarm intelligence methods discussed thus far would of course 

be largely applicable when it comes to the discussion of consumer behaviour in 

general as well, and could be useful to optimise and facilitate and cultivate 

certain types of desirable behaviours – be that to either benefit the consumer, or 

maximise the returns of the company, or in an optimal situation provide a 

substantial benefit to all parties involved, perhaps as a result of optimisation 

programme for example. The way these algorithms and general approaches could 

potentially be employed with the research project discussed here to extend the 

work undertaken thus far is to develop a multitude of stand-alone connectionist 

networks to represent individual consumers and their purchasing behaviour 

across all available categories – the dataset employed here utilised but a single 

product category from a larger data that covers a wider set of consumption 

behaviours across a large number of product categories which would make it 

possible to broaden the scope substantially compared to a rather focused single 

category prototypical consumer approach employed here. These stand-alone 

connectionist networks could be set to interact between each other within the 

environment that can be described employing the purchasing context variables. 

This would arguably represent an artificial system that can better describe the 

real consumer setting and the purchasing decision-making process within the 

context of the purchasing setting that would serve as constraints for the stand-

alone agent interactions, and can be employed for both predictive and 
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explanatory purposes. Allowing stand-alone agents that represent individual 

consumers to interact within a consumer setting could illustrate how consumers 

can influence each other in the process – something that is often ignored or 

overlooked in marketing research where consumers are taken to operate in a 

vacuum devoid of any consumer interaction and competition variables. One of 

the reasons for that is the complexity that is concerned with attempts to provide 

an adequate account for the continuity of behaviour and the learning history as 

discussed in detail in the previous chapters.  

8.4 Consumer provided content and design 

The constantly evolving technological advancements facilitate the emergence of 

truly global economies and organisations by continuously removing the obstacles 

that traditionally and historically hindered this progression. Digital media was 

able to unlock previously unattainable potential to bring together functionally 

distinct areas of interest and expertise to facilitate the development of collective 

cognitive problem-solving faculties.  

If collective human behaviour can be characterised as a set of persons interacting 

among each other for prolonged periods of time (for an extended discussion on 

collective behaviour please refer to Krause & Ruxton, 2002), organisations and 

consumer groups would constitute a prime example of a setting suitable for the 

emergence of swarm intelligence as it provides an opportunity to solve large 

scale problems through the facilitation of collective cognitive problem-solving 
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abilities which quite possibly would otherwise be unattainable to individual 

contributors. As opposed to simpler largely organisms such as ants or bees that 

for the most part display uniform levels of performance however, there is not 

only a high level of inter-individual variability among human performance – there 

are also those individuals who are able to display superior levels of performance 

overall across multiple measurement criteria. Therefore, large body of 

psychological research on collective decision-making revolved around the 

concept of comparative assessment: namely, studying whether collective 

decision-making would be able to provide adequate or better results than 

individuals with superior decision-making abilities (as first demonstrated 

empirically by Galton, 1907). Because of this, swarm intelligence at times could 

be positioned as an alternative and even a threat to expert centres – indeed, one 

potential concern is that it can contribute to decomposition and erosion of the 

expert centres, as diverse groups of individuals that do not normally possess 

expert knowledge are able to show comparable level of performance with the 

level exhibited by the experts. This is however incorrect, as swarm intelligence is 

more appropriate for a particular type of tasks that require a large number of 

uncorrelated imprecise estimates that eventually result in a close approximation 

of actual value, whereas the tasks with a large systematic bias that prevent 

extraction of usable information to solve the task are better suitable for the 

centres of expertise. As most tasks in an organisational or any other setting would 

incorporate a degree of both bias and imprecision, it is imperative to identify and 

select the tasks that are appropriate for swarm intelligence methods, and some 
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qualitative characteristics are important to keep in mind in the process (Krause, 

Ruxton, & Krause, 2010).  

It is often the case that swarm intelligence task groups follow the composition 

principle based on functional, methodological, and epistemological diversity in 

attempt to maximise the potential performance. It should be obvious how this 

potentially could considerably improve some types of performance: for example, 

programmes on information gathering from broadly diverse individual 

contributors facilitated by technological advances would enable accessing and 

processing collective knowledge and learning histories on unprecedented level. 

Consumer provided content and design are the two areas where organisations 

gradually adopt swarm intelligence methods to generate insightful and actionable 

information by making the most of what brand communities are able to offer 

(Fournier & Lee, 2009). Numerous interactive open-access web-based platforms 

that became available recently to enable any type of a discussion and problem-

solving where vast numbers of individuals are able to contribute in a process that 

evolves into a partially self-organised and decentralised system. A good example 

would be the ongoing process of producing and constantly improving and 

expanding the open-source statistical programing language and programming 

environment R, which is extensively employed here as a method of choice for all 

statistical modelling, could be viewed as one of the great example of swarm 

intelligence methods where a type of self-organised and partially decentralised 

system emerges as a result of a continuous deliberate collective effort from many 

stand-alone individual contributors. 
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Innovation is another set of such tasks that normally deal with high levels of 

imprecision, and could be particularly suitable for the swarm intelligence 

methods as discussed in the following paragraphs.  

8.5 Collective consumer innovation 

Recent advances in computer technologies make it seemingly effortless to access 

global populations, and facilitate information gathering by enabling the process 

to engage with collective knowledge and creativity of enormous number of 

individuals in a dynamic and interactive manner that allows collective process of 

simultaneous collaboration. Collective consumer decision-making that became 

more evident lately as a result of changing social environment is increasingly 

accepted as a driving force behind some of the companies from the digital age 

who recognise that collective involvement of consumer communities could be 

treated as a novel form of a low-cost resource (McConnell & Huba, 2007). Indeed 

with the recent upsurge in a number of various open-source projects, 

progressively high numbers of consumers who are involved in product 

development and feature modification are being recognised as an imperative 

part of a collective creative process (Von Hippel, 2005). As an added benefit, this 

dynamic collaborative creative environment contributes to the traditional word 

of mouth marketing, while being facilitated and amplified by sophisticated web-

based solutions. The distinctive borders between the process of consumption and 

that of creation and production are becoming increasingly blurred, as the notion 

of collective consumer innovation allows the immersed organisation of consumer 
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purchasing decision-making and creative innovation to emerge as a combination 

of the two.  

Collective consumer innovation refers to the process that is said to occur when 

consumers discover new interpretations in the collaborative process of social 

interaction within a consumer group – something that would be impossible to 

achieve while thinking on their own: the varying range of backgrounds and 

experiences should offer increased probability to identify ideas fit to resolve a 

particular consumption-related task, whereas the accumulating collective 

experience and knowledge would help establish potential solution selection 

criteria and mechanisms to develop and realise the idea to be subsequently 

propagated and promoted to wider consumer populations utilising collective 

network (Hargadon & Bechky, 2006). For organisations, the appropriate approach 

may be to position themselves as a part of the creative community rather than 

attempt to manage the collective creative process – it requires appropriate 

technological framework to enable the fostering of social and cultural fabric for 

the collective consumer innovation community (Kozinets, Hemetsberger, & 

Schau, 2008). Some communities occupy ethical and sustainable consumption 

viewpoints – something that could perhaps be accounted for as an additional set 

of constraints or selection criteria as attempted to be modelled using swarm 

intelligence methods or connectionist network. 
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8.6 Commercial application and data mining 

It would be important to discuss the commercial application of course, as applied 

deployment in the industry would not only be an excellent practical test to 

validate the model output with previously unseen real-life consumer data, but 

would also expand the applied dimension that has the potential to generate 

innovative insight and suggest novel lines of inquiry for any future research. 

Moreover, some of the valuable potential data sources compiled and maintained 

by certain industries highly reliant on data may otherwise be inaccessible. A few 

potential examples will be discussed very briefly in the following paragraphs that 

rely heavily on efficient and effective information collection and organisation that 

could benefit substantially from the integrated connectionist network solutions.  

The obvious candidate for connectionist modelling of consumer behaviour is of 

course the financial industry that historically deals with collecting large amounts 

of data and information to be used in risk modelling and similar purposes. Big 

data enhanced by the connectionist modelling could potentially carry huge 

benefits, financial and otherwise: for example, each regular bankcard payment 

could be enhanced with a cluster of data to describe in detail a purchased items 

list containing full product attributes, quantities purchases, trade channel used, 

and purchasing environment details. This would enable to offer a full account of 

purchases to consumers to improve the understanding of their spend, improve 

the unauthorised and fraudulent use tracking and prevention, qualitatively 

improve the account history tracking and define relationship with the bank, 
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improve the accuracy of forecasting the individual financial performance and 

behaviour and likely use of any financial services in the future, simplify the credit 

decision process, and so on.  

New customer acquisition and current customer retention with attrition 

minimisation are the two major ongoing strategic marketing programmes that 

any marketing focused company should devote a significant amount of resources 

and effort to manage. Predictive analytics and forecasting modelling are 

commonly the areas of focused effort where the capacity of connectionist 

modelling and big data analytics could substantially improve the consumer 

targeting efforts.  

The technological advancements consistently provide cheaper and more efficient 

methods to collect and store information, and the amount of data being created 

has been growing exponentially for a number of decades now. Integration of R 

functionality into large-scale applications such as the latest release of de facto 

data industry standard SQL database management software represents a 

considerable advancement towards improving and developing the data mining 

capacity. Integrated big data analytics solutions could revolutionise the way the 

information is collected and processed on a large scale to produce actionable 

insights useful to inform the process of strategic decision-making.  

Any human activity inevitably produces waste – managing and minimising the 

waste could provide not only the benefit of smaller ecological footprint in market 

conditions, which are to become increasingly more regulated and therefore 
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costly in the future, but also the immediate financial benefits of improved return 

on investment and cash flow management. One obvious example would be direct 

mail acquisition campaigns that produce printed materials, which are then 

delivered by post. These campaigns are extremely wasteful, where response rates 

as low as only 1% are to be expected, while the remaining 99% of all printed and 

delivered materials are normally disposed of as waste. Improving the predictive 

analytics to allow better consumer targeting would not only reduce the 

generated printed materials being systematically wasted, but will also reduce the 

marketing costs.  

Classic marketing and consumer behaviour disciplines historically have been 

largely focused on the purchasing stage of the total consumption process – as is 

obviously the case in this research project as well. This is of course the case for a 

number of reasons, one of which is that the consumer purchasing decision is 

effectively complete when the contract between the buyer and the seller is 

made, and the money is paid in exchange for a product ownership. The 

purchasing stage however does not provide a comprehensive account of 

environmental and social aspects of a total consumption process, and 

increasingly large numbers of organisations strive to develop measurement 

criteria and methods to assess the sustainability of their customer base as a 

strategic long-term sustainable growth solution, where integrated data would be 

particularly useful. 
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8.7 Summary 

Even though some of the methodologically innovative approaches discussed in 

this chapter like swarm intelligence could be difficult to implement and 

challenging to adopt, the potential benefits outweigh those few concerns that are 

voiced – for example the role of expert centres would evolve rather than diminish 

and seize to exist towards the type of expertise that enables to facilitate and 

cultivate the benefits in decision-making that a swarm intelligence method could 

offer. Different levels to structure and carry out consumer behaviour analysis 

were also briefly discussed in this chapter, concluding with the overview of 

possible commercial applications.   
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9. Concluding remarks 

Although this research project at times strived to venture into grander 

philosophical concepts such as intelligence, cognition, and artificial intelligence, 

the main scope of the project was intentionally constrained to the boundaries of 

the field of consumer behaviour – boundaries which themselves could be rather 

blurry at times and generally welcome participation of a number of disciplines: 

psychology, marketing, economics, artificial intelligence as the case here, and 

many others depending on the particular application. In these final pages, it 

would be worthwhile to revisit these broader issues and reiterate particular 

points made throughout the work presented here.  

9.1 Contributions  

One of the first points that this research project examined was the comparative 

examination that assessed how connectionist neural network models measure up 

against traditionally employed methods of analysis such as logistic regression. Not 

only predictive, but also explanatory dimension was of interest, where it was 

shown that simple connectionist models that do not incorporate hidden layers 

provide connection weights that are analogous to the coefficient values of the 

regression, suggesting analogous level of performance that the two methods are 

able to provide when it comes to predictive capacity. When it comes to the 

explanatory capacity however, the regression is already in its final form and does 

not provide any means for further developed – whereas connectionist models is 
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only in its most primitive form, and can be developed substantially by 

incorporating hidden layers and growing the network.  

Second point is the fact that this research project was able to directly contribute 

to development and advancement of a number of statistical programming 

packages in R, namely RSNNS and NeuralNetTools, which are now available for all 

researchers to use and potentially contribute to the understanding of 

connectionist frameworks going forward.  

Third, a number of advanced connectionist models of consumer behaviour have 

been developed, ranging in size and complexity of the architecture, which 

provide empirical evidence to corroborate previous research findings and help 

explain and guide further research.  

Fourth, a simulated dataset was developed to assess the efficiency and accuracy 

of the pruning algorithms that was able to show in an obvious manner and 

provide convincing empirical evidence for the effectiveness of pruning algorithms 

in optimising the network architecture to expose the core underlying architecture 

in attempt to improve the exploratory and interpretative function of a 

connectionist model. 

Fifth, once it was evident that pruning algorithms work very well and as designed, 

the varying number of iterations and retrain cycles were examined in attempt to 

investigate the level of influence these parameters are able to exert over the 

overall connectionist model capacity to predict and explain consumer behaviour, 

which could be further explored in a string of research that would focus on 
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network architecture optimisation to minimise the level of recourses required to 

perform these advanced statistical models.  

Sixth, the initial network architecture designs were examined to explore and 

compare the subsequent network learning process and final form. This could be a 

useful line of research to extend in attempt to identify the optimal learning 

methods and initial network architecture design for a particular problematic.  

Seventh, pruning algorithms were employed to optimise the network 

architecture for explanatory and interpretative purposes – it is argued here that 

this offers an alternative method to a variable contribution analysis, and could be 

a particularly useful technique to explore complex phenomena such as consumer 

decision-making as an emergent process.  

Eighth, research carried out here provides empirical evidence to support the 

proposition that connectionism is a robust and coherent approach that is 

particularly suited to extend the theoretical framework of BPM.   

Ninth, connectionist models developed here provide empirical evidence that 

informational and utilitarian reinforcement can be observed as an emergent 

process by means of distributed representation – an inherent functionality of 

connectionist networks to embody complex phenomena.  

Tenth, as part of this research programme, it reinforced a tendency towards 

addressing the notion of continuity of behaviour from the radical behaviourism 

point of view with the adoption of intentional behaviourism.  
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Eleventh, the theoretical and methodological deliberations contemplated here 

propose a general structure to promote the move towards addressing the notion 

of learning history as part of overall consumer behaviour process – naturally 

there is a large amount of future work required here.  

Twelfth, the detailed overview of the field of artificial intelligence in relation to 

the process of consumer behaviour is offered here, in attempt to encourage the 

future symbiotic collaborative efforts that could advance the developments in 

both fields of study.  

9.2 Summary 

In the first chapter, the research project was briefly introduced, outlining the 

contents and structure. The overall motivation for the research project was 

presented, offering the scope and the summary of the work to be carried out. 

Next two chapters focused on the fields of consumer behaviour and artificial 

intelligence, and offered a comprehensive review that also touched upon a 

number of related disciplines in the course of inquiry. Multidisciplinary nature of 

work described here embraced the philosophical aspects of critical behaviourism 

and cognitive sciences, considered and reviewed modelling approached that 

follow both traditional symbolic and connectionist neural networks designs, and 

contemplated the theoretical frameworks that propose to extend the theory of 

Behavioural Perspective Model into the realm of connectionist architectures. For 

that reason, an extended discussion that overviews the field of consumer 
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behaviour was offered, followed by an overview of theoretical and philosophical 

frameworks of radical behaviourism, and continued to describe the details of 

Behavioural Perspective Model as a next step towards an interpretative model of 

consumer behaviour. The discussion was followed by an extensive discussion of 

the science of the artificial, introducing the field of artificial intelligence: the 

predictive and explanatory capacity of symbolic modelling methods was 

discussed at length and compared against the connectionist neural networks 

approach, describing in detail the techniques and architecture optimisation 

algorithms employed in neural network models. Chapter 4 focused on the 

research methods and outlined in detail the research questions, the research 

methods employed in the course of the research project, and the philosophical 

position adopted here. This was followed by sections that described the methods, 

dataset structures and variables, modelling techniques, and the sequence of the 

research process. Once the research methods were clearly explained, the next 

chapter described the modelling methods that were carried out here, and offered 

a detailed account of the statistical analyses developed throughout this research 

project. Specific testing procedures to advance the line of inquiry were explained 

in detail, and offered an overview of the results. Chapter 6 discussed the findings, 

and offered an interpretative account of results within the wider context of 

consumer behaviour. Variable contribution analysis as a method to improve the 

descriptive functions of the modelling was discussed in light of employing the 

advanced connectionist modelling method, posing an argument that 

connectionist neural networks approach is particularly appropriate to provide the 
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comprehensive explanatory and interpretative account of consumer behaviour, 

where pruning algorithms were employed to optimise the network architecture 

to expose the core architecture. This then was followed by a discussion around 

the theoretical implications. Critical assessment of the research project was 

offered in the following chapter to demonstrate precision, thoroughness, and 

level of contribution in comparison with its closest rival, the tradition of cognitive 

science. Chapter 8 was developed around the possible future research directions 

which were briefly discussed, identifying a number of possible strings of inquiry 

that ranged from commercial in nature that aimed to apply and test the methods 

proposed here in the applied industry setting, to typically theoretical and 

philosophical endeavours that aimed to explore the concept of distributed 

representation further and propose to potentially extend the line of inquiry into 

the field of swarm intelligence. The final chapter offered closing remarks, 

revisiting the contributions this research project aims to offer, and concluding 

with an overall summary of the project.  
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