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Abstract

We propose a segmentation and feature extraction method for trajectories of moving 

objects. The methodology consists of three stages: trajectory data preparation; global 

descriptors computation; and local feature extraction. The key element is an algorithm 

that decomposes the profiles generated for different movement parameters (velocity, 

acceleration etc.) using variations in sinuosity and deviation from the median line. Hence, 

the methodology enables the extraction of local movement features in addition to global 

ones that are essential for modeling and analyzing moving objects in applications such as 

trajectory classification, simulation and extraction of movement patterns. As a case study, 

we show how the method can be employed in classifying trajectory data generated by 

unknown moving objects and assigning them to known types of moving objects, whose 

movement characteristics have been previously learned. We have conducted a series of 

experiments that provide evidence about the similarities and differences that exist among 

different types of moving objects. The experiments show that the methodology can be 

successfully applied in automatic transport mode detection. It is also shown that eye 

movement data cannot be successfully used as a proxy of full-body movement of 

humans, or vehicles.

Keywords: Moving point data mining; moving object; movement parameters; movement behavior; 

trajectory decomposition; trajectory classification
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1 Introduction 

The analysis of trajectories of moving objects has recently become the focus of many 

research projects in the area of geographic information science (GIS), human-computer 

interaction (HCI), ecology, biology, social and behavioral sciences. Simulating human 

and animal mobility behavior, or studying human interaction with computers are 

emerging into an interesting area of research, which requires extracting knowledge 

about the dynamic behavior of different types of agents and thus challenges developing 

new exploratory data analysis methods on massive movement datasets. Therefore, many 

spatio-temporal data mining algorithms and analytical methods have been proposed at 

the theoretical level, however few of them have been implemented and applied in 

practice to date. 

A critical success factor for empirically based research is the availability of relevant 

data. The main problem is that data about moving point objects (MPOs) are not easily 

available and accessible due to data cost, security and privacy issues (Giannotti & 

Pedreschi, 2007). In order to overcome the problem of data scarcity, one may consider 

utilizing data that can act as a proxy of ‘physical‘ movement data or benefit from 

artificial, simulated movement data (Blythe et al., 1996). For instance, bank note 

dispersals can be considered as a proxy for human movement given that money is 

carried by individuals (González et al., 2008), or mouse movement traces as a proxy of 

eye movement data in HCI studies (Chen et al., 2001; Cox et al., 2006). Similarly, eye 

movement data from human subject experiments on graphic displays is potentially of 

interest to be used as a proxy of other types of moving objects, as it is relatively 

inexpensive to collect and usually not subject to particular privacy issues.  

By the same token, the simulation of trajectories is used for diverse purposes, such as 

ecological modeling (Turchin, 1998), spatio-temporal database research (Pfoser & 

Theodoridis, 2003), agent-based pedestrian modeling (Batty, 2003), and in the 

evaluation of data mining algorithms (Laube & Purves, 2006). Therefore, detailed 

knowledge of the movement parameters of different MPOs is crucial in choosing the 

best representative proxy in trajectory simulation. The better the knowledge about the 

movement behavior of the particular objects that is simulated, the more realistic the 

simulation results will be. However, there are still some open research questions in the 

field of modeling and simulating trajectories of moving objects. For instance, how can 

we efficiently assess the similarity of the behavior of the simulated or proxy data in 

comparison to the original moving object? Is it possible to automatically identify 

trajectories of unknown objects by applying our knowledge about the movement 
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behavior of similar known objects whose movement characteristics have been 

previously learned by the system? 

The above issues all point to a need for methods for analyzing the movement 

behavior of different MPOs, with the aim of determining the similarity of trajectories 

generated by different MPOs. Similarity search, that is, trying to find similar trajectories 

of moving objects, is a fairly new topic in spatial data mining. Most of the techniques 

proposed to date are looking for similarities of the geometric shape of the trajectories 

based on a distance function. Examples include the Edit Distance on Real sequence 

(EDR) (Chen et al., 2005), One-Way Distance (OWD) (Lin & Su, 2008), Euclidean and 

Time Wrapping distance and Longest Common Subsequence (LCSS) (Vlachos et al. 

2002). However, we are more interested in finding similarities in movement behavior of 

different types of moving objects. Therefore, our motivation is to take an analytical look 

at the movement characteristics and dynamic behavior of different types of dynamic 

objects such as humans, vehicles and eye movements and extract possible similarities 

among movement behavior of such objects. Consequently, we want to see whether we 

can predict the types of unknown MPOs by similarity to the trajectories of previously 

learned MPOs. 

This article thus presents a methodology that allows extracting movement parameters 

from the trajectories of different types of moving objects. The key element of the 

methodology is an algorithm that decomposes the profiles generated for different 

movement parameters using variations in sinuosity and deviation from the median line, 

hence enabling the extraction of local movement features in addition to global ones. 

Our proposed methodology is useful in several respects. It can inform developers of 

pattern recognition and data mining algorithms about similar and dissimilar types of 

moving objects, hence allowing to design rigorous algorithm evaluation strategies. It 

can help answer the question how similar simulated or proxy MPOs are to the 

corresponding reference MPOs. The proposed trajectory segmentation algorithm yields 

subtrajectories that can facilitate similarity search. The methodology generates relevant 

movement attributes at the global level of the entire trajectory as well as at the local 

level of segments of homogeneous movement characteristics, enabling more 

differentiated parameterization of trajectory simulations. Thus, it can be used to answer 

to the above-mentioned research questions in simulation studies. And finally, it can be 

used to classify unknown moving objects into previously learned MPO types, in data 

mining operations on large trajectory databases or in real-time applications. For 

instance, it can be used in transportation research to detect the transport mode in 

anonymized trajectories of different transportation objects (e.g. cars, motorcycles, 

bicycles, pedestrian). 
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The remainder of the paper is organized as follows. We start in Section 2 with a brief 

introduction of moving point objects and a review of the relevant literature. We 

continue in Section 3 by explaining the proposed methodology for feature extraction of 

movement parameters. In section 4, we propound some possible applications of the 

proposed methodology. In Section 5, we report the experiments conducted to validate 

the three steps of the methodology following the classification process. Section 6 

provides a detailed discussion of the experimental results. We end in Section 7 with 

conclusions and an outlook. 

2 Moving Point Objects (MPO) 

We define moving objects as entities whose positions or geometric attributes change 

over time. In many applications moving objects are considered as moving points, 

ignoring the dimension of the object. In (Dodge et al., 2008), moving objects are 

categorized into two major groups of geo-referenced (i.e. dynamic objects that move 

about in geographic space) and non-geo-referenced (i.e. dynamic phenomena that move 

in a non-geographic space) dynamic objects. Accordingly, geographically referenced 

object such as humans, animals or vehicles belong to the first group, while gaze point 

movements in eye movement studies can be mentioned as an example for the other 

group. Each of these dynamic objects, to a varying degree, shares some similarities but 

also exhibits differences to the others in terms of the corresponding data structure, 

dynamic behavior and nature of movement. 

In general, the path of a moving object, named trajectory, is the subject of interest in 

moving object data analysis. A trajectory is defined as a sequence of successive 

positions of the moving object over a period of time and thus can be considered as a 

time series of spatial data in data mining tasks (Spaccapietra et al., 2008). In order to 

analyze or simulate the behavior of a moving object we need to have detailed 

information about the trajectory of the object as well as information about the 

environmental conditions related to the trajectory (Spaccapietra et al., 2008). In other 

words, it is necessary to extract differentiated movement parameters of a trajectory in 

order to analyze or simulate typical movement behavior of an object. In this regard 

many attempts have recently been carried out in the field of modeling and analyzing 

trajectories and moving object data mining. Giannotti & Pedreschi (2007) give an 

overview of the history of analyzing moving objects from the initial idea of time 

geography to the recent advances in knowledge discovery from moving objects using 

spatiotemporal data mining techniques, including latest attempts on data privacy and 

security issues. Batty (2003) applied agent-based modeling of individual and 
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collective behavior of pedestrians to show how randomness and geometry are important 

to local movement and how individuals respond to locational patterns. Brillinger et al. 

(2004) developed a stochastic differential equation-based model for exploratory data 

analysis of the trajectories of deer and elk to describe movement behavior of free-

ranging animals. They tried to extract typical parameters of data obtained from animal 

telemetry studies. Laube and Purves (2006) considered modeling relative movement 

within groups of objects in order to evaluate extracted movement patterns by simulation 

through correlated random walk procedures. Hornsby and Cole (2007) focused on 

modeling moving objects from an event-based perspective and tried to detect movement 

patterns by analysis of different events. Other researchers have focused on 

differentiating and modeling moving objects in movement imagery databases, in order 

to describe and classify behavior of moving objects in computer vision systems using 

sequences of images (Zheng et al., 2005; Agouris et al., 2003; Ozyildiz et al., 2002). In 

Naftel & Khalid (2006) another approach for clustering and classification of object 

trajectory-based video clips using spatiotemporal function approximation has been 

proposed. Bashir et al. (2007) present a classification algorithm for recognizing object 

activity using trajectory of objects. In the proposed classification method, trajectories 

are segmented at points of change in curvature and the sub-trajectories are represented 

by their principal component analysis (PCA) coefficients (Bashir et al., 2007). In Bay & 

Pazzani (2001) a search algorithm for mining contrast sets has been developed to 

differentiate between several contrasting groups (e.g. male or female students, or the 

same group over time) from observational multivariate data. 

The above-mentioned modeling and classification techniques have mainly been 

applied on trajectories obtained from the same MPO types. Fewer studies exist on the 

classification and differentiation of trajectories of different kinds of moving objects. 

One domain where the comparison of trajectories from different moving objects is 

relevant is the field of transportation studies, specifically in the analysis of transport 

behavior in urban environment. In this domain some researchers focused on extracting 

knowledge from raw GPS data to detect the mode of transport that people used, with the 

aim of understanding user behavior (Zheng et al., 2008). For instance, Zheng et al. 

(2008) proposed an approach based on supervised learning to automatically learn the 

transportation mode, including walking, taking a bus, riding a bike and driving. Their 

method is comprised of a segmentation method based on change points (i.e. where the 

mode of transport presumably changes), an inference model (i.e. decision tree, support 

vector machine (SVM), Bayesian net, or conditional random field (CRF)), and a post 

processing method. In this study the four above-mentioned inference models have been 

evaluated. They show that the higher accuracy is obtained from the decision 
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tree model. In another study, Tsui and Shalaby (2006) introduced a fuzzy logic 

approach. They applied a segmentation method based on three types of mode transfer 

points (MTP). In a similar study, Schlüssler and Axhausen (2009) applied the same 

method based on speed and acceleration characteristics to distinguish five modes of 

transport (i.e. walk, cycle, car, urban public transport, and rail). Moreover, Zheng et al. 

(2008), Schlüssler and Axhausen (2009) give a summary of other related research. To 

the best of our knowledge, almost all the proposed methods have difficulty 

distinguishing different transport modes in congestion or heavy traffic. They also do not 

seem effective in distinguishing the transport mode of vehicles with similar speed 

range. Finally, they appear having difficulties to detect the correct transport mode when 

people only take one kind of transport mode during a trip. Therefore, there is still a need 

for more research on more reliable approaches for transport mode detection.  

In Dodge et al. (2008), Giannotti & Pedreschi (2007) and Laube et al. (2007) 

parameters of a trajectory generated by a moving object are introduced such as speed, 

acceleration, duration of movement, sinuosity, traveled path, displacement, and 

direction. These descriptors form fundamental building blocks for characterizing the 

movement of an object and can be defined in an absolute sense (i.e. with respect to the 

external reference system) or in a relative sense, (i.e. in relation to the movement of 

other MPOs or to the previous states of the same MPO). Generally speaking, different 

types of moving objects, depending on the particular physics of their movement, to 

some degree exhibit different signatures of such movement descriptors. Each MPO has 

a typical dynamic behavior, which to some extent is similar for individuals of the same 

kind. Consequently, moving objects can be reproduced (simulated) according to the 

typical behavior of the similar sort of objects, or objects having the same dynamic 

behavior (Laube & Purves, 2006). Likewise, the typical behavior of different objects 

can be extracted from the particular parameters of their trajectories using the above-

mentioned descriptors. 

Therefore, we propose a methodology that allows extracting such movement 

parameters from the trajectories of different types of moving objects and classifying 

trajectories of unknown MPOs by similarity to the known trajectories. We focus on the 

characterization and classification of different types of moving objects and we conduct a 

comparative analysis and classification of the movement behavior of different objects, 

manifested through their trajectories. As a case study, we show how our model can be 

applied in the classification and prediction of transport mode of unknown trajectories of 

people using a supervised classification method. The following section describes our 

methodology in detail.  



7

3 Methodology 

Our methodology consists of three steps, shown graphically in Figure 1 and expanded 

on in the remainder of this section: 1) trajectory data preparation; 2) global descriptors 

computation; and 3) local feature extraction. The products generated from applying this 

procedure can directly be used for other purposes, such as generating inputs for 

movement simulators, or trajectory classification as presented later in Section 4. 

<Analysis of movement behavior of different MPOs using trajectory decomposition>

‘

CarMotorcycle Bicycle Pedestrian Eye

 

Fig. 1. Methodology for analyzing and extracting the movement behavior of different MPOs 

3.1 Trajectory data preparation 

Raw data captured by movement tracking devices usually to some degree contain 

noise, outliers and gaps, depending on the nominal precision and accuracy of the tracker 

as well as other factors that influence the completeness, accuracy and reliability of 

fixes. The accuracy of GPS observations, especially in absolute positioning, is very 
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sensitive to the existence of obstacles that block GPS signals, multi-path effects, 

ionospheric and tropospheric errors etc. (Hoffmann et al, 2001). In kinematic GPS 

surveys used to generate trajectory data of the type used in this study, it seems 

reasonable to assume an accuracy of 5-10 meters for practical purposes. Eye trackers 

have a higher accuracy (i.e. 0.5 degree) and sample eye movements at fine temporal 

granularity (e.g. about 20 milliseconds). However, raw data generated by eye trackers 

still contain a considerable amount of noise, outliers, and gaps, which should be 

remedied in order to achieve better results. Therefore, in order to remove effects of 

noise and positioning errors of the tracking devices and other factors, we recommend 

applying data cleaning and pre-processing procedures on the raw data to achieve more 

reliable trajectories. The pre-processing phase consists of three steps including filtering, 

re-sampling, and smoothing. During the filtering process outliers are removed from the 

raw data, namely those fixes that had a distance from the previous fix of more than 

three times the standard deviation (3σ) of the distances between consecutive fixes. The 

re-sampling procedure then generates a trajectory at regular intervals by linear 

interpolation along the trajectory. Finally, the smoothing step eliminates noise 

remaining in the data. In order to smooth raw GPS data several methods can be 

employed, such as least squares, spline approximation, moving average, Kernel-based 

smoothing, and Kalman filtering (Eubank, 2005). In this regard, Jun et al. (2007) 

developed an analytical study of different smoothing methods and proposed a modified 

version of Kalman filtering to be applied for GPS data containing errors. (See Section 

5.2.1) 

3.2 Computation of global descriptors  

Movement parameters (i.e. speed, acceleration, turning angle, straightness, etc.) can 

be derived from the trajectory of an object and thus describe the dynamic behavior of 

the object. These descriptors are very different in terms of the values that they can take 

for each type of MPO. For instance, eyes can move quickly in fractions of a second 

from one end of a picture to the other in an almost mass-less movement, while the 

acceleration of human whole-body motion is governed by greater mass and inertia.  

In order to evaluate the movement behavior inherent to the given trajectory data sets, 

various movement parameters can be computed for each point (fix) along a trajectory: 

for instance speed (i.e. rate of change of the object’s position); acceleration (i.e. rate of 

change of the object’s speed); turning angle (i.e. direction of the movement); 

displacement (i.e. the beeline connector distance between two consecutive points); 

traveled path (i.e. the path length along the trajectory); and straightness index (i.e. 
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the ratio of the traveled path and displacement); giving an indication of the sinuosity of 

the trajectory at a specific point (Dodge et al., 2008; Benhamou, 2004; Laube et al., 

2007).  

To achieve differentiated results in the characterization of trajectories, we propose 

that the computation of movement parameters proceeds at consecutive levels of 

refinement. That is, the process should first take a global look, computing descriptive 

statistics for the entire trajectory. Then, it should zoom in to extract local information of 

the trajectories at finer resolutions. Finally, in order to reveal more detail in the 

movement behavior of the selected objects and make their trajectories comparable, we 

propose to decompose the computed profiles of movement parameters to a set of 

meaningful subsections (or segments). Sections 3.2.1 and 3.2.2 describe the 

computation of global descriptors; Section 3.3 describes the extraction of local 

movement descriptors and the profile decomposition.  

3.2.1 Global descriptive statistics 

In order to extract the global movement properties of a given MPO, the above-

mentioned movement parameters are first derived from the entire trajectory of the 

object. Next, global descriptive statistics of the movement parameters are computed 

such as the minimum, maximum, mean, median, standard deviation, variance and 

skewness over the entire trajectory. 

3.2.2 Correlation analysis 

In order to assess potential interrelationships between movement parameters, a 

correlation analysis should be carried out after extracting the movement parameters of 

given MPOs. We recommend computing Spearman Rank Correlation (RHO) as a non-

parametric measure of correlation, since it has the advantage of making no assumptions 

about the frequency distribution of the variables (Chatfield, 1989). It is used to test the 

direction and strength of the relationship between variables. High correlations between 

movement parameters suggest that some variables may be redundant. 

3.3 Local feature extraction: profile decomposition 

When a dynamic object moves about in space, its movement parameters (velocity, 

acceleration, turning angle etc.) change over time. If we plot the evolution of a 

movement parameter over time, this will result in a profile or function, such as the one 

shown in Fig. 2. If we do this for different dynamic objects the resulting profiles will 

exhibit different amplitude and frequency variations, hence giving clues to the 
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underlying movement physics and behavior. This has lead us to using the movement 

parameter profiles for extracting local features that could be used for trajectory 

simulation and classification, by decomposing profiles into segments (or sections) of 

'similar movement character'. We propose to use two measures for characterizing 

movement from profiles: Deviation from the median line of the profile gives an 

impression of the amplitude variation of a movement parameter over time, while 

sinuosity acts as a proxy of the frequency variation. In the following, we describe the 

computation of the deviation measure and the sinuosity measure that we use, as well as 

the proposed algorithm for profile decomposition. Fig. 2 provides supporting graphical 

illustrations and Algorithm 1 gives the pseudo-code of the profile decomposition 

algorithm. 

 

Fig. 2. Basic elements of movement parameter profiles 

Both deviation and sinuosity are defined for each point on a movement parameter 

profile. Before we compute these measures, we transform the profile data in the 

following way. First, we calculate the median of the particular movement parameter that 

was used to generate the profile. This median then can be seen to form a horizontal 

'median line' that separates the movement parameter values into two halves. We then 

take the residuals from the median for each point along the original profile. And finally, 

in order to make the comparison across objects possible, we normalize all movement 

parameter profiles to a common interval [0, 1], as shown, for instance, in Fig. 2. 

The deviation of a point p on a profile is easily established: It simply equates to its 

residual value from the median and has thus already been obtained when the residuals 

were calculated above. The measure of sinuosity for p is computed as a ratio of the 

distance ± k points along the profile to the length of the beeline connector centered at p, 

as follows: 

Sinuosityp,k =

di,i+1
i= p−k

i= p+k−1

∑

dp−k,p+k
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where k is the lag parameter. This method was originally introduced by Dutton (1999) 

in order to classify the sinuosity of cartographic lines in map generalization. After some 

experimentation, in order to obtain a more reliable measure for the sinuosity, we 

considered both 1 and 2 for k as the lag value. Then, the final sinuosity at p is computed 

as the average of the Sinuosityp,1  and Sinuosityp,2: 

Sinuosityp =

Sinuosity p,k
k=1

k= 2

∑

2
 

The sinuosity measure ranges from 1 (if profile points are collinear about the given 

point p) to infinity for a winding profile (i.e. a space-filling curve). The sinuosity values 

for all points are then transformed to the interval [0, 1], as proposed by (Dutton 1999). 

Next, the profile points are classified into two regimes regarding the level of the 

corresponding sinuosity measure, 'low sinuosity' and 'high sinuosity', separated by a 

user-defined threshold. The same is done with deviation, where the standard deviation 

of the residuals is used to separate 'low deviation' from 'high deviation'. The described 

procedure is summarized in Algorithm 1.  

 
Algorithm 1. Profile decomposition 

Inputs: 

• res[]: residuals from median 
• st: threshold to distinguish low sinuosity from high sinuosity 

Outputs: 
• decomX[]: classified and decomposed profile 

Algorithm: 
01: 
02: 
03: 
04: 
05: 
06: 
07: 
08: 

09: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 

n ← the number of points on the profile 
dtime ← time interval between consecutive points 
for index of points i = 1 to n do 

dres ← resi+1 - resi 
sl[i] ← sqrt(dtime2 + dres2) 

end for 

dt ← standard deviation of res[] 
sinuosity[] ← 0 
for lag size k = 1 to 2 do 

for index of points i = (1+k) to (n-1-k) do 

beeline_distance ← length of beeline connector of pi-k and pi+k 
profile_distance ← Σsl of pi-k to pi+k 
sinuosity[i] ← profile_distance / beeline_distance + sinuosity[i] 

end for 

end for 
for index of points i = 1 to n do  
sinuosity[i] ← sinuosity[i] / 2  
sin_scaled ← scale sinuosity to the length of 1 
if (sin_scaled < st) AND (res[i] < dt) then decomX[i] ← 1                     /* low sinuosity, low deviation 

  elseif (sin_scaled > = st) AND (res[i] < dt) then decomX[i] ← 2        /* high sinuosity, low deviation 
  elseif (sin_scaled < st) AND (res[i] > = dt) then decomX[i] ← 3        /* low sinuosity, high deviation 

  elseif (sin_scaled > = st) AND (res[i] > = dt) then decomX[i] ← 4     /* high sinuosity, high deviation 
end if 

end for  
return decomX[] 

The classified profile decomposes trajectory into the segments of homogeneous 

movement characteristics. The results of employing the Algorithm 1 on different 
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movement parameter profiles (i.e. velocity, acceleration, etc.) can be used to compute 

local movement features for trajectory classification and simulation purpose. 

4 Applications  

We suggest that the above methodology, and in particular the trajectory 

decomposition algorithm, are useful for a variety of applications in movement data 

mining where finding similarities between the physical movement behavior of different 

objects is important. These include applications such as trajectory classification (e.g. 

transport mode detection in mobility analysis studies), movement pattern detection (e.g. 

fixation and saccade detection in eye-tracking research), and trajectory simulation (e.g. 

in human mobility behavior studies).  

In the remainder of this Section, we introduce a procedure for trajectory 

classification. In the following Section 5, we examine the applicability of the proposed 

methods in a series of classification experiments using transportation data as well as in 

fixation detection in eye-tracking data.  

4.1 Trajectory classification 

We are trying to classify trajectories of moving objects in a systematic way using the 

features (i.e. variables) extracted by the trajectory decomposition algorithm described 

above. This procedure aims at classifying trajectory data generated by unknown moving 

objects and assigning them to known types of moving objects, whose movement 

characteristics have been previously extracted and learned. That is, we are assuming to 

use a supervised classification algorithm. We are interested to find out whether 

trajectories of different kinds of MPOs can be classified distinctively. The following 

subsections introduce our trajectory classification process as shown in Fig. 3, which 

consists of two main steps: 1) Feature selection (i.e. choosing the variables that provide 

the input to the classification process) and dimension reduction using principal 

component analysis; and 2) the actual classification using the support vector machine 

(SVM) classifier algorithm. 
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<Data preprocessing phase>

Select trajectory 

samples

Profiles:

- velocity

- acceleration

- turning angle

- straightness

Generate

profiles

over time

Profile decomposition

based on sinuosity and

deviation index 

Preparing 

training

data 

Dimension 

reduction

using PCA

Compute and

select features

Validate the 

classification

using test samples

End

SVM classification

of selected

trajectories

 

Fig. 3. Trajectory classification process 

4.2 Feature selection and dimension reduction 

A great number of global and local statistical descriptors can be computed for each 

trajectory. Each of these variables can potentially be selected as features for use in the 

classification process. However, as many of these features essentially describe similar 

characteristics, there are likely to exist correlations, suggesting that only a reduced set 

of features should in fact be used in the classification. Given the large number of global 

and local descriptors it would be very difficult to reduce the original set of features by 

correlation analysis, merely selecting a subset of the original features. Hence, we 

propose using principal component analysis (PCA) for reducing the number of original 

features, and hence dimensions in the feature space (Smith, 2002; Bozdogan, 2003; 

Guyon & Andre, 2006). PCA yields a (sub)set of synthetic, uncorrelated features called 

principal components, which contain the most important aspects of the original features. 

4.3 Classification using SVM 

The features that have been generated by the PCA for each MPO type are considered 

as a set of attribute categories that form the input for the final step of the classification 
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procedure. This step has the aim of classifying trajectories by assigning them to 

different types of moving objects. Essentially, we are interested in two aspects. First, we 

would like to see whether it is possible to tell apart, that is, to discriminate the 

trajectories generated by different types of moving objects based on the movement 

parameters that we have extracted from the trajectory data. Second, assuming that this is 

possible, we are interested in classifying dynamic objects of unknown type to the 

correct object type, that is, we would like to be able to reveal the identity of unknown 

objects. For instance, in transportation studies analysts are interested in detecting 

different modes of transport from unknown GPS trajectories of people. 

Given the latter objective, it is advisable to use a supervised classification method 

where a training (or learning) stage is followed by a classification (or testing) stage that 

applies the learned discriminating functions to classify the unknown objects. In 

principle, any supervised classification technique could serve our purposes, but we 

chose to use the support vector machine (SVM) approach (Cristianini & Shawe-Taylor, 

2000; Duda et al., 2001), which is widely used today in pattern recognition and data 

mining. The trajectory classification process then consists of the training stage where 

the SVM will learn from a set of trajectory samples (the training set) how to 

discriminate between MPO types by constructing separating hyperplanes in the multi-

dimensional space formed by the input features; and a classification/testing stage that 

applies the learned hyperplanes on another set of trajectory samples (the testing set), 

thus predicting the object type of each of these unknown trajectories. 

This step concludes our proposed overall methodology. After the SVM has been 

trained and validated, it is now ready for use in data mining operations to detect the 

MPO type of unknown dynamic objects from their trajectories. This could either take 

place off-line on large trajectory databases or in real-time. 

5 Experiments: trajectory classification  

In order to validate our methodology and demonstrate its applicability in the 

classification of trajectories of different MPOs, we have conducted a series of 

experiments that will be reported in this section and discussed in the next section. The 

experiments are designed to specifically investigate 1) automatic mode detection in 

transportation analysis and 2) feasibility study of using eye-tracking data as a proxy for 

other MPOs. For these experiments, we considered different types of MPOs with 

varying physics and behavior of movement, expressed through different movement 

parameters (Dodge et al., 2008). We have therefore selected different samples of 
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moving objects from both groups of dynamic objects introduced in Section 2. From the 

first group we have chosen movement data captured from pedestrians, bicycles, cars and 

motorcycles; from the second group we considered eye movement data. Among these 

data, bicycles, motorcycles, and cars and to a lesser degree pedestrian movements are 

typically constrained to the transportation network. 

5.1 Experiments –– objective  

5.1.1  Automatic transport mode detection  

Two experiments were designed to validate the applicability of the proposed 

methodology using a supervised classification technique, with the aim of automatically 

assigning the correct transport mode to trajectories of unknown objects, after training 

with a sample of known objects: 

Experiment #1: Classification of objects of different speed range 

For this experiment, we acquired various trajectories from openstreetmap.org of 

known object sources from the transportation domain, including tracks of pedestrians, 

bicycles, cars and motorcycles. Fig. 4 illustrates the 2-D plot of exemplar trajectories 

generated by the four object types. For each object type about 50,000 GPS fixes from 

10 trajectories remained after data cleaning, filtering and resampling to a temporal 

sampling rate of 1 second.  

Movements of different vehicles and pedestrians are performed at different ranges of 

speed. Therefore, classifying objects by simply taking the different speed range might 

seem as a straightforward solution. However, note that speed cannot be considered as 

the only parameter to classify objects in transportation since during rush hour all 

vehicles move at similar low speed. Therefore the proposed classification process takes 

variations and frequencies of changes of the other movement parameters (e.g. 

acceleration) into account, besides speed variations. 
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Fig. 4. Normalized trajectory data of exemplar moving objects 

 

Experiment #2: Classification of objects of similar speed range 

This experiment aims to investigate detecting the transport mode of trajectories 

collected from objects of similar speed range, exemplified by cars and motorcycles. As 

mentioned earlier, speed plays an important role in simulating and classifying 

trajectories representing different object types. However, when the speed range is 

similar it is indispensable to inspect distinct variations of other movement parameters 

such as acceleration and also examine speed variations at finer detail, in order to be able 

to differentiate between object types. Therefore, this experiment is intended to 

demonstrate that the proposed classification process is sufficiently subtle to be able to 

classify trajectories obtained from very similarly behaving objects.  

5.1.2 Using eye-tracking data as a proxy of other MPOs  

Experiment #3: classifying trajectories of eyes versus other object (non-eye) 

 With this experiment we aimed to assess the suitability of eye-tracking data as a 
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proxy of other types of moving objects. For this experiment, similar to the previous 

experiments, we classified eye-tracking data collected from an eye-tracker against the 

data used in the first experiment. We intended to investigate whether it is possible to 

analytically tell apart trajectories generated by eye movement from those of other 

objects such as motorcycles, cars, bicycles and pedestrians that we subsume under the 

term “non-eye” objects. Specifically, we were interested to see whether it is feasible to 

use eye-tracking data in order to simulate other moving objects due to accessibility, 

privacy and data cost issues. 

The eye movement data set used here (Fig. 5) was contributed by Arzu Çöltekin (Eye 

Movement Laboratory, Department of Geography, University of Zurich) and consists of 

about 50’000 gaze points from 2 eye movement trajectories captured by a Tobii eye 

tracker at an interval of 16 milliseconds during experiments on a 1600 x 1200 screen.  

 

Fig. 5. Normalized sample trajectory of eye movement 

5.2 Experiments –– workflow 

 For the three experiments we pursued our proposed 3-step methodology described in 

section 3 followed by an additional phase of trajectory classification suggested in 

section 4.1. The workflow of the three experiments is described in the following 

subsection in more detail.  

5.2.1 Trajectory data preparation 

First, the raw movement data were cleaned in order to remove outliers. In 
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the case of eye movement data, points that lay off the screen were considered as outliers 

and removed. The data were then resampled to a regular time interval, equal to the 

minimum sampling rate of the raw data (16 ms for eye movement data and 1 second for 

the other objects). In order to fill gaps linear interpolation was used, as the underlying 

movement geometry didn't suggest the use of a more elaborate interpolation technique. 

Finally, we applied moving average smoothing (window size of 5 sec) on the filtered, 

re-sampled data. For eye-movement data, only the filtering and resampling steps were 

applied. The reasons for not applying smoothing are the prevention of data loss and the 

potential creation of artifacts, as these types of trajectories exhibit a 'jagged' geometry 

that might be destroyed by the regularizing effect of trajectory smoothing. In the next 

step, from the entire dataset we selected our sample trajectories, each with a length of 

300 points (i.e. with a duration of 5 mins for the transportation objects). All the sample 

trajectories were taken from various overland roads and were visually checked to be 

consistent and to largely homogeneous in terms of their path geometry to prevent 

artifacts in the results of the trajectory classification. However, in the case of eye-

tracking data it is impossible to avoid having 'jagged' geometries, as described earlier. 

Finally, the selected sample trajectories served as input data for the experiments. 

In our study, we initially experimented with two methods for smoothing of raw GPS 

data, Kalman filtering (Eubank, 2005) and moving average smoothing. Both methods 

yielded similar results for our data, seemingly contradicting the results reported in Jun 

et al (2007). However, the GPS data obtained from openstreetmap.org were captured by 

devices of unknown accuracy. Kalman filtering requires a model of movement, and not 

having solid knowledge available about the movement of the objects under study has 

probably seriously impacted on the performance of this smoothing method. Further 

experiments indicated that Kalman filtering does indeed generate superior results when 

more accurate data are available, confirming the findings of Jun et al (2007). 

Eventually, however, for reasons of practicability, we chose to use moving average 

smoothing, which is a reasonable smoothing method in the spatial domain. 

5.2.2 Global descriptors 

As mentioned before, Fig. 4 and Fig. 5 illustrate the 2-D plots of the trajectories of 

selected objects. From this figure it becomes obvious that the trajectory of the 

motorcycle (Fig. 4 a), car (Fig. 4 b), bicycle (Fig. 4 c), and pedestrian (Fig. 4 d), are 

much smoother than the trajectories of eye movement (Fig. 5). Of course, temporal 

granularity of the sampling will influence the smoothness and length of the traveled 

path. For instance, the overall character of the car and motorcycle movement 
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captured every second appears smoother and closer to the pedestrian and bicycle 

movement. However, with a lower sampling rate (e.g. every hours) the trajectory of the 

car and motorcycle movement to some degree would be probably closer to the eye 

movement captured every few milliseconds. Table 1 to Table 3 present the descriptive 

statistics for the straightness index, velocity and displacement from the previous fix (or 

step length) as some examples of the movement parameters that were computed for the 

trajectories of the selected objects of Fig. 4 and Fig. 5. 

 

 
MPO Min Max Mean Median Stddev Skewness 

Motorcycle 1.42 1.60 1.5 1.5 0.02 0.52 

Car 1.48 1.60 1.49 1.49 0.11 8.21 

Bicycle 1.07 3.3 1.5 1.5 0.08 4.21 

Pedestrian 1.03 5.8 1.5 1.5 0.16 14.40 

Eye 1 3141.6 8.77 2.60 89.69 26.99 

Table 1. Descriptive statistics for straightness index 

 
 
 

MPO Min Max Mean Median Stddev Skewness 

Motorcycle 0 35.13 31.12 32.8 4.94 -3.11 

Car 0 33.49 33.03 31.04 3.13 -3.04 

Bicycle 0 15 5.29 5.18 2.29 0.5 

Pedestrian 0 2.5 1.65 1.68 0.29 -1.97 

Eye 0 20 1.18 0.48 2.36 4.13 

Table 2. Descriptive statistics for velocity (eyes: [pixel/ms], other MPOs: [m/s]) 

 
 

MPO Min Max Mean Median Stddev Skewness 

Motorcycle 0 34.08 29.34 32.18 6.52 -1.94 

Car 0 32.83 29.39 30.75 3.88 -2.77 

Bicycle 0 17 3.34 2.69 2.48 3.34 

Pedestrian 0 2.2 1.17 1.26 0.4 1.17 

Eye 0 950 15.29 4.63 46.46 15.29 

Table 3. Descriptive statistics for displacement from the previous state  

(eyes: [pixel], and othe MPOs [m]) 
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5.2.3 Correlation analysis 

For the four selected MPOs, Table 4 presents the results for the Spearman rank 

correlation coefficients for different pairs of movement variables. The straightness 

index is not used because it is a compound index using displacement. The results 

suggest a strong positive correlation between velocity and displacement from the 

previous fix for all studied objects. Moreover, there is no correlation identified between 

acceleration and turning angle for the selected objects. Outcomes show a negative weak 

correlation between velocity and turning angle for car, motorcycle, pedestrian and 

bicycle movement. However, for eye movement almost no correlation occurs (Table 4). 

 
Correlation Motorcycle Car Bicycle Pedestrian Eye 

Velocity - acceleration 0.065 0.016 0.07 0.23 0.36 

Velocity - turning angle -0.38 -0.25 -0.25 -0.13 -0.06 

Velocity - displacement 0.99 1 1 1 0.99 

Acceleration - turning angle -0.1 0.002 0.02 0.01 0.06 

Acceleration - displacement 0.065 0.016 0.07 0.23 0.36 

Displacement - turning angle 0.38 -0.25 0.25 -0.12 0.06 

Table 4. Spearman Rank Correlation coefficients 

5.2.4 Locally extracted features 

We generated movement parameter profiles for velocity, acceleration, turning angle, 

and straightness index for our trajectory data. Using Algorithm 1 we then decomposed 

the profiles into the four classes foreseen in the algorithm. After some initial 

experiments, we found threshold values that yielded consistent results over all trajectory 

samples. For sinuosity, we have set the threshold separating low from high sinuosity at 

0.95. For deviation, we use the standard deviation of the residuals of a particular profile. 

The results of the decomposition of the movement parameter profiles for four of the 

trajectory samples are depicted in Fig. 6 and Fig. 7. Fig. 6 illustrates the results of the 

decomposition process on a sample trajectory of a motorcycle on the left and a sample 

trajectory of a car on the right (from experiments #1 and #2). Similarly, Fig. 7 shows 

the results of the decomposition process on a sample trajectory of a bicycle on the left 

and a sample trajectory of eye movement on the right (from experiment #3). In order to 

save space, we do not visualize the sample result of the decomposition of a pedestrian 

trajectory, which looks very similar to the result for the bicycle trajectory. However, as 

mentioned earlier trajectory samples of pedestrians have been included in 
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experiments #1 and #3. The individual graphs in Figures 6 and 7 represent the 

normalized profiles of velocity (Fig. 6.b and Fig. 7.b) and acceleration (Fig. 6.c and Fig. 

7.c), respectively. At the bottom of each graph the four decomposition classes are 

shown as follows: 

• Green: low sinuosity – low deviation 

• Blue: high sinuosity – low deviation 

• Red: low sinuosity – high deviation 

• Magenta: high sinuosity – high deviation 

The above results form the input for the remaining steps and will be discussed in 

Section 6. 

(a) Normalized sample trajectory (300 fixes) of motorcycle (on the left) and car (on the right) 

(b) Normalized and decomposed velocity profiles for the sample trajectories of motorcycle (on the left) and car (on the right)

(c) Normalized and decomposed acceleration profiles for the sample trajectories of motorcycle (on the left) and car (on the right)
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Fig. 6. Normalized and decomposed velocity and acceleration profiles for the sample trajectories 

of motorcycle and car 
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(a) Normalized sample trajectory (300 fixes) of bicycle (on the left) and eye movement (on the right) 

(b) Normalized and decomposed velocity profiles for the sample trajectories of bicycle (on the left) and eye movement (on the right)

(c) Normalized and decomposed acceleration profiles for the sample trajectories of bicycle (on the left) and eye movement (on the right)
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Fig. 7. Normalized and decomposed velocity and acceleration profiles for the sample trajectories 

of bicycle and eye movement 

5.2.5 Feature selection and PCA 

In our experiments, we selected a total set of 58 features from the movement 

parameters previously extracted on the global and local level from the trajectories, as 

summarized in Table 5. Following the correlation analysis conducted previously, we 

excluded displacement from the selection of features, as it correlates highly with 

velocity. From the global parameters, we further excluded turning angle, because it does 

not help to differentiate between objects. Consequently, we used three movement 

parameters (i.e. straightness index, velocity, and acceleration) to compute the mean and 

standard deviation at the global level, resulting in 6 selected global features (Table 5, 

top row). 
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Descriptors # of descriptors 

Global Mean and stddev at global level, per movement parameter (3) 6 

Mean and stddev of segment length, per decomposition class (4), per 

movement parameter (4) 

32 

Number of decomposition class changes, per movement parameter (4) 4 
Local 

Percentage of each decomposition class (4), per movement parameter (4) 16 

Table 5. Original features selected for the classification 
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Fig. 8. 3-D plot of the first three principal components of the sample trajectories 

The set of local features obtained from the four movement parameter profiles shown 

in section 5.2.4 is made up of the mean and standard deviation of the segment length per 

decomposition class and per descriptor (resulting in 32 features); the number of changes 

of decomposition classes along the profile, computed for each descriptor (4 features); 

and the percentage that each decomposition class holds from the total 
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number of points, per descriptor (16 features). 

The above selected 58 features were input to a PCA to form uncorrelated linear 

combinations of the original features. Consequently, the number of features was 

reduced to 15 principal components for experiments #1 and #2 and 11 principal 

components for experiment #3, which formed the input for the trajectory classification 

step. Fig. 8 visualizes the 3-D plots of the first three principal components for the 

sample trajectories of the different objects used in these three experiments. 

5.3 Experiments –– results  

For the classification stage of the proposed methodology, we randomly selected 165 

samples of stretches consisting of 300 points from the various trajectories introduced in 

section 5.1. 115 samples from eye movement trajectories, 165 from motorcycle 

trajectories, 165 from car trajectories, 165 from bicycle trajectories, and 165 from 

pedestrian trajectories. We then ran the decomposition algorithm for all the samples to 

compute the corresponding global and local movement properties. Three experiments 

were then conducted to evaluate the trajectory classification procedure. 

The main objective of experiments #1 and #2 was to evaluate whether the proposed 

methodology could be applied in automatic detection of transportation mode. For 

experiment #1, we used 560 trajectory samples from the four pools of motorcycle, car, 

pedestrian and bicycle trajectories as a training set for SVM learning (i.e. 4 x 140 

samples). The remaining 100 samples from the four pools (i.e. 4 x 25 samples) were 

used as a testing set to evaluate the performance of the classification. The aim of this 

experiment was to evaluate how well the different types of transportation MPOs could 

be differentiated using the proposed methodology in a multi-class classification mode. 

Conversely, experiment #2 had the objective of assessing a two-class classification. For 

this experiment, we used 280 trajectory samples from the two pools of motorcycle and 

car trajectories as a training set for SVM learning (i.e. 2 x 140 samples). The remaining 

50 samples from the two pools (i.e. 2 x 25 samples) were used as a testing set to 

evaluate the performance of the classification. More specifically, in this experiment we 

intended to assess how well trajectories of motorcycles and cars, as exemplars of MPOs 

of similar speed range, could be differentiated.  

Finally, the intention of experiment #3 was to evaluate how similar (or different) 

trajectories generated by eye movement are from trajectories of non-eye objects from 

the transportation domain (i.e. motorcycles, cars, bicycles, and pedestrian) using the 

proposed methodology in a multi-class classification mode. Consequently, we 
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ran the SVM learning process with a training set consisting of 90 eye movement 

trajectories and 90 non-eye movement trajectories (i.e. 25 motorcycle, 25 car, 20 

pedestrian and 20 bicycle trajectories). We tested the classification performance using a 

testing set of 25 eye movement trajectory samples, together with 25 non-eye movement 

trajectory samples (i.e. 7 motorcycle, 8 car, 5 bicycle, 5 pedestrian).  

 

Experiment Object 
#  train 

traj. 

#  test 

traj. 

#  correct 

class 

Error of 

commission 

Error of 

omission 

Kappa 

coefficient 

% 

Correct 

class 

motorcycle 140 25 23 0.041 0.08 

car 140 25 21 0.043 0.12 

bicycle 140 25 19 0.34 0.24 
Exp. #1 

pedestrian 140 25 18 0.25 0.28 

0.76 82% 

motorcycle 140 25 23 0.042 0.08 
Exp. #2 

car 140 25 24 0.077 0.04 
0.88 94% 

Table 6. Results of the SVM classification for the experiments #1 and #2 

In order to perform the experiments, we used the LIBSVM tool (Chang & Lin, 2001). 

We applied a radial basis function (RBF) kernel with two parameters: c = 2, which is a 

penalty function for misclassified sample points of training data; and γ = 0.07, which is 

an exponent factor in the RBF function (Cristianini & Shawe-Taylor, 2000). They were 

obtained by trying out different parameter combinations and evaluating the 

classification accuracy by means of cross-validation. The results of experiments #1 and 

#2 are presented in Table 6. From experiment #3, we achieved a classification accuracy 

of 100% cleanly separating all eye movement trajectories from the non-eye trajectories 

used in this study. Thus, we refrain from presenting this result in a table.  

6 Discussion 

In this section we discuss the results presented in the previous section. We first 

compare the characteristics of the 2-D trajectories as well as their associated movement 

parameters expressed in the profiles, then discuss the results of the three classification 

experiments, and finally take a brief look at efficiency considerations. 

6.1 Global and local movement descriptors 

Trajectories 

Not surprisingly, the descriptive statistics of the straightness index and the 2-D plots 



26 

of the trajectories (Table 1, Fig. 4, Fig. 5) as well as the straightness index profiles for 

the trajectory samples suggest that the car movement with a mean straightness index 

value of 1.49 and standard deviation close to 0.11 represents the smoothest movements, 

while eye movement is the most unsteady movement, with a mean straightness index 

value of 8.77 and a standard deviation of 89.69.  

The 2-D plots of the exemplar motorcycle, car, bicycle and pedestrian trajectories 

(Fig. 4) suggest that the geometry of such objects with a sampling rate of one second to 

some extent is comparable to each other. However, from the further numerical analysis 

and systematic classification that we have done in experiments #1 and #2, it can be 

concluded that these four moving objects behave differently in terms of the velocity, 

acceleration and straightness index of their paths (Table 1 to Table 3; and Fig. 6 and 

Fig. 7, left side). 
 

Velocity 

As Fig. 6.b, Fig. 7.b and Table 7 show, the velocity of cars, bicycles and pedestrians 

lies in two classes of high (above 90%) and low (less than 10%) deviation from the 

median, always with low sinuosity. On the other hand, the velocity profile of 

motorcycle movement changes between all four decomposition classes. It mostly lies in 

two classes of high (72.48 %) and low (15.1%) sinuosity, with low deviation from the 

median. This means that velocity undulates very closely around the median and does 

generally not deviate greatly from the trajectory (i.e. only 5.37% of profile points are 

classified as high deviation). The results indicate that the velocity profiles of the 

bicycles and pedestrians have the least variations between classes and the highest 

proportion of low sinuosity-low deviation points. However, the velocity profiles of the 

motorcycle, car, bicycle and pedestrian trajectories have some small perturbations that 

can be attributed to the limited accuracy of the GPS and random noise. In comparison, 

the profile of eye movement velocity suddenly increases at certain points (Fig. 7.b on 

the right) when a saccade (i.e. rapid movement of the eyes) happens, although it stays 

close to the median (like the pedestrian movement) for the remaining part of the profile 

at fixation points, where the eyes fixate (Salvucci, 2000). This points to the potential of 

using our approach to detect fixations and saccades from eye-movement protocols. As 

shown in Fig. 9, long segments of low deviation indicating fixations can be nicely 

extracted from short segments of high sinuosity-high deviation with a length of only 1 

or 2 points in saccades. This behavior is distinctly different from the velocity variation 

of the other objects under study. 
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low sinuosity – 

low deviation 

high sinuosity – 

low deviation 

low sinuosity – 

high deviation 

high sinuosity – 

high deviation 

Obj# Mean Stddev 
% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

Motorcycle 28.73 6.91 72.48 7.85 6.41 15.1 2.31 0.95 5.37 2.23 0.43 1 1.67 0.58 

Car 10.95 3.07 91.27 90.67 84.18 0 0 0 8.72 13 1.41 0 0 0 

Bicycle 4.56 3.88 91.94 274 0 0 0 0 8.05 24 0 0 0 0 

Pedestrian 3.25 0.56 97.65 97 127.47 0 0 0 2.34 3.5 2.12 0 0 0 

Eye 308.34 617.03 73.87 7.42 6.80 17.59 3.18 1.40 0 0 0 8.54 2 0 

 Table 7. Summary table of the velocity profile decomposition of the sample trajectories  
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Fig. 9. Extracting saccades and fixations from trajectories of eye movement 

 
Acceleration 

In terms of the profile decomposition classes, the acceleration profiles of the five 

objects share similarities with the corresponding velocity profiles (Fig. 6, Fig. 7, Table 

8). For instance, the acceleration profile of cars (and similarly for bicycles and the 

pedestrians) mostly varies very close to its median, with only 0.33% of points showing 

a higher deviation. All profiles show a higher proportion of high sinuosity-low 

deviation points than the corresponding velocity profiles. In the case of motorcycle, car, 

bicycle and pedestrian movement, there are some small perturbations that cause higher 

sinuosity on the corresponding acceleration profiles, which are due to the accuracy of 

the GPS devices used as well as random noise. This noise could be removed by curve 

fitting to profiles (instead of simply smoothing the trajectories). In the case of the eye 

movement and motorcycle movement, it is interesting to see that despite the noise, the 

high sinuosity-high deviation points are also picked up in the acceleration profiles. For 

eye movement, the match is even perfect; some segments are slightly shorter but they 
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all occur at the same spot as in the velocity profiles. Therefore, as stated earlier, the 

proposed segmentation algorithm can be employed successfully on velocity and 

acceleration profiles of eye movement trajectories as a fixation detection method. The 

acceleration profile of the motorcycle movement shows longer periods of high deviation 

than the eye movement and a more intermittent pattern of changes between the four 

different decomposition classes than any other profile (Fig. 6 b). 

 
 

 
low sinuosity – 

low deviation 

high sinuosity – 

low deviation 

low sinuosity – 

high deviation 

high sinuosity – 

high deviation 

Obj# Mean Stddev 
% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

Motorcycle 0.002 7.4 45.97 8.68 6.45 38.59 6.67 8.05 2.01 1.75 0.5 13.42 1.97 0.16 

Car 0.04 1.3 99.32 148 207.89 0.33 1 0 0.33 1 0 0 0 0 

Bicycle 0.01 0.22 88.59 52.8 46.67 0 0 0 11.4 4.5 3.25 0 0 0 

Pedestrian 0 0.14 90.60 38.57 34.85 0.67 1.5 0.7 8.39 4.16 1.6 0.33 1 0 

Eye -0.44 41.15 70.35 7.68 6.64 23.62 2.52 1.34 0.50 1 0 5.52 1.9 0.32 

Table 8. Summary table of the acceleration profile decomposition of the sample trajectories 

 

 

Straightness index and turning angle  

The decomposition results for the straightness index profiles are not shown 

graphically, in order to save space. A summary of decomposition classes is given in 

Table 9. The results indicate that motorcycle, car, bicycle and pedestrian movement are 

very smooth, with about 98 % of the profile points assigned to the low sinuosity class. 

In the case of cars, bicycles and pedestrians the profile mostly stays close to the median 

(about 98 % in the high deviation class). However, the motorcycle profiles lie in 10 % 

of the cases in the high deviation class. In contrast, from the decomposition results it is 

obvious that the path of eye movement trajectories is more sinuous.  

By the same token, the decomposition results of the turning angle profiles (not shown 

here to save space) demonstrated that the turning angle profiles of eye movement are 

very rough and exhibit an irregular, almost violent behavior, in contrast to the turning 

angle profiles of the other objects. 
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low sinuosity – 

low deviation 

high sinuosity – 

low deviation 

low sinuosity – 

high deviation 

high sinuosity – 

high deviation 

Obj# Mean Stddev 
% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

Motorcycle 1.5 0.2 89.26 53.2 56.66 0.33 1 0 10.4 2 0 0 0 0 

Car 1.5 0.15 97.99 97.67 88.99 0.67 2 0 1.34 2 1.41 0 0 0 

Bicycle 1.48 0.18 96.64 96 61.73 2.01 3 1.41 0.33 1 0 1 1.67 0.58 

Pedestrian 1.49 0.16 96.98 96.33 87.75 0.33 1 0 2.68 4 1.41 0 0 0 

Eye 5.32 9.27 54.27 5.27 4.15 35.17 3.71 2.55 0.5 1 0 10.05 1.94 0.23 

Table 9. Summary table of the straightness index profile decomposition of the sample 

trajectories 

6.2 Trajectory classification 

For experiment #1, the multi-class classification of motorcycle, car, bicycle and 

pedestrian trajectories, we achieved an overall accuracy of 82 % and a Kappa 

coefficient of 0.76 (Table 6). One of the motorcycle sample trajectories was classified 

as a car trajectory and another one was classified as a bicycle trajectory. The same 

happened in the case of car movements (3 misclassifications). The other 

misclassifications were due to pedestrian trajectories classified as bicycle trajectories, 

and vice-versa. As the discussion of movement parameter profiles above shows, these 

misclassifications were due to the fact that motorcycle and car movements on the one 

hand, and bicycle and pedestrian movements on the other hand, are indeed quite similar. 

The two confusions of motorcycle trajectories with a bicycle and a car, respectively, 

were related to movement samples at lower speed. 

For experiment #2, the motorcycle vs. car classification, we reached an overall 

accuracy of 94% and a Kappa coefficient of 0.88 (Table 6). One car movement sample 

was classified as motorcycle, and two motorcycle samples classified as car. These 

misclassifications were again due to the fact that these particular samples happened to 

fall into an extended period of low speed movement. 

For experiment #3, the eye vs. non-eye classification, we achieved an overall 

accuracy of 100 %. This is clearly due to the fact that the non-eye MPOs used in this 

experiment are lacking the typical saccadic movement patterns of eyes. Hence, we can 

conclude that generating movement parameters similar to those of other moving objects 

is not possible using eye movement data, and hence eye movement data are not suitable 

as a proxy of other movement data that are examined in this study.  

The above findings are further illustrated in Fig. 8, which shows a 3-D plot of the first 

three principal components computed on the trajectory samples used in the three 
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experiments. Fig 8.a shows how the bicycle and the pedestrian samples take the middle 

ground between the car and the motorcycle movement samples. Fig 8.b illustrates the 

separation of the car and the motorcycle movement samples. Fig 8.c then illustrates how 

the eye movement samples clearly stay apart from the non-eye movement observations 

(motorcycle, car, bicycle and pedestrian samples). 

From the outcomes of the experiments it can be concluded that the amplitude and 

variation of velocity and acceleration are the most essential features in recognizing a 

certain travel mode or object type. For instance, the following rules, which can also be 

discovered from Fig. 6 and Fig. 7, are learned by the SVM to classify the trajectories: If 

the velocity and acceleration profiles are rather smooth and mostly composed of low 

sinuosity-low deviation segments, then the profile may belong to a trajectory of a car or 

bicycle. If the velocity and acceleration profiles contain a number of points with high 

sinuosity, then they may belong to a motorcycle trajectory. If the velocity and 

acceleration profiles have a jagged geometry consisting of a set of low sinuosity-low 

deviation segments interrupted by a set of high sinuosity-high deviation points, then the 

profiles are indicating the saccadic movement of eyes. 

6.3 Efficiency 

In order to be useful for data mining our proposed methodology has to be reasonably 

efficient for massive databases or for real-time applications. Due to lack of a large 

trajectory database it was not possible to empirically assess the computational 

performance of our methodology under these conditions. Nevertheless, we would like to 

briefly touch on efficiency issues here in order to support the argument that our 

methodology indeed has the potential to be used with massive datasets or in a real-time 

setting. 

First, all parts of the methodology including the profile decomposition algorithm run 

in linear time, except the PCA and the SVM classification. Second, the training stage of 

the SVM classifier, which is known to have slow computational performance, is run 

offline and on a subset of the data. And finally, it is possible to replace the PCA and the 

SVM classifier by simpler and computationally more efficient techniques. 

 

6.4 Test data used 

The test data sets used are relatively large: 660 (4 x 165) transportation tracks for 

experiments #1 and #2, and another 115 eye movement tracks for experiment #3. We 

believe our experiments to be sufficient to establish the feasibility of the proposed 
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methodology. However, the test data are restricted to movement on overland and 

suburban roads (i.e., no urban traffic included) and they were originally sampled at a 

similar temporal interval (around 1 sec.). In order to make conclusive statements about 

the scope of applicability of the proposed methodology, the experiments would have to 

be extended to data sets of very different moving objects; to traffic movement in urban 

situations; and possibly to data that have been sampled at different temporal resolutions 

and may contain gaps. 

While such experiments still need to be carried out, we expect that the methodology 

should be capable of handling tracks with different transportation modes due to the 

decomposition of trajectories into segments of homogenous character based on change 

points (Zheng et al., 2008). Also, the decomposition algorithm used is based on simple 

principles and does not use any extra knowledge, which is why we expect it to be robust 

also for different moving object types. The performance of the decomposition, and thus 

of the overall methodology, might decrease for very short trajectories or tracks with 

similar movement parameters, for instance in congested traffic situations. However, by 

considering the history of the entire trajectories, such track sections may be classified 

more accurately. For instance, knowing the velocity characteristics in uncongested parts 

of the trajectories involved in a congestion, bicycles may be distinguished from cars or 

motorcycles. 

7 Conclusions 

We have presented a comprehensive, three-stage methodology that allows extracting 

movement parameters from the trajectories of different types of moving objects. As one 

of the application of the proposed methodology, we showed how to classify trajectories 

of unknown MPOs by similarity to the trajectories of previously learned MPOs. We 

have then conducted a series of experiments that not only demonstrated the feasibility 

of the proposed methodology but also provided interesting empirical results. Our 

experiments provide evidence about the similarities and differences that exist among 

different types of moving objects in the transportation domain. The results show that 

using our methodology we can successfully detect the mode of transport from unknown 

trajectories of people using different transportation means. It was also shown that eye 

movement data cannot be successfully used as a proxy of full-body movement of 

humans, or vehicles. The physics of movement of virtually mass-less movement 

processes, such as eye movement (and possibly also computer mouse movement), is 

very different from the movement of objects that are governed by inertia to a much 

greater extent. Nevertheless, the methodology can contribute to finding 
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the most feasible proxies for desired moving objects in various application domains 

(e.g. biology, ecology). For instance, eye movement could potentially be considered a 

proxy of some objects that have a stop-and-go movement behavior such as bees and 

butterflies. 

We see potential for future work in three directions. First, there is plenty of room for 

more experiments aiming to further exploit, enhance and consolidate the proposed 

methodology. For instance, experiments with different trajectory datasets; other MPO 

types; different transportation data (e.g. movement on urban roads); different sets of 

movement parameters; fine-tuning of the SVM classifier (e.g. kernel tuning); and other 

classification techniques (e.g. decision trees). Since we have set up the methodology in 

a streamlined, automated process, we are in a good position to conduct such further 

experiments. From the point of view of real-time processing, experiments with a 

simpler classifier than SVM, which is known to have a high computational complexity, 

may be warranted. Finally, the proposed methodology could be developed further to set 

up an automatic transport mode detection system in transportation applications.  

Second, we are interested in further exploring the method and results of movement 

parameter profile decomposition. For instance, as we discussed in section 6.1, we 

believe that there is a potential in using the decomposition algorithm as an alternative 

technique for fixation detection in the analysis of eye tracking data. Also, we are 

interested in using the results of the profile decomposition algorithm for trajectory 

similarity analysis as well as for more differentiated parameterization of movement 

simulators. 

Third, our methodology currently does not take into account the context and 

constraints that influence movement. Further studies therefore have to consider how to 

involve movement context. 
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