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Abstract

We propose a segmentation and feature extraction method for trajectories of moving 

objects. The methodology consists of three stages: trajectory data preparation; global 

descriptors computation; and local feature extraction. The key element is an algorithm 

that decomposes the profiles generated for different movement parameters (velocity, 

acceleration etc.) using variations in sinuosity and deviation from the median line. Hence, 

the methodology enables the extraction of local movement features in addition to global 

ones that are essential for modeling and analyzing moving objects in applications such as 

trajectory classification, simulation and extraction of movement patterns. As a case study, 

we show how the method can be employed in classifying trajectory data generated by 

unknown moving objects and assigning them to known types of moving objects, whose 

movement characteristics have been previously learned. We have conducted a series of 

experiments that provide evidence about the similarities and differences that exist among 

different types of moving objects. The experiments show that the methodology can be 

successfully applied in automatic transport mode detection. It is also shown that eye 

movement data cannot be successfully used as a proxy of full-body movement of 

humans, or vehicles.

Keywords: Moving point data mining; moving object; movement parameters; movement behavior; 
trajectory decomposition; trajectory classification
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1 Introduction 

The analysis of trajectories of moving objects has recently become the focus of many 
research projects in the area of geographic information science (GIS), human-computer 
interaction (HCI), ecology, biology, social and behavioral sciences. Simulating human 
and animal mobility behavior, or studying human interaction with computers are 
emerging into an interesting area of research, which requires extracting knowledge 
about the dynamic behavior of different types of agents and thus challenges developing 
new exploratory data analysis methods on massive movement datasets. Therefore, many 
spatio-temporal data mining algorithms and analytical methods have been proposed at 
the theoretical level, however few of them have been implemented and applied in 
practice to date. 

A critical success factor for empirically based research is the availability of relevant 
data. The main problem is that data about moving point objects (MPOs) are not easily 
available and accessible due to data cost, security and privacy issues (Giannotti & 
Pedreschi, 2007). In order to overcome the problem of data scarcity, one may consider 
utilizing data that can act as a proxy of ‘physical‘ movement data or benefit from 
artificial, simulated movement data (Blythe et al., 1996). For instance, bank note 
dispersals can be considered as a proxy for human movement given that money is 
carried by individuals (González et al., 2008), or mouse movement traces as a proxy of 
eye movement data in HCI studies (Chen et al., 2001; Cox et al., 2006). Similarly, eye 
movement data from human subject experiments on graphic displays is potentially of 
interest to be used as a proxy of other types of moving objects, as it is relatively 
inexpensive to collect and usually not subject to particular privacy issues.  

By the same token, the simulation of trajectories is used for diverse purposes, such as 
ecological modeling (Turchin, 1998), spatio-temporal database research (Pfoser & 
Theodoridis, 2003), agent-based pedestrian modeling (Batty, 2003), and in the 
evaluation of data mining algorithms (Laube & Purves, 2006). Therefore, detailed 
knowledge of the movement parameters of different MPOs is crucial in choosing the 
best representative proxy in trajectory simulation. The better the knowledge about the 
movement behavior of the particular objects that is simulated, the more realistic the 
simulation results will be. However, there are still some open research questions in the 
field of modeling and simulating trajectories of moving objects. For instance, how can 
we efficiently assess the similarity of the behavior of the simulated or proxy data in 
comparison to the original moving object? Is it possible to automatically identify 
trajectories of unknown objects by applying our knowledge about the movement 
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behavior of similar known objects whose movement characteristics have been 
previously learned by the system? 

The above issues all point to a need for methods for analyzing the movement 
behavior of different MPOs, with the aim of determining the similarity of trajectories 
generated by different MPOs. Similarity search, that is, trying to find similar trajectories 
of moving objects, is a fairly new topic in spatial data mining. Most of the techniques 
proposed to date are looking for similarities of the geometric shape of the trajectories 
based on a distance function. Examples include the Edit Distance on Real sequence 
(EDR) (Chen et al., 2005), One-Way Distance (OWD) (Lin & Su, 2008), Euclidean and 
Time Wrapping distance and Longest Common Subsequence (LCSS) (Vlachos et al. 
2002). However, we are more interested in finding similarities in movement behavior of 
different types of moving objects. Therefore, our motivation is to take an analytical look 
at the movement characteristics and dynamic behavior of different types of dynamic 
objects such as humans, vehicles and eye movements and extract possible similarities 
among movement behavior of such objects. Consequently, we want to see whether we 
can predict the types of unknown MPOs by similarity to the trajectories of previously 
learned MPOs. 

This article thus presents a methodology that allows extracting movement parameters 
from the trajectories of different types of moving objects. The key element of the 
methodology is an algorithm that decomposes the profiles generated for different 
movement parameters using variations in sinuosity and deviation from the median line, 
hence enabling the extraction of local movement features in addition to global ones. 

Our proposed methodology is useful in several respects. It can inform developers of 
pattern recognition and data mining algorithms about similar and dissimilar types of 
moving objects, hence allowing to design rigorous algorithm evaluation strategies. It 
can help answer the question how similar simulated or proxy MPOs are to the 
corresponding reference MPOs. The proposed trajectory segmentation algorithm yields 
subtrajectories that can facilitate similarity search. The methodology generates relevant 
movement attributes at the global level of the entire trajectory as well as at the local 
level of segments of homogeneous movement characteristics, enabling more 
differentiated parameterization of trajectory simulations. Thus, it can be used to answer 
to the above-mentioned research questions in simulation studies. And finally, it can be 
used to classify unknown moving objects into previously learned MPO types, in data 
mining operations on large trajectory databases or in real-time applications. For 
instance, it can be used in transportation research to detect the transport mode in 
anonymized trajectories of different transportation objects (e.g. cars, motorcycles, 
bicycles, pedestrian). 
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The remainder of the paper is organized as follows. We start in Section 2 with a brief 
introduction of moving point objects and a review of the relevant literature. We 
continue in Section 3 by explaining the proposed methodology for feature extraction of 
movement parameters. In section 4, we propound some possible applications of the 
proposed methodology. In Section 5, we report the experiments conducted to validate 
the three steps of the methodology following the classification process. Section 6 
provides a detailed discussion of the experimental results. We end in Section 7 with 
conclusions and an outlook. 

2 Moving Point Objects (MPO) 

We define moving objects as entities whose positions or geometric attributes change 
over time. In many applications moving objects are considered as moving points, 
ignoring the dimension of the object. In (Dodge et al., 2008), moving objects are 
categorized into two major groups of geo-referenced (i.e. dynamic objects that move 
about in geographic space) and non-geo-referenced (i.e. dynamic phenomena that move 
in a non-geographic space) dynamic objects. Accordingly, geographically referenced 
object such as humans, animals or vehicles belong to the first group, while gaze point 
movements in eye movement studies can be mentioned as an example for the other 
group. Each of these dynamic objects, to a varying degree, shares some similarities but 
also exhibits differences to the others in terms of the corresponding data structure, 
dynamic behavior and nature of movement. 

In general, the path of a moving object, named trajectory, is the subject of interest in 
moving object data analysis. A trajectory is defined as a sequence of successive 
positions of the moving object over a period of time and thus can be considered as a 
time series of spatial data in data mining tasks (Spaccapietra et al., 2008). In order to 
analyze or simulate the behavior of a moving object we need to have detailed 
information about the trajectory of the object as well as information about the 
environmental conditions related to the trajectory (Spaccapietra et al., 2008). In other 
words, it is necessary to extract differentiated movement parameters of a trajectory in 
order to analyze or simulate typical movement behavior of an object. In this regard 
many attempts have recently been carried out in the field of modeling and analyzing 
trajectories and moving object data mining. Giannotti & Pedreschi (2007) give an 
overview of the history of analyzing moving objects from the initial idea of time 
geography to the recent advances in knowledge discovery from moving objects using 
spatiotemporal data mining techniques, including latest attempts on data privacy and 
security issues. Batty (2003) applied agent-based modeling of individual and 
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collective behavior of pedestrians to show how randomness and geometry are important 
to local movement and how individuals respond to locational patterns. Brillinger et al. 
(2004) developed a stochastic differential equation-based model for exploratory data 
analysis of the trajectories of deer and elk to describe movement behavior of free-
ranging animals. They tried to extract typical parameters of data obtained from animal 
telemetry studies. Laube and Purves (2006) considered modeling relative movement 
within groups of objects in order to evaluate extracted movement patterns by simulation 
through correlated random walk procedures. Hornsby and Cole (2007) focused on 
modeling moving objects from an event-based perspective and tried to detect movement 
patterns by analysis of different events. Other researchers have focused on 
differentiating and modeling moving objects in movement imagery databases, in order 
to describe and classify behavior of moving objects in computer vision systems using 
sequences of images (Zheng et al., 2005; Agouris et al., 2003; Ozyildiz et al., 2002). In 
Naftel & Khalid (2006) another approach for clustering and classification of object 
trajectory-based video clips using spatiotemporal function approximation has been 
proposed. Bashir et al. (2007) present a classification algorithm for recognizing object 
activity using trajectory of objects. In the proposed classification method, trajectories 
are segmented at points of change in curvature and the sub-trajectories are represented 
by their principal component analysis (PCA) coefficients (Bashir et al., 2007). In Bay & 
Pazzani (2001) a search algorithm for mining contrast sets has been developed to 
differentiate between several contrasting groups (e.g. male or female students, or the 
same group over time) from observational multivariate data. 

The above-mentioned modeling and classification techniques have mainly been 
applied on trajectories obtained from the same MPO types. Fewer studies exist on the 
classification and differentiation of trajectories of different kinds of moving objects. 
One domain where the comparison of trajectories from different moving objects is 
relevant is the field of transportation studies, specifically in the analysis of transport 
behavior in urban environment. In this domain some researchers focused on extracting 
knowledge from raw GPS data to detect the mode of transport that people used, with the 
aim of understanding user behavior (Zheng et al., 2008). For instance, Zheng et al. 
(2008) proposed an approach based on supervised learning to automatically learn the 
transportation mode, including walking, taking a bus, riding a bike and driving. Their 
method is comprised of a segmentation method based on change points (i.e. where the 
mode of transport presumably changes), an inference model (i.e. decision tree, support 
vector machine (SVM), Bayesian net, or conditional random field (CRF)), and a post 
processing method. In this study the four above-mentioned inference models have been 
evaluated. They show that the higher accuracy is obtained from the decision 
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tree model. In another study, Tsui and Shalaby (2006) introduced a fuzzy logic 
approach. They applied a segmentation method based on three types of mode transfer 
points (MTP). In a similar study, Schlüssler and Axhausen (2009) applied the same 
method based on speed and acceleration characteristics to distinguish five modes of 
transport (i.e. walk, cycle, car, urban public transport, and rail). Moreover, Zheng et al. 
(2008), Schlüssler and Axhausen (2009) give a summary of other related research. To 
the best of our knowledge, almost all the proposed methods have difficulty 
distinguishing different transport modes in congestion or heavy traffic. They also do not 
seem effective in distinguishing the transport mode of vehicles with similar speed 
range. Finally, they appear having difficulties to detect the correct transport mode when 
people only take one kind of transport mode during a trip. Therefore, there is still a need 
for more research on more reliable approaches for transport mode detection.  

In Dodge et al. (2008), Giannotti & Pedreschi (2007) and Laube et al. (2007) 
parameters of a trajectory generated by a moving object are introduced such as speed, 
acceleration, duration of movement, sinuosity, traveled path, displacement, and 
direction. These descriptors form fundamental building blocks for characterizing the 
movement of an object and can be defined in an absolute sense (i.e. with respect to the 
external reference system) or in a relative sense, (i.e. in relation to the movement of 
other MPOs or to the previous states of the same MPO). Generally speaking, different 
types of moving objects, depending on the particular physics of their movement, to 
some degree exhibit different signatures of such movement descriptors. Each MPO has 
a typical dynamic behavior, which to some extent is similar for individuals of the same 
kind. Consequently, moving objects can be reproduced (simulated) according to the 
typical behavior of the similar sort of objects, or objects having the same dynamic 
behavior (Laube & Purves, 2006). Likewise, the typical behavior of different objects 
can be extracted from the particular parameters of their trajectories using the above-
mentioned descriptors. 

Therefore, we propose a methodology that allows extracting such movement 
parameters from the trajectories of different types of moving objects and classifying 
trajectories of unknown MPOs by similarity to the known trajectories. We focus on the 
characterization and classification of different types of moving objects and we conduct a 
comparative analysis and classification of the movement behavior of different objects, 
manifested through their trajectories. As a case study, we show how our model can be 
applied in the classification and prediction of transport mode of unknown trajectories of 
people using a supervised classification method. The following section describes our 
methodology in detail.  
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3 Methodology 

Our methodology consists of three steps, shown graphically in Figure 1 and expanded 
on in the remainder of this section: 1) trajectory data preparation; 2) global descriptors 
computation; and 3) local feature extraction. The products generated from applying this 
procedure can directly be used for other purposes, such as generating inputs for 
movement simulators, or trajectory classification as presented later in Section 4. 

<Analysis of movement behavior of different MPOs using trajectory decomposition>

‘

CarMotorcycle Bicycle Pedestrian Eye

 
Fig. 1. Methodology for analyzing and extracting the movement behavior of different MPOs 

3.1 Trajectory data preparation 

Raw data captured by movement tracking devices usually to some degree contain 
noise, outliers and gaps, depending on the nominal precision and accuracy of the tracker 
as well as other factors that influence the completeness, accuracy and reliability of 
fixes. The accuracy of GPS observations, especially in absolute positioning, is very 
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sensitive to the existence of obstacles that block GPS signals, multi-path effects, 
ionospheric and tropospheric errors etc. (Hoffmann et al, 2001). In kinematic GPS 
surveys used to generate trajectory data of the type used in this study, it seems 
reasonable to assume an accuracy of 5-10 meters for practical purposes. Eye trackers 
have a higher accuracy (i.e. 0.5 degree) and sample eye movements at fine temporal 
granularity (e.g. about 20 milliseconds). However, raw data generated by eye trackers 
still contain a considerable amount of noise, outliers, and gaps, which should be 
remedied in order to achieve better results. Therefore, in order to remove effects of 
noise and positioning errors of the tracking devices and other factors, we recommend 
applying data cleaning and pre-processing procedures on the raw data to achieve more 
reliable trajectories. The pre-processing phase consists of three steps including filtering, 
re-sampling, and smoothing. During the filtering process outliers are removed from the 
raw data, namely those fixes that had a distance from the previous fix of more than 
three times the standard deviation (3σ) of the distances between consecutive fixes. The 
re-sampling procedure then generates a trajectory at regular intervals by linear 
interpolation along the trajectory. Finally, the smoothing step eliminates noise 
remaining in the data. In order to smooth raw GPS data several methods can be 
employed, such as least squares, spline approximation, moving average, Kernel-based 
smoothing, and Kalman filtering (Eubank, 2005). In this regard, Jun et al. (2007) 
developed an analytical study of different smoothing methods and proposed a modified 
version of Kalman filtering to be applied for GPS data containing errors. (See Section 
5.2.1) 

3.2 Computation of global descriptors  

Movement parameters (i.e. speed, acceleration, turning angle, straightness, etc.) can 
be derived from the trajectory of an object and thus describe the dynamic behavior of 
the object. These descriptors are very different in terms of the values that they can take 
for each type of MPO. For instance, eyes can move quickly in fractions of a second 
from one end of a picture to the other in an almost mass-less movement, while the 
acceleration of human whole-body motion is governed by greater mass and inertia.  

In order to evaluate the movement behavior inherent to the given trajectory data sets, 
various movement parameters can be computed for each point (fix) along a trajectory: 
for instance speed (i.e. rate of change of the object’s position); acceleration (i.e. rate of 
change of the object’s speed); turning angle (i.e. direction of the movement); 
displacement (i.e. the beeline connector distance between two consecutive points); 
traveled path (i.e. the path length along the trajectory); and straightness index (i.e. 



 

9 

the ratio of the traveled path and displacement); giving an indication of the sinuosity of 
the trajectory at a specific point (Dodge et al., 2008; Benhamou, 2004; Laube et al., 
2007).  

To achieve differentiated results in the characterization of trajectories, we propose 
that the computation of movement parameters proceeds at consecutive levels of 
refinement. That is, the process should first take a global look, computing descriptive 
statistics for the entire trajectory. Then, it should zoom in to extract local information of 
the trajectories at finer resolutions. Finally, in order to reveal more detail in the 
movement behavior of the selected objects and make their trajectories comparable, we 
propose to decompose the computed profiles of movement parameters to a set of 
meaningful subsections (or segments). Sections 3.2.1 and 3.2.2 describe the 
computation of global descriptors; Section 3.3 describes the extraction of local 
movement descriptors and the profile decomposition.  

3.2.1 Global descriptive statistics 

In order to extract the global movement properties of a given MPO, the above-
mentioned movement parameters are first derived from the entire trajectory of the 
object. Next, global descriptive statistics of the movement parameters are computed 
such as the minimum, maximum, mean, median, standard deviation, variance and 
skewness over the entire trajectory. 

3.2.2 Correlation analysis 

In order to assess potential interrelationships between movement parameters, a 
correlation analysis should be carried out after extracting the movement parameters of 
given MPOs. We recommend computing Spearman Rank Correlation (RHO) as a non-
parametric measure of correlation, since it has the advantage of making no assumptions 
about the frequency distribution of the variables (Chatfield, 1989). It is used to test the 
direction and strength of the relationship between variables. High correlations between 
movement parameters suggest that some variables may be redundant. 

3.3 Local feature extraction: profile decomposition 

When a dynamic object moves about in space, its movement parameters (velocity, 
acceleration, turning angle etc.) change over time. If we plot the evolution of a 
movement parameter over time, this will result in a profile or function, such as the one 
shown in Fig. 2. If we do this for different dynamic objects the resulting profiles will 
exhibit different amplitude and frequency variations, hence giving clues to the 
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underlying movement physics and behavior. This has lead us to using the movement 
parameter profiles for extracting local features that could be used for trajectory 
simulation and classification, by decomposing profiles into segments (or sections) of 
'similar movement character'. We propose to use two measures for characterizing 
movement from profiles: Deviation from the median line of the profile gives an 
impression of the amplitude variation of a movement parameter over time, while 
sinuosity acts as a proxy of the frequency variation. In the following, we describe the 
computation of the deviation measure and the sinuosity measure that we use, as well as 
the proposed algorithm for profile decomposition. Fig. 2 provides supporting graphical 
illustrations and Algorithm 1 gives the pseudo-code of the profile decomposition 
algorithm. 

 
Fig. 2. Basic elements of movement parameter profiles 

Both deviation and sinuosity are defined for each point on a movement parameter 
profile. Before we compute these measures, we transform the profile data in the 
following way. First, we calculate the median of the particular movement parameter that 
was used to generate the profile. This median then can be seen to form a horizontal 
'median line' that separates the movement parameter values into two halves. We then 
take the residuals from the median for each point along the original profile. And finally, 
in order to make the comparison across objects possible, we normalize all movement 
parameter profiles to a common interval [0, 1], as shown, for instance, in Fig. 2. 

The deviation of a point p on a profile is easily established: It simply equates to its 
residual value from the median and has thus already been obtained when the residuals 
were calculated above. The measure of sinuosity for p is computed as a ratio of the 
distance ± k points along the profile to the length of the beeline connector centered at p, 
as follows: 

€ 

Sinuosityp,k =

di,i+1
i= p−k

i= p+k−1

∑

dp−k,p+k
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where k is the lag parameter. This method was originally introduced by Dutton (1999) 
in order to classify the sinuosity of cartographic lines in map generalization. After some 
experimentation, in order to obtain a more reliable measure for the sinuosity, we 
considered both 1 and 2 for k as the lag value. Then, the final sinuosity at p is computed 
as the average of the Sinuosityp,1  and Sinuosityp,2: 

€ 

Sinuosityp =

Sinuosityp,k
k=1

k= 2

∑
2

 

The sinuosity measure ranges from 1 (if profile points are collinear about the given 
point p) to infinity for a winding profile (i.e. a space-filling curve). The sinuosity values 
for all points are then transformed to the interval [0, 1], as proposed by (Dutton 1999). 
Next, the profile points are classified into two regimes regarding the level of the 
corresponding sinuosity measure, 'low sinuosity' and 'high sinuosity', separated by a 
user-defined threshold. The same is done with deviation, where the standard deviation 
of the residuals is used to separate 'low deviation' from 'high deviation'. The described 
procedure is summarized in Algorithm 1.  

 
Algorithm 1. Profile decomposition 
Inputs: 
• res[]: residuals from median 
• st: threshold to distinguish low sinuosity from high sinuosity 

Outputs: 
• decomX[]: classified and decomposed profile 

Algorithm: 
01: 
02: 
03: 
04: 
05: 
06: 
07: 
08: 
09: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 

n ← the number of points on the profile 
dtime ← time interval between consecutive points 
for index of points i = 1 to n do 

dres ← resi+1 - resi 
sl[i] ← sqrt(dtime2 + dres2) 

end for 
dt ← standard deviation of res[] 
sinuosity[] ← 0 
for lag size k = 1 to 2 do 

for index of points i = (1+k) to (n-1-k) do 
beeline_distance ← length of beeline connector of pi-k and pi+k 
profile_distance ← Σsl of pi-k to pi+k 
sinuosity[i] ← profile_distance / beeline_distance + sinuosity[i] 

end for 
end for 
for index of points i = 1 to n do  
sinuosity[i] ← sinuosity[i] / 2  
sin_scaled ← scale sinuosity to the length of 1 
if (sin_scaled < st) AND (res[i] < dt) then decomX[i] ← 1                     /* low sinuosity, low deviation 

  elseif (sin_scaled > = st) AND (res[i] < dt) then decomX[i] ← 2        /* high sinuosity, low deviation 
  elseif (sin_scaled < st) AND (res[i] > = dt) then decomX[i] ← 3        /* low sinuosity, high deviation 
  elseif (sin_scaled > = st) AND (res[i] > = dt) then decomX[i] ← 4     /* high sinuosity, high deviation 

end if 
end for  
return decomX[] 

The classified profile decomposes trajectory into the segments of homogeneous 
movement characteristics. The results of employing the Algorithm 1 on different 



 

12 

movement parameter profiles (i.e. velocity, acceleration, etc.) can be used to compute 
local movement features for trajectory classification and simulation purpose. 

4 Applications  

We suggest that the above methodology, and in particular the trajectory 
decomposition algorithm, are useful for a variety of applications in movement data 
mining where finding similarities between the physical movement behavior of different 
objects is important. These include applications such as trajectory classification (e.g. 
transport mode detection in mobility analysis studies), movement pattern detection (e.g. 
fixation and saccade detection in eye-tracking research), and trajectory simulation (e.g. 
in human mobility behavior studies).  

In the remainder of this Section, we introduce a procedure for trajectory 
classification. In the following Section 5, we examine the applicability of the proposed 
methods in a series of classification experiments using transportation data as well as in 
fixation detection in eye-tracking data.  

4.1 Trajectory classification 

We are trying to classify trajectories of moving objects in a systematic way using the 
features (i.e. variables) extracted by the trajectory decomposition algorithm described 
above. This procedure aims at classifying trajectory data generated by unknown moving 
objects and assigning them to known types of moving objects, whose movement 
characteristics have been previously extracted and learned. That is, we are assuming to 
use a supervised classification algorithm. We are interested to find out whether 
trajectories of different kinds of MPOs can be classified distinctively. The following 
subsections introduce our trajectory classification process as shown in Fig. 3, which 
consists of two main steps: 1) Feature selection (i.e. choosing the variables that provide 
the input to the classification process) and dimension reduction using principal 
component analysis; and 2) the actual classification using the support vector machine 
(SVM) classifier algorithm. 
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<Data preprocessing phase>

Select trajectory 
samples

Pro!les:
- velocity
- acceleration
- turning angle
- straightness

Generate
pro!les

over time

Pro!le decomposition
based on sinuosity and

deviation index 

Preparing 
training

data 

Dimension 
reduction
using PCA

Compute and
select features

Validate the 
classi!cation

using test samples
End

SVM classi!cation
of selected
trajectories

 
Fig. 3. Trajectory classification process 

4.2 Feature selection and dimension reduction 

A great number of global and local statistical descriptors can be computed for each 
trajectory. Each of these variables can potentially be selected as features for use in the 
classification process. However, as many of these features essentially describe similar 
characteristics, there are likely to exist correlations, suggesting that only a reduced set 
of features should in fact be used in the classification. Given the large number of global 
and local descriptors it would be very difficult to reduce the original set of features by 
correlation analysis, merely selecting a subset of the original features. Hence, we 
propose using principal component analysis (PCA) for reducing the number of original 
features, and hence dimensions in the feature space (Smith, 2002; Bozdogan, 2003; 
Guyon & Andre, 2006). PCA yields a (sub)set of synthetic, uncorrelated features called 
principal components, which contain the most important aspects of the original features. 

4.3 Classification using SVM 

The features that have been generated by the PCA for each MPO type are considered 
as a set of attribute categories that form the input for the final step of the classification 
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procedure. This step has the aim of classifying trajectories by assigning them to 
different types of moving objects. Essentially, we are interested in two aspects. First, we 
would like to see whether it is possible to tell apart, that is, to discriminate the 
trajectories generated by different types of moving objects based on the movement 
parameters that we have extracted from the trajectory data. Second, assuming that this is 
possible, we are interested in classifying dynamic objects of unknown type to the 
correct object type, that is, we would like to be able to reveal the identity of unknown 
objects. For instance, in transportation studies analysts are interested in detecting 
different modes of transport from unknown GPS trajectories of people. 

Given the latter objective, it is advisable to use a supervised classification method 
where a training (or learning) stage is followed by a classification (or testing) stage that 
applies the learned discriminating functions to classify the unknown objects. In 
principle, any supervised classification technique could serve our purposes, but we 
chose to use the support vector machine (SVM) approach (Cristianini & Shawe-Taylor, 
2000; Duda et al., 2001), which is widely used today in pattern recognition and data 
mining. The trajectory classification process then consists of the training stage where 
the SVM will learn from a set of trajectory samples (the training set) how to 
discriminate between MPO types by constructing separating hyperplanes in the multi-
dimensional space formed by the input features; and a classification/testing stage that 
applies the learned hyperplanes on another set of trajectory samples (the testing set), 
thus predicting the object type of each of these unknown trajectories. 

This step concludes our proposed overall methodology. After the SVM has been 
trained and validated, it is now ready for use in data mining operations to detect the 
MPO type of unknown dynamic objects from their trajectories. This could either take 
place off-line on large trajectory databases or in real-time. 

5 Experiments: trajectory classification  

In order to validate our methodology and demonstrate its applicability in the 
classification of trajectories of different MPOs, we have conducted a series of 
experiments that will be reported in this section and discussed in the next section. The 
experiments are designed to specifically investigate 1) automatic mode detection in 
transportation analysis and 2) feasibility study of using eye-tracking data as a proxy for 
other MPOs. For these experiments, we considered different types of MPOs with 
varying physics and behavior of movement, expressed through different movement 
parameters (Dodge et al., 2008). We have therefore selected different samples of 
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moving objects from both groups of dynamic objects introduced in Section 2. From the 
first group we have chosen movement data captured from pedestrians, bicycles, cars and 
motorcycles; from the second group we considered eye movement data. Among these 
data, bicycles, motorcycles, and cars and to a lesser degree pedestrian movements are 
typically constrained to the transportation network. 

5.1 Experiments –– objective  

5.1.1  Automatic transport mode detection  

Two experiments were designed to validate the applicability of the proposed 
methodology using a supervised classification technique, with the aim of automatically 
assigning the correct transport mode to trajectories of unknown objects, after training 
with a sample of known objects: 

Experiment #1: Classification of objects of different speed range 

For this experiment, we acquired various trajectories from openstreetmap.org of 
known object sources from the transportation domain, including tracks of pedestrians, 
bicycles, cars and motorcycles. Fig. 4 illustrates the 2-D plot of exemplar trajectories 
generated by the four object types. For each object type about 50,000 GPS fixes from 
10 trajectories remained after data cleaning, filtering and resampling to a temporal 
sampling rate of 1 second.  

Movements of different vehicles and pedestrians are performed at different ranges of 
speed. Therefore, classifying objects by simply taking the different speed range might 
seem as a straightforward solution. However, note that speed cannot be considered as 
the only parameter to classify objects in transportation since during rush hour all 
vehicles move at similar low speed. Therefore the proposed classification process takes 
variations and frequencies of changes of the other movement parameters (e.g. 
acceleration) into account, besides speed variations. 

 



 

16 

 
Fig. 4. Normalized trajectory data of exemplar moving objects 

 

Experiment #2: Classification of objects of similar speed range 
This experiment aims to investigate detecting the transport mode of trajectories 

collected from objects of similar speed range, exemplified by cars and motorcycles. As 
mentioned earlier, speed plays an important role in simulating and classifying 
trajectories representing different object types. However, when the speed range is 
similar it is indispensable to inspect distinct variations of other movement parameters 
such as acceleration and also examine speed variations at finer detail, in order to be able 
to differentiate between object types. Therefore, this experiment is intended to 
demonstrate that the proposed classification process is sufficiently subtle to be able to 
classify trajectories obtained from very similarly behaving objects.  

5.1.2 Using eye-tracking data as a proxy of other MPOs  

Experiment #3: classifying trajectories of eyes versus other object (non-eye) 

 With this experiment we aimed to assess the suitability of eye-tracking data as a 
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proxy of other types of moving objects. For this experiment, similar to the previous 
experiments, we classified eye-tracking data collected from an eye-tracker against the 
data used in the first experiment. We intended to investigate whether it is possible to 
analytically tell apart trajectories generated by eye movement from those of other 
objects such as motorcycles, cars, bicycles and pedestrians that we subsume under the 
term “non-eye” objects. Specifically, we were interested to see whether it is feasible to 
use eye-tracking data in order to simulate other moving objects due to accessibility, 
privacy and data cost issues. 

The eye movement data set used here (Fig. 5) was contributed by Arzu Çöltekin (Eye 
Movement Laboratory, Department of Geography, University of Zurich) and consists of 
about 50’000 gaze points from 2 eye movement trajectories captured by a Tobii eye 
tracker at an interval of 16 milliseconds during experiments on a 1600 x 1200 screen.  

 
Fig. 5. Normalized sample trajectory of eye movement 

5.2 Experiments –– workflow 

 For the three experiments we pursued our proposed 3-step methodology described in 
section 3 followed by an additional phase of trajectory classification suggested in 
section 4.1. The workflow of the three experiments is described in the following 
subsection in more detail.  

5.2.1 Trajectory data preparation 

First, the raw movement data were cleaned in order to remove outliers. In 
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the case of eye movement data, points that lay off the screen were considered as outliers 
and removed. The data were then resampled to a regular time interval, equal to the 
minimum sampling rate of the raw data (16 ms for eye movement data and 1 second for 
the other objects). In order to fill gaps linear interpolation was used, as the underlying 
movement geometry didn't suggest the use of a more elaborate interpolation technique. 
Finally, we applied moving average smoothing (window size of 5 sec) on the filtered, 
re-sampled data. For eye-movement data, only the filtering and resampling steps were 
applied. The reasons for not applying smoothing are the prevention of data loss and the 
potential creation of artifacts, as these types of trajectories exhibit a 'jagged' geometry 
that might be destroyed by the regularizing effect of trajectory smoothing. In the next 
step, from the entire dataset we selected our sample trajectories, each with a length of 
300 points (i.e. with a duration of 5 mins for the transportation objects). All the sample 
trajectories were taken from various overland roads and were visually checked to be 
consistent and to largely homogeneous in terms of their path geometry to prevent 
artifacts in the results of the trajectory classification. However, in the case of eye-
tracking data it is impossible to avoid having 'jagged' geometries, as described earlier. 
Finally, the selected sample trajectories served as input data for the experiments. 

In our study, we initially experimented with two methods for smoothing of raw GPS 
data, Kalman filtering (Eubank, 2005) and moving average smoothing. Both methods 
yielded similar results for our data, seemingly contradicting the results reported in Jun 
et al (2007). However, the GPS data obtained from openstreetmap.org were captured by 
devices of unknown accuracy. Kalman filtering requires a model of movement, and not 
having solid knowledge available about the movement of the objects under study has 
probably seriously impacted on the performance of this smoothing method. Further 
experiments indicated that Kalman filtering does indeed generate superior results when 
more accurate data are available, confirming the findings of Jun et al (2007). 
Eventually, however, for reasons of practicability, we chose to use moving average 
smoothing, which is a reasonable smoothing method in the spatial domain. 

5.2.2 Global descriptors 

As mentioned before, Fig. 4 and Fig. 5 illustrate the 2-D plots of the trajectories of 
selected objects. From this figure it becomes obvious that the trajectory of the 
motorcycle (Fig. 4 a), car (Fig. 4 b), bicycle (Fig. 4 c), and pedestrian (Fig. 4 d), are 
much smoother than the trajectories of eye movement (Fig. 5). Of course, temporal 
granularity of the sampling will influence the smoothness and length of the traveled 
path. For instance, the overall character of the car and motorcycle movement 
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captured every second appears smoother and closer to the pedestrian and bicycle 
movement. However, with a lower sampling rate (e.g. every hours) the trajectory of the 
car and motorcycle movement to some degree would be probably closer to the eye 
movement captured every few milliseconds. Table 1 to Table 3 present the descriptive 
statistics for the straightness index, velocity and displacement from the previous fix (or 
step length) as some examples of the movement parameters that were computed for the 
trajectories of the selected objects of Fig. 4 and Fig. 5. 

 
 

MPO Min Max Mean Median Stddev Skewness 

Motorcycle 1.42 1.60 1.5 1.5 0.02 0.52 

Car 1.48 1.60 1.49 1.49 0.11 8.21 

Bicycle 1.07 3.3 1.5 1.5 0.08 4.21 

Pedestrian 1.03 5.8 1.5 1.5 0.16 14.40 

Eye 1 3141.6 8.77 2.60 89.69 26.99 

Table 1. Descriptive statistics for straightness index 

 
 
 

MPO Min Max Mean Median Stddev Skewness 

Motorcycle 0 35.13 31.12 32.8 4.94 -3.11 

Car 0 33.49 33.03 31.04 3.13 -3.04 

Bicycle 0 15 5.29 5.18 2.29 0.5 

Pedestrian 0 2.5 1.65 1.68 0.29 -1.97 

Eye 0 20 1.18 0.48 2.36 4.13 

Table 2. Descriptive statistics for velocity (eyes: [pixel/ms], other MPOs: [m/s]) 

 
 

MPO Min Max Mean Median Stddev Skewness 

Motorcycle 0 34.08 29.34 32.18 6.52 -1.94 

Car 0 32.83 29.39 30.75 3.88 -2.77 

Bicycle 0 17 3.34 2.69 2.48 3.34 

Pedestrian 0 2.2 1.17 1.26 0.4 1.17 

Eye 0 950 15.29 4.63 46.46 15.29 

Table 3. Descriptive statistics for displacement from the previous state  

(eyes: [pixel], and othe MPOs [m]) 
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5.2.3 Correlation analysis 

For the four selected MPOs, Table 4 presents the results for the Spearman rank 
correlation coefficients for different pairs of movement variables. The straightness 
index is not used because it is a compound index using displacement. The results 
suggest a strong positive correlation between velocity and displacement from the 
previous fix for all studied objects. Moreover, there is no correlation identified between 
acceleration and turning angle for the selected objects. Outcomes show a negative weak 
correlation between velocity and turning angle for car, motorcycle, pedestrian and 
bicycle movement. However, for eye movement almost no correlation occurs (Table 4). 

 
Correlation Motorcycle Car Bicycle Pedestrian Eye 

Velocity - acceleration 0.065 0.016 0.07 0.23 0.36 

Velocity - turning angle -0.38 -0.25 -0.25 -0.13 -0.06 

Velocity - displacement 0.99 1 1 1 0.99 

Acceleration - turning angle -0.1 0.002 0.02 0.01 0.06 

Acceleration - displacement 0.065 0.016 0.07 0.23 0.36 

Displacement - turning angle 0.38 -0.25 0.25 -0.12 0.06 

Table 4. Spearman Rank Correlation coefficients 

5.2.4 Locally extracted features 

We generated movement parameter profiles for velocity, acceleration, turning angle, 
and straightness index for our trajectory data. Using Algorithm 1 we then decomposed 
the profiles into the four classes foreseen in the algorithm. After some initial 
experiments, we found threshold values that yielded consistent results over all trajectory 
samples. For sinuosity, we have set the threshold separating low from high sinuosity at 
0.95. For deviation, we use the standard deviation of the residuals of a particular profile. 

The results of the decomposition of the movement parameter profiles for four of the 
trajectory samples are depicted in Fig. 6 and Fig. 7. Fig. 6 illustrates the results of the 
decomposition process on a sample trajectory of a motorcycle on the left and a sample 
trajectory of a car on the right (from experiments #1 and #2). Similarly, Fig. 7 shows 
the results of the decomposition process on a sample trajectory of a bicycle on the left 
and a sample trajectory of eye movement on the right (from experiment #3). In order to 
save space, we do not visualize the sample result of the decomposition of a pedestrian 
trajectory, which looks very similar to the result for the bicycle trajectory. However, as 
mentioned earlier trajectory samples of pedestrians have been included in 
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experiments #1 and #3. The individual graphs in Figures 6 and 7 represent the 
normalized profiles of velocity (Fig. 6.b and Fig. 7.b) and acceleration (Fig. 6.c and Fig. 
7.c), respectively. At the bottom of each graph the four decomposition classes are 
shown as follows: 
• Green: low sinuosity – low deviation 
• Blue: high sinuosity – low deviation 
• Red: low sinuosity – high deviation 
• Magenta: high sinuosity – high deviation 

The above results form the input for the remaining steps and will be discussed in 
Section 6. 

(a) Normalized sample trajectory (300 fixes) of motorcycle (on the left) and car (on the right) 

(b) Normalized and decomposed velocity profiles for the sample trajectories of motorcycle (on the left) and car (on the right)

(c) Normalized and decomposed acceleration profiles for the sample trajectories of motorcycle (on the left) and car (on the right)
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Fig. 6. Normalized and decomposed velocity and acceleration profiles for the sample trajectories 

of motorcycle and car 
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(a) Normalized sample trajectory (300 fixes) of bicycle (on the left) and eye movement (on the right) 

(b) Normalized and decomposed velocity profiles for the sample trajectories of bicycle (on the left) and eye movement (on the right)

(c) Normalized and decomposed acceleration profiles for the sample trajectories of bicycle (on the left) and eye movement (on the right)
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Fig. 7. Normalized and decomposed velocity and acceleration profiles for the sample trajectories 

of bicycle and eye movement 

5.2.5 Feature selection and PCA 

In our experiments, we selected a total set of 58 features from the movement 
parameters previously extracted on the global and local level from the trajectories, as 
summarized in Table 5. Following the correlation analysis conducted previously, we 
excluded displacement from the selection of features, as it correlates highly with 
velocity. From the global parameters, we further excluded turning angle, because it does 
not help to differentiate between objects. Consequently, we used three movement 
parameters (i.e. straightness index, velocity, and acceleration) to compute the mean and 
standard deviation at the global level, resulting in 6 selected global features (Table 5, 
top row). 
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Descriptors # of descriptors 

Global Mean and stddev at global level, per movement parameter (3) 6 

Mean and stddev of segment length, per decomposition class (4), per 

movement parameter (4) 

32 

Number of decomposition class changes, per movement parameter (4) 4 
Local 

Percentage of each decomposition class (4), per movement parameter (4) 16 

Table 5. Original features selected for the classification 
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(a) Experiment #1 (b) Experiment #2

(c) Experiment #3  
Fig. 8. 3-D plot of the first three principal components of the sample trajectories 

The set of local features obtained from the four movement parameter profiles shown 
in section 5.2.4 is made up of the mean and standard deviation of the segment length per 
decomposition class and per descriptor (resulting in 32 features); the number of changes 
of decomposition classes along the profile, computed for each descriptor (4 features); 
and the percentage that each decomposition class holds from the total 
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number of points, per descriptor (16 features). 

The above selected 58 features were input to a PCA to form uncorrelated linear 
combinations of the original features. Consequently, the number of features was 
reduced to 15 principal components for experiments #1 and #2 and 11 principal 
components for experiment #3, which formed the input for the trajectory classification 
step. Fig. 8 visualizes the 3-D plots of the first three principal components for the 
sample trajectories of the different objects used in these three experiments. 

5.3 Experiments –– results  

For the classification stage of the proposed methodology, we randomly selected 165 
samples of stretches consisting of 300 points from the various trajectories introduced in 
section 5.1. 115 samples from eye movement trajectories, 165 from motorcycle 
trajectories, 165 from car trajectories, 165 from bicycle trajectories, and 165 from 
pedestrian trajectories. We then ran the decomposition algorithm for all the samples to 
compute the corresponding global and local movement properties. Three experiments 
were then conducted to evaluate the trajectory classification procedure. 

The main objective of experiments #1 and #2 was to evaluate whether the proposed 
methodology could be applied in automatic detection of transportation mode. For 
experiment #1, we used 560 trajectory samples from the four pools of motorcycle, car, 
pedestrian and bicycle trajectories as a training set for SVM learning (i.e. 4 x 140 
samples). The remaining 100 samples from the four pools (i.e. 4 x 25 samples) were 
used as a testing set to evaluate the performance of the classification. The aim of this 
experiment was to evaluate how well the different types of transportation MPOs could 
be differentiated using the proposed methodology in a multi-class classification mode. 
Conversely, experiment #2 had the objective of assessing a two-class classification. For 
this experiment, we used 280 trajectory samples from the two pools of motorcycle and 
car trajectories as a training set for SVM learning (i.e. 2 x 140 samples). The remaining 
50 samples from the two pools (i.e. 2 x 25 samples) were used as a testing set to 
evaluate the performance of the classification. More specifically, in this experiment we 
intended to assess how well trajectories of motorcycles and cars, as exemplars of MPOs 
of similar speed range, could be differentiated.  

Finally, the intention of experiment #3 was to evaluate how similar (or different) 
trajectories generated by eye movement are from trajectories of non-eye objects from 
the transportation domain (i.e. motorcycles, cars, bicycles, and pedestrian) using the 
proposed methodology in a multi-class classification mode. Consequently, we 
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ran the SVM learning process with a training set consisting of 90 eye movement 
trajectories and 90 non-eye movement trajectories (i.e. 25 motorcycle, 25 car, 20 
pedestrian and 20 bicycle trajectories). We tested the classification performance using a 
testing set of 25 eye movement trajectory samples, together with 25 non-eye movement 
trajectory samples (i.e. 7 motorcycle, 8 car, 5 bicycle, 5 pedestrian).  

 

Experiment Object 
#  train 

traj. 

#  test 

traj. 

#  correct 

class 

Error of 

commission 

Error of 

omission 

Kappa 

coefficient 

% 

Correct 
class 

motorcycle 140 25 23 0.041 0.08 

car 140 25 21 0.043 0.12 

bicycle 140 25 19 0.34 0.24 
Exp. #1 

pedestrian 140 25 18 0.25 0.28 

0.76 82% 

motorcycle 140 25 23 0.042 0.08 
Exp. #2 

car 140 25 24 0.077 0.04 
0.88 94% 

Table 6. Results of the SVM classification for the experiments #1 and #2 

In order to perform the experiments, we used the LIBSVM tool (Chang & Lin, 2001). 
We applied a radial basis function (RBF) kernel with two parameters: c = 2, which is a 
penalty function for misclassified sample points of training data; and γ = 0.07, which is 
an exponent factor in the RBF function (Cristianini & Shawe-Taylor, 2000). They were 
obtained by trying out different parameter combinations and evaluating the 
classification accuracy by means of cross-validation. The results of experiments #1 and 
#2 are presented in Table 6. From experiment #3, we achieved a classification accuracy 
of 100% cleanly separating all eye movement trajectories from the non-eye trajectories 
used in this study. Thus, we refrain from presenting this result in a table.  

6 Discussion 

In this section we discuss the results presented in the previous section. We first 
compare the characteristics of the 2-D trajectories as well as their associated movement 
parameters expressed in the profiles, then discuss the results of the three classification 
experiments, and finally take a brief look at efficiency considerations. 

6.1 Global and local movement descriptors 

Trajectories 
Not surprisingly, the descriptive statistics of the straightness index and the 2-D plots 
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of the trajectories (Table 1, Fig. 4, Fig. 5) as well as the straightness index profiles for 
the trajectory samples suggest that the car movement with a mean straightness index 
value of 1.49 and standard deviation close to 0.11 represents the smoothest movements, 
while eye movement is the most unsteady movement, with a mean straightness index 
value of 8.77 and a standard deviation of 89.69.  

The 2-D plots of the exemplar motorcycle, car, bicycle and pedestrian trajectories 
(Fig. 4) suggest that the geometry of such objects with a sampling rate of one second to 
some extent is comparable to each other. However, from the further numerical analysis 
and systematic classification that we have done in experiments #1 and #2, it can be 
concluded that these four moving objects behave differently in terms of the velocity, 
acceleration and straightness index of their paths (Table 1 to Table 3; and Fig. 6 and 
Fig. 7, left side). 

 
Velocity 

As Fig. 6.b, Fig. 7.b and Table 7 show, the velocity of cars, bicycles and pedestrians 
lies in two classes of high (above 90%) and low (less than 10%) deviation from the 
median, always with low sinuosity. On the other hand, the velocity profile of 
motorcycle movement changes between all four decomposition classes. It mostly lies in 
two classes of high (72.48 %) and low (15.1%) sinuosity, with low deviation from the 
median. This means that velocity undulates very closely around the median and does 
generally not deviate greatly from the trajectory (i.e. only 5.37% of profile points are 
classified as high deviation). The results indicate that the velocity profiles of the 
bicycles and pedestrians have the least variations between classes and the highest 
proportion of low sinuosity-low deviation points. However, the velocity profiles of the 
motorcycle, car, bicycle and pedestrian trajectories have some small perturbations that 
can be attributed to the limited accuracy of the GPS and random noise. In comparison, 
the profile of eye movement velocity suddenly increases at certain points (Fig. 7.b on 
the right) when a saccade (i.e. rapid movement of the eyes) happens, although it stays 
close to the median (like the pedestrian movement) for the remaining part of the profile 
at fixation points, where the eyes fixate (Salvucci, 2000). This points to the potential of 
using our approach to detect fixations and saccades from eye-movement protocols. As 
shown in Fig. 9, long segments of low deviation indicating fixations can be nicely 
extracted from short segments of high sinuosity-high deviation with a length of only 1 
or 2 points in saccades. This behavior is distinctly different from the velocity variation 
of the other objects under study. 
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low sinuosity – 

low deviation 

high sinuosity – 

low deviation 

low sinuosity – 

high deviation 

high sinuosity – 

high deviation 

Obj# Mean Stddev 
% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

Motorcycle 28.73 6.91 72.48 7.85 6.41 15.1 2.31 0.95 5.37 2.23 0.43 1 1.67 0.58 

Car 10.95 3.07 91.27 90.67 84.18 0 0 0 8.72 13 1.41 0 0 0 

Bicycle 4.56 3.88 91.94 274 0 0 0 0 8.05 24 0 0 0 0 

Pedestrian 3.25 0.56 97.65 97 127.47 0 0 0 2.34 3.5 2.12 0 0 0 

Eye 308.34 617.03 73.87 7.42 6.80 17.59 3.18 1.40 0 0 0 8.54 2 0 

 Table 7. Summary table of the velocity profile decomposition of the sample trajectories  
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Fig. 9. Extracting saccades and fixations from trajectories of eye movement 

 
Acceleration 

In terms of the profile decomposition classes, the acceleration profiles of the five 
objects share similarities with the corresponding velocity profiles (Fig. 6, Fig. 7, Table 
8). For instance, the acceleration profile of cars (and similarly for bicycles and the 
pedestrians) mostly varies very close to its median, with only 0.33% of points showing 
a higher deviation. All profiles show a higher proportion of high sinuosity-low 
deviation points than the corresponding velocity profiles. In the case of motorcycle, car, 
bicycle and pedestrian movement, there are some small perturbations that cause higher 
sinuosity on the corresponding acceleration profiles, which are due to the accuracy of 
the GPS devices used as well as random noise. This noise could be removed by curve 
fitting to profiles (instead of simply smoothing the trajectories). In the case of the eye 
movement and motorcycle movement, it is interesting to see that despite the noise, the 
high sinuosity-high deviation points are also picked up in the acceleration profiles. For 
eye movement, the match is even perfect; some segments are slightly shorter but they 
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all occur at the same spot as in the velocity profiles. Therefore, as stated earlier, the 
proposed segmentation algorithm can be employed successfully on velocity and 
acceleration profiles of eye movement trajectories as a fixation detection method. The 
acceleration profile of the motorcycle movement shows longer periods of high deviation 
than the eye movement and a more intermittent pattern of changes between the four 
different decomposition classes than any other profile (Fig. 6 b). 

 
 

 
low sinuosity – 

low deviation 

high sinuosity – 

low deviation 

low sinuosity – 

high deviation 

high sinuosity – 

high deviation 

Obj# Mean Stddev 
% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

Motorcycle 0.002 7.4 45.97 8.68 6.45 38.59 6.67 8.05 2.01 1.75 0.5 13.42 1.97 0.16 

Car 0.04 1.3 99.32 148 207.89 0.33 1 0 0.33 1 0 0 0 0 

Bicycle 0.01 0.22 88.59 52.8 46.67 0 0 0 11.4 4.5 3.25 0 0 0 

Pedestrian 0 0.14 90.60 38.57 34.85 0.67 1.5 0.7 8.39 4.16 1.6 0.33 1 0 

Eye -0.44 41.15 70.35 7.68 6.64 23.62 2.52 1.34 0.50 1 0 5.52 1.9 0.32 

Table 8. Summary table of the acceleration profile decomposition of the sample trajectories 

 
 
Straightness index and turning angle  

The decomposition results for the straightness index profiles are not shown 
graphically, in order to save space. A summary of decomposition classes is given in 
Table 9. The results indicate that motorcycle, car, bicycle and pedestrian movement are 
very smooth, with about 98 % of the profile points assigned to the low sinuosity class. 
In the case of cars, bicycles and pedestrians the profile mostly stays close to the median 
(about 98 % in the high deviation class). However, the motorcycle profiles lie in 10 % 
of the cases in the high deviation class. In contrast, from the decomposition results it is 
obvious that the path of eye movement trajectories is more sinuous.  

By the same token, the decomposition results of the turning angle profiles (not shown 
here to save space) demonstrated that the turning angle profiles of eye movement are 
very rough and exhibit an irregular, almost violent behavior, in contrast to the turning 
angle profiles of the other objects. 
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low sinuosity – 

low deviation 

high sinuosity – 

low deviation 

low sinuosity – 

high deviation 

high sinuosity – 

high deviation 

Obj# Mean Stddev 
% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

% 

class 

Mean 

length 

Stddev 

length 

Motorcycle 1.5 0.2 89.26 53.2 56.66 0.33 1 0 10.4 2 0 0 0 0 

Car 1.5 0.15 97.99 97.67 88.99 0.67 2 0 1.34 2 1.41 0 0 0 

Bicycle 1.48 0.18 96.64 96 61.73 2.01 3 1.41 0.33 1 0 1 1.67 0.58 

Pedestrian 1.49 0.16 96.98 96.33 87.75 0.33 1 0 2.68 4 1.41 0 0 0 

Eye 5.32 9.27 54.27 5.27 4.15 35.17 3.71 2.55 0.5 1 0 10.05 1.94 0.23 

Table 9. Summary table of the straightness index profile decomposition of the sample 
trajectories 

6.2 Trajectory classification 

For experiment #1, the multi-class classification of motorcycle, car, bicycle and 
pedestrian trajectories, we achieved an overall accuracy of 82 % and a Kappa 
coefficient of 0.76 (Table 6). One of the motorcycle sample trajectories was classified 
as a car trajectory and another one was classified as a bicycle trajectory. The same 
happened in the case of car movements (3 misclassifications). The other 
misclassifications were due to pedestrian trajectories classified as bicycle trajectories, 
and vice-versa. As the discussion of movement parameter profiles above shows, these 
misclassifications were due to the fact that motorcycle and car movements on the one 
hand, and bicycle and pedestrian movements on the other hand, are indeed quite similar. 
The two confusions of motorcycle trajectories with a bicycle and a car, respectively, 
were related to movement samples at lower speed. 

For experiment #2, the motorcycle vs. car classification, we reached an overall 
accuracy of 94% and a Kappa coefficient of 0.88 (Table 6). One car movement sample 
was classified as motorcycle, and two motorcycle samples classified as car. These 
misclassifications were again due to the fact that these particular samples happened to 
fall into an extended period of low speed movement. 

For experiment #3, the eye vs. non-eye classification, we achieved an overall 
accuracy of 100 %. This is clearly due to the fact that the non-eye MPOs used in this 
experiment are lacking the typical saccadic movement patterns of eyes. Hence, we can 
conclude that generating movement parameters similar to those of other moving objects 
is not possible using eye movement data, and hence eye movement data are not suitable 
as a proxy of other movement data that are examined in this study.  

The above findings are further illustrated in Fig. 8, which shows a 3-D plot of the first 
three principal components computed on the trajectory samples used in the three 
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experiments. Fig 8.a shows how the bicycle and the pedestrian samples take the middle 
ground between the car and the motorcycle movement samples. Fig 8.b illustrates the 
separation of the car and the motorcycle movement samples. Fig 8.c then illustrates how 
the eye movement samples clearly stay apart from the non-eye movement observations 
(motorcycle, car, bicycle and pedestrian samples). 

From the outcomes of the experiments it can be concluded that the amplitude and 
variation of velocity and acceleration are the most essential features in recognizing a 
certain travel mode or object type. For instance, the following rules, which can also be 
discovered from Fig. 6 and Fig. 7, are learned by the SVM to classify the trajectories: If 
the velocity and acceleration profiles are rather smooth and mostly composed of low 
sinuosity-low deviation segments, then the profile may belong to a trajectory of a car or 
bicycle. If the velocity and acceleration profiles contain a number of points with high 
sinuosity, then they may belong to a motorcycle trajectory. If the velocity and 
acceleration profiles have a jagged geometry consisting of a set of low sinuosity-low 
deviation segments interrupted by a set of high sinuosity-high deviation points, then the 
profiles are indicating the saccadic movement of eyes. 

6.3 Efficiency 

In order to be useful for data mining our proposed methodology has to be reasonably 
efficient for massive databases or for real-time applications. Due to lack of a large 
trajectory database it was not possible to empirically assess the computational 
performance of our methodology under these conditions. Nevertheless, we would like to 
briefly touch on efficiency issues here in order to support the argument that our 
methodology indeed has the potential to be used with massive datasets or in a real-time 
setting. 

First, all parts of the methodology including the profile decomposition algorithm run 
in linear time, except the PCA and the SVM classification. Second, the training stage of 
the SVM classifier, which is known to have slow computational performance, is run 
offline and on a subset of the data. And finally, it is possible to replace the PCA and the 
SVM classifier by simpler and computationally more efficient techniques. 

 

6.4 Test data used 

The test data sets used are relatively large: 660 (4 x 165) transportation tracks for 
experiments #1 and #2, and another 115 eye movement tracks for experiment #3. We 
believe our experiments to be sufficient to establish the feasibility of the proposed 
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methodology. However, the test data are restricted to movement on overland and 
suburban roads (i.e., no urban traffic included) and they were originally sampled at a 
similar temporal interval (around 1 sec.). In order to make conclusive statements about 
the scope of applicability of the proposed methodology, the experiments would have to 
be extended to data sets of very different moving objects; to traffic movement in urban 
situations; and possibly to data that have been sampled at different temporal resolutions 
and may contain gaps. 

While such experiments still need to be carried out, we expect that the methodology 
should be capable of handling tracks with different transportation modes due to the 
decomposition of trajectories into segments of homogenous character based on change 
points (Zheng et al., 2008). Also, the decomposition algorithm used is based on simple 
principles and does not use any extra knowledge, which is why we expect it to be robust 
also for different moving object types. The performance of the decomposition, and thus 
of the overall methodology, might decrease for very short trajectories or tracks with 
similar movement parameters, for instance in congested traffic situations. However, by 
considering the history of the entire trajectories, such track sections may be classified 
more accurately. For instance, knowing the velocity characteristics in uncongested parts 
of the trajectories involved in a congestion, bicycles may be distinguished from cars or 
motorcycles. 

7 Conclusions 

We have presented a comprehensive, three-stage methodology that allows extracting 
movement parameters from the trajectories of different types of moving objects. As one 
of the application of the proposed methodology, we showed how to classify trajectories 
of unknown MPOs by similarity to the trajectories of previously learned MPOs. We 
have then conducted a series of experiments that not only demonstrated the feasibility 
of the proposed methodology but also provided interesting empirical results. Our 
experiments provide evidence about the similarities and differences that exist among 
different types of moving objects in the transportation domain. The results show that 
using our methodology we can successfully detect the mode of transport from unknown 
trajectories of people using different transportation means. It was also shown that eye 
movement data cannot be successfully used as a proxy of full-body movement of 
humans, or vehicles. The physics of movement of virtually mass-less movement 
processes, such as eye movement (and possibly also computer mouse movement), is 
very different from the movement of objects that are governed by inertia to a much 
greater extent. Nevertheless, the methodology can contribute to finding 
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the most feasible proxies for desired moving objects in various application domains 
(e.g. biology, ecology). For instance, eye movement could potentially be considered a 
proxy of some objects that have a stop-and-go movement behavior such as bees and 
butterflies. 

We see potential for future work in three directions. First, there is plenty of room for 
more experiments aiming to further exploit, enhance and consolidate the proposed 
methodology. For instance, experiments with different trajectory datasets; other MPO 
types; different transportation data (e.g. movement on urban roads); different sets of 
movement parameters; fine-tuning of the SVM classifier (e.g. kernel tuning); and other 
classification techniques (e.g. decision trees). Since we have set up the methodology in 
a streamlined, automated process, we are in a good position to conduct such further 
experiments. From the point of view of real-time processing, experiments with a 
simpler classifier than SVM, which is known to have a high computational complexity, 
may be warranted. Finally, the proposed methodology could be developed further to set 
up an automatic transport mode detection system in transportation applications.  

Second, we are interested in further exploring the method and results of movement 
parameter profile decomposition. For instance, as we discussed in section 6.1, we 
believe that there is a potential in using the decomposition algorithm as an alternative 
technique for fixation detection in the analysis of eye tracking data. Also, we are 
interested in using the results of the profile decomposition algorithm for trajectory 
similarity analysis as well as for more differentiated parameterization of movement 
simulators. 

Third, our methodology currently does not take into account the context and 
constraints that influence movement. Further studies therefore have to consider how to 
involve movement context. 
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