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Lipschitz optimization methods for fitting a sum
of damped sinusoids to a series of observations

J. W. Gillard
∗
and D. E. Kvasov

†

A general nonlinear regression model is considered in the
form of fitting a sum of damped sinusoids to a series of
non-uniform observations. The problem of parameter esti-
mation in this model is important in many applications like
signal processing. The corresponding continuous optimiza-
tion problem is typically difficult due to the high multiex-
tremal character of the objective function. It is shown how
Lipschitz-based deterministic methods can be well-suited for
studying these challenging global optimization problems,
when a limited computational budget is given and some
guarantee of the found solution is required.

AMS 2000 subject classifications: Primary 90C26,
93B30; secondary 90C56.

1. INTRODUCTION

1.1 Statement of optimization problem

Consider the general nonlinear regression problem. As-
sume that we have a series of real-valued observations
y1, . . . , yT such that

yt = η(θ, t) + εt, t = 1, . . . , T ,

where θ is an n-dimensional vector of unknown parame-
ters, η(θ, t) is a function nonlinear in θ and ε1, . . . , εT is
a series of noise terms (often assumed independently and
identically distributed random variables, with zero mean
and variance σ2). The non-uniform sampling case t = tl,
l = 1, . . . , T , can be studied similarly. Let Θ ⊂ R

n be a
parameter space so that θ ∈ Θ. Parameter estimation in the
general nonlinear regression model can be reduced to solving
the minimization problem

(1) F (θ) =
T∑

t=1

(yt − η(θ, t))2 → min
θ∈Θ

, Θ ⊂ R
n,

with the estimator θ∗ defined as

θ∗ = argmin
θ∈Θ

F (θ).

∗Corresponding author.
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This problem can be often stated as a box-constrained global
optimization problem, i. e.,
(2)
Θ= [θ−, θ+] = {θ ∈ R

n : θ−(j)≤ θ(j)≤ θ+(j), j=1, . . . , n}.

We consider the case where the function η(θ, t) has the
form

(3) η(θ, t) =

q∑
i=1

ai exp(dit) sin(2πωit+ φi), t = 1, . . . , T .

Here, q is a given integer, θ = (a, d, ω, φ) with a =
(a1, . . . , aq), d = (d1, . . . , dq), ω = (ω1, . . . , ωq) and φ =
(φ1, . . . , φq). Denote the true vector of parameters by θ(0) =
(a(0), d(0), ω(0), φ(0)) (θ(0) coincides with θ∗ in the case of
noise-free observations). The ranges for parameters ai and
di is (−∞,∞), whilst the ranges for ωi and φi are [0, 1) and
[0, π/2), respectively.

The model (3) is a very well-known model which in the
signal processing literature is called the ‘sums of damped
sinusoids’ (see, e. g., [1, 2, 6, 9, 15, 37] for some typical tech-
niques used in the signal processing field). This model is
also associated with the so-called Hankel structured low-
rank approximation problem which is described as follows.
Let X = (xi,j) be an L×K matrix such that xi,j = yi+j−1

and T + 1 = L + K. The matrix X is of Hankel struc-
ture. The Hankel structured low rank approximation prob-
lem is that of finding another Hankel matrix ‘close’ to X
(the most common instance of the problem uses the Frobe-
nius norm; see, e. g., [7, 39]) which is of some pre-specified
rank r < min(L,K). Full details describing the formal con-
nection are available, e. g., in [19, 20, 21, 40].

1.2 Description of optimization problem

In this paper, we will show that optimization problem (1)
is challenging if we consider the general model (3). We
also will consider the following two particular cases of the
model (3):

(4) η(a, ω, φ; t) =

q∑
i=1

ai sin(2πωit+ φi), t = 1, . . . , T ,

with d = (0, 0, . . . , 0)T , and
(5)

η(a, d, φ; t) =

q∑
i=1

ai exp(dit) sin(2πω
(0)
i t+φi), t = 1, . . . , T ,
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where it is assumed that the vector ω is known: ω = ω(0).
We will thus consider the following sets of parameters:

(i) θ = (a, d, ω, φ), the general case.
(ii) θ = (a, ω, φ), so that it is assumed that the vec-

tor d is known: d = d(0). In many applications, d =
(0, 0, . . . , 0)T .

(iii) θ = (a, d, φ), so that it is assumed that the vector ω is
known: ω = ω(0).

The problem (i) is a classical problem and is important in
spectral analysis (see, e. g., [18, 22, 46]) and many appli-
cations, such as magnetic resonance spectroscopy, radioas-
tronomy, antenna theory, prospecting seismology, and so on
(see, e. g., [10, 33, 29, 46]). The problem (ii) with d = 0
can be considered as a simple extension of the Fourier ex-
pansion and hence can be applied in many different fields
(see, e. g., [2, 15]). As extension of the Fourier model, it
would be especially valuable when the frequencies ωi are
not expected to necessarily be 1/k (this includes the case of
the so-called quasi-periodic signals). The problem (iii) nat-
urally appears in models where the frequencies are known
(see, e. g., [46]). A typical example would be provided by a
monthly economic activity time series where the most domi-
nant frequency is 12 supplemented with fractions 12/k with
k = 2, 3, 4, 5 and 6.

We are aware of a few papers that contain discussion
about the behaviour of the objective function (1) (see,
e. g., [34, 20, 21]). In [19, 20], the fact that the objective
function F is multiextremal has been observed; the func-
tion F was decomposed into three different components and
it was numerically demonstrated that the part of the ob-
jective function with the observation noise removed dom-
inates the shape of the objective function. The optimiza-
tion problem (1) is very difficult (even in the case q = 1
in (3)–(5)) with the objective function possessing many lo-
cal minima (see also the related discussion in [29]). Al-
though the objective function is Lipschitz-continuous (see,
e. g., [21, 29, 55, 59, 61]), it has very high Lipschitz con-
stants which increase with T , the number of observations.
Additionally, increasing T leads to more erratic objective
functions with a higher number of local minima. Adding
noise to the observed data (see, e. g., [4, 11]) increases the
complexity of the objective function (see, e. g., [5, 63]) and
moves the global minimizer away from the vector of true
parameters. Thus, efficient global optimization techniques
should be used to tackle the stated problem.

Deterministic algorithms can be well-suited for studying
the considered global optimization problems, since they are
often able to provide a solution to the problem together
with some guaranteed gap. Among them, Lipschitz-based
methods can behave particularly well with respect to other
state-of-the-art deterministic methods when a limited com-
putational budget is given and some guarantee of the found
solution is required (see, e. g., [13, 28, 29, 30, 43, 45, 54, 58,
59, 61]). We will show in this paper how these methods can
be applied for solving the problems (1)–(5).

1.3 Structure of paper

The rest of the paper is structured as follows. In the
next Section 2, some simple but important examples of the
cost functions (1) are reported and studied in order to illus-
trate the complexity of the stated identification problem (1).
In Section 3, Lipschitz-based deterministic techniques are
briefly reviewed. Their application to solving the problems
described in Section 2 is shown in Section 4. Finally, conclu-
sions and future research directions are drawn in Section 5.

2. EXAMPLES ILLUSTRATING THE
COMPLEXITY OF THE PROBLEM

2.1 Benchmark problems

In this Section, we provide a number of examples to illus-
trate the complexity of the problem (1) with the function
given by (3)–(5). Figure 1 contains plots of the objective
function for the following cases:

(a) Sine with unknown frequency only: we take q = 1 (the
simplest case) and T = 10 in (3) and consider a partic-
ular objective function of the form

(6) F (ω1) =

T∑
t=1

(yt − sin(2πω1t))
2
,

where ω(0) = ω
(0)
1 = 0.4 (see Figure 1(a)). This one-

dimensional function F (ω1) is periodic with period 1
and the minimum value F ∗ = 0 (noise-free observations
are considered for simplicity) is attained at the points

ω∗
1 = ω

(0)
1 + p (p = 0,±1,±2, . . .). The feasible domain

for ω1 can therefore be chosen as [0, 1) ⊂ R
1; in this

interval, the function F (ω1) has one global minimizer

at ω∗
1 = ω

(0)
1 and many local minimizers.

(b) We repeat the above but take a higher T = 100 (see
Figure 1(b)).
In both the cases (a) and (b), it can be easily seen that
the objective function F (ω1) is highly multiextremal
and very irregular (for the parameter settings in these
examples, the number of local minimizers increases lin-
early in T ). For T = 10, the Lipschitz constant of F (ω1)
(estimated over 10−7-grid) is approximately 432.0. For
T = 100, it becomes equal to approximately 28690.8.
The global minimizer has a very narrow attraction re-
gion and it moves away from the true parameters vec-
tor θ(0) in (3) when the observations yt are measured
with noise. Therefore, already in these relatively simple
cases (q = 1 in (3)) particular care should be taken in
the choice of global optimization algorithms to find this
global minimizer.

(c) Two sines with unknown frequencies only: we take q = 2
in (3), T = 10 noise-free observations in (1) and con-
sider the following objective function over the admissi-
ble domain ω = (ω1, ω2) ∈ [0, 1)× [0, 1):
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Figure 1. Objective functions as described in subsection 2.1.

(7) F (ω1, ω2) =
T∑

t=1

(yt − sin(2πω1t)− sin(2πω2t))
2
,

where ω
(0)
1 = 0.3, ω

(0)
2 = 0.4 (see Figure 1(c)).

The two-dimensional objective function F (ω1, ω2) is
again highly multiextremal (note its symmetry with re-
spect to permutation of the parameters). Although two
global minimizers are well-separated (in terms of the
objective function values too) from the multitude of lo-
cal minimizers, the effect of having two close frequencies
can be seen in Figure 1(c).

(d) Sine with unknown frequency, phase, and amplitude:
we consider again the optimization problem (1) defined
by the model (3) with q = 1. As (3) is quadratic in the
parameter a, it is possible (and sometimes can be use-
ful) to obtain an explicit estimator for a based on the
remaining parameters d, ω, and φ (as shown in the next
subsection 2.2), thus defining the three-dimensional ob-
jective function f(d, ω, φ) for d ∈ [−2, 2] ⊂ R

1, ω ∈
(0, 1), and φ ∈ (0, π/2). In Figure 1(d), its cross-section
(ω, φ) with d = d(0) = −0.2 in the case of T = 10 noise-
free observations is plotted, with true values a(0) = 1.0,
d(0) = −0.2, ω(0) = 0.4, and φ(0) = 0.3. A highly multi-
extremal behaviour of this three-dimensional objective
function can be again observed, especially with respect
to the frequency ω.

The described objective functions are Lipschitz-
continuous with high Lipschitz constants, essentially
multiextremal and derivable (see the next subsection 2.2).
Their evaluation is often associated (especially when a high
number T of noisy observations are given) with performing
computationally expensive numerical experiments. More-
over, noisy observations in (1) furthermore increase the
problem complexity by both shifting the global minimizer
away from the true parameters values and making unknown
the desired global minimum value F ∗ (which is equal to
F ∗ = 0 in the case of noise-free observations).

2.2 Derivatives and simplifications of the
benchmark objective functions

Let us consider the optimization problem (1) defined by
the model (3) with different unknown parameters, as de-
scribed in the previous subsection 2.1.

If q = 1 (the simplest case of one sine function in (3))
and only one frequency ω1 is unknown (the cases (a) and
(b) in subsection 2.1), the first derivative of the objective
function F (ω1) from (6) is explicitly written over ω1 ∈ [0, 1)
as

(8) F ′(ω1) = −4π

T∑
t=1

t cos(2πω1t)(yt − sin(2πω1t)).

If two sine functions (q = 2 in (3)) with two unknown
frequencies ω1 and ω2 are considered (the case (c) in sub-
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section 2.1 with F (ω1, ω2) from (7)), then

∂F

∂ω1
= −4π

T∑
t=1

t cos(2πω1t)(yt − sin(2πω1t)− sin(2πω2t)),

(9)

∂F

∂ω2
= −4π

T∑
t=1

t cos(2πω2t)(yt − sin(2πω1t)− sin(2πω2t)).

Let us finally consider the case (d) from subsection 2.1,
with q = 1 in (3) but unknown frequency, phase, and am-
plitude parameters in the dumped sinusoid (3). For brevity,
let xt = exp(dt) sin(2πωt+φ). Equation (1) may be written

(10) F (a, d, ω, φ) =

T∑
t=1

(yt − axt)
2 .

Since

∂F (a, d, ω, φ)

∂a
= −2

T∑
t=1

(yt − axt)xt ,

then we may obtain (xt �= 0 for all t = 1, . . . , T ) an ex-
plicit estimator for a, which we denote â. This estimator is
a function of the remaining parameters d, ω and φ :

â =

∑T
t=1 ytxt∑T
t=1 x

2
t

.

Substituting â into (10) (such a transformation can be used
to decrease the number of independent parameters) gives a
new objective function, which we denote f(d, ω, φ):

(11) f(d, ω, φ) =

T∑
t=1

(
yt − xt

∑T
k=1 ykxk∑T
k=1 x

2
k

)2

.

It is possible to compute the derivatives of the objective
function with respect to each of the unknown parameters,
although they cannot be always written in a neat form. Here,
we state only the first derivatives of f(d, ω, φ) with respect
to each of the unknown parameters:

(12)
∂f

∂d
= −2

T∑
t=1

{[
yt −

xt

∑T
k=1 ykxk∑T
k=1 x

2
k

]
×

⎡
⎢⎣xt

∑T
k=1 kykxk∑T
k=1 x

2
k

+
xt

∑T
k=1 ykxk(∑T
k=1 x

2
k

)2

(
t

T∑
k=1

x2
k − 2

T∑
k=1

kx2
k

)⎤⎥⎦
⎫⎪⎬
⎪⎭.

Let c
(t)
1 = t exp(dt) cos(2πωt + φ)

∑T
k=1 x

2
k −

2xt

∑T
k=1 kxk exp(dk) cos(2πωk + φ). Then,

(13)
∂f

∂ω
= −4π

T∑
t=1

{[
yt −

xt

∑T
k=1 ykxk∑T
k=1 x

2
k

]
×

⎡
⎢⎣xt

∑T
k=1 ykk exp(dk) cos(2πωk+φ)

(
∑T

k=1 x
2
k)

2
+

∑T
k=1 ykxk(∑T
k=1 x

2
k

)2 c
(t)
1

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

Let c
(t)
2 = exp(dt) cos(2πωt + φ)

∑T
k=1 x

2
k −

2xt

∑
k=1 xk exp(dk) cos(2πωk + φ). Then,

(14)
∂f

∂φ
= −2

T∑
t=1

{[
yt −

xt

∑T
k=1 ykxk∑T
k=1 x

2
k

]
×

⎡
⎢⎣xt

∑T
k=1 yk exp(dk) cos(2πωk+φ)

(
∑T

k=1 x
2
k)

2
+

∑T
k=1 ykxk(∑T
k=1 x

2
k

)2 c
(t)
2

⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

It can be shown that all the derivatives (8), (9), and (12)–
(14) are Lipschitz-continuous functions (generally, with very
high but unknown Lipschitz constants) over suitably defined
domains of the parameters.

3. LIPSCHITZ-BASED DETERMINISTIC
METHODS FOR SOLVING THE STATED
GLOBAL OPTIMIZATION PROBLEM

3.1 Deterministic and stochastic global
optimization

In the global optimization literature, numerical meth-
ods are often divided into deterministic and stochastic. De-
terministic algorithms (see, e. g., the references in [13, 45,
58, 59]) can ensure (assuming exact computations and a
sufficient run time) that after a finite time an approxi-
mation of a global minimizer will be found within a pre-
set tolerance. Stochastic methods (see, e. g., the references
in [41, 42, 60, 61, 62]) usually offer some probabilistic guar-
antees of determining the global solution. Their convergence
theory can state that the global minimizer is found in an
infinitely long run time with the probability one. In both
cases, derivative-free or derivative-based algorithms can be
constructed depending on whether the objective function is
differentiable and its derivatives can or cannot be calculated
or estimated during the search for the best combination of
the unknown parameters. Of course, the availability of the
information on derivatives (like for our problems (1)–(5) par-
ticularly described in Section 2) allows one to apply faster
and more accurate global optimization methods with respect
to the situations when such information is unavailable.

Adaptive stochastic search strategies are frequently used
for solving practical global optimization problems and are
mainly based on random sampling in the search domain.
Such techniques as adaptive random search, simulated an-
nealing, tabu search, evolution and genetic algorithms can
be cited here (see, e. g., [13, 42] for details). Stochastic
techniques can often deal with the problems described in
the Introduction in a simpler manner than the determin-
istic approaches (being also suitable for the case of noisy
observations). However, some difficulties with these meth-
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ods can occur. For example, solutions obtained by many
popular stochastic algorithms (among them are heuristic
nature-inspired methods like evolutionary algorithms, sim-
ulated annealing, etc., frequently used in practice; see, e. g.,
[13, 42, 31]) can be only local solutions to the problems, lo-
cated far from the global ones. Several restarts can also be
involved without providing an acceptable guarantee on the
found solution. This can preclude such methods from their
practical usage when accurate and guaranteed estimates of
the unknown parameters are required under some assump-
tions on the problem, yet they can be useful to tackle some
black-box problems with a lack of a priori suppositions on
the objective functions.

Several general frameworks for describing computational
schemes of global optimization methods (of both determinis-
tic and stochastic types) and for studying their convergence
properties in a unified manner have been proposed. The so-
called ‘divide-the-best’ approach DBA (see [54, 49]) can be
successfully used for this aim. In the DBA scheme, an adap-
tive partition of the parameter domain Θ ⊂ R

n from (1)
(which is a hyperinterval (2) in our problems) into sub-
domains Θk

i is considered at each iteration k. The ‘merit’
(called characteristic; see, e. g., [52, 59]) Ri of each sub-
domain for performing a more detailed exploration is cal-
culated on the basis of the information about the objective
function obtained by evaluating the function (and possibly
its derivatives) at several parameter vectors θ ∈ Θk

i . The
best (in some computational sense) characteristic estimated
over a sub-domain Θk

h corresponds to a higher possibility to
locate the global minimizer within Θk

h. Sub-domain Θk
h is,

thus, partitioned at the next iteration of the algorithm and
new function evaluations are executed, trying to improve the
current approximation of the solution to problem (1) (see,
e. g., [29, 49, 56] for details).

3.2 Lipschitz global optimization methods

To produce guaranteed estimates of the global solution
within a finite number of function evaluations, as it is re-
quired in many applied design problems (including the con-
sidered problem (1)–(5)), some assumptions on the objec-
tive function structure should be made. These suppositions
would allow one to develop a global search algorithm, able
to outperform the simple uniform grid techniques for solving
multiextremal problems (this is a well-known result in global
optimization: if no particular assumptions are made on the
objective function, any finite number of function evaluations
cannot guarantee getting close to the global minimizer).

Efficient deterministic global optimization algorithms be-
longing to the DBA class can be constructed in the frame-
work of Lipschitz global optimization (LGO). The Lipschitz
condition is realistic for many practical simulation-based
problems since in technical systems the energy of change is
always limited and, thus, the corresponding objective func-
tion (or its derivatives) has (have) bounded slopes. The LGO
algorithms work with the objective functions F (θ) from (1)

that either satisfies the Lipschitz condition over the parame-
ter space Θ with the Lipschitz constant 0 < L < ∞ (usually
unknown) or have the Lipschitz-continuous gradient with
some unknown Lipschitz constant 0 < K < ∞, i. e.,

(15) ‖∇F (θ′)−∇F (θ′′)‖ ≤ K‖θ′ − θ′′‖, θ′, θ′′ ∈ Θ ⊂ R
n.

In what follows, condition (15) will be used in the LGO
methods for solving the problem (1) since the objective func-
tion F (θ) from (1) is derivable and its gradient is Lipschitz-
continuous (see subsection 2.2).

A classical geometric interpretation of the Lipschitz con-
dition (ensuring the boundedness of the functions changes)
allows one to develop global optimization algorithms and
to prove their convergence. This interpretation lies at the
basis of the so-called geometric LGO methods (see, e. g.,
[26, 56, 50, 54]). As in surrogate-based optimization (see,
e.g., [13] for details), a geometric LGO algorithm iteratively
constructs and updates a piecewise auxiliary function built
by using an estimate of the Lipschitz constant K from (15);
it performs an evaluation of F (θ) and ∇F (θ) (the operation
of evaluating F (θ),∇F (θ) at a parameter vector θ ∈ Θ ⊂ R

n

is often called trial) at a vector corresponding to a minimum
of this auxiliary function. In certain cases, this point in R

n

is easy to find (see, e.g., [59, 55, 26]).
Since it is possible to evaluate both the objective func-

tion F (θ) and its gradient ∇F (θ) at a trial point θ ∈ Θ
from (2), more information about the problem is available
(especially, the information on its local properties expressed
by the gradient values). The usage of this information al-
lows us to obtain auxiliary functions that fit closely the goal
function and to generate a more accurate solution to the
problem.

Different geometric LGO methods based on constructing
auxiliary functions with the usage of various estimates of the
Lipschitz constant K from (15) have been proposed (see,
e. g., [13, 56, 14, 26, 27, 43, 54, 55, 58, 59]). They can be
distinguished either by the mode in which information about
the Lipschitz constant K from (15) is obtained or by the
strategy of exploration of the parameter space Θ from (2).

In particular, several ways to specify the Lipschitz con-
stant K can be considered: this constant can be given
a priori (see, e. g., [3, 12]); its adaptive estimates (local
or global) can be obtained during the search (see, e. g.,
[14, 26, 27, 35, 50, 54, 56, 59]); multiple estimates of the Lips-
chitz constant can be also used (see, e. g., [25, 27]). While for
the first two groups of methods convergence to only global
minimizers can be often ensured, the third group of meth-
ods (frequently used in practice) normally manifests the so-
called everywhere dense convergence without the possibility
to obtain guaranteed bounds on the solutions. It should be
noted that either the Lipschitz constant is known and an
LGO method is constructed correspondingly, or it is not
known but there exist a sufficiently large number of param-
eters of the considered algorithm ensuring its convergence.
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A smart balancing of local and global information during
the search, as for example, by means of the so-called lo-
cal tuning approach to estimate local Lipschitz constants,
can be useful in this connection to accelerate the algorithm
execution without compromising the problem solution (see,
e. g., [26, 32, 35, 48, 50, 54, 58, 59]).

For exploring the multidimensional parameter space, var-
ious adaptive partitioning strategies can be applied. For ex-
ample, one-point-based algorithms subsequently subdivide
the search region in smaller ones and evaluate the objective
function and its gradient at one point within each subre-
gion (see, e. g., [12, 27, 38]). Diagonal partitions that eval-
uate F (θ) and ∇F (θ) at two points within each subregion
are very interesting for practical applications with expen-
sive black-box functions (see, e. g., [45, 53, 54, 56]). More
complex partitions, based, for example, on simplices can be
also used (see, e. g., [8, 13, 43, 44, 61]), that can be useful to
tackle symmetries in the objective function (see Section 2).

Particularly, in diagonal algorithms for solving problem
(1)–(2) both the objective function F (θ) and its gradient
∇F (θ) are evaluated (independently of the problem dimen-
sion) only at the vertices corresponding to the main diagonal
[θ−i , θ

+
i ] of each hyperinterval Θi (either at both the vertices,

see, e. g., [16, 32, 45, 51, 54, 56], or at only one of them, see,
e. g., [27, 54]). Results of these trials are then used to calcu-
late the characteristics of the generated hyperintervals and,
thus, to estimate the function behavior over these hyperin-
tervals. In order to calculate the characteristic Ri of a mul-
tidimensional hyperinterval Θi, some one-dimensional char-
acteristics can be successfully used as prototypes (see, e. g.,
[17, 23, 26, 45, 54, 58, 59, 61]). They can be applied to the
one-dimensional segment being the main diagonal [θ−i , θ

+
i ]

of the hyperinterval Θi. A hyperinterval having the ‘best’
characteristic (e. g., the smallest lower bound of F (θ) over
all the hyperintervals) is subdivided (by hyperplanes pass-
ing through some point on the main diagonal) by means of a
diagonal partition strategy (as, e. g., bisection, partition 2n,
and non-redundant partition from [24, 51, 54]; see the recent
review [57] for details) and new trials are performed.

For example, in Figure 2, function trials are performed
at points θ−i and θ+i of a hyperinterval Θi. The function
F (θ) is approximated along the diagonal [θ−i , θ

+
i ] of Θi by

means of a specially constructed auxiliary function ϕi(θ̃),
θ̃ ∈ [θ−i , θ

+
i ]. The minimum value of this approximating

function estimates the lower bound of F (θ) over the seg-
ment [θ−i , θ

+
i ]. This estimate is multiplied (as graphically

indicated by arrows in Figure 2) by a coefficient in order to
be a lower estimate for F (θ) not only over the diagonal but
also over the whole multidimensional hyperinterval Θi. This
modified lower estimate is accepted as the characteristic Ri

of the hyperinterval Θi (see, e. g., [24, 51, 54, 57] for more
details).

The diagonal algorithms belong to the class of divide-the-
best methods [50] and have proved to be efficient in solving
practical problems (see, e. g., [28, 30, 29]). Two specific di-

Figure 2. Obtaining the lower bound Ri for the objective
function F (θ) with the Lipschitz gradient ∇F (θ) over
hyperinterval Θi = [θ−i , θ

+
i ] by using smooth auxiliary

function ϕi(θ̃) along the main diagonal [θ−i , θ
+
i ] of Θi.

agonal LGO methods, used in numerical experiments, are
briefly presented in the next subsection.

3.3 MultK and SmoothD methods

Among different LGO methods reviewed in the previous
subsection, a particular attention in this work is given to
two diagonal geometric LGO algorithms. They differ both in
the used partition strategies and estimates of the Lipschitz
constant for the gradient of F (θ).

The first algorithm (denoted hereafter as MultK) is
from [27]. It extends the one-dimensional LGO method [25]
using multiple estimates of the Lipschitz constant K by
means of the non-redundant one-point-based diagonal strat-
egy (see, e. g., [54, 57]). The second method (denoted here-
after as SmoothD) is from [56]. It uses smooth auxiliary
functions to estimate F (θ) over main diagonals of hyperin-
tervals (as in its one-dimensional prototype from [50]) and
is based on the non-redundant diagonal partition strategy
(see, e. g., [24, 51, 53, 54]). The first algorithm is also charac-
terized by a refined usage of the local information during its
work (enhanced by the so-called two-phase approach; see,
e. g., [53, 47, 44]), whilst the latter one is taken in its ba-
sic version that can be further improved (for example, by
adopting the local tuning technique from [32, 48, 50] or the
two-phase approach as in [27, 53, 44]).

In both the methods, the construction of a piecewise
quadratic auxiliary function along the main diagonal of
a hyperinterval is based on the Taylor expansion of F (θ)
limited to the second order term. Once a trial at vertex
θi ∈ Θi = [θ−i , θ

+
i ] is executed, the following inequality

holds for an estimate K̃ ≥ K of the Lipschitz constant K
from (15):
(16)
F (θ) ≥ F (θi) + 〈∇F (θi), (θ− θi)〉 − 0.5K̃‖θ− θi‖2, θ ∈ Θi,
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where 〈·, ·〉 is the scalar product, ‖ · ‖ is the Euclidean norm
in R

n.
In the context of the diagonal methods, the directional

derivative F ′(θi) evaluated at a vertex θi along the main
diagonal [θ−i , θ

+
i ] of Θi (i. e., either θi = θ−i or θi = θ+i ) can

be also used instead of the gradient vector ∇F (θi):

(17) F ′(θi) =

⎛
⎝ n∑

j=1

∂F (θi)

∂θ(j)
(θ+i (j)− θ−i (j))

⎞
⎠ /Δi,

where

Δi = ‖θ+i − θ−i ‖ =

√√√√ n∑
j=1

(θ+i (j)− θ−i (j))
2

is the length of the main diagonal of hyperinterval Θi ⊂ Θ,
n is from (2).

Since the exact Lipschitz constant K for the gradient
of F (θ) (or its valid overestimate) can be unknown in the
stated global optimization problem, a set of possible esti-
mates for K from zero to infinity is used in the MultK
method, thus introducing a set of nondominated hyperin-
tervals (i. e., hyperintervals with the smallest characteristics
for a particular estimate K̃ of the Lipschitz constant K in
(16)). In terms of the geometric LGO approach, this means
that theMultKmethod uses during its work a series of non-
smooth (discontinuous) piecewise quadratic auxiliary func-
tions. The usage of multiple estimates of K simplifies the
method scheme (in fact, due to this simplicity, algorithms
based on the similar idea of using a variety of estimates of
the Lipschitz constant for a Lipschitz objective function are
very popular in derivative-free global optimization; see, e. g.,
the references in [13, 36]) but does not allow one to obtain a
meaningful stopping criterion for this method. The MultK
method stops when a preset trials budget is depleted and no
guarantee on the goodness of a solution is provided unless a
very high number of trials is allowed (similar behavior is in-
trinsic to some widely used nature-inspired metaheuristics;
see, e. g., [13, 42, 31]).

The following theorem from [27] establishes the every-
where dense convergence of trial points generated by the
MultK method.

Theorem 3.1. For any vector θ ∈ Θ and any δ > 0 there
exist an iteration number k(δ) ≥ 1 and a trial point θ′ =
θi(k), k > k(δ), generated by the MultK method with the
infinite trial budget, such that ‖θ − θ′‖ < δ.

In the SmoothD method, the unique estimate K̃ of the
Lipschitz constant K from (15) is used at each iteration to
construct smooth piecewise quadratic auxiliary functions as
it follows from (16) (see the function ϕi(θ̃) in Figure 2):

(18) K̃ =

{
r maxi K̂i, if maxi K̂i > ξ = 10−6,
r ξ, otherwise,

where r > 1 is the reliability parameter of the method, ξ
is a small positive value (it ensures the correct algorithm
execution when the values K̂i are too small), and K̂i are
calculated as

K̂i =
|2(F (θ−i )− F (θ+i )) + (F ′(θ−i ) + F ′(θ+i ))Δi|+Di

Δ2
i

,

with F ′(θ−i ), F
′(θ+i ) and Δi from (17) and

Di = {[2(F (θ−i )− F (θ+i )) + (F ′(θ−i ) + F ′(θ+i ))Δi]
2

+(F ′(θ+i )− F ′(θ−i ))
2Δ2

i }
1
2

(the local tuning technique can be also used to estimate local
Lipschitz constants for the objective gradient in different
sub-regions; see, e. g., [50, 59, 35, 58]).

The reliability parameter r from (18) controlling the esti-
mate K̃ of the Lipschitz constantK influences the algorithm
performance. Its higher values increase the method reliabil-
ity. As this parameter decreases, the search rate increases,
but the probability of convergence to a point different from
a global minimizer of F (θ) grows as well. Theoretical and
experimental suggestions on an appropriate choice of this
parameter are given in [56].

The SmoothD method has its internal probative stop-
ping criterion: the method stops when the volume (or the
length of the main diagonal as in [56]) of a hyperinterval
with the smallest characteristic becomes smaller than the
required accuracy related to a predefined constant ε > 0. In
this case, a guarantee on the obtained solution can be given
as confirmed by the following theoretical result from [56]:

Theorem 3.2. For any function F (θ) with the gradient
satisfying the Lipschitz condition (15) with the constant
K, 0 < K < ∞, there exists a value r∗ of the reliability
parameter r from (18) such that for any r ≥ r∗ the in-
finite (ε = 0 in the method stopping criterion) sequence of
trial points, generated by the SmoothD method during min-
imization of F (θ), will converge only to the global minimiz-
ers of F (θ).

In the next Section, the performance of both the meth-
ods while tackling the problem (1)–(5) is illustrated on the
benchmark objective functions from Section 2.

4. NUMERICAL EXAMPLES AND
SIMULATION STUDY

In this section, we present results of numerical experi-
ments performed with the methods MultK and SmoothD

on the benchmark functions from subsection 2.1 to illustrate
the performance of LGO algorithms on problems (1)–(5).

Closed admissible domains Θ from (2) were considered
for all problems. Since in the case of noise-free benchmark
problems the solutions are known (θ∗ = θ0 in (1)), a particu-
lar problem from subsection 2.1 was considered to be solved
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Table 1. Solutions to benchmark problems from
subsection 2.1 obtained by the MultK and SmoothD

methods

F (θ) MultK SmoothD

(a)
ω∗
1 ≈ 0.400000
# trials = 43

ω∗
1 ≈ 0.400000

# trials = 31 (12)

(b)
ω∗
1 ≈ 0.400000

# trials = 170
ω∗
1 ≈ 0.400000

# trials = 153 (63)

(c)
ω∗
1 ≈ 0.299040

ω∗
2 ≈ 0.400549

# trials = 204

ω∗
1 ≈ 0.300412

ω∗
2 ≈ 0.399177

# trials = 321 (231)

(d)

d∗ ≈ −0.222222
ω∗ ≈ 0.395062
φ∗ ≈ 0.310123
# trials = 1449

d∗ ≈ −0.222222
ω∗ ≈ 0.395062
φ∗ ≈ 0.290741

# trials = 4478 (1511)

by the MultK method if it generated a trial point θ′ in an
ε-neighborhood of θ∗ (precisely, θ′ should be inside a hy-
perinterval with a vertex θ∗ having the volume smaller than
the volume of the initial hyperinterval Θ from (2) multiplied
by ε; see, e. g., [27, 29] for more details). In the case of real-
life noisy problems, this method can be stopped (as often
adopted in popular metaheuristic algorithms, see, e. g., [31])
when a prescribed number of trials is reached: the current
best value is thus taken as a solution to the problem.

On the contrary, the SmoothD method was stopped by
its internal stopping rule related to an accuracy coefficient ε,
as described in subsection 3.3 (although, observations of the
first successful trial were performed for this algorithm too,
as for the MultK method). In order to provide a guarantee
on the found solution to a problem, the SmoothD method
executed a number of iterations after a ‘good’ (successful)
estimate of the global minimum F ∗ was obtained during the
search (see, e. g., [56, 54] for more details).

In the experiments performed, the accuracy coefficient ε
was taken at least equal to 10−6, that can be often consid-
ered an acceptable accuracy in practice (see, e. g., [29, 31]).
The balancing parameter equal to 10−4 was used in the
MultK method (this parameter prevents the algorithm
from subdividing too small hyperintervals; see, e. g., [13,
44]). The reliability parameter r in the SmoothD method
was set close to 1.1 (see [56] for the related discussion).

Results of numerical experiments with the two methods
on the problems from subsection 2.1 are reported in Table 1
where for all the cases both the found solution and the num-
ber of generated trial points are given. For the SmoothD

method, the numbers of the first successful trials are also in-
dicated in parentheses. It can be seen from this Table that
the found parameters were quite accurate and were deter-
mined by both the methods within a very limited budget
of trials. It is important to highlight that the values in the
third column of Table 1 were obtained by the SmoothD

method after having verified its internal probative stopping
criterion, what is significant from the practical point of view.

Figure 3. Distribution of trial points when solving
one-dimensional problems (a) and (b) F (ω1) from

subsection 2.1.

Trial points generated by both the methods when solving
the benchmark problems from subsection 2.1 are reported in
Figures 3–5 together with the objective function contours.
Convergence of the sequences of trial points generated by
the methods to the global minimizers can be thus evidenced
and differences between the two considered stopping criteria
can be observed.

For example, the situations when the MultK and the
SmoothD methods generated the first trial point in an ε-
neighborhood of the known global minimizer of the two-
dimensional function F (ω1, ω2) from (7) are illustrated in
Figures 4(a) and 4(c), respectively. Recall that such an ar-
tificial stopping rule (applicable for benchmark problems)
cannot be used in practical real-life problems. In order to
evaluate the real behaviour of the methods, more trials are
needed. For the MultK, this can be done either by allow-
ing the method to run until achieving some computational
budget, or (equivalently) by decreasing the accuracy coeffi-
cient ε. For the SmoothD method, it is enough to allow the
method to stop due to its internal criterion. Both the sit-
uations are reported in Figures 4(b) and 4(d), respectively.
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Figure 4. Distribution of trial points when solving
two-dimensional problem (c) F (ω1, ω2) from (7).

Figure 5. Distribution of trial points when solving
three-dimensional problem (d) f(d, ω, φ) from (11).
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Note that trial points were concentrated around global min-
imizers (0.3, 0.4) and (0.4, 0.3) of this two-dimensional func-
tion F (ω1, ω2) which is symmetric in this case with respect
to permutation of its arguments ω1 and ω2. Closer were the

frequencies ω
(0)
1 and ω

(0)
2 , less trials were needed to locate

the best parameters. LGO algorithms that are able to make
use of the symmetries in the objective function (as, e. g., sim-
plicial partitioning methods; see [44, 43, 61]) could be more
advantageous for optimizing such particular functions.

Similar conclusions with regard to the methods’ per-
formance can be also given in the case of the three-
dimensional benchmark function f(d, ω, φ) from (11). Its
two-dimensional cross-section (ω, φ) for the true parameter
d(0) = −0.2 with trial points generated (and projected to
the taken cross-section) by the two methods at their dif-
ferent stages is reported in Figure 5. The importance of
the demonstrative phase of the SmoothD method (resulted
therefore more reliable algorithm than the MultK method
on the considered problems) can be particularly seen from
Figures 5(c) and 5(d).

Finally, Figures 6(a) and 6(b) report realizations of obser-
vations yt and the corresponding true and reconstructed sig-
nals from (3) in the case of benchmark problems (c) and (d)
from subsection 2.1, respectively (the case of benchmark
problems (a) and (b) is trivial since their optimal value ω∗

1

was determined by the methods exactly up to the seventh
decimal point). It can be observed how the reconstructed
signal fitted closely the true one. All the optimal parame-
ters produced by the two LGO methods can be (and should
be) further improved by a specific local optimization pro-
cedure (see, e. g., [13]), thus approaching the true signals
even better.

5. CONCLUSIONS

In this paper, a classical parameter estimation problem
in nonlinear regression models has been considered as a
global optimization problem. Several examples of the ob-
jective functions stated to fit sums of dumped sinusoids to
series of observations have been particularly examined to il-
lustrate the complexity of this identification problem. For its
study, the usage of deterministic global optimization tech-
niques has been proposed, as they can often provide solu-
tions to these difficult problems together with some guar-
anteed gaps. Particularly, some promising Lipschitz-based
methods have been briefly described and successfully ap-
plied to determine the solutions to the analyzed problems.
A more detailed numerical comparison of the considered de-
terministic methods with other state-of-the-art techniques
(including heuristic nature inspired algorithms widely used
in practice) on extended general instances of the parameter
estimation problem could be a useful and interesting direc-
tion of future research. The problem considered is closely re-
lated to Hankel structured low rank approximation, which is
known to be a difficult problem. Hence, efficient and robust
optimization methods which can tackle problems in this area

Figure 6. Plots of observations yt (signed by +), true signals
(dotted lines), and the reconstructed signals (solid lines)

estimated by the SmoothD method for benchmark problems.

are desired. It is hoped that this paper has gone some way
to describe potential options.
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[61] Zhigljavsky, A. and Žilinskas, A. (2008). Stochastic Global
Optimization. Springer Optimization and Its Applications 9,
Springer, New York.
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