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Abstract

We introduce a non-homogeneous fractional Poisson process by replacing
the time variable in the fractional Poisson process of renewal type with an ap-
propriate function of time. We characterize the resulting process by deriving
its non-local governing equation. We further compute the first and second mo-
ments of the process. Eventually, we derive the distribution of arrival times.
Constant reference is made to previous known results in the homogeneous case
and to how they can be derived from the specialization of the non-homogeneous
process.

Keywords:
Fractional point processes; Lévy processes; Time-change; Subordination.

1. Introduction

There are several different approaches to the concept of fractional (homoge-
neous) Poisson process (FHPP). The renewal approach consists in generalizing
the characterization of the Poisson process as a counting process related to the
sum of independent and identically distributed (i.i.d.) non-negative random
variables, where, instead of assuming that these random variables follow the
exponential distribution, one assumes that they have the Mittag-Leffler dis-
tribution. Explicitly, if {Ji}∞i=1 is a sequence of i.i.d. non-negative random
variables (with the meaning of inter-event durations), one can define the epochs

Tn =
n∑

i=1

Ji, (1.1)

and the counting process

N(t) = max{n : Tn ≤ t}. (1.2)

In this renewal context, for α ∈ (0, 1], if one chooses

FJ(u) = P{J ≤ u} = 1− Eα(−tα), (1.3)

where Eα(z) is the one-parameter Mittag-Leffler function defined as

Eα(z) =
∞∑

n=0

zn

Γ(αn+ 1)
, (1.4)
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one can define the counting process N(t) as a fractional homogeneous Poisson
process. This distribution was used in the framework of queuing theory in
Gnedenko and Kovalenko (1968), where it was not explicitly recognized that
it is the limiting distribution of thinning iterations starting from a power-law
distribution of {Ji}∞i=1, and in Khinchin (1969). The renewal approach fully
characterizes a specific process and was used in Mainardi et al. (2004). Among
the others, the process defined above was studied in Beghin and Orsingher (2009,
2010), Meerschaert et al. (2011), Politi et al. (2011). In particular, Beghin and
Orsingher (2009, 2010) developed the renewal approach to FHPP and proved
that its one-dimensional distributions coincide with the solution to the fractional
Poisson differential-difference equations.

Indeed, one can show that the counting probabilities fx(t) = P{N(t) = x}
obey the following governing equation

Dα
t fx(t) = −fx(t) + fx−1(t), (1.5)

with appropriate initial conditions, where the operator Dα
t is the fractional

Caputo-Djrbashian derivative defined below in (2.13). The governing equa-
tion approach was originally developed in Repin and Saichev (2000) and Laskin
(2003). Parameter estimation for the fractional Poisson distribution is studied
in Cahoy et al. (2010). This approach does not uniquely define a stochastic pro-
cess, however, as explicitly shown in Beghin and Orsingher (2009). In fact, the
solutions of the governing equation only give the one-point counting distribution
and nothing is said on all the other finite-dimensional distributions.

A third approach to FHPP is using the inverse subordinator as in Meer-
schaert et al. (2011). It can be shown that a classic Poisson process coincides
in law with an FHPP, in which the time variable is replaced by an indepen-
dent inverse stable subordinator. This result unifies the two main approaches
discussed above.

For the sake of completeness, we must mention a further approach to frac-
tional Poisson processes. This consists in replacing the Gaussian measure in the
definition of fractional Brownian motion with the Poisson counting measure.
This integral representation method was developed by Wang and Wen (2003),
Wang et al. (2006) and Wang et al. (2007). For other aspects of this approach,
the reader is referred to Biermé et al. (2013) and Molchanov and Ralchenko
(2015a,b).

In this paper, we introduce a fractional non-homogeneous Poisson process
(FNPP) following the approach of replacing the time variable in a Poisson count-
ing process N(t) with an appropriate function of time Λ(t) in order to get the
non-homogeneous process N(Λ(t)) and further replacing time with Yα(t), the
inverse stable subordinator, as specified in definition (2.11). In other words, we
discuss a time-transformed non-homogeneous Poisson process.

2. Definition and marginal distributions

Let Lα = {Lα(t), t ≥ 0}, be an α-stable subordinator with Laplace exponent
φ(s) = sα, 0 < α < 1, s ≥ 0, that is log (E [exp(−sLα(t))]) = −tφ(s).

Then the inverse stable subordinator (see e.g. Bingham, 1971)

Yα(t) = inf{u ≥ 0 : Lα(u) > t} (2.1)
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has density (see e.g. Meerschaert and Straka, 2013; Leonenko and Merzbach,
2015)

hα(t, x) =
t

αx1+ 1
α

gα

(
t

x
1
α

)
, x ≥ 0, t ≥ 0, (2.2)

where gα(z) is the density of Lα(1) given by

gα(z) =
1
π

∞∑

k=1

(−1)k+1 Γ(αk + 1)
k!

1
zαk+1

sin(πkα)

=
1
z
W−α,0

(
− 1
zα

)
, z > 0. (2.3)

Above, we used Wright’s generalized Bessel function

Wγ,β(z) =
∞∑

k=0

zk

Γ(1 + k)Γ(β + γk)
, z ∈ C, γ > −1, b ∈ R

Let N = {N(t), t ≥ 0} be a non-homogeneous Poisson process (NPP) with
intensity function λ(t) : [0,∞) −→ [0,∞). We denote for 0 ≤ s < t

Λ(s, t) =
∫ t

s

λ(u)du, (2.4)

where the function Λ(t) = Λ(0, t) is known as rate function or cumulative rate
function. Thus, N is a stochastic process with independent, but not neces-
sarily stationary increments. Let 0 ≤ v < t. Then the Poissonian marginal
distributions of N

px(t, v) = P{N(t+ v)−N(v) = x}

=
e−(Λ(t+v)−Λ(v))(Λ(t+ v)− Λ(v))x

x!

=
e−Λ(v,t+v)Λ(v, t+ v)x

x!
, x = 0, 1, 2, . . . , (2.5)

satisfy the following differential-difference equations:

d
dt
px(t, v) = −λ(t+ v)px(t, v) + λ(t+ v)px−1(t, v), x = 0, 1, 2, . . . , (2.6)

with initial conditions

px(0, v) =
{

1, x = 0
0, x ≥ 1 (2.7)

and p−1(t, v) ≡ 0. For notational convenience define px(t) := px(t, 0).
If λ(t) = λ > 0 is a constant, we obtain the homogeneous Poisson process

(HPP) with intensity λ > 0. We denote this process by Nλ(t), t ≥ 0. Observe
that

N(t) = N1(Λ(t)), t ≥ 0. (2.8)

Remark 1. It can be verified that the FHPP belongs to the class of Cox
processes (or doubly stochastic Poisson processes or mixed Poisson processes)
(see Kingman, 1964, for a definition). This can be done by using a results in
(Yannaros, 1994) which we will state here for the readers’ convenience:

3



Lemma 1. An ordinary renewal process whose interarrival distribution function
FJ satisfies

FJ(t) = 1−
∫ ∞

0

e−txdV (x), (2.9)

where V is a proper distribution function with V (0) = 0 is a Cox process.

The proof of this result uses a lemma due to Kingman (1964), which is
formulated for the Laplace transform of FJ :

Lemma 2. An ordinary renewal process with interarrival distribution function
FJ is a Cox process if and only if the Laplace transform F̂J of FJ satisfies

F̂J(s) =
1

1− ln(Ĝ(s))
, (2.10)

where Ĝ is the Laplace transform of an infinitely divisible distribution function
G.

Both lemmata are powerful tools to check whether a renewal process also
belongs to the class of Cox processes. Especially, Lemma 2 gives a full character-
ization of renewal Cox processes via their Laplace transform. In the case of the
FHPP the conditions of both lemmata can be verified. We assume λ = 1 in this
remark. To this end, as mentioned in the introduction, recall that the interar-
rival times J of the FHPP can be expressed by the one-parameter Mittag-Leffler
function (see Politi et al., 2011):

FJ(t) = 1− Eα(−tα).

Moreover, it can be found in Mainardi and Gorenflo (2000) that
∫ ∞

0

e−rtKα(r)dr = Eα(−tα), where Kα(r) =
1
π

rα−1 sin(απ)
r2α + 2rα cos(απ) + 1

.

For 0 < α < 1 the function Kα(r) is positive and qualifies as a probability
density as

∫∞
0
Kα(r)dr = 1. Therefore, the function V (x) :=

∫ x
0
Kα(r)dr fulfills

the conditions of Lemma 1.
Alternatively, it is also possible to apply Lemma 2: In Meerschaert et al.

(2011) it is proven that

F̂J(s) =
1

1 + sα
=

1
1− ln(exp(−sα))

.

As exp(−sα) is the characteristic function of the distribution of the α-stable
subordinator at time t = 1, Lemma 2 may be applied. 4

We define the FNPP as

Nα(t) = N1(Λ(Yα(t))), t ≥ 0, 0 < α < 1, (2.11)

where Yα is the inverse stable subordinator, independent of the HPP N1. It
follows that for λ(t) = λ > 0, the FNPP coincides with the FHPP discussed by
Meerschaert et al. (2011). In this case the marginal probabilities

pαx(t) = P{Nλ(Yα(t)) = x}

=
∫ ∞

0

e−λu
(λu)x

x!
hα(t, u)du = (λtα)xEx+1

α,αx+1(−λtα), (2.12)
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where the three-parameter generalized Mittag-Leffler function is defined as fol-
lows

Eca,b(z) =
∞∑

j=0

(c)jzj

j!Γ(aj + b)
,

and (c)j = c(c − 1)(c − 2) . . . (c − j + 1) (also known as Pochhammer symbol)
and a > 0, b > 0, c > 0, z ∈ C. This general form was introduced by Prabhakar
(1971). As special cases we have for c = 1 the two-parameter Mittag-Leffler
function Ea,b and for b = c = 1 the one-parameter Mittag-Leffler function Ea
(see for example Haubold et al., 2011).

We will use the fractional Caputo-Djrbashian derivative which is defined as

Dα
t f(t) =

1
Γ(1− α)

∫ t

0

df(τ)
dτ

dτ
(t− τ)α

, 0 < α < 1. (2.13)

Its Laplace transform is

L{Dα
t f}(s) = sαL{f}(s)− sα−1f(0+), (2.14)

Note that the Laplace transform of hα(t, x), given in (2.2), is of the form

h̃α(s, x) = sα−1e−xs
α

, (2.15)

Equations (2.13), (2.14) and (2.15) can be found in Meerschaert and Sikorskii
(2012, p. 34).

Beghin and Orsingher (2009, 2010) showed that the functions given in (2.12)
satisfy the following fractional differential-difference equations:

Dα
t p

α
x(t) = −λ(pαx(t)− pαx−1(t)), x = 0, 1, 2, . . . (2.16)

with initial condition

pαx(0) =
{

1, x = 0
0, x ≥ 1, and pα−1(t) ≡ 0.

In the next section we will prove a similar result using the FNPP that includes
both the NPP and the FHPP as special cases. In particular, we look for a
stochastic process whose marginal distributions give rise to a governing equation
that generalizes both equations (2.6) and (2.16).
To this end, it is useful to consider the stochastic process {I(t, v), t ≥ 0} for
v ≥ 0 as

I(t, v) = N1(Λ(t+ v))−N1(Λ(v))

to which we will refer as the increment process of the NPP. The fractional
increment process of the NPP is given by

Iα(t, v) := I(Yα(t), v) = N1(Λ(Yα(t) + v))−N1(Λ(v)). (2.17)

and its marginals will be denoted as

fαx (t, v) := P{N1(Λ(Yα(t) + v))−N1(Λ(v)) = x}, x = 0, 1, 2, . . .

=
∫ ∞

0

px(u, v)hα(t, u)du

=
∫ ∞

0

e−Λ(v,u+v)Λ(v, u+ v)x

x!
hα(t, u)du. (2.18)
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For the FNPP the marginal distributions are given by

fαx (t, 0) = P{Nα(t) = x} =
∫ ∞

0

px(u)hα(t, u)du

=
∫ ∞

0

e−Λ(u)Λ(u)x

x!
hα(t, u)du, x = 0, 1, 2, . . . (2.19)

For shorthand notation we write fαx (t) := fαx (t, 0).

Remark 2. Incidentally, this model includes Weibull’s rate function:

Λ(t) =
(
t

b

)c
, λ(t) =

c

b

(
t

b

)c−1

, c ≥ 0, b > 0,

the Makeham’s rate function

Λ(t) =
c

b
ebt − c

b
+ µt, λ(t) = cebt + µ, c > 0, b > 0, µ ≥ 0

and many others.

3. Governing fractional differential-integral-difference equations

We are now ready to derive the governing equation for the fractional incre-
ment process. This will lead us to derive a governing equation for the marginal
distribution (2.19) of the FNPP.

3.1. Governing equations
Theorem 1. Let Iα(t, v) be the fractional increment process defined in (2.17).
Then, its marginal distribution given in (2.18) satisfies the following fractional
differential-integral equations

Dα
t f

α
x (t, v) =

∫ ∞

0

λ(u+ v)[−px(u, v) + px−1(u, v)]hα(t, u)du, x = 0, 1, . . . ,

(3.1)
with initial condition

fαx (0, v) =
{

1, x = 0,
0, x ≥ 1 (3.2)

and fα−1(0, v) ≡ 0, where px(u, v) is given by (2.5) (with p−1(u, v) = 0) and
hα(t, u) is given by (2.2).

Proof. The initial conditions are easily checked using the fact that Yα(0) = 0 a.s
and it remains to prove (3.1). Let fαx be defined as in Equation (2.18). Taking
the characteristic function of fαx and the Laplace transform w.r.t. t yields

f̄αy (r, v) =
∫ ∞

0

p̂y(u, v)h̃α(r, u)du

=
∫ ∞

0

exp(Λ(v, u+ v)(eiy − 1))rα−1e−ur
α

du.
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Using integration by parts we get

f̄αy (r, v) = rα−1

[
− 1
rα

e−ur
α

exp(Λ(v, u+ v)(eiy − 1))
∣∣∣∣
∞

u=0︸ ︷︷ ︸
=1

+
1
rα

∫ ∞

0

(
d

du
Λ(v, u+ v)

)
(eiy − 1) exp(Λ(v, u+ v)(eiy − 1))e−ur

α

du
]

=
1
rα

[
rα−1 + (eiy − 1)

∫ ∞

0

λ(u+ v) exp(Λ(v, u+ v)(eiy − 1))rα−1e−ur
α

du
]
.

Now we are able to calculate the Caputo-Djrbashian derivative in Laplace space
using Equation (2.14). Note that fαy (0+, v) = 1 as Yα(0) = 0 a.s.

rαf̄αy (r, v)− rα−1

= (eiy − 1)
∫ ∞

0

λ(u+ v) exp(Λ(v, u+ v)(eiy − 1))rα−1e−ur
α

du

= (eiy − 1)
∫ ∞

0

λ(u+ v)p̂y(u, v)h̃α(r, u)du.

Inversion of the Laplace transform yields

Dα
t f̂

α
y (t, v) = (eiy − 1)

∫ ∞

0

λ(u+ v)p̂y(u, v)hα(t, u)du

and finally, by inverting the characteristic function, we obtain

Dα
t f

α
x (t, v) =

∫ ∞

0

λ(u+ v)[−px(u, v) + px−1(u, v)]hα(t, u)du. (3.3)

which was to be shown.

Directly from Theorem 1 setting v = 0 one gets

Corollary 1. Let Nα(t), t ≥ 0, 0 < α < 1 be a FNPP given by (2.11).
Then, its marginal distributions shown in (2.19) satisfy the following fractional
differential-integral equations:

Dα
t f

α
x (t) =

∫ ∞

0

λ(u)[−px(u) + px−1(u)]hα(t, u)du, (3.4)

with initial condition

fαx (0) =
{

1, x = 0,
0, x ≥ 1 (3.5)

and fα−1(0) ≡ 0, where px(u) is given by (2.5) and hα(t, u) is given by (2.2).

3.2. Special cases
It is useful to consider two special cases of the governing equations derived

above, the FHPP and the NPP.
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(i) To get back to the FHPP we choose λ(t) = λ > 0 as a constant to get

Dα
t f

α
x (t) = λ

∫ ∞

0

[−px(u) + px−1(u)]hα(t, u)du

= −λfαx (t) + λfαx−1(t) (3.6)

which is identical with (2.16). Indeed for constant λ in (2.19) we get

fαx (t) =
∫ ∞

0

e−uλ(λu)x

x!
hα(t, u)du = pαx(t),

i.e. fαx coincides with the marginal probabilities of the FHPP.

(ii) To obtain the case of the NPP, we consider α = 1 for which we have
h̃1(s, u) = e−us and its inverse Laplace transform is the delta distribu-
tion: L−1{h̃}(t, u) = δ(t− u). By substituting this in Equation (2.18) we
formally get

f1
x(t, v) =

∫ ∞

0

px(u, v)δ(t− u)du = px(t, v),

which means that f1
x coincides with the marginal probabilities px of the

NPP.
Moreover, the proof of Theorem 1 is still valid and by substituting Dirac’s
delta distribution in Equation (3.1) we get for t ≥ 0

D1
t px(t, v) = D1

t f
1
x(t, v) =

∫ ∞

0

λ(u+ v)[−px(u+ v) + px−1(u, v)]δ(t− u)du =

λ(t+ v)[−px(t, v) + px−1(t, v)] (3.7)

which coincides with (2.6).

4. Moments and covariance structure

As a further characterization of the FNPP, we now give the first moments
of its distribution, namely the expectation, the variance and the covariance.

4.1. Moments
For fixed t > 0, the moments of the Poisson distribution with rate Λ(t) can

be calculated via the derivatives of its characteristic function. However, the
most explicit formula for higher moments of the Poisson distribution is given by

E[[N(t)]k] =
k∑

i=1

Λ(t)i
{
k
i

}
, (4.1)

where
{
k
i

}
are the Stirling numbers of second kind:

{
k
i

}
=

1
i!

i∑

j=0

(−1)i−j
(
i
j

)
jk.
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Equation (4.1) is the non-homogeneous generalization of Dobiński formula (see
Dobiński, 1877). Polynomials of the form (4.1):

qk(x) =
k∑

i=1

xi
{
k
i

}

are known as Touchard polynomials, exponential polynomials or Bell polynomi-
als. Note that the first moment is

E[N(t)] = Λ(t)

and the second moment is given by

E[[N(t)]2] = Λ(t) + Λ(t)2,

which we will use later for the calculation of the expectation, variance and
covariance.
Thus for the higher moments of the subordinated process we have

E[[N(Yα(t))]k] = E[E[[N(Yα(t))]k|Yα(t)]] =
∫ ∞

0

E[[N(x)]k]hα(t, x)dx

=
∫ ∞

0

k∑

i=1

Λ(x)i
{
k
i

}
hα(t, x)dx = E

[
k∑

i=1

Λ(Yα(t))i
{
k
i

}]
. (4.2)

Expectation and variance immediately follow from 4.2. The expectation is

E[N(Yα(t))] = E[Λ(Yα(t))]. (4.3)

Then, using
E[[N(Yα(t))]2] = E[Λ(Yα(t))] + E[Λ(Yα(t))2], (4.4)

we find

Var[N(Yα(t))] = E[[N(Yα(t))]2]−E[[N(Yα(t))]]2 = E[Λ(Yα(t))] + Var[Λ(Yα(t))].
(4.5)

4.2. Covariance
Let s, t ∈ R+ and w.l.o.g. assume s < t. Then

E[N(s)N(t)] = E[N(t)−N(s)]E[N(s)] + E[N(s)2]

= Λ(s, t)Λ(0, s) + Λ(0, s)2 + Λ(0, s)

and thus

Cov(N(s), N(t)) = E[N(s)N(t)]− E[N(s)]E[N(t)]

= Λ(s, t)Λ(0, s) + Λ(0, s)2 + Λ(0, s)− Λ(0, s)Λ(0, t)
= Λ(0, s)[Λ(s, t) + Λ(0, s)− Λ(0, t)︸ ︷︷ ︸

=−Λ(s,t)

+1] = Λ(0, s).

The same calculation can be done for the case t < s. In short, both cases can
be summarized in the following way:

Cov(N(s), N(t)) = Λ(0, s ∧ t). (4.6)
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Proposition 2. By the law of total covariance, one finds:

Cov[N(Yα(s)), N(Yα(t))] = E[Cov[N(Yα(s)), N(Yα(t))|Yα(s), Yα(t)]]
+ Cov[E[N(Yα(s))|Yα(s), Yα(t)],E[N(Yα(t))|Yα(s), Yα(t)]]
= E[Λ(0, Yα(s ∧ t))] + Cov[Λ(Yα(s)),Λ(Yα(t))] (4.7)

Proof. For the first term, we have

E[Cov[N(Yα(s)), N(Yα(t))|Yα(s), Yα(t)]] = E[E[N(Yα(s))N(Yα(t))]|Yα(s), Yα(t)]
− E[N(Yα(s))|Yα(s), Yα(t)]E[N(Yα(t))|Yα(s), Yα(t)]

=
∫ ∞

0

∫ ∞

0

E[N(x)N(y)]p(Yα(s),Yα(t))(x, y) dx dy

−
∫ ∞

0

∫ ∞

0

E[N(x)]E[N(y)]p(Yα(s),Yα(t))(x, y) dx dy

=
∫ ∞

0

∫ ∞

0

Cov[N(x), N(y)]p(Yα(s),Yα(t))(x, y) dx dy

= E[Λ(0, Yα(s) ∧ Yα(t))] = E[Λ(Yα(s ∧ t))].

Note that in the last step we have used that Yα is an increasing process.
For the second term:

Cov[E[N(Yα(s))|Yα(s), Yα(t)],E[N(Yα(t))|Yα(s), Yα(t)]]
= E[E[N(Yα(s))|Yα(s), Yα(t)]E[N(Yα(t))|Yα(s), Yα(t)]]
− E[E[N(Yα(s))|Yα(s), Yα(t)]]E[E[N(Yα(t))|Yα(s), Yα(t)]]

=
∫ ∞

0

∫ ∞

0

E[N(x)]E[N(y)]p(Yα(s),Yα(t))(x, y) dx dy − E[N(Yα(s))]E[N(Yα(t))]

= E[Λ(Yα(s))Λ(Yα(t))]− E[Λ(Yα(s))]E[Λ(Yα(t))]
= Cov[Λ(Yα(s)),Λ(Yα(t))],

where p(Yα(s),Yα(t))(x, y) is the joint density of Yα(s) and Yα(t).

Remark 3. The two-point cumulative distribution function of the inverse stable
subordinator Yα(t) can be computed using the fact that (see Leonenko et al.,
2013)

P(Yα(s) > x, Yα(t) > y) =
∫ t

v=0

α

v
yhα(s, y)

∫ s−v

u=0

α

u
(x− y)hα(t, x− y) dudv.

(4.8)

Remark 4. For the homogeneous case Λ(t) = λt, we get

Cov[N(Yα(s)), N(Yα(t))] = λE[Yα(s ∧ t)] + λ2Cov[Yα(s), Yα(t)],

which is consistent with the results in Leonenko et al. (2014).

5. Arrival times: Generalization of the Erlang distribution

First, let Tn = min{t ∈ [0,∞) : Nλ(t) = n} be the epochs or event arrival
times of a HPP. Recall that Tn can be expressed as a sum of n i.i.d. exponen-
tially distributed waiting times similar to the construction given in Equation
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(1.1). The corresponding distribution of Tn is called Erlang distribution. As
the following events coincide: {Tn ≤ t} = {Nλ(t) ≥ n}, the distribution fuction
FTn and density fTn of Tn are given by

FHPP
Tn (t) = P(Tn ≤ t) = P(Nλ(t) ≥ n)

= 1− e−λt
n−1∑

x=0

(λt)x

x!

and

fHPP
Tn (t) = e−λx

λnxn−1

(n− 1)!

respectively. Analogously, we can derive the Erlang distribution for the NPP:
Let Tn = min{t ∈ [0,∞) : N(t) = n} now be the arrival times of a NPP. Then,

FNPP
Tn (t) = P(Tn ≤ t) = P(N(t) ≥ n)

= 1− e−Λ(t)
n−1∑

x=0

(Λ(t))x

x!
. (5.1)

Remark 5. Note that Equation (5.1) gives a distribution function if and only
if

(i) Λ is a monotone increasing function,

(ii) limt→0 Λ(t) = 0 and

(iii) limt→∞ Λ(t) =∞.

Indeed, from the expression in (5.1) we have that (i) holds iff FNPP
Tn

is an in-
creasing function, (ii) iff limt→0 F

NPP
Tn

(t) = 0 and (iii) iff limt→∞ FNPP
Tn

(t) = 1
respectively, which are the characterizing properties of a distribution function.
The properties (i)-(iii) hold true for the examples of rate functions given in Re-
mark 2. Moreover, it is also sufficient to demand a strictly positive intensity
function λ in the integral representation in Equation (2.4).

The density function can be calculated as follows:

fNPP
Tn (t) =

d
dt
F (t)

= −
n−1∑

x=0

[
1

(x− 1)!
e−Λ(t)(Λ(t))x−1λ(t) +

1
x!

(−λ(t))e−Λ(t)(Λ(t))x
]

= λ(t)e−Λ(t)
n−1∑

x=1

[
(Λ(t))x

x!
− (Λ(t))x−1

(x− 1)!

]
(5.2)

= e−Λ(t)λ(t)(Λ(t))n−1

(n− 1)!
,

where in (5.2) the sum telescopes. Using above notation, we have for the arrival
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times of the FNPP

FFNPP
Tn (t) = P(Tn ≤ t) = P(Nα(t) ≥ n) =

∞∑

x=n

fαx (t)

=
∞∑

x=n

∫ ∞

0

e−Λ(u)Λ(u)x

x!
hα(t, u)du

=
∫ ∞

0

hα(t, u)
∞∑

x=n

e−Λ(u)Λ(u)x

x!
du (5.3)

=
∫ ∞

0

hα(t, u)

[
1−

n−1∑

x=0

e−Λ(u)Λ(u)x

x!

]
du

=
∫ ∞

0

hα(t, u)FNPP
Tn (u)du (5.4)

In (5.3) we are allowed to use Fubini’s theorem as the integrand is positive. For
the homogeneous case, the integral in (5.4) can be expressed using the Mittag-
Leffler function (see Mainardi et al., 2004):

FFHPP
Tn (t) =

∫ ∞

0

hα(t, u)FHPP
Tn (u)du = 1−

n−1∑

x=0

(λtα)x

x!
E(x)
α (−λtα) (5.5)

By integration by parts we can get an alternative representation of FFNPP
Tn

(t)
using the density of Tn:

∫ ∞

0

hα(t, u)FNPP
Tn (u)du =

∫ u

0

hα(t, v)dvFNPP
Tn (u)

∣∣∣∣
∞

u=0

−
∫ ∞

0

(∫ u

0

hα(t, v)dv
)
fNPP
Tn (u)du

= 1−
∫ ∞

0

(∫ u

0

hα(t, v)dv
)
fNPP
Tn (u)du (5.6)

6. Summary and outlook

In this paper, we introduced a new stochastic process, the fractional non-
homogeneous Poisson process (FNPP) as Nα(t) = N1(Λ(Yα(t))) where N1(t)
is the homogeneous Poisson process with λ = 1, Λ(t) is the rate function and
Yα(t) is the inverse stable subordinator. This is a straightforward generalization
of the non-homogeneous Poisson process (NPP) N1(Λ(t)) and it reduces to the
NPP in the case α = 1. In Theorem 1, we have been able to derive a fractional
governing equation for the process Iα(t, v) = N1(Λ(Yα(t) + v))−N1(Λ(v)). For
v = 0, this equation gives the fractional governing equation for the marginal
distributions fαx (t, 0) = P{Nα(t) = x}. The calculations of moments for this
process is a straightforward application of the rules for conditional expectations.
Finally, it is possible to derive explicit expressions for the distribution of event
arrival times.

As usual in these cases, this is not the only possible fractional non-homogeneous
Poisson process. For instance, one could think of the process N1(Yα(Λ(t))),
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where one begins from the fractional homogeneous Poisson process Ñα(t) =
N1(Yα(t)) and replaces the time with a rate function Λ(t). The two processes
Nα(t) and Ñα(t) do not coincide and they have different governing equations.

From a heuristic point of view, we expect that non-homogeneous fractional
Poisson processes can be useful for modeling systems in which anomalous waiting
times do not have stationary distributions. In these cases, it should be possible
to use appropriate constructions such as those described in Gergely and Yezhow
(1973) to derive the appropriate mesoscopic or macroscopic process from the
microscopic stochastic dynamics. All this will be the subject of further research.
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