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Abstract 

 

Plasma biomarkers to aid the early diagnosis of Alzheimer’s disease (AD) or to monitor disease 

progression have long been sought and continue to be widely studied. Biomarkers that correlate with 

AD polygenic risk score, a measure of the polygenic architecture of the disease and highly predictive 

of AD status, would be excellent candidates. Therefore, we undertook a preliminary study to assess the 

association of plasma inflammatory biomarkers with an overall AD polygenic risk score as well as with 

an inflammation-specific AD polygenic risk score in a sample set of 93 AD cases. We measured five 

complement biomarkers (complement receptor 1 (CR1), clusterin, complement component 9 (C9), C1 

inhibitor (C1inh), terminal complement complex (TCC)) and the benchmark inflammatory marker C-

reactive protein (CRP). Plasma clusterin level showed an association with overall AD polygenic risk 

score, whilst clusterin, C1inh and CRP levels each displayed some association with the inflammatory-

specific AD polygenic risk score. The results suggest that elevated plasma levels of inflammatory 

biomarkers, including complement proteins, associate with polygenic risk scores in AD, further 

strengthening the link between genetic and biomarker disease predictors and indicating a potential role 

for these markers in disease prediction and patient stratification in AD. 
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Introduction 

 

There are 850,000 people with dementia in the UK, with numbers set to rise to over 1 million by 2025 

and to 2 million by 2051 (Alzheimer’s Society). Alzheimer's disease (AD) is the most common type 

representing 62% of dementia cases. There is substantial evidence supporting the involvement of 

inflammation in the pathogenesis of AD.  History of serious head injury, which typically causes brain 

inflammation, is known to be a risk factor for AD (Mortimer et al., 1991; Fleminger et al., 2003; Barnes 

et al., 2014) and systemic infections, another cause of inflammation, also accelerate the disease (Licastro 

et al., 2104; Bu et al., 2015; Maheshwari et al., 2015).  Epidemiological studies have suggested that 

anti-inflammatory drugs like indomethacin and ibuprofen reduce the risk of AD (Rogers et al., 1993; 

Breitner et al., 1994, Rich et al., 1995; McGeer et al., 1996; Vlad et al., 2008). Evidence of 

inflammation, including activated microglia and astrocytes, as well as various cytokines and 

complement activation products, have been found around amyloid plaques and dystrophic neurites in 

AD brain (Eikelenboom and Stam, 1982; Yasojima et al., 1999). All these findings support the 

involvement of inflammation in AD but do not indicate whether it is a primary or secondary event.  

However, recent genetic evidence from genome wide association studies (GWAS), including pathway 

analysis, has highlighted a significant aetiological role for immune-related processes and inflammation 

in AD (Harold et al., 2009; Jones et al., 2010; Lambert et al., 2009; Lambert et al., 2010; Lambert et al., 

2013; Jones et al, 2015). 

 

The complement system is a pivotal part of the innate immune system and a key driver of inflammatory 

processes.  Complement consists of more than 30 component proteins, regulators and receptors, which 

work together to provide defence against infection and to clear toxic material (Morgan 2015). 

Dysregulation of the balance between complement activation and inhibition may contribute to 

neuroinflammation and disease. Complement activation has been shown to occur in the AD brain, even 

at very early stages of the disease (Loeffler et al 2008) and discovery/panel-based studies investigating 

blood protein markers have reported significant findings with complement proteins (Hye et al., 2006; 

Thambisetty  et al., 2011; Kiddle et al., 2014; Muenchhoff et al., 2015; Hakobyan et al., 2016). 

 

Genetic studies have identified AD-associated variants in complement pathway genes. Associations 

between disease status and common single nucleotide polymorphisms (SNPs) in clusterin (CLU) were 

identified in a two-stage study GWAS involving over 16,000 individuals (Harold et al., 2009). A second 

GWAS study of over 2000 AD and 5000 control individuals replicated the CLU finding and also 

identified an association with a SNP in complement receptor 1 (CR1) (Lambert et al., 2009). The 

association of these loci has since been robustly replicated (Carrasquillo et al., 2010; Corneveaux et al., 

2010; Jun et al., 2010; Seshadri et al., 2010; Lambert et al., 2013). GWAS results such as these, even 
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though a huge success and of great importance to the field, still only explain a very small amount of the 

genetic risk in AD. The residual genetic risk is likely to reside both in rare genetic variation with larger 

effect sizes like that of TREM2 variants for example (Guerreiro  et al., 2013; Jonsson et al., 2013; Jin et 

al., 2014), and in multiple small effects implicated by polygenic risk score analyses (Escott-Price et al., 

2015).  A polygenic risk score (PS) encompasses more of the causal variance because it is calculated 

based not solely on genome-wide significant polymorphisms, but on all nominally associated variants 

at a defined significance threshold (typically thousands of variants). We have investigated the polygenic 

architecture of AD using the powerful International Genomics of Alzheimer’s Project (IGAP) GWAS 

dataset (Lambert et al., 2013) and demonstrated that PS could predict AD status by over 78% (Escott-

Price et al., 2015).  Here we describe a pilot study to test whether plasma biomarkers correlate with PS. 

We analysed a panel of complement and inflammatory biomarkers, selected based on literature and in-

house evidence of relevance to AD (CR1, clusterin, C9, C1inh, TCC and CRP), in a subset of the 

Genetic and Environmental Risk for Alzheimer’s disease (GERAD1) cohort (Harold et al., 2009) 

(N=93). PS profiles were calculated for these patients, using the full PS model (Escott-Price et al. 2015) 

and an immune specific PS that includes only those genes relevant to immunity and inflammation. The 

plasma biomarker measurements were tested for correlation with the ‘full’ and immune-specific AD PS 

profiles. 

 

 

Methods 

Samples 

 

Blood for plasma separation was collected in 6 ml volume using EDTA anticoagulant tubes. Plasma 

samples were separated (1600 g/15 mins) within 24 h of collection and stored in aliquots at -80°C until 

analysis. 

 

This study utilised plasma samples from 93 AD cases (57 females/36 males) with data available for 

polygenic risk score calculation. The scores were calculated and normalised as previously described 

(Escott-Price et al. 2015), utilising the complete IGAP discovery dataset (Lambert et al. 2013), a p-

value significance threshold of 0.5 and including APOE genotype, age and gender. The full PS model 

included 87,605 single nucleotide polymorphisms (SNPs). The immune specific PS (IPS) was generated 

using 2,177 SNPs identified from the immune-specific AD enriched pathways described in the IGAP 

study (Jones et al., 2015).   
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Quantifying the levels of clusterin, C-reactive protein, complement receptor-1, C1 inhibitor, C9 

and terminal complement complex in plasma  

The plasma levels of clusterin and C-reactive protein (CRP) were determined using commercially 

available human clusterin and CRP DuoSet ELISAs (R&D systems) and the protocols followed as 

described by the manufacturer.  

 

The plasma levels of complement receptor-1 (CR1), C1 inhibitor (C1inh), C9 and terminal complement 

complex (TCC) were determined using sandwich ELISAs developed in-house with optimised antibody 

pairs developed in-house. Maxisorp (Nunc Life Technologies) plates were coated with 50 µl/well of 

capture antibody (1-5 µg/ml in 0.1 M carbonate buffer pH9.6), and incubated for 1 hour at 37oC. The 

plates were washed 3x in PBS + 0.1%Tween-20 (PBST) and then blocked with 100 µl/well of 2% BSA-

PBST for 1 hour at 37oC. After washing the plates 3x in PBST, 50 µl/well of an 8-point serial dilution 

of standard protein in 1% BSA-PBST was added in duplicate to individual wells followed by addition 

of plasma samples in duplicate to separate wells (diluted as necessary in 1%BSA-PBST).  The plate 

was incubated for 1.5 hours at 37oC. After washing 3x in PBST, 50 µl/well of 1-2 µg/ml HRP labelled 

detection antibody diluted in 1% BSA-PBST was added and the plates were incubated 1hr at 37oC. 

Wells were washed 3x in PBST and bound antibody was visualised with orthophenylenediamine 

(SIGMAFAST™ OPD). Colour development was stopped by the addition of 10% sulphuric acid, and 

absorbance was measured at 492 nm. See table 1 for individual details for each assay.  

 

All standards and samples for all ELISAs were tested in duplicate.  The intra-assay coefficients of 

variation (CV) % were 5.55 for Clusterin, 9.47 for CRP, 8.45 for CR1, 5.21 for C1inh, 15.77 for C9 and 

12.05 for TCC. The inter-assay CV’s were 5.16 for Clusterin, 7.88 for CRP, 21.95 for CR1, 21.79 for 

C1inh, 21.97 for C9 and 9.71 for TCC. 

 

 

Statistical analysis   

 

Protein concentrations were determined automatically from standard curves plotted using GraphPad 

Prism5 and data analysis was performed using statistical software R version 3.2.3. Spearman correlation 

tests were used to identify correlations between protein analyte levels and PS or IPS.  Correlation 

coefficients were calculated for any analyte with a p value less than 0.1. The Mann-Whitney test was 

used to look for differences in protein levels between cases with high and low PS or IPS. Effect sizes 

were computed for the analytes that showed a significant difference.  
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Results   

 

The concentrations of the 6 different biomarkers measured in the AD samples are shown in table 2. In 

the selected sample, the PS (normalised) ranged from -2.12 to 2.53 and the IPS (normalised) ranged 

from -2.34 to 3.11 (high scores are associated with increased AD risk). There was no correlation 

between PS and IPS (the Spearman correlation coefficient between the scores was 0.06, with a p-value 

of 0.56). 

 

The cohort was tested for correlations between individual biomarker levels and PS (figure 1). Of the six 

analytes measured, only one, clusterin, was significantly positively correlated with PS (correlation 

coefficient 0.2, p=0.05) in that as the level of clusterin increased so did the PS. None of the other 5 

measured proteins were significantly correlated with PS. To further explore the relationship between 

PS and analyte concentrations, cases at the high and low extremes of PS (defined as those with a PS 

more than 1 standard deviation above or below the mean) were compared for individual biomarker 

levels (figure 2 and table 3). Clusterin was the only biomarker to show a statistically significant 

difference between cases with a high and low PS (clusterin concentration: high PS, 264 µg/ml; low PS, 

314 µg/ml; effect size 1.24, p=0.03).  

 

The data were also examined for correlations between biomarker levels and IPS (figure 3). Two of the 

analytes, C1inh and clusterin, were significantly positively correlated with IPS (C1inh correlation 

coefficient 0.22, p=0.05; clusterin correlation coefficient 0.25, p=0.02). C9 and CRP trended towards a 

positive correlation with IPS but the correlations were not statistically significant (C9 correlation 

coefficient 0.19, p=0.08; CRP correlation coefficient 0.16, p=0.13), and CR1 and TCC showed no 

correlation with IPS. Comparisons of individual biomarker levels between those with the highest IPS 

and those with the lowest IPS (figure 4 and table 4) showed that C1inh levels were significantly higher 

in cases with a high IPS than in cases with a low IPS (212µg/ml versus 154 µg/ml; effect size 1.55, p-

value 0.008). CRP levels were also significantly different between high and low IPS (4.99 µg/ml versus 

0.75 µg/ml; effect size 14.2; p-value 0.02). CR1, C9, clusterin and TCC showed no significant difference 

in concentration between high and low IPS. 

 

Note that as the study was a small scale hypothesis-driven pilot study multiple testing corrections were 

not applied and all p-values presented are uncorrected. 
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Discussion  

 

The AD field is pursuing the identification of plasma biomarkers, or biomarker sets, that are sensitive 

detectors of early disease and/or highly predictive of disease progression. Biomarkers that correlate with 

AD PS would be excellent candidates. Therefore, we undertook the described study to assess the 

association of plasma inflammatory biomarkers with an overall AD PS as well as with an inflammatory 

specific AD PS in a sample set of AD cases. 

 

From the six analytes measured in this sample set we only observed a correlation with PS for one of the 

analytes – clusterin. Several published studies have reported elevated plasma levels of clusterin in AD 

compared to controls (Thambisetty et al., 2010; Thambisetty et al., 2012; Schrijvers et al., 2011; 

Jongbloed et al., 2015; Hakobyan et al, 2016). Taken together with our findings, these data suggest that 

elevated plasma clusterin level is a valid marker for AD. 

 

When focussing in on the IPS more of the markers were associated with this outcome. Clusterin and 

C1inh demonstrated a statistically significant correlation with IPS, and C1inh and CRP showed a 

statistically significant difference between those with high and low IPS.  It is, perhaps, not surprising 

that more of the selected analytes were correlated with IPS than PS as these markers were specifically 

chosen for their roles in inflammation. Both clusterin and C1inh are inhibitors of complement activation; 

clusterin is a fluid-phase inhibitor of the membrane attack complex, while C1inh inhibits the C1 

complex of the classical pathway of complement activation and the MBL/MASP complex of the lectin 

pathway. Both are suicide inhibitors, consumed in the act of inhibition and both are acute phase 

reactants; plasma levels in inflammatory disease thus represent a balance between consumption and 

increased synthesis.   CRP is a major acute-phase reactant that can increase 1000-fold or more in plasma 

concentration in response to inflammation. The finding that CRP levels were only significantly 

increased when the extremes of the IPS were compared suggests that the observed changes in the 

complement biomarkers were not solely driven by the acute phase response but reflected other disease 

processes.  The finding that more of the markers measured in this study correlated with IPS than PS is 

further evidence of their functional relevance and highlights the need for focused/targeted approaches 

to AD research by stratifying patients using biomarkers and other measurables in order to identify 

disease subtypes rather than looking at the disease as a whole. 

 

We stress that the study reported here is preliminary and utilises a relatively small sample set; we 

recognise that only one of the associations observed with these biomarkers survives adjustment for 

multiple testing (C1inhibitor levels in samples with low IPS versus high IPS) and the other reported 

findings could be false positives. However, the study presented here does flag the potential usefulness 



PS paper_19 August 2016_final draft 

 

8 

 

of testing the association of plasma inflammatory biomarkers with polygenic scores in AD. This study 

cohort comprised patients with established AD; however, it might be more relevant and informative to 

test associations of PS and IPS with plasma biomarkers in patients with mild cognitive impairment or 

early AD, as well as in cognitively normal controls.  

 

To summarize, we have identified associations between plasma inflammatory biomarkers and polygenic 

scores in AD that further strengthens the link between genetic and biomarker disease predictors. While 

noting that replication in independent sample sets is essential, our data provide the first evidence that 

several inflammatory biomarkers, including complement proteins, associate with high polygenic risk 

scores, increasing confidence that these markers will help disease prediction and patient stratification 

in AD. 
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Tables and Figures  

 

 
Table 1: In-house ELISAs 

Analyte Capture antibody  Detection antibody  Standard curve Plasma 

dilution 

CR1 1 µg/ml RP anti-CR1 1 µg/ml MM HRP labelled 

anti-human CR1  

50, 25, 12.5, 6.25, 3.125, 1.565, 0.78, 0 

ng/ml 

1:2 

C9 1 µg/ml MM anti-C9 1 µg/ml RP HRP labelled 

anti-human C9 

200,  100, 50, 25, 12.5, 6.25, 3.125, 0 

ng/ml 

1:2000 

C1 

inhibitor 

1 µg/ml MM anti-C1 

inhibitor 

1 µg/ml RP HRP labelled 

anti-human C1 inhibitor 

values 100, 50, 25, 12.5, 6.25, 3.125, 

1.5625, 0 ng/ml 

1:16,000 

TCC 5 µg/ml MM anti-TCC 2 µg/ml MM HRP labelled 

anti-human TCC 

15000,  7500, 3750, 1875, 937.5, 468.75, 

234.375, 0 ng/ml, 

1:32 

Abbreviations:  MM, mouse monoclonal antibody; RP, rabbit polyclonal antibody 

 

 
Table 2: Means and range of protein levels in AD cases 

analyte n Range mean SD 

CR1  93 6.74 – 32.16 ng/ml 15.97 5.26 

C9  90 31.78 – 158.38 µg/ml 78.10 28.54 

C1inh  91 74.23 – 340.09 µg/ml 188.85 58.46 

CLU 91 160.15 – 414.49 µg/ml 279.80 55.06 

CRP  93 0.18 – 40.61 µg/ml 2.89 5.23 

TCC  91 63.35 – 234.14 ng/ml 137.04 34.29 

                                                                                         

 

 

 

 

Table 3: Comparison of biomarker levels between cases with highest PS and cases with lowest PS 
Boldface indicates statistically significant p values (p <0.05) 

 

 PS<mean-1SD   PS>mean+1SD   

analyte Score 

cut off 

N cases Analyte 

mean 

Score 

cut off 

N cases Analyte 

mean 

p  (effect) 

CR1  -0.34 14 15.10 1.55 12 18.16 0.19 

C9  -0.34 13 83.65 1.55 11 73.88 0.49 

C1inh  -0.33 13 196.03 1.55 12 206.23 0.82 

CLU -0.34 14 263.73 1.55 11 314.08 0.03   (1.24) 

CRP  -0.34 14 7.91 1.55 12 1.48 0.13 

TCC  -0.36 14 135.26 1.55 12 142.27 0.37 

 

 

 

 

 

Table 4: Comparison of biomarker levels between cases with highest IPS and cases with lowest IPS 
Boldface indicates statistically significant p values (p <0.05) 

 

 IPS<mean-1SD  IPS>mean+1SD   

analyte Score 

cut off 

N cases Analyte 

mean 

Score 

cut off 

N cases Analyte 

mean 

P  (effect) 

CR1  -0.63 10 15.8 1.28 14 15.02 0.71 

C9  -0.64 10 66.55 1.21 14 83.11 0.21 

C1inh  -0.63 10 154.44 1.24 15 211.8 0.008  (1.55) 

CLU -0.64 10 248.83 1.2 14 286.47 0.08     

CRP  -0.63 10 0.75 1.29 14 4.99 0.02    (14.2) 

TCC  -0.63 10 130.85 1.3 14 135.84 0.93 
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Figure 1: correlations between biomarkers and AD PS  
Scatter plots of each biomarker against the normalised AD PS. The red line is the linear regression line. P-values for test 

of correlation: CR1 p=0.12, C9 p=0.30, C1 inh p=0.58, CLU p=0.05, CRP p=0.23, TCC p=0.63. The correlation 

coefficient for CLU is 0.20. 
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Figure 2: Box plots comparing biomarker levels in AD cases with low and high PS scores 
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Figure 3: correlations between biomarkers and AD IPS  
Scatter plots of each biomarker against the normalised AD IPS. The red line is the linear regression line. . P-values for 

test of correlation: CR1 p=0.84, C9 p=0.308, C1 inh p=0.05, CLU p=0.02, CRP p=0.13, TCC p=0.65. The correlation 

coefficient for C1 inh is 0.22 and for CLU is 0.25. 
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Figure 4: Box plots comparing biomarker levels in AD cases with low and high IPS scores 

 

 

 
 


