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ABSTRACT.

Purpose: To determine the molecular genetic cause in previously unreported

probands with optic atrophy from theUnitedKingdom, Czech Republic andCanada.

Methods: OPA1 coding regions and flanking intronic sequences were screened by

direct sequencing in 82 probands referred with a diagnosis of bilateral optic atrophy.

Detected rare variants were assessed for pathogenicity by in silico analysis.

Segregation of the identified variants was performed in available first degree relatives.

Results: A total of 29 heterozygous mutations evaluated as pathogenic were

identified in 42 probands, of these seven were novel. In two probands, only

variants of unknown significance were found. 76% of pathogenic mutations

observed in 30 (71%) of 42 probands were evaluated to lead to unstable

transcripts resulting in haploinsufficiency. Three probands with the following

disease-causing mutations c.1230+1G>A, c.1367G>A and c.2965dup were

documented to suffer from hearing loss and/or neurological impairment.

Conclusions: OPA1 gene screening in patients with bilateral optic atrophy is an

important part of clinical evaluation as it may establish correct clinical

diagnosis. Our study expands the spectrum of OPA1 mutations causing

dominant optic atrophy and supports the fact that haploinsufficiency is the most

common disease mechanism.

Key words: DOA plus syndrome – dominant optic atrophy – haploinsufficiency – novel muta-

tions – OPA1
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Introduction

Autosomal dominant optic atrophy
(DOA, OMIM 165500) is the most

common hereditary optic neuropathy
with an estimated prevalence of
1:12 000–1:50 000 (Lyle 1990; Kjer
et al. 1996). The disease is genetically

heterogeneous, with five mapped loci
(Votruba et al. 1997; Kerrison et al.
1999; Anikster et al. 2001; Barbet et al.
2005; Carelli et al. 2011). To date
however, only two genes have been
identified as disease causing: optic
atrophy gene 1 (OPA1; MIM 165500)
(Alexander et al. 2000; Delettre et al.
2000) and optic atrophy gene 3 (OPA3;
MIM 606580) (Anikster et al. 2001;
Reynier et al. 2004). OPA1 is the most
frequently mutated gene causing DOA
accounting for up to 60% of cases with
inherited optic atrophies (Yu-Wai-Man
et al. 2009).

Autosomal dominant optic atrophy
(DOA) shows highly variable expres-
sion, onset and progression. In most
patients, the disease manifests by the
end of the first decade of life. Typically,
loss of central vision, optic nerve pal-
lor, a centrocaecal scotoma and colour
vision deficit are observed (Votruba
et al. 1998; R€onnb€ack et al. 2015). In
some individuals, DOA plus phenotype
is found, characterized by variable
presence of sensorineural hearing loss,
ataxia, axonal sensory-motor polyneu-
ropathy, multiple sclerosis-like pheno-
type, chronic progressive external
ophthalmoplegia and mitochondrial
myopathy (Amati-Bonneau et al.
2009; Yu-Wai-Man et al. 2010; Lis-
kova et al. 2013). Most recently asso-
ciation of OPA1 mutations with a
multisystem disorder characterized by
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age-related parkinsonian features as
well as cognitive deterioration has been
described (Carelli et al. 2015).

TheOPA1protein is amitochondrially
targeted dynamin-related GTPase
located on the inner mitochondrial mem-
brane functioning mainly in mitochon-
drial fusion and regulation of apoptosis
(Choet al. 2010). Initial studies suggested
that OPA1 dysfunction leads to primary
retinal ganglion cell degeneration (Oli-
chon et al. 2007); however, recent evi-
dence proposes that more diverse
mechanisms are implicated in the disease
pathogenesis (Bertholet et al. 2013).

The aim of our study was to explore
the involvement of OPA1 mutations
in a large cohort of probands with
bilateral optic atrophy.

Material and Methods

Patients

In this study, we have included samples
of 81 probands of white British, Cana-
dian and Czech origin and one pro-
band of Czech Roma origin referred
with the diagnosis of bilateral optic
atrophy to the All Wales Genetic
Testing Service; University Hospital
of Wales and General University
Hospital in Prague for laboratory
investigation. The study followed the
tenets of the Declaration of Helsinki
and was authorized by local Ethical
boards. All investigated individuals
signed informed consent.

Clinical referral notes of the patients
indicated bilateral impairment of best
corrected visual acuity, pallor of the optic
nerve head, evidence of colour vision
deficit and no evidence of other factors
causing compressive or optic neuropathy.
In some probands but not all clinical data
included also family history for optic
atrophy and results of neurological and
audiometry examinations.

Molecular genetic analysis

Prior to the start of the study, partic-
ipating probands were tested negative
for the three most prevalent mitochon-
drial mutations associated with Leber
hereditary optic neuropathy (Yu-Wai-
Man et al. 2011). Positive family his-
tory of the disease was not a prerequi-
site for the initiation of OPA1
molecular genetic testing.

Genomic DNA was extracted from
venous blood samples using

conventional protocols. PCR amplifica-
tion and bidirectional Sanger sequenc-
ing of the OPA1 coding regions and
intron–exon boundaries were per-
formed in probands as previously
described (Thiselton et al. 2002). Primer
sequences are listed in Table S1. DNA
samples from available first degree rel-
atives were also collected and used for
targeted genetic testing of variants con-
sidered as potentially pathogenic.

Sequence variants were described as
per the Human Genome Variation
Society recommendations (den Dunnen
& Antonarakis 2000), and with refer-
ence to NG_011605.1 and OPA1 tran-
script variant 8 (NCBI Reference
Sequence: NM_130837.2) containing
two additional exons 4b and 5b com-
pared to transcript variant 1
(NM_015560.2) maintaining however
the same reading frame and encoding a
protein of 1015 amino acids.

Interpretation of mutation pathogenicity

Frequency of the changes detected in
this study was searched in the following
population databases: The Exome
Aggregation Consortium (ExAC)
(http://exac.braoadinstitute.org) show-
ing exome sequencing data from more
than 60 000 unrelated individuals and
The Exome Variant Server (EVS,
NHLBI Exome Sequencing Project;
http://evs.gs.washington.edu/EVS/),
which includes data from more than
6000 individuals (both accessed 7 May
2016). Only rare variants (i.e. minor
allele frequency ≤0.001) were further
evaluated for potential pathogenicity.
Identified sequence changes were fur-
ther cross-referenced with published
literature and the eOPA1 mutational
database (http://mitodyn.org, accessed
December 2015).

As it has been convincingly docu-
mented that reduction in OPA1 protein
levels is a disease mechanism in DOA
(Marchbank et al. 2002; Schimpf et al.
2008; Fuhrmann et al. 2009) variants
predicted to lead to an absence of the
gene product due to the mRNA non-
sense-mediated decay mechanism (e.g.
nonsense or frameshifting mutations
located 50–55 bp upstream from the
last intron–exon junction) were consid-
ered as pathogenic.

The pathogenicity of missense vari-
ants was predicted using various algo-
rithms; Sorting Intolerant From
Tolerant (SIFT) (Kumar et al. 2009),

Polymorphism Phenotyping v2 (Poly-
Phen-2) (Adzhubei et al. 2010),
MutPred (Li et al. 2009), Mutation
Taster (Schwarz et al. 2010),
SNPs&GO (Calabrese et al. 2009),
PhD-SNP (Capriotti et al. 2006), PRO-
VEAN (Choi et al. 2012) and Panther
(Capriotti et al. 2006). Novel OPA1
missense variants with no entry in
ExAC and EVS and predicted harmful
by at least three tools were regarded as
pathogenic. Heterozygous missense
variants previously observed in DOA
patients and not present in population
databases were also considered patho-
genic, regardless of their scoring by in
silico algorithms.

As cDNA was not available to
experimentally evaluate whether
canonical (�1 or 2), non-canonical
splice variants and coding variants
close to intron–exon boundaries (i.e.
+1, +2 or �1, �2) affect pre-mRNA
splicing, the wild-type and mutated
sequences were analysed by splice site
prediction tools Human Splicing Fin-
der (Desmet et al. 2009), NNSPLICE
(Reese et al. 1997), MaxEntScan (Yeo
& Burge 2004) and NetGene2 (Brunak
et al. 1991). Mutations leading to the
disruption of splice site predicted by at
least three of the four tools used were
considered pathogenic. Conservation
analysis of affected amino acid residues
across 16 species was performed using
T-coffee (Di Tommaso et al. 2011).

Sequence variants not segregating
with the disease phenotype, that is not
present in all affected members of a
given family were considered benign. As
penetrance of DOA maybe as low as
43% (Toomes et al. 2001), the presence
of a mutation in clinically unaffected
family members was not considered to
be excluding its pathogenic nature.

Results

Summary of the study cohort demo-
graphics and rare variants identified is
provided in Table 1. In total, 32 rare
sequence changes in a heterozygous
state were detected in OPA1 coding
region and intron–exon boundaries in
44 probands, of 82 tested. Pathogenicity
scores of missense variants and effect
predictions of variants potentially
affecting splicing are provided in Tables
S2, S3, respectively. All novel patho-
genic variants were submitted to the
OPA1 locus specific database (http://
opa1.mitodyn.org/) (Ferre et al. 2015).
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Altogether, 29 mutations observed
in 42 probands were evaluated as
pathogenic and three sequence variants
were classified as being of unknown
significance, of these one was present in
a proband carrying a different OPA1
disease-causing mutation. The pre-
dicted and/or in previous studies
already functionally verified effect of
disease-causing variants was missense
(n = 7), splicing (n = 11), nonsense
(n = 4) and frameshifting (n = 7)
(Table 1).

Eight mutations identified are in
bases of canonical dinucleotides at the
splice-acceptor or splice-donor site. In
addition, three other mutations found
in the current study c.1035+5G>A,
c.1305+5G>C and c.1148A>G were
previously experimentally shown to
cause a splicing defect (Baris et al.
2003; Schimpf et al. 2008). In silico
analysis supported deleterious effect of
nine mutations on pre-mRNA splicing
(Table S3).

Six mutations were found in more
than one proband, c.1034G>A in two
Czech and one UK proband,
c.1035+5G>A in two UK probands,
c.1673C>A in four UK probands,
c.1681+1G>T in five UK probands,
c.1943T>C in two UK probands,
c.2873_2876del in one Czech and four
UK probands.

In three patients, two rare variants
were detected; p.(Leu327Pro) and
p.(Ala602Glu) in proband 6; p.Leu411_
Glu435del and p.(Leu785Phe) in proband
14; p.(Ser701*) and p.Val958Glyfs*3 in
proband 33. Unfortunately, in families
of probands 6 and 33, we were not able
to determine whether these mutations
were present on the same allele or in a
compound heterozygous state due to
the unavailability of DNA samples
from other family members. In family
of proband 14, targeted mutational
screening of similarly affected pro-
band’s mother confirmed their cis posi-
tion. In silico analysis (Table S2)
suggested that p.(Leu785Phe) is of
unknown significance therefore less
likely to be disease causing.

None of the identified 32 rare
sequence OPA1 variants was found in
the EVS database. Three pathogenic
mutations and one variant of unknown
significance had an entry in the ExAC
database (Table 1).

Altogether, 16 probands of 39 did
not report a family history of visual
loss, and in five probands thisT
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information was not available. Muta-
tional screening and clinical evaluation
to assess possible de novo occurrence
and penetrance could be performed
(due to sample unavailability) only in
two-first degree relatives from pedi-
grees of probands 8 and 14. Both had
signs of bilateral optic atrophy and
carried c.1034G>A and c.1305+5G>C
mutations, respectively.

DOA plus phenotype was docu-
mented in three individuals. Proband
13 harbouring c.1230+1G>A noticed
gradual visual loss since childhood and
hearing loss since 23 years of age,
which was confirmed by brainstem
auditory evoked potential examination.
Analysis of cerebrospinal fluid at the
age of 22 years revealed four positive
oligoclonal bands of immunoglobulin
G and slightly decreased protein level
which is consistent with multiple
sclerosis-like phenotype. The patient
denied permission to undergo brain
MRI. CT scan of the brain revealed
only the presence of bilateral optic
atrophy. Proband 15 harbouring
c.1367G>A had hearing loss, peripheral
neuropathy and proband 44 with
c.2965dup had hearing loss and
peripheral sensitive axonal neuropathy.
Interestingly, she reported that her
mother also suffered from severe neu-
rological impairment and that she was
diagnosed with multiple sclerosis.
Unfortunately, her mother could not
be examined as she had died of cancer.
In addition, proband 3 found to carry
c.943C>T (classified as variant of
unknown significance) was reportedly
diagnosed elsewhere with peripheral
neuropathy.

Discussion

Herein, we report on rare OPA1
sequence variants identified in a large
cohort of international patients (white
British, Canadian, Czech and one
proband of Czech Roma origin) with
bilateral optic atrophy. Ten novel
sequence changes were detected, of these
seven were considered pathogenic and
three as variants of unknown signifi-
cance. Two probands carried two differ-
ent pathogenic mutations. Similarly, to
other studies aiming at the identification
of the underlying cause of bilateral optic
atrophy (Toomes et al. 2001; Ferre et al.
2009; Chen et al. 2014), all probands
with no paternal family history were
prescreened for common mitochondrial

mutations associated with Leber hered-
itary optic neuropathy prior to OPA1
screening.

The great majority 22 (76%) of the
detected 29 pathogenic mutations
observed in 30 (71%) of 42 probands
(including one individual with two
frameshifting mutations) were pre-
dicted to lead to unstable transcripts
likely to be degraded by mRNA
nonsense-mediated decay cell mecha-
nism (Pesch et al. 2001; Schimpf et al.
2006; Zanna et al. 2008) confirming
that lack of functional protein pro-
duct underlies the great majority of
DOA cases (Pesch et al. 2001;
Marchbank et al. 2002).

Only seven pathogenic missense
mutations in this study were found in
12 (29%) of 42 probands (including
one individual with two different mis-
sense mutations). This corresponds to
frequency estimated in other studies
concluding that about 30% of patients
with DOA carry missense OPA1 muta-
tions (Amati-Bonneau et al. 2008; Fer-
raris et al. 2008; Hudson et al. 2008;
Yu-Wai-Man et al. 2010).

Two mutations c.1034G>A and
c.1148A>G in near proximity to
intron–exon boundaries (2nd exonic 30

nucleotides) were predicted to lead to
an amino acid substitution. While
c.1034G>A was indeed experimentally
verified by Schimpf et al. (2006) to
cause p.Arg345Gln, c.1148A>G leads
to in-frame skipping of exon 11 chang-
ing p.Val346_Phe383del at the protein
level (Baris et al. 2003) highlighting the
fact that interpretation of mutations
needs always to be put into context of
nucleotide position within the open
reading frame so that variants interfer-
ing with splicing process are not
wrongly indicated as substitutions.

The clear limitation of the current
study is that the majority of first degree
relatives were not available for our
investigation; in part, information on
family history was also missing. Nega-
tive family history for DOA was
reported by 38% of probands with
pathogenic mutation in OPA1 which
we attribute to de novo occurring
changes and incomplete penetrance.

Three previously reported mutations
in association with DOA and one
variant of unknown significance are
recorded in ExAC database, each with
an occurrence 1 allele of ~120 000. As
it has been shown that penetrance of
OPA1mutations may be as low as 43%

(Toomes et al. 2001), in addition to
mild phenotypes that may remain
unnoticed if subjects do not undergo
comprehensive neuro-ophthalmologi-
cal examination, we think that the
presence of these mutations in public
datasets does not exclude their patho-
genic nature. Variant c.1935+3A>G
previously reported as benign (Toomes
et al. 2001) has been regarded as of
unknown significance as functional
study could not be performed due to
sample unavailability.

Further limitations of this study
were that results of examinations to
assess extraocular neurodegenerative
impairment and hearing loss were not
available for all individuals tested.
Autosomal dominant optic atrophy
(DOA) plus phenotype was therefore
documented in only three probands of
42 with OPA1 disease-causing muta-
tions and in one proband with a mis-
sense variant classified as of unknown
significance. Of the four sequence vari-
ants detected in our patients with DOA
plus syndrome only p.(Gly456Asp) in
Dynamin, GTPase domain has been
previously reported to cause this phe-
notype (Leruez et al. 2013). Although
the remaining probands were not aware
of any other than visual symptoms, it
needs to stressed out that mild forms of
hearing impairment or peripheral neu-
ropathy might have not been noticed.

In summary, our study expands
the OPA1 mutational spectrum and
shows that the proportion of patho-
genic variants leading to insufficient
OPA1 protein expression level may
be higher than it has been anticipated
to date.
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