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Abstract. In this paper, we investigate the complexity of the numéraastruction of the Hankel structured low-rank
approximation (HSLRA) problem, and develop a family of algfons to solve this problem. Briefly, HSLRA is the problem
of finding the closest (in some pre-defined norm) rardpproximation of a given Hankel matrix, which is also of Hahk
structure. Unlike many other methods described in theditee the family of algorithms we propose has the property of
guaranteed convergence.
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INTRODUCTION

Statement of the problem

Let L, K andr be given positive integers such that<lr < L < K. Denote the set of all real-valuddx K
matrices byR-*K. Let .z, = .2~ c R-*K be the subset oR-*K containing all matrices with rank r, and
A = K c REK be the subset @&-*K containing matrices of some known structure. The set otgiradL x K
matrices of rank< r is & = ., N2. Assume we are given a mati, € 7. The problem of structured low rank
approximation (SLRA) is:
f(X) — min 1)
Xed
wheref (X) = p?(X,X,) is a squared distance @< x R-<K,
In this paper we only consider the case wheféis the set of Hankel matrices and thus refer to (1) as HSLRA.
Recall that a matriX = (xx) € R-*K is called Hankel ifx = const for all pairgl,k) such that + k = const; that
is, all elements on the anti-diagonalsXfare equal. There is a one-to-one correspondence betwedf Hankel
matrices and vectors of si2dé¢= L+ K — 1. For avectol = (y1,...,yn)", the matrixX = H(Y) = (xx) € R-*K with
elementsqx = yi k1 is Hankel and vise-versa: for any matxe .7, we may defin&/ = H-%(X) so thatX = H(Y).
HSLRA is a very important problem with applications in a nwenlof different areas. In addition to the clear
connection with time series analysis and signal procesbkiB RA has been extensively used in system identification
(modeling dynamical systems) [13], in speech and audiogssing [11], in modal and spectral analysis [18] and image
processing [15]. Some discussion on the relationship of RISwith some well known subspace-based methods of
time series analysis and signal processing is given in [8].
There are a number of ways of parameterising the fundtiddne such way is via the sums of damped sinusoids:

f(0) = %(yn—n(e,n))zﬁ min, © C R, @)
n=1

and the functiom (6,n) has the form
q
n(o,n) = Za;exp(dit)sin(annJrqq), n=1,...,N. (3)
i=

Here,qis agivenintege = (a,d, w, ) witha= (ay,...,aq), d=(d1,...,dq), W= (w1,...,wy) andp = (@,..., @&).

We use this parameterisation (2) to make some comments #itmabmplexity of the HSLRA problem. Objective
functions are typically highly multiextremal with the obj&e functions possessing many local minima (see also the
related discussion in [10]). Figure 1 contains some plot@pivith (3),q = 2 andN = 10. Although the objective



functions are often Lipschitz-continuous (see, e.g., ¥, 16, 17, 19]), it has very high Lipschitz constants which
increase withN, the number of observations. Adding noise to the observéa idareases the complexity of the
objective function (see, e. g., [3, 20]) and moves the glofiaimizer away from the vector of true parameters. Thus,
efficient global optimization techniques should be useddosle the stated problem.

FIGURE 1. Objective functions for some small exampféc, w,) (left). Cross-sectionc, ¢) of f(d, w, @) (right)

HSLRA AS AN OPTIMIZATION PROBLEM

Distances defining the objective function

There are two natural distance functigmsvhich define the objective functiohin (1). The most natural squared
distancep? is determined by the squared Frobenius norm:

L K
||X||E:ZZX,ZK for X € RbK. (4)
I=1K=1

EveryL x K Hankel matrixX € ./ is in a one-to-one correspondence with some vexter (y1,...,yn)", with
N = L+K — 1. Let the functioritl : RN — ¥ be defined such that(Y) = ||y k_1/| ey for Y = (yi,...,yn)7;
that is,H(Y) maps a vector € RN to anL x K Hankel matrix. Each element of the veclois repeated ifX = H(Y)
several times. LeE = (gx) € R“*K be the matrix consisting entirely of ones. We can computestima of each
anti-diagonal of, denoteds,, as

n forn=1,...,L-1,
Vn = k= L forn=L,...,K-1, (5)
I+k=n+1 N—-n+1 forn=K,...,N.

The valuev, is the number of times the elemeptof the vectolY is repeated in the Hankel matfiX(Y). Denote by
V =diagvy,...,vn) the diagonal matrix with diagonal elements. .., .
If we compute the norm (4) for the Hankel matdx= H(Y) and express this formula in terms of the associated
vectorY, then we obtain
N
IXI[E =5 va¥a = YTVY for X = H(Y) with Xk = ¥i k-1 - (6)
1

n=
The squared Euclidian norm of the vectib(associated with the matrix = H(Y)) defines another common distance

p:
N
IXIIP=5 ¥a=YTY forX=H(Y). 7)
n=1
The general weighted squared distance is defined as

IIX[[& = YTWY @)

whereW is an arbitrary non-negative definite matrix which can semes be interpreted as a covariance matrix of the
observation¥. For the case¥/ =V andW = |, the squared distance (8) reduces to (6) and (7), resphrctive



Projection to .#, for W =V (Frobenius norm)

Let gi = 0;(X), the singular values of, be ordered such that > g, > ... > g.. DenoteXy = diag(01, 0,...,01)
and3 = diag(01,02,...,0r,0,...,0). Then the SVD ofX can be written aX = U3V T and the matrixt") (X) =
U3VT belongs to.# and minimizes the valugX — X'|[2 overX’ € .#;. The projectioni”) (X) of X onto.#; is
uniquely defined if and only iy > oy, 1. The squared (Frobenius) distance between mxtaxd. #; is pZ(X,///r) =

L

min p?(X,X') = p?(X,n"(X)) = |[X = X)|E = § ().
X'esy i=r+-1

Projection to o7

Let 11+ (X) denote the projection of a matrix € R-K onto the space#””. Then the element of 1, (X) is
given byx; = vifj z Xk- The squared (Frobenius) distance between matrixd the space? is pZ(X,%) =
|+k=1+]j

; 2 ! 2
min X, XD = || X =T (X .
X’G.}f)p ( ’ ) || ﬁ”( )||F

ALGORITHMS BASED ON THE USE OF ALTERNATING PROJECTIONS

In this section we consider algorithms for solving the HSLBblem represented as optimization problems using
alternating projections between the spag&sand.#,. We restrict our attention to the distance function asdedia
with the matrix Frobenuis norm (6), that is, we take=V in (8).

Classical algorithms and their modifications

The algorithm (9) below is the direct implementation of titermating projections. For brevity we will refer to this
algorithm as AP.

Xo=Xs, Xni1= Ty [n(”(xn)] for n=0,1,... 9)

These projections have also been studied in [2] and are gsossknown as Cadzow iterations [5].

Despite AP often appearing to be myopic and too greedy by aintyng at minimizing the distange?(X,.#;), it
is very popular in practice. The popularity of AP is explalri®y the simplicity of the algorithm and by the fact that
convergence to the spaeg is guaranteed, see [4]. AP often converges to a matrix wisi¢ariaway from the set of
optimal solutionst*. As shown in [1, Th. 6.1], AP converges linearly; that is,rthexist constants < 1 andA > 0
such thatp?(Xw, Xn) < Ac”, Vn, whereX., is some matrix ineZ. Moreover, it is easy to prove monotonicity of AP

iterations. As derived by Chu et al. [4], we haV¥ 1 — 7" (Xn11)[|2 < [[Xne1— 17 (Xn)| [ < [|Xn— 11 (Xn)| 2.

Alternating Projections with Backtracking and Randomization

In this section, we describe a family of algorithms which @&nrun as a random multistart-type algorithm, as a
multistage algorithm and also as an evolutionary method.fmain steps of this algorithm are summarized by its title
‘Alternating Projections with Backtracking and Randontiga’ and we abbreviate this algorithm APBR. Here we
describe two versions of this algorithm, Multistart APBRI&kPBR with selection. APBR with selection significantly
reduces the number of computations by terminating nonpacts/e trajectories at early stages.

The multistart version of APBR is described as follows. Letdenote a realization of a random number with
uniform distribution in[0, 1] and letX denote a random Hankel matrix which corresponds to a re@mlizaf a white
noise Gaussian process= (&1,...,én) with &, i=1,...N, independent Gaussian random variables with mean 0 and
variances® > 0.

In Multistart APBR, we rurM independent trajectories in the spake starting at random Hankel matrices

Xoj = (1—50)Xs + 50X, (10)



with somesy (0 < 5p < 1), and use the updating formula
Xni1j = (UZ] X /UZ3Zn}) Zn,j (11)
wherej =1,...,M,
Znj = (1= &) Ty |1 (Xn)] + &X. + 0K (12)
and

{ 5Hh=U/(N+1)P, on=c/(n+1)9 if p2(Xnj,.2) > &, (13)
oh=0, g,=0, otherwise
Each trajectory is either run until convergence or for agpeeified number of iterationd. could be either random
or simply setto 1¢ € {0,1} and positive numberg,q ande can be chosen arbitrarily. A MATLAB implementation

of this version of APBR, developed by the authors, is avédlalb[6].

If s = & = on = 0 then the iterations in (11) coincide with iterations of AR ith some local improvement. If
S > 0 then thej-th trajectory of the algorithm starts at a random matridhie heighbourhood of .. (the width of this
neighbourhood is controlled by the parametgr If g, > 0 then there is a ‘random mutation’ at theh iteration (11).
Whend, > 0, the current approximation ‘backtracks’ towakisconditionally that the backtracking does not worsen
the distance@?(Xn j,X.). If p?(Xnj,-#) < €, we setd, = 0 ando, = 0. That is, in the final stage for any trajectory
of the APBR we perform AP iterations (9) to achieve fastevengence ta'.
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