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Abstract. In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank
approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem
of finding the closest (in some pre-defined norm) rankr approximation of a given Hankel matrix, which is also of Hankel
structure. Unlike many other methods described in the literature the family of algorithms we propose has the property of
guaranteed convergence.
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INTRODUCTION

Statement of the problem

Let L, K and r be given positive integers such that 1≤ r < L ≤ K. Denote the set of all real-valuedL × K
matrices byRL×K . Let Mr = M L×K

r ⊂ R
L×K be the subset ofRL×K containing all matrices with rank≤ r, and

H =H L×K ⊂R
L×K be the subset ofRL×K containing matrices of some known structure. The set of structuredL×K

matrices of rank≤ r is A = Mr ∩H . Assume we are given a matrixX∗ ∈ H . The problem of structured low rank
approximation (SLRA) is:

f (X)→ min
X∈A

(1)

where f (X) = ρ2(X,X∗) is a squared distance onRL×K ×R
L×K.

In this paper we only consider the case whereH is the set of Hankel matrices and thus refer to (1) as HSLRA.
Recall that a matrixX = (xlk) ∈ R

L×K is called Hankel ifxlk = const for all pairs(l,k) such thatl + k = const; that
is, all elements on the anti-diagonals ofX are equal. There is a one-to-one correspondence betweenL×K Hankel
matrices and vectors of sizeN = L+K−1. For a vectorY = (y1, . . . ,yN)

T , the matrixX =H(Y ) = (xlk) ∈R
L×K with

elementsxlk = yl+k−1 is Hankel and vise-versa: for any matrixX ∈H , we may defineY =H
−1(X) so thatX =H(Y ).

HSLRA is a very important problem with applications in a number of different areas. In addition to the clear
connection with time series analysis and signal processing, HSLRA has been extensively used in system identification
(modeling dynamical systems) [13], in speech and audio processing [11], in modal and spectral analysis [18] and image
processing [15]. Some discussion on the relationship of HSLRA with some well known subspace-based methods of
time series analysis and signal processing is given in [8].

There are a number of ways of parameterising the functionf . One such way is via the sums of damped sinusoids:

f (θ ) =
N

∑
n=1

(yn −η(θ ,n))2 → min
θ∈Θ

, Θ ⊂ R
n, (2)

and the functionη(θ ,n) has the form

η(θ ,n) =
q

∑
i=1

ai exp(dit)sin(2πωin+φi), n = 1, . . . ,N . (3)

Here,q is a given integer,θ =(a,d,ω ,φ) with a=(a1, . . . ,aq), d =(d1, . . . ,dq), ω =(ω1, . . . ,ωq) andφ =(φ1, . . . ,φq).
We use this parameterisation (2) to make some comments aboutthe complexity of the HSLRA problem. Objective

functions are typically highly multiextremal with the objective functions possessing many local minima (see also the
related discussion in [10]). Figure 1 contains some plots of(2) with (3), q = 2 andN = 10. Although the objective



functions are often Lipschitz-continuous (see, e. g., [7, 10, 16, 17, 19]), it has very high Lipschitz constants which
increase withN, the number of observations. Adding noise to the observed data increases the complexity of the
objective function (see, e. g., [3, 20]) and moves the globalminimizer away from the vector of true parameters. Thus,
efficient global optimization techniques should be used to tackle the stated problem.
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FIGURE 1. Objective functions for some small example.f (ω1,ω2) (left). Cross-section (ω,φ ) of f (d,ω,φ) (right)

HSLRA AS AN OPTIMIZATION PROBLEM

Distances defining the objective function

There are two natural distance functionsρ which define the objective functionf in (1). The most natural squared
distanceρ2 is determined by the squared Frobenius norm:

||X||2F =
L

∑
l=1

K

∑
k=1

x2
lk for X ∈R

L×K . (4)

Every L×K Hankel matrixX ∈ H is in a one-to-one correspondence with some vectorY = (y1, . . . ,yN)
T , with

N = L+K −1. Let the functionH : RN → H L×K be defined such thatH(Y ) = ||yl+k−1||
L,K
l,k=1 for Y = (y1, . . . ,yN)

T ;

that is,H(Y ) maps a vectorY ∈R
N to anL×K Hankel matrix. Each element of the vectorY is repeated inX =H(Y )

several times. LetE = (elk) ∈ R
L×K be the matrix consisting entirely of ones. We can compute thesum of each

anti-diagonal ofE, denotedvn, as

vn = ∑
l+k=n+1

elk =







n for n = 1, . . . ,L−1 ,
L for n = L, . . . ,K−1,

N−n+1 for n = K, . . . ,N.
(5)

The valuevn is the number of times the elementyn of the vectorY is repeated in the Hankel matrixH(Y ). Denote by
V = diag(v1, . . . ,vN) the diagonal matrix with diagonal elementsv1, . . . ,vN .

If we compute the norm (4) for the Hankel matrixX = H(Y ) and express this formula in terms of the associated
vectorY , then we obtain

||X||2F =
N

∑
n=1

vny2
n = Y T VY for X =H(Y ) with xlk = yl+k−1 . (6)

The squared Euclidian norm of the vectorY (associated with the matrixX = H(Y )) defines another common distance
ρ :

||X||2 =
N

∑
n=1

y2
n = Y TY for X =H(Y ) . (7)

The general weighted squared distance is defined as

||X||2W = Y T WY (8)

whereW is an arbitrary non-negative definite matrix which can sometimes be interpreted as a covariance matrix of the
observationsY . For the casesW = V andW = IN , the squared distance (8) reduces to (6) and (7), respectively.



Projection to Mr for W = V (Frobenius norm)

Let σi = σi(X), the singular values ofX, be ordered such thatσ1 ≥ σ2 ≥ . . .≥ σL. DenoteΣ0 = diag(σ1,σ2, . . . ,σL)

andΣ = diag(σ1,σ2, . . . ,σr,0, . . . ,0). Then the SVD ofX can be written asX = UΣ0V T and the matrixπ (r)(X) =

UΣV T belongs toMr and minimizes the value||X −X′||2F over X′ ∈ Mr. The projectionπ (r)(X) of X ontoMr is
uniquely defined if and only ifσr > σr+1. The squared (Frobenius) distance between matrixX andMr is ρ2(X,Mr) =

min
X′∈Mr

ρ2(X,X′) = ρ2(X,π (r)(X)) = ||X −π (r)(X)||2F =
L

∑
i=r+1

σ2
i (X) .

Projection to H

Let πH (X) denote the projection of a matrixX ∈ R
L×K onto the spaceH . Then the element ˜xi j of πH (X) is

given byx̃i j = v−1
i+ j ∑

l+k=i+ j

xlk . The squared (Frobenius) distance between matrixX and the spaceH is ρ2(X,H ) =

min
X′∈H

ρ2(X,X′) = ||X −πH (X)||2F .

ALGORITHMS BASED ON THE USE OF ALTERNATING PROJECTIONS

In this section we consider algorithms for solving the HSLRAproblem represented as optimization problems using
alternating projections between the spacesH andMr. We restrict our attention to the distance function associated
with the matrix Frobenuis norm (6), that is, we takeW = V in (8).

Classical algorithms and their modifications

The algorithm (9) below is the direct implementation of the alternating projections. For brevity we will refer to this
algorithm as AP.

X0 = X∗, Xn+1 = πH

[

π (r)(Xn)
]

for n = 0,1, . . . (9)

These projections have also been studied in [2] and are sometimes known as Cadzow iterations [5].
Despite AP often appearing to be myopic and too greedy by onlyaiming at minimizing the distanceρ2(X,Mr), it

is very popular in practice. The popularity of AP is explained by the simplicity of the algorithm and by the fact that
convergence to the spaceA is guaranteed, see [4]. AP often converges to a matrix which is far away from the set of
optimal solutionsX∗. As shown in [1, Th. 6.1], AP converges linearly; that is, there exist constantsc < 1 andA > 0
such thatρ2(X∞,Xn) < Acn , ∀n, whereX∞ is some matrix inA . Moreover, it is easy to prove monotonicity of AP
iterations. As derived by Chu et al. [4], we have||Xn+1−π (r)(Xn+1)||

2
F ≤ ||Xn+1−π (r)(Xn)||

2
F ≤ ||Xn −π (r)(Xn)||

2
F .

Alternating Projections with Backtracking and Randomization

In this section, we describe a family of algorithms which canbe run as a random multistart-type algorithm, as a
multistage algorithm and also as an evolutionary method. The main steps of this algorithm are summarized by its title
‘Alternating Projections with Backtracking and Randomization’ and we abbreviate this algorithm APBR. Here we
describe two versions of this algorithm, Multistart APBR and APBR with selection. APBR with selection significantly
reduces the number of computations by terminating non-prospective trajectories at early stages.

The multistart version of APBR is described as follows. LetU denote a realization of a random number with
uniform distribution in[0,1] and letX̃ denote a random Hankel matrix which corresponds to a realization of a white
noise Gaussian processỸ = (ξ1, . . . ,ξN) with ξi, i = 1, . . .N, independent Gaussian random variables with mean 0 and
variances2 ≥ 0.

In Multistart APBR, we runM independent trajectories in the spaceH starting at random Hankel matrices

X0, j = (1− s0)X∗+ s0X̃, (10)



with somes0 (0≤ s0 ≤ 1), and use the updating formula

Xn+1, j =
(

trZT
n, jX∗

/

trZT
n, jZn, j

)

Zn, j (11)

where j = 1, . . . ,M,

Zn, j = (1− δn)πH

[

π (r)(Xn, j)
]

+ δnX∗+σnX̃ (12)

and
{

δn =U/(n+1)p, σn = c/(n+1)q, if ρ2(Xn, j,Mr)≥ ε,
δn = 0, σn = 0, otherwise.

(13)

Each trajectory is either run until convergence or for a pre-specified number of iterations.U could be either random
or simply set to 1,c ∈ {0,1} and positive numbersp,q andε can be chosen arbitrarily. A MATLAB implementation
of this version of APBR, developed by the authors, is available at [6].

If s0 = δn = σn = 0 then the iterations in (11) coincide with iterations of AP (9) with some local improvement. If
s0 > 0 then thej-th trajectory of the algorithm starts at a random matrix in the neighbourhood ofX∗ (the width of this
neighbourhood is controlled by the parameters0). If σn > 0 then there is a ‘random mutation’ at then-th iteration (11).
Whenδn > 0, the current approximation ‘backtracks’ towardsX∗ conditionally that the backtracking does not worsen
the distanceρ2(Xn, j,X∗). If ρ2(Xn, j,Mr)< ε, we setδn = 0 andσn = 0. That is, in the final stage for any trajectory
of the APBR we perform AP iterations (9) to achieve faster convergence toA .
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