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Abstract: Wind turbine harmonic emissions due to power electronics are a well-known power quality 

concern in wind power plants. This problem may be increased by resonances because they amplify 

harmonic distortion around resonance frequencies. Hence, the resonance phenomenon is widely analysed 

in the literature. Resonance studies usually consider wind turbines as ideal current sources, which can lead 

to inaccurate results. The paper explores the effect of wind turbine converter control on wind power plant 

harmonic response. It contributes expressions of wind turbine equivalent harmonic impedance including 

current control of the grid side converter. This impedance allows wind turbine converter control to be 

considered in wind power plant modelling to analyse its effect on harmonic response and resonances. 

PSCAD and Matlab/Simulink simulations were performed to validate the analytical expressions and 

illustrate the usefulness of the work in predicting harmonic distortions at WT terminals in actual WPPs. 

 

1. Introduction 

Wind power plants (WPPs) with a large number of wind turbines (WTs) are rapidly developing 

worldwide [1]. Power quality problems arise in large WPPs because of the harmonic emissions of WTs 

equipped with power electronics [1] − [9]. These harmonic emissions are amplified by parallel resonances 

in the collector grid if they are close to the resonance frequency [1], [6], [7], [8] − [12]. A summary of the 

most important WPP harmonic and resonance issues is presented in [6], [8], [11]. In the literature, WPP 

parallel resonances are analysed to address harmonic concerns [6] − [12]. Recent works also explore 

resonance influence on stability of WT VSC control [9], [13], [14], [15]. These studies are mainly based 

on frequency scan analysis, which establishes the frequency range and peak impedance values of 

resonances. The WT model as an ideal current source is traditionally used in the literature to characterise 

resonances [1], [6], [7]. However, this model may lead to inaccurate results due to the influence of WT 

VSC control [6], [8] − [10]. An impedance-based representation can be used to identify electrical 

resonances and analyse the influence of grid and VSC control parameters [9], [15] − [18]. That is why, in 

order to obtain more accurate results, WT frequency-dependent models such as Norton equivalent sources, 

[9], [13] − [22], should be used in WPP resonance studies. In [16] − [22], the detailed expression of the 
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Norton equivalent impedance of grid-connected VSCs is analytically characterised for resonance and 

stability studies considering typical one- ([19] − [21]) or two- ([16] − [18], [22]) cascade control loops in 

synchronous (or d-q) reference frame. The numerical results in [17] and [18] are validated experimentally 

by the measurement technique in [23]. Most resonance and stability studies consider only the influence of 

the converter at the point of connection due to the complexity of its Norton equivalent impedance 

expressions. However, the other VSCs connected to the grid might affect resonance and stability, and 

therefore they should be also considered. Accordingly, [21] studies the harmonic stability of an islanded 

three-converter system and [22] analyses the interaction of two converters connected at different points of 

the grid. As mentioned in [19], [20], resonance characterisation in systems with a large number of 

converters, such as WPPs, is complex and requires modelling of converters with simplified and aggregated 

models. 

 The paper contributes with simplified analytical expressions of WT Norton equivalent impedances 

for harmonic studies. These expressions, which are validated from PSCAD and Matlab/Simulink 

simulations, reduce the complexity of considering WTs when frequency scanning and resonance 

characterisation is performed in grids with a large number of VSCs such as WPPs. Moreover, the paper 

explores in detail the effect of WT VSC control on WPP harmonic response and analyses its impact on 
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WPP parallel resonances observed from WTs. The prediction of harmonic distortions at WT terminals in 

actual WPPs considering the expressions of WT Norton equivalent impedances is also discussed from 

simulations to show the usefulness of this work in characterising harmonic penetration in actual WPPs.  

2. Wind Power Plant Modelling  

Fig. 1(a) illustrates a generic offshore WPP layout where type-4 WTs are supplied through medium 

to low voltage (MV/LV) transformers and interconnected with an Nr x Nc collector grid of medium voltage 

(MV) submarine cables from the MV collector bus [6] − [13]. Type-4 WTs are always equipped with two 

converters in back-to-back configuration and high frequency filters are usually installed on the grid side of 

WT converters to mitigate frequency switching harmonics [6], [7]. The MV collector bus is connected to 

the main grid with two high to medium voltage (HV/MV) transformers in parallel and a high voltage (HV) 

submarine cable. Parallel resonances increase WPP voltage distortions if their frequency is close to the 

harmonics of WT emissions. Several works study the resonance problem at WT terminals to perform 

harmonic penetration analysis [1], [6], [7]. In order to identify parallel resonance frequencies, in harmonic 

studies WPPs are characterised by their equivalent circuit, Fig. 1(b), and the equivalent harmonic 

impedance observed from the WTs (e.g., ZEq, k, observed from WTNr1 in Fig. 1(b)) is studied. The 

equivalent harmonic impedances of the main grid, ZS, k, HV/MV and MV/LV transformers, ZT, k, MV 

underground cables, ZL, k, and high frequency filters, ZCf, k, must be modelled. These impedances are 

obtained as follows [6], [7], [10]: 

( )

( )

( ) ( )

2

,
2

2

,s

,
2

, ,

, ,, ,

, ,

,

1

1
1 tan

1 tan

1
1 tan

1 tan

sinh tanh 2

2

1
,

O
S k S

S S

N

T k cc cc

N cc

x k x k

C k Cx kL k Lx k

x k x k

Cf k

f

U
Z jk

S

U
Z jk

S

D D
Z Z Y Y

Z j
C k

ϕ
ϕ

ε ϕ
ϕ

γ γ

γ γ

ω

= +
+

= +
+

= =

= −

    (1) 

where k = fk/f1 (with fk and f1 being the analysed harmonic frequency and the main grid fundamental 

frequency, respectively), ω1 = 2π·f1 and, according to Fig. 1(a),   

• UO, SS and tanϕS are the main grid open-circuit voltage, short-circuit power and XS/RS ratio at the 

point of coupling. 
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• UN, p /UN, s, SN, εcc and tanϕcc are the HV/MV and MV/LV transformer rated primary/secondary 

voltages and power, per-unit short-circuit impedance and XT/RT ratio.  

• γx, k = (ZLx, k·YCx, k)
1/2

 is the propagation constant of the cable, ZLx, k = Rx + jLxkω1 and YLx, k = jCxkω1 

are the HV and MV cable distributed parameters and D is the cable length.  

• Cf is the WT high frequency filter capacitor. 

Table 1 shows usual offshore WPP parameter values. The WT harmonic model as an ideal current 

source (ZWT, k = ∞ in Fig. 1(b)) is typically chosen to perform resonance analysis in harmonic penetration 

studies because it is only necessary to replace the current sources by an open-circuit at WT terminals [1], 

[7], [8] − [12]. However, some works point out that this model might not be accurate due to the possible 

influence of VSC control on resonances [6], [8], [10], [13]. Therefore, WT harmonic models such as 

     
Table  1  Offshore wind power plant parameters 

Main grid 

U0 150 kV 

Wind turbine 

PWT, N = 5 MW 

UWT, N = 690 V 

fs 5 kHz 

f1 50 Hz Rf, Lf 0.0075 mΩ, 0.05 mH 

SS 2500 MVA Cf 1000 µF 

tanϕS 20 pu τc = 1/αc 1 ms 

HV/MV 

transformers 

UN, H/UN, M  150/33 kV 

MV/LV 

transformer 

UN, M/UN, L  33/0.69 kV 

SN 125 MVA SN 5 MVA 

εcc 0.1 pu εcc 0.05 pu 

tanϕcc 12 pu tanϕcc 12 pu 

HV submarine 

cable 

Rx 0.032 Ω/km 

MV submarine 

cable 

Rx 0.041 Ω/km 

Lx 0.401 mH/km Lx 0.38 mH/km 

Cx 0.21 µF/km Cx 0.23 µF/km 

D 1 to 50 km D 0.5 to 1 km 
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Fig. 2. General structure for VSC current control in synchronous (or d−q) reference frame  
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Norton equivalent sources are currently proposed for WPP harmonic studies (in particular, resonance 

studies).  

3. Harmonic model of wind turbines  

WT VSC control is investigated to determine the equivalent harmonic impedance ZWT, k of Norton 

sources, which model WT harmonic behaviour. This frequency-dependent model should be used in 

frequency scan studies to consider the influence of WT VSC control on resonance frequencies. 

3.1. Expressions of WT equivalent harmonic impedance in balanced conditions 

The WT grid side converter with a filter Zf(s) = Rf + Lf s and current control in synchronous (or d−q) 

reference frame are shown in Fig. 2. It must be noted that the converter model in this Section only 

represents the inner current control loop because the outers loops (e.g., the phase-locked loop, PLL, and 

the direct-voltage controller, DVC) do not affect WPP harmonic response in the 0.5 kHz to 1.5 kHz 

frequency range due to their low bandwidths [9]. This assumption allows a VSC symmetrical model that 

can be characterised with complex impedances or admittances to be obtained. However, the consideration 

of outer control loops complicates this model unnecessarily, and therefore the WPP harmonic response 

study. It can be observed that the transfer matrices of the VSC models in [16] and [22] become the 

common diagonal matrices of the VSC inner current control loop for frequencies greater than the low 

bandwidths of the outer control loops. The space phasors are denoted by boldface letters in the study and 

their components by subscripts d and q (e.g., x = xd + j·xq). The voltage balance across the filter using d−q 

complex space phasors in continuous-time s domain is 

1( ) ,f f fR L s jL ω+ + + =
o

i v v     (2) 

where v is the grid voltage of fundamental angular frequency ω1 = 2π·f1, i is the line current and vo is the 

VSC terminal voltage. The converter voltage reference can be determined as 

( )PI 1( ) ( ) ( ) ( ) .i f i vF s H s jL H s H sω= − + +
ref ref

v i i i v     (3) 

The voltage vo generated by the VSC and the converter voltage reference vref are commonly related 

to the transfer function of converter time delay D(s) (i.e., vo = D(s)·vref). A negligible converter time delay 

(i.e., D(s) = 1, and therefore vo = vref) is considered in the below characterisation of the WT equivalent 

harmonic impedances, but the influence of this delay on the impedances is discussed in Subsection 3.4.2. 

In (3), iref is the converter reference current, and a feedback of the line current through a PI controller with 

transfer function FPI(s) is used: 



6 

 

PI ( ) ,i
p

K
F s K

s
= +     (4) 

where Kp and Ki are the PI control proportional and integral gains, respectively. Moreover, the influence of 

feedback and feedforward signal filtering on measured line current and grid voltage signals is also 

considered through low-pass filter transfer functions Hi(s) and Hv(s) [14], [16]: 

( ) ( , ),
fx

x

fx

H s
s

α

α
= = =

+
m

x
x i v

x
    (5) 

where x represents the line current and grid voltage signals, xm represents the output filters and αfx is the 

bandwidth of the low-pass filters. For high bandwidths, x is unfiltered (i.e., Hx(s) ≈ 1, and therefore 

xm ≈ x). For low bandwidths, x is completely filtered (i.e., Hx(s) ≈ 0, and therefore xm ≈ 0). Based on [16], 

the control design results in Kp = αcLf and Ki = αcRf, where αc is the current controller bandwidth. This 

bandwidth should verify αc ≤ 0.2·(2πfs), with fs being the converter switching frequency, which is usually 

above 1 kHz for modern VSCs [16]. The recommended bandwidth of the grid voltage low-pass filter is 

αfv ≤ 0.1αc for normal-mode operation and αfv ≥ αc for transient-mode operation. The bandwidth of the 

line current feedback low-pass filter is supposed to be large enough compared with the current controller 

bandwidth to ensure that the filter does not affect the controller response. A line current low-pass filter 

bandwidth five times higher than the current controller bandwidth is considered in the study (i.e., 

αfi ≥ 5αc).  

The WT equivalent harmonic impedance can be obtained by considering the d−q complex space 

phasor expressions of three-phase non-sinusoidal quantities in balanced conditions (see Appendix 1) and 

combining the voltage balance across the filter (2) and the converter voltage reference (3) in frequency 

domain. By relating (2) and (3) by means of converter time delay, the following expression is obtained: 

( )( )1 PI 1( ) ( ) ( ) ( ) ( ) ( ) ,
f f f i f i v

R L s jL D s F s H s jL H s H sω ω+ + + = − + +
ref

i v i i i v     (6) 

which can be arranged as 

( ) ( )PI 1 PI 11 ( ) ( ) ( ) ( ) ( ) ( )( ( ) ) .
v f f f i f

D s H s D s F s R L s jL D s H s F s jLω ω− = − + + + −
ref

v i i     (7) 

Considering that the positive- (k = 4, 7…) and negative- (k = 2, 5…) sequence harmonic phasors of 

balanced three-phase non-sinusoidal voltages and currents, Xk (with X = V or I), are expressed in d−q 

frame as the following complex space phasors (Appendix 1):  

• Positive sequence components: x = xd + jxq = Xk·e
j(k − 1)ω

1
t
 for k = 4, 7… 
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• Negative sequence components: x = xd − jxq = Xk
*
·e

−j(k + 1)ω
1
t
 for k = 2, 5… 

the transformations s → (k − 1)ω1 for the positive-sequence components (Xk with k = 4, 7…) and 

s → −(k + 1)ω1 for the negative-sequence components (Xk with k = 2, 5…) are applied to express (7) in 

harmonic steady state, i.e., 

( ) ( ) ( )

( ) ( ) ( )
, PI, ref , PI,1 1 1

* *

, PI, ref , PI,1 1 1

1 ( ) ( ) 1

1 ( ) ( ) ( 1) ,

h v h h h k h i h h kk f f f f

h v h h h k h i h h kk f f f f

V D H D F I R jL h jL D H F jL I h k

V D H D F I R jL h jL D H F jL I h k

ω ω ω

ω ω ω

− = + + + + − − = −

− = + + + + − − = − +
(8) 

where 

• Vk, Ik and Irefk are the k
th

 harmonic phasors of the grid voltage v, line current i and converter 

reference current iref (superscript * indicates complex conjugate). 

• FPI, h, Hi, h and Hv, h represent the frequency response of the PI controller and feedback and 

feedforward low-pass filters, which are obtained by setting s → jhω1 in their corresponding transfer 

functions (4) and (5), i.e., 

PI, PI 1

1 1

,

, 1 ,

1 , 1

( )

( ) ( , ).

i i
h p p

fx rfx fx

x h x fx r

fx fx r

K K
F F jh K K j

jh h

H H jh x i v
jh jh

ω
ω ω

αα α
ω α

ω α α ω

= = + = −

= = = = =
+ +

    (9) 

Note that Hx, h(s) ≈ 1 for high bandwidths, with αfx, r >> h, and Hx, h(s) ≈ 0 for low bandwidths, with 

αfx, r << h (e.g., αfx, r ≈ 1). 

• Dh represents the frequency response of converter time delay, which is considered negligible in the 

below study, i.e., Dh = 1. 

Considering (8) and assuming that the harmonic phasors of the converter reference current are equal 

to zero (i.e., Irefk = 0), the WT equivalent harmonic impedance is obtained from the ratio of the grid voltage 

and line current phasors, i.e., ZWT, k = RWT, k + jXWT, k = Vk/(−Ik), where the negative sign is due to the 

current direction definition outside the converter. Thus, the WT equivalent harmonic impedance of the 

positive-sequence harmonic components becomes  

, PI,1 1

WT,

,

( 1) ( )
( 1 ; 4, 7 ),

1

i h hf f f

pk

v h

R jL h H F jL
Z h k k

H

ω ω+ + + −
= = − =

−
K   (10) 

and, according to (36), the WT equivalent harmonic impedance for the negative-sequence harmonic 

components in (8) corresponds to the conjugate expression of the WT equivalent harmonic impedance for 

the positive-sequence harmonic components, with h = −(k + 1). The above WT equivalent impedances are 
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obtained for the typical one-cascade control loop in Fig. 2. Other converter control structures lead to 

different WT Norton equivalent impedances which could be characterised by the same procedure. In the 

following Subsections, the WT equivalent harmonic impedance in (10) is determined in three successive 

steps from the simplest to the most complex case to enhance the clarity of the study and analyse the impact 

of WT VSC control on the equivalent impedance. 

3.1.1. Unfiltered line current and grid voltage (case A): This study is restricted to the simplest control, 

where the line current and grid voltage harmonics are unfiltered (i.e., Hx, h ≈ 1 for x = i, v). In this case, the 

positive-sequence harmonic component expression in (8) can be rewritten as follows: 

( )PI,10 ( ) ( 1 ; 4, 7 ),h kf f
R jL h F I h k kω= + + − = − = K   (11) 

which implies that the k
th

 harmonic phasors Ik of the WT line currents for the positive-sequence are equal 

to zero, and therefore the WT equivalent harmonic impedance becomes Z
(A)

WT, k = ∞ (k = 4, 7 …). This is 

also true for the the negative-sequence harmonic components (k = 2, 5 …). In this way, the d-q reference 

frame control with unaffected feedback and feedforward grid signals can be modelled for the positive- and 

negative-sequence harmonic components as the typical ideal harmonic current source used in the 

literature.  

3.1.2. Unfiltered line current (case B): In this case, the line current harmonics are unfiltered and the grid 

voltage harmonics are filtered (i.e., Hi, h ≈ 1 and 0 ≤ Hv, h < 1). The positive-sequence harmonic component 

expression in (8) can be rewritten as follows:  

( ), PI,1(1 ) ( ) ( 1 ; 4, 7 ),v h h kk f f
V H R jL h F I h k kω− = + + − = − = K   (12) 

and the WT equivalent harmonic impedance of the positive-sequence harmonic components becomes 

( )PI,(B) ,1

WT, , 1 12

, 1 11

( 1).

h fv rf f i i
pk f p fv r f f f p

v h

R jL h F K K
Z R K L j L h R K

H h h h

h k

αω
α ω ω

ω ω

+ +    
= = + + − + − − +   −    

= −

 (13) 

 The WT equivalent harmonic impedance of the negative-sequence harmonic components (k = 2, 5...) 

corresponds to the conjugate expression of the positive-sequence WT equivalent harmonic impedance (13), 

with h = −(k + 1).  

If the grid voltage harmonics are completely filtered (i.e., αfv, r is small enough for Hv, h ≈ 0), the WT 

equivalent harmonic impedance for the positive- and negative-sequences in (13) becomes 
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3.1.3. Filtered line current and grid voltage (case C): In this case, the line current and the grid voltage 

harmonics are filtered. The currents are filtered with a bandwidth five times greater than the current 

controller bandwidth (i.e., αfi ≥ 5αc, and therefore αfi, r ≥ 15), while the voltages can be completely filtered 
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(i.e., 0 ≤ Hv, h < 1). The positive-sequence harmonic component expression in (8) can be rewritten as  

( ), PI, , ,1 1(1 ) ( 1) ( ) ( 1 ; 4, 7 ),v h h i h i h kk f f f
V H R jL h F H jL H I h k kω ω− = + + + − − = − = K  (15) 

and the WT equivalent harmonic impedance of the positive-sequence harmonic components in (10) is 

obtained, which can be arranged as 

(C) , ,

WT, 2 2

,

( )
( 1),

( )

k fv r k k fv r k

pk

fi r

hA B j hB A
Z h k

h h

α α
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+ + −
= = −

+
  (16) 

where  

2 2 2

, , , 1

1

2
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i
k f fi r p fi r f
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A R h K L h
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B h L h h K L h

h

α α α ω
ω

ω α α ω
ω

 
= + + − + 

 

 
= + − + − 

 

  (17) 

The WT equivalent harmonic impedance of the negative-sequence harmonic components (k = 2, 5 ...) 

corresponds to the conjugate expression of the positive-sequence WT equivalent harmonic impedance (16), 

with h = −(k + 1). The WT equivalent harmonic impedances in Subsections 3.1.1 and 3.1.2 can be derived 

from (16).  

3.2. Validation of the WT equivalent harmonic impedance 

Considering the data in Table 1, Fig. 3 shows the magnitude and phase angle results of the WT 

equivalent harmonic impedance obtained from the analytical expressions in (16), i.e., 

,1

,WT ,

2 2 2 2 tan
,(C)

WT, WT, 2 2

,

( )( )
e e .

( )

k fv r k

k fv r kk

hB A
j

hA Bfv r k kj

k k

fi r

h A B
Z Z

h h

α

αφ α

α

−  −
 
 + 

+ +
= =

+
  (18) 

The results in Fig. 3 are in agreement with [9], [15], [17], [18], [23]. In order to validate the accuracy 

of the analytical study, a PSCAD frequency scan is numerically performed on the WT grid side converter 

in Fig. 2. This frequency scan is obtained by applying the following steps:  

• A small voltage disturbance (e.g., 0.1 pu) at a certain frequency is applied to the supply voltage of 

the WT grid side converter. 

• The steady state voltage and current values of one phase are measured and the harmonic components 

of the disturbance frequency are obtained.  

• The impedance of the circuit at the disturbance frequency is calculated from the above harmonic 
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voltage and current values. 

The results are shown with dots in Fig. 3, where only the dominant harmonics in WPPs (i.e., 

k = 7, 13 … for the positive-sequence and k = 5, 11 … for the negative-sequence) are plotted for the sake 

of clarity. The above results could be comparable to the equivalent impedance characterised in [15], [17], 

[18] for stability studies. However, the present study only focuses on the harmonic frequencies of WT 

emissions, which allows simpler expressions for discussing the impact of WT VSC control on WPP 

resonances to be obtained. Fig. 3 shows that the WT equivalent harmonic impedance (in particular, its 

resistive component) is mainly affected by the grid voltage low-pass filter bandwidth while the impact of 

the line current low-pass filter bandwidth is small. The details of these influences are analysed in the next 

Sections. The WT grid side converter harmonic currents in the PSCAD simulations of the unfiltered 

control case (case A) are equal to zero, which agrees with Z
(A)

WT, k = ∞. 

Experimental validation is out of the scope of the paper because access to actual WTs to perform 

measurements was not possible. However, WT equivalent harmonic impedance could be measured by one 

of the three impedance measurement methods proposed in [23]. These methods are similar to the 

numerical procedure applied in the PSCAD frequency scan. A frequency response analyser is used to 

supply VSC with a small voltage disturbance at a specific frequency and the positive- and negative-

sequence components of the VSC impedance are obtained from measurements of two-phase currents and 

voltage disturbance. Subsequently, symmetrical transformation is applied to the measurements to obtain 

the sequence components of the WT equivalent harmonic impedances. According to [17] and [18], 

measurements allow analytical and numerical results to be validated.  

3.3. Simplified expressions of the WT equivalent harmonic impedance 

Simplified expressions of the WT positive- and negative-sequence equivalent harmonic impedance 

are obtained when the currents are unfiltered and filtered. The simplifications consider that the filter 

resistance Rf and the PI control integral gain Ki = αcRf can be neglected because of their small value [14], 

[15]. The relation between the filter inductance and the PI control proportional gain, Kp = αcLf, is also 

considered to obtain more compact expressions. 

3.3.1. Unfiltered line currents: The WT positive- and negative-sequence equivalent harmonic impedance 

can be approximated from (13) as 
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,

WT, , 1 1 1

1

( )

( 1 ; 4, 7 and 1 ; 2, 5 ).

fv r fv c

k p f fv r f p f c fv fZ K L j L h K L jL h
h h

h k k h k k

α α α
α ω ω α α ω

ω
  

≈ + + − = + + −  
   

= − = = + =K K

 (19) 

The WT equivalent harmonic impedance in (19) shows an inductive behaviour (see unfiltered cases 

in Fig. 3) for frequencies above flm:  

{ }, 1 1

1

Im 0 ,
2

c fvfv c

WT k lmZ h f f f
h

α αα α
ω

ω π
= − > ⇒ > = +   (20) 

and this impedance can be approximated as follows:  

WT, 1( ) ( 4, 7 and 2, 5 ).k f c fv fZ L jL k k kα α ω≈ + + = =K K   (21) 

Therefore, the WT equivalent harmonic impedance when the line current is unfiltered is always 

passive with a positive resistance affected by the current control and grid voltage low-pass filter 

bandwidths (αc and αfv). Moreover, for frequencies above flm, the imaginary part of this impedance can be 

simplified as an inductance approximately equal to the filter inductance of the grid-side converter. The 

frequency flm is usually below 500 Hz for typical WT parameters (Table I).    

3.3.2. Filtered line currents: The WT positive- and negative-sequence equivalent harmonic impedance 

can be approximated from (16) as 

    
Table  2 Simplified expressions of the WT equivalent harmonic impedance ZWT, k = RWT, k + jXWT, k (flm < 1 kHz) without 

considering converter time delay (D(s) = 1) 

Line current, i Unfiltered Filtered 

f (kHz) lmf<  lmf>  lmf<  ] [, 1lmf  1>  

XWT, k (Ω) 1

1

fv c

fL h
h

α α
ω

ω
 

− 
 

 (19) 
1fL kω (21) 

,

1

1

fv r c

fL h
h

α α
ω

ω
 

− 
 

 (22) 
1fL hω  (24) 

1fL kω  (25) 

 RWT, k (Ω) ( )f c fvL α α+  (19), (21) WT ,

2 2

,

a k

fi r

R

hα +
 (22), (24) f fvL α  (25) 

Notes: 

- 1 ; 4, 7 and 1 ; 2, 5h k k h k k= − = = + =K K  

- 
WT ,a kR  (23) 

 



13 

 

WT , , WT , ,

WT, 1 12 2 2 2

, , 1

( 1 ; 4, 7 and 1 ; 2, 5 ),

a k fv r a k fv r c

k f p f

fi r fi r

R R
Z j L h K jL h

h h h h

h k k h k k

α α α
ω ω

α α ω
  

≈ + − = + −  + +   

= − = = + =K K

  (22) 

with 

2

, , , 1 , , , , 1

WT , 2

, , , 1 , , , , 1

( ( ) ( 1) ( ) ) ( 4, 7 )
.

( ( ) ( 1) ( ) ) ( 2, 5 )

f c fi r fi r fv r fv r fi r fv r fi r

a k

f c fi r fi r fv r fv r fi r fv r fi r

L k k k
R

L k k k

α α α α ω α α α α ω

α α α α ω α α α α ω

 − + − − + =
= 

− + + + + =

K

K

 (23) 

 For frequencies above flm, the imaginary part of the impedance can be approximated as an 

inductance, similarly to the unfiltered case, i.e.,   

WT ,

WT, 12 2

,

( 1 ; 4, 7 )
,

( 1 ; 2, 5 )

a k

k f

fi r

R h k k
Z jL k

h k kh
ω

α

= − =
≈ +

= + =+

K

K
  (24) 

and, for frequencies above 1 kHz (i.e., k > 20), (24) can be approximated as follows: 

2

1 , , , 1

WT, 1 12 2

,

( )
( 4, 7 and 2, 5 ),

f fv r fv r fi r

k f f fv f

fi r

L k k
Z jL k L jL k k k

k

ω α α α ω
ω α ω

α

+
≈ + = + = =

+
K K  (25) 

where the resistance RWTa, k in (21) tends to Lfαfv, which is graphically verified in Subsection 3.3.3.   

3.3.3. Summary of expressions: Considering flm < 1 kHz, Table 2 summarises the expressions proposed 

for the WT equivalent harmonic impedance. In order to check these expressions, Fig. 4 shows the positive-

sequence WT equivalent resistance and reactance (RWT, k and XWT, k with k = 4, 7 …) for unfiltered and 

filtered (αfi, r = 15 pu) line current and different αfv, r values. The resistance is equal to Lf(αc + αfv) in the 
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Fig. 4. Study of the WT positive-sequence equivalent impedance (data in Table 1 and D(s) = 1) 

a WT equivalent resistance 
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unfiltered case whereas it becomes Lfαfv for frequencies above 1 kHz in the filtered case. It is also 

observed that the reactance tends to Lfω1 for frequencies above flm in both unfiltered and filtered cases.  

3.4. Influence of unbalanced voltage conditions and converter time delay 

The impact of unbalanced voltage conditions and converter time delay on WT equivalent harmonic 

impedance is analysed in the following Subsections.  

3.4.1. Unbalanced voltage conditions: Like in balanced conditions, the positive- and negative-sequence 

WT equivalent harmonic impedance can be obtained by combining (2) and (3) in frequency domain and 

considering that the d−q complex space phasors of three-phase non-sinusoidal voltages in unbalanced 

conditions contain positive- and negative-sequence components for all harmonics (34). Thus, the 

expressions of the WT equivalent harmonic impedance in unbalanced conditions are the same as in 

balanced conditions, except that the positive- and negative-sequence must be considered for all harmonics 

(k > 1) instead of the positive-sequence impedance for k = 4, 7… and the negative for k = 2, 5... 

Another effect of unbalanced supply voltages is that the negative-sequence component of the 

fundamental d-q space phasor has a second harmonic oscillation, i.e., the negative-sequence component is 

translated to twice the fundamental frequency (34), which can affect grid synchronisation of the PLL. This 

can lead to coupling equivalent harmonic impedances ZWT, pnk between positive- and negative-sequence 

voltages and currents [18], [23]. However, these harmonic coupling terms can be neglected for typical 

PLL designs not exceeding a few tens of hertz [18].  

3.4.2. Converter time delay: Converter time delay between the voltage vo generated by the VSC and the 

converter voltage reference vref is typically considered as D(s) = e
−sTd

, where Td is the time delay [14]. This 

time delay is approximately composed of one sampling period of computation delay and half a sampling 

period of modulation delay (i.e., switching process) and is given by Td ≈ 1.5Ts, with Ts = 1/fs and fs being 

the converter switching frequency. Considering the above time delay, the WT equivalent harmonic 

impedance of the positive-sequence harmonic components in (10) is rewritten as  

, PI,(D) 1 1

WT,

,

( 1) ( )
( 1 ; 4, 7),

1

h i h hf f f

pk

h v h

R jL h D H F jL
Z h k k

D H

ω ω+ + + −
= = − =

−
  (26) 

where 

1

1 1cos( ) sin( ).djh T

h Rh Ih Rh d Ih dD e D jD D h T D h T
ω ω ω−= = − = =   (27) 



15 

 

Simplified expressions of the WT equivalent harmonic impedance (26) are difficult to obtain due to 

the addition of converter time delay. However, approximate expressions can be obtained in some 

conditions related to line current and grid voltage filtering.  

In the case of unfiltered line currents (case B in Subsection 3.1.2), the following approximate 

positive-sequence harmonic components of the equivalent impedances can be determined from (26): 

WT, WT, WT ,

2 2

1 1

WT, 2 2 2

1

3 3 2 2 2

1 1 1

WT, 2 2

1

( 1 ; 4, 7)

(( ) ) ( 1)

(1 ) ( )

( ) ( (1 ) )

(1 ) (

k k a k

fv c Rh fv Ih fv c Rh

k f

fv Rh fv Ih

fv c Ih fv fv Rh c fv c Ih

k f

fv Rh fv I

Z R jX h k k

h h D D D
R L

D h D

h h D h D D
X L

D h D

ω α α ω α α α

α ω α

ω ω α α ω α α α α α

α ω α

≈ + = − =

 + + + −
=   − + + 

+ − + − − −
=

− + + 2
.

)h

 
  
 

  (28) 

If the grid voltage harmonics are unfiltered (i.e., Hv, h ≈ 1), (28) can be simplified as 

 1 1
WT,

( 1)
( 1 ; 4, 7),

2(1 ) 2 2(1 )

c Rh Ih c Ih
k f f

Rh Rh

D h D Dh
Z L jL h k k

D D

α ω αω − +
≈ + + = − = − − 

  (29) 

where, according to Subsection 3.1.1, the WT equivalent harmonic impedance becomes Z
(A)

WT, k = ∞ 

(k = 4, 7 …) when the time delay is equal to zero (i.e., DRh = 1 and DIh = 0).  

 If the grid voltage harmonics are filtered with a low bandwidth (approximately, αfv, r < 5), (28) can 

be simplified as 
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Fig. 5. Study of the WT positive-sequence equivalent resistance (up) and reactance (down) with unfiltered line currents (data in 

Table 1) 

a Comparison between equivalent impedances without and with converter time delay (D(s) = 1 and D(s) = e
−sTd

, respectively) 

b Comparison between general and approximate equivalent impedances with converter time delay (D(s) = e
−sTd
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where, according to Subsection 3.3.1, the WT equivalent harmonic impedance becomes (21) when the 

time delay is equal to zero (i.e., DRh = 1 and DIh = 0).  

The WT equivalent harmonic impedances of the negative-sequence harmonic components 

(k = 2, 5 ...) correspond to the conjugate expression of the positive-sequence WT equivalent harmonic 

impedances, with h = −(k + 1).  

In order to study the impact of converter time delay on the WT equivalent harmonic impedance and 

analyse the accuracy of the previous expressions, Fig. 5 shows the positive-sequence WT equivalent 

resistance and reactance (RWT, k and XWT, k with k = 4, 7 …) for unfiltered line currents and three 

feedforward grid voltage cases (filtered grid voltage with αfv, r = 1 pu or αfv, r = 25 pu and unfiltered grid 

voltage).  
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Fig. 6. Influence of WT VSC control on 8x5 offshore WPP resonance (data in Table 1 and D(s) = 1)  
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In Fig. 5(a), the general expressions of the equivalent impedances without and with converter time 

delay, (16) and (26) respectively, are compared to determine the influence of converter time delay. It can 

be noted that, if the grid voltage is filtered, converter time delay reduces the WT equivalent resistance but 

does not change the Lf·k·ω1 trend of the WT equivalent reactance significantly. This mainly reduces the 

damping effect of WT control at a frequency range where the WT equivalent resistance is smaller but does 

not affect WPP resonance frequencies significantly. Moreover, it can be observed that converter time 

delay may lead to negative values of the WT equivalent resistance, worsening system stability [16]. If the 

grid voltage is unfiltered, the WT equivalent harmonic impedance is not infinite, as in the case of zero 

time delay (see Subsection 3.1.1), which affects the damping and frequency of WPP resonances. These 

conclusions are presented in Subsection 4.1. In Fig. 5(b), the general expression of the equivalent 

impedance with converter time delay (26) is compared with the approximate expressions (28), (29) and 

(30) to validate the accuracy of these approximations. Although the comparison of the WT equivalent 

harmonic impedances when the currents are filtered with αfi, r = 15 pu is not shown, it was verified that the 

approximate expressions do not exhibit the same accuracy but can provide an acceptable prediction of the 

impedances because these impedances do not change significantly compared to the unfiltered case.   

4. Application to Wind Power Plant Resonances 

 An 8x5 offshore WPP (data in Table 1) is studied to analyse the influence of WTs on WPP 

harmonic behaviour. The WPP consists of 40 type-4 WTs (i.e., full-scale VSC WTs), each with a rated 

capacity of 5 MW, arranged in five strings of 33 kV submarine cables. These strings collect eight WTs 

(separated 1 km from each other) at the offshore substation, which is connected to shore by a 10 km 

submarine cable. According to Table 1, the short-circuit impedance of the grid is 

SCR = 2500/(8·5·5) = 12.5 pu.  

4.1. Frequency response of the wind power plant 

The frequency response of the 8x5 offshore WPP is determined to analyse the influence of WTs on 

resonance frequencies. The frequency scan study is performed considering the ideal current source model 

in the literature (case A in Subsection 3.1), the general model of the WT equivalent harmonic impedance, 

(16), and the simplified models proposed in Subsection 3.3.3. The results of the WT positive-equivalent 

harmonic impedance considering zero time delay are illustrated for unfiltered and filtered (αfi, r = 15 pu) 

line current and several αfv, r values in Fig. 6. These results show that the simplified models provide a good 

approximation of the general model. These simplified models allow easy analysis of the influence of WTs 
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on WPP resonance frequencies in harmonic studies. It can be observed that WT control shifts WPP 

resonance frequencies and introduces a damping effect [9].  

 The damping effect of WT control is due to the resistance of the WT equivalent harmonic 

impedance, which depends on the filter inductance, Lf, and current control and grid voltage low-pass filter 

bandwidths, αc and αfv (see Subsection 3.5). It is slightly greater in the unfiltered line current case than in 

the filtered line current case because of the additional term Lf·αc in the WT equivalent harmonic resistance. 

Moreover, it increases with increasing the grid voltage low-pass filter bandwidth because of the Lf·αfv term. 

Note that, in the filtered line current case, the approximation (25) can underestimate the damping effect at 

low frequencies if αfv, r is small (see αfi, r = 15 pu and αfv, r = 1 plot in Fig. 6). Hence, in this case it would 

be advisable to use (24). The accurate results provided by (24) for different values of the filter bandwidths 

were checked although they are not shown for the sake of clarity.  

WT VSC control shifts the resonance frequencies as observed for αfv, r = 1. The influence of the filter 

capacitor Cf connected in parallel with the WTs is analysed in Fig. 7 to study this frequency response. 

Fig. 7 compares the impedances of the WT (ZWT, k = RWT, k + j·XWT, k), the filter capacitor (ZCf, k = j·XCf, k) 

and the WT-capacitor set (ZWT//Cf, k = RWT//Cf, k + j·XWT//Cf, k = ZWT, k // ZCf, k). It can be observed that there is 

a parallel resonance between the WT equivalent harmonic impedance and the filter capacitor reactances 
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Fig. 7. Study of filter capacitor influence on WT equivalent impedance (data in Table 1 and D(s) = 1)  
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which, considering that XWT, k ≈ Lf·k·ω1 and XCf, k = −1/(Cf·k·ω1), occurs approximately at the following 

frequency:   

_

1
.

2
res Cf

f f

f
L Cπ

≈   (31) 

According to Fig. 7, the WPP resonances below fres_Cf in Fig. 6 are shifted by the WTs because the 

frequency response of the WT-capacitor set is affected by the WT equivalent harmonic impedance 

response. On the other hand, the WPP resonances above fres_Cf mainly depend on the filter capacitor 

although the parallel resonances in the example are still affected by the WTs. In these cases, the typical 

WT current source model could be adopted to analyse WPP harmonic response approximately if the WPP 

parallel resonances are far enough from fres_Cf.  

The comparison of the WT positive-equivalent harmonic impedance obtained from the WT ideal 

current source, zero time delay and nonzero time delay general models (Z
(A)

WT, k = ∞, Z
(C)

WT, k in (16) and 

Z
(D)

WT, k in (26), respectively) is given for unfiltered line current and three feedforward grid voltage cases 

(filtered grid voltage with αfv, r = 1 pu or αfv, r = 25 pu and unfiltered grid voltage) in Fig. 8. The results in 

Subsection 3.4.2 show that the nonzero time delay model affects the WPP resonances as follows: (i) it can 

reduce the damping effect compared to the zero time delay model depending on the frequency range and 

the feedforward filter bandwidth when the grid voltage is filtered, but does not modify WPP resonance 

frequencies significantly; (ii) it introduces a damping effect and modifies the WPP resonance frequencies 

when the grid voltage is unfiltered. Although the results with the approximate expressions of the nonzero 

time delay model, (29) and (30), are not plotted in Fig. 8 for the sake of clarity, it was verified that these 

expressions are highly accurate. It was also verified that the influence of nonzero time delay when the line 

current is filtered is similar to when the line current is unfiltered, and that the approximate models for 

unfiltered line current also provide acceptable results.    

 

Z
E

q
, 
p
k 

(Ω
) 

0.001

100

1

10

0.01

0.1

f (kHz) 

0 1 1.5 0.5 2 2.5 

i u
n

filtered
 

 

f (kHz) 

0 1 1.5 0.5 2 2.5 
f (kHz) 

0 1 1.5 0.5 2 2.5

v unfiltered αfv, r = 25 pu 

 

αfv, r = 1 pu 

 

Z(A)
WT, k ≈ ∞ (Case A) 

General expression without Td (16) 

General expression with Td (26) 
 

457 Hz 

1108 Hz 

1291 Hz 

1271 Hz 

1255 Hz 

612 Hz 

1195 Hz 

1387 Hz 

1251 Hz 

1255 Hz 

457 Hz 

1108 Hz 

1291 Hz 

612 Hz 

 
Fig. 8. Influence of WT VSC control with D(s) = 1 or D(s) = e

−sTd
 on 8x5 offshore WPP resonance (data in Table 1)  
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All the Subsection comments can be extended to the WT negative-equivalent harmonic impedance. 

4.2. Harmonic voltage distortion of the wind power plant 

 The harmonic voltage distortions HDWTv, k = VWT, k/VWT, 1 at bus Nr1 (i.e., at WTNr1 terminals where 

resonances are studied) are numerically obtained from Matlab/Simulink simulations considering the 

harmonic current limits in the German Electricity Association (VDEW) Standard for generators connected 

to medium voltage networks [4], which are set in the study as the WT emission magnitudes IWT, k (or 

HDWTi, k = IWT, k/IWT, 1, where IWT, 1 = PWT, N/(√3·UWT, N) and PWT, N and UWT, N are in Table 1). This 

standard provides specific magnitude values of generator (or WT) harmonic limits based on the grid short-

circuit ratio SCR, which can be easily included in the simulation program. The limits for a short-circuit 

ratio close to the 15 – 20 range are quite similar to the distortion limits in IEEE Standard 15471 (in 

particular, harmonics below 1.5 kHz) [4]. The harmonic voltages are easily obtained by multiplying the 

limit harmonic currents of the VDEW Standard by the WPP equivalent harmonic impedance at bus Nr1, 

i.e., VWT, k = ZEq, k·IWT, k, where the WT equivalent harmonic impedances are considered in ZEq, k according 

to the previous Sections.  Fig. 9(a) plots the VDEW current emission limits used in the simulations and 

Fig. 9(b) plots the voltage distortions considering WT unfiltered line currents and three feedforward grid 

voltage cases (unfiltered grid voltage and filtered grid voltage with αfv, r = 25 pu or αfv, r = 1 pu). These 

voltage distortions are calculated considering the WT ideal current source model (i.e., Z
(A)

Eq, k = ∞) and the 

WT general model without and with time delay, Z
(C)

Eq, k (16) and Z
(D)

Eq, k (26), respectively. The harmonic 

frequencies with peak values of the voltage distortions are labelled to show that the voltage distortion 

pattern obtained is similar to the WPP harmonic response in Fig. 8. It can be observed that the frequencies 

of the maximum distortion values approximately correspond to the parallel resonance frequencies: (i) in 
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the unfiltered grid voltage example, the peak values of voltage distortion at 350 Hz and 950 Hz are related 

to the WPP equivalent impedance resonances at 475 Hz and 1108 Hz of the ideal current source model and 

the peak values at 1250 Hz are related to the resonances in the 1255 – 1300 Hz range of all models; (ii) in 

the filtered grid voltage example with αfv, r = 25 pu, the small peak value of voltage distortion at 555 Hz is 

related to the low resonance at 612 Hz of the nonzero time delay model and the other peak values are the 

same as in the unfiltered grid voltage example; (iii) in the filtered grid voltage example with αfv, r = 1 pu, 

the results are the same as withαfv, r = 25 pu but the peak value of voltage distortion at 555 Hz is greater 

because the resonance at 612 Hz of the nonzero time delay model is higher. The results show that 

harmonic voltage distortions can be higher and more dangerous when the parallel resonance matches 

exactly some frequencies of the WT harmonic emissions than when it is close to them. According to 

Section 3, the results of the general model without time delay (16) are similar to the results of the ideal 

current source model (case A in Subsection 3.1.1) when the grid voltage is unfiltered and they can also be 

approximated with (21) when the grid voltage is filtered. The results of the general model with time delay 

(26) can be approximated with (29) or (30) when the grid voltage is unfiltered or when it is filtered with a 

low bandwidth, respectively. It must be noted that the study is just an example to illustrate how the present 

work could be used in actual WPP applications to predict harmonic distortions at the WT connection point. 

Further research would be required to accurately evaluate the impact of resonance on WP power quality.  

3. Conclusion 

The influence of WT VSC control on offshore WPP harmonic response is studied. Analytical 

expressions of the WT equivalent harmonic impedance are presented considering the effect of current and 

feed-forward voltage filters. The influence of converter time delay in these expressions is also analysed. 

The obtained expressions allow the WT converter effect on WPP frequency scanning to be considered. 

Simplified expressions for the impedance which can be easily applied in frequency scanning are also 

proposed. It is observed that WT modelling as an ideal current source can lead to inaccurate results 

because WT VSC control shifts WPP resonance frequencies and introduces a damping effect. Frequency 

shifting must be considered for the whole frequency range. On the other hand, for frequencies above the 

resonance frequency between the WT filter inductance and filter capacitor, this shifting is mainly due to 

the filter capacitor. Therefore, the WT current source model could be used to estimate the range of parallel 

resonances if they are far from the WT filter resonance. The damping effect is also observed for the whole 

frequency range and is directly related to current control and grid voltage low-pass filter bandwidths. In 

general, converter time delay reduces the damping effect when the feedforward voltages are filtered, but 
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does not affect resonance frequencies significantly. In the case of unfiltered feedforward voltages, 

converter time delay increases the damping effect, which may modify resonance frequencies. PSCAD and 

Matlab/Simulink simulations are used to validate the analytical study. It must be noted that other WT VSC 

control structures lead to different WT Norton equivalent impedances, and therefore their influence on 

WPP resonances will be different. This influence could, however, be analysed following the procedure 

described here. 
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Appendix 1: Complex Space Phasor Representation of Harmonics in Synchronous (or d−−−−q) 
Reference Frame 

If zero-sequence components are not considered, three-phase quantities (xa(t), xb(t), xc(t)) can be 

expressed as d−q complex space phasors as follows: 

( ) 12 3 4 32
,

3

jj j

d q a b cx j x x e x e x e
θπ π −= + ⋅ = + +x   (32) 

where dθ1/dt = ω1. 

The results of transformation (32) depend on the unbalanced or balanced conditions of the three-

phase quantities. 

 

A.1. Unbalanced conditions 

Considering (32), three-phase non-sinusoidal quantities in unbalanced conditions 
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are expressed as d−q complex space phasors as follows: 
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where the complex vectors Xp1 = Xp1∠φp1 and Xn1 = Xn1∠φn1 are the positive- and negative-sequence 

fundamental phasors and the complex vectors Xpk = Xpk∠φpk and Xnk = Xnk∠φnk (with k > 1) are the k
th

 

positive- and negative-sequence harmonic phasors of the unbalanced three-phase non-sinusoidal quantities 

(superscript * indicates complex conjugate).  

A.2. Balanced conditions 

Three-phase non-sinusoidal quantities in balanced conditions 
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verify that the complex vector X1 = X1∠φ1 is the fundamental positive-sequence phasor of the balanced 

three-phase quantities (i.e., under balanced conditions, Xp1 = X1 and Xn1 = 0 in (34)) and the complex 
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vectors Xk = Xk∠φk (with k = 4, 7… and k = 2, 5…) are the k
th

 positive- and negative-sequence harmonic 

phasors of the balanced three-phase quantities (i.e., under balanced conditions, Xpk = Xk and Xnk = 0 for 

k = 4, 7… and Xpk = 0 and Xnk = Xk for k = 2, 5… in (34)). Thus, considering (32), three-phase non-

sinusoidal quantities under balanced conditions are expressed as d−q complex space phasors as follows: 
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  (36) 

Note that, under balanced conditions, harmonics with orders of multiples of 3 (i.e., k = 3, 6 …) 

correspond to the zero-sequence phasors, which are zero in d-q reference frame and are usually neglected 

in WPP applications. Even harmonics are also negligible in power systems because of voltage and current 

half-wave symmetry. 


