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Abstract 

Different volume fractions (0.5 vol. % to 4.5 vol. %) of CNTs were used to reinforce 

a binary Fe50Co soft magnetic alloy. The first method for dispersion was involved dry 

mixing and ball milling of the powder, while the second was included wet mixing in 

dimethylformamide under ultrasonic agitation, drying and then dry ball milling. The powders 

were consolidated using spark plasma sintering. Tensile test and SEM analyses were 

performed to characterize the mechanical properties and the fracture surface of the sintered 

materials. The best magnetic and mechanical properties were achieved using the first method. 

A maximum enhancement in tensile strength of around 20% was observed in the 0.5 vol. % 

CNT composite with improved elongation compared to the monolithic Fe50Co alloy. In 

addition, the magnetic properties were enhanced by adding CNTs up to 1 vol. %, and an 

improvement in densification was observed in composites up to 1.5 vol. % CNT with respect 

to monolithic Fe50Co alloy.  

 

1. Introduction 

 It is well known that intermetallic compounds have good soft magnetic properties. 

FeCo alloys based on intermetallic compounds exhibit high saturation magnetisation (2.45T) 

and high Curie temperatures (920 - 985 ˚C). In particular, the equiatomic composition 

exhibits the highest permeability and zero magnetocrystalline anisotropy [1]. However, the 

ordered Fe50Co alloy is extremely brittle and its’ workability is therefore typically improved 
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by the addition of alloying elements such as 2%wt. vanadium; as in Permendur or FeCo-2V 

alloy [2]. Such alloying elements lead to the formation of precipitates; improving the 

mechanical properties yet leading to a deterioration of the magnetic properties. The coercivity 

in particular is affected by the presence of microstructural defects, such as grain boundaries 

and dislocations [3]. Equiatomic- iron cobalt alloy is primarily used in applications where the 

reduction of weight or volume of material is of primary importance [2]. As a result there is a 

continuous interest in improving the properties of these alloys. The disordered state of this 

alloy exhibits higher yield strength than the ordered state combined with a change in fracture 

mode from intergranular to transgranular cleavage [4, 5]. Zhao et al. [6] investigated the 

effect of constitutional and thermal disorder on the ductility of ordered and disordered FeCo 

alloys; and concluded from the practical results that the partial disorder at grain boundaries is 

required to achieve some ductility if an ordered FeCo alloy. Since a dispersion of nanosize 

reinforcement in FeCo alloy may lead to partial disorder at the grain boundaries, an 

improvement in ductility may therefore be expected. 

Bowen et al. [7] have shown that the mechanical properties, tensile strength and 

ductility of composite materials are strongly affected by the size of the reinforcement, with 

tensile strength increasing with reduction in reinforcement size. This strategy for improving 

mechanical properties can be broadly applied to many light weight alloys. However, there 

have only been a limited number of studies of iron cobalt alloys with the addition of very fine 

reinforcement. Composite materials have advantages in comparison to their base alloys, such 

as a superior creep resistance, and the final properties of the material can be tailored through 

appropriate selection of the type and volume fraction of reinforcement [8]. The effects of 

nano-scale reinforcements on the tensile properties of FeCo alloys have not previously been 

reported.  

 Carbon nanotubes possess outstanding properties such as an average Young's 

modulus of 1.8 TPa. This combined with their high aspect ratio with lengths of 1.17 to 5.1µm 

and outer diameters 5.6 to 8.4 nm, low density and flexibility, make them good candidates for 

reinforcement in nanoscale fibre composite materials [9, 10]. The main aim in adding CNTs 

is to increase the tensile strength and elastic modulus of the composite [11]. However, 

dispersing CNTs in a metal matrix can be a challenging, due to the large difference in surface 

tension, which leads to poor wettability between the reinforcement and matrix alloy [12]. Ball 

milling has been shown to produce good dispersion of CNTs in metal matrix composites [11]. 

Mani. et al. [13] have found that even surface modification of CNTs by electroless plating 
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followed by ultrasonic agitation did not produce a uniform dispersion of reinforcement 

without ball milling.   

 Spark plasma sintering (SPS) is an advanced sintering method for the rapid 

consolidation of powders. Through the application of high pressures and electric currents, 

rapid heating rates (up to 1000 ˚C min-1), and short sintering times (3-5 min), can be used to 

produce fully dense material [14]. This method has been explored in the fabrication of CNT-

metal matrix composites, due to its ability to preserve nanoscale features [11, 15]. During 

SPS, the measured temperature is used to modulate the electric current in order to follow a set 

heating curve. However, temperature is measured using either thermocouples or pyrometers 

which are focussed on the punches and dies close to the sample, rather than on the sample 

itself. The temperature of the sample can therefore be significantly over or underestimated if 

large temperature gradients exist. More accurate ways to calibrate SPS temperature are 

therefore of great interest. Recently an accurate calibration of SPS temperature has been 

performed [16] using the phase transformation which occurs in soft magnetic FeCo alloy at 

the Curie point. The phase transformation alters the thermal and electrical conductivity of the 

alloy; leading to an anomalous pulse in the current-temperature curve. At this point the actual 

temperature of the sample (the Curie temperature) is known and can be compared with the 

corresponding thermocouple or pyrometer reading. 

 The objective of this study was to evaluate the effects of CNT addition on the 

mechanical and DC magnetic properties of Fe50Co composites prepared by SPS.  

2. Experimental work  

The binary gas atomised Fe50Co alloy powder was supplied by Sandvik Osprey 

Powder Group. A scanning electron microscope with energy dispersive X-ray spectrometer 

(EDS) attachment of oxford instrument was used to study the morphology and composition 

of the powders. A Malvern Mastersizer 3000 was used to measure the particles size 

distribution of the Fe50Co powder. 

Multi-walled carbon nanotubes were provided by Haydale Ltd., which were 

functionalized using a plasma treatment to incorporate a covalently bonded oxide group to 

the surface. The key advantage of the functionalisation process is to improve the CNT 

dispersion in the solvent during colloidal processes by reducing the van-der-Waals forces 

between the nanotubes [17, 18]. Two different methods were used to mix iron cobalt alloy 
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powder with functionalised multi-walled carbon nanotubes. The first method (A) involved the 

dry mixing of the reinforcement with 20 g of binary Fe50Co alloy powder for volume 

fractions of 0.5 to 4.5 vol.%, followed by milling the mixture in a ball pestle impact grinder 

at BPR(1:1) for 1 h. The second method (B) involved the wet mixing of multi-walled carbon 

nanotubes with Fe50Co powder in dimethyformamide DMF for volume fractions of 0.5 to 3 

vol. %. DMF is a commonly used solvent for dispersing carbon nanotubes [19]. The 

suspension of carbon nanotubes in DMF was stirred under ultrasonic agitation for 60 min. 

followed by the addition of 20 g of alloy to each suspension. The resulting slurry was 

sonicated for 30 min. The slurry was dried on a hot plate at the evaporation temperature for 

DMF (150˚C) overnight. The dried mixture was then milled in the ball pestle impact grinder 

at BPR (1:1) for 1 h. 

The Fe50Co alloy and composite powder mixtures were consolidated in a graphite die 

using a spark plasma sintering furnace (HPD 25/1 FCT, Germany). All of the samples were 

heated to the sintering temperature at a constant rate of 50˚C/min under a vacuum of 1 hPa. 

An initial pressure of 7 MPa was applied from room temperature to 400˚C; followed by an 

increase to 80 MPa pressure and simultaneous heating to 900 °C for a 3 minute dwell [20]. 

Samples were left to cool in the furnace and extracted from the die using a manual hydraulic 

press. The Archimedes ̓ immersion method in water was then used to measure the density of 

the compacts. The theoretical densities of the composites were calculated using the rule of 

mixtures. The theoretical densities for the CNT and FeCo powders were taken as 1.4 g cm-3 

and 8.174 g cm-3 respectively for calculations. 

Cross sections of the sintered materials were ground and polished with different grade 

abrasive discs followed by etching using 10% Nital  for (30) sec. Optical microscopy and 

SEM were used to analyse the microstructural features. In order to evaluate the magnetic 

properties, samples with a rectangular cross section (24 mm × 5 mm) were cut from 30 mm 

diameter sintered disks using an electron discharge machining (EDM) cutting machine. 

Samples were ground using silicon carbide papers to remove the scratches from cutting. An 

automatic universal measurement system was used to evaluate the quasi DC magnetic 

response for samples by changing the magnetic field up to 25 kA/m [21]. Hardness 

measurements for both the matrix alloy and composites were performed at five different 

locations using a Vickers hardness tester with an applied load of 30 g for 4 sec. Tensile tests 

were performed on 3 samples cut from 30 mm diameter monolithic alloy and composites 

disks using EDM. The cut samples were ground using silicon carbide to remove any crack 
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initiation sites produced by the cutting. The tensile sample dimensions were (11 mm x 3 mm 

x 1.25 mm) [22]. The tensile mechanical properties of the materials were measured using a 

Shimadzu testing machine with a cross head speed of 2 mm/min.  

3. Results and discussion 

3.1. Characterisation of the starting powders and sintered materials 

An SEM image of the Fe50Co alloy powder is shown in Fig. 1. Spherical particles 

with a wide size distribution are evident; Dv (10) 9.79 μm, Dv (50) 23.4 μm and Dv (90) 54.0 

μm. 

 

 

 

TEM images of plasma treated CNTs are presented in (Fig.2), the arrows identify the 

defects which may be subdivided into dimensional and structural defects. Most of the CNTs 

are tangled with each other, which impedes their dispersion. The non-uniformity in the 

graphene layers, discontinuity on the inside of the fibres and defects on the outer surfaces 

suggest that the defects may not only be produced during fabrication but also by the 

functionalization processes. Amorphous carbon was observed on the surface of the fibres. 

These imperfections are preferred sites for chemical reaction. Some dark areas were observed 

on the CNTs which are probably metal inclusions, occurring from the reaction with the 

metallic catalyst used during their fabrication [17]. The measured dimensions of the CNTs 

exhibit a mean outer diameter of around 10.45 nm, while the inner diameter is around 4.29 

nm. This corresponds to 34 concentric shells of carbon sheets in some cases, but for most 

CNTs, it was typically about 10. Caps were observed at the ends of some of the CNTs, while 

some tubes showed open ends. This opening of the hemispherical cap is due to oxidation 

during the functionalization step. 

Fig.1. (a) SEM image and (b) EDS spectrum of as-received FeCo alloy powder. 
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 An XRD pattern of the as received CNTs, generated using a copper anode, is shown 

in Fig.3. The main peaks for carbon nanotubes were observed at 2θ values of ~26˚ and ~43˚ 

and are in good agreement with the pattern previously reported in [13]. The d002 calculated 

using the Bragg equation (λ=2dsinθ) is 0.3445 nm which is consistent with spacing for 

graphite of 0.3348 - 0.3360 nm (5% experimental error). A broadening of the peak at ~26˚ 

could be observed, and is likely due to the presence of oxides introduced to the CNTs during 

functionalization process; with the variation in d spacing due to the incorporation of oxygen 

between the lattice planes. Broadening could also be due to contributions from the amorphous 

regions of the CNTs. 

Fig.2. Transmission electron micrographs of plasma treated CNTs; the arrows highlight defects.   
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The densification behaviour of as received monolithic FeCo alloy and composite were 

different as shown in Fig.4. The volume fraction of reinforcement affected the densification 

behaviour. The composite materials densified at lower temperatures compared to as received 

alloy, which could be due to the influence of CNTs on the densification mechanism. In 

addition the ball milling step decreased the particle size in the composite which increased the 

surface area between reactants; leading to faster densification kinetics through improved 

mass transport by diffusion [23, 24]. The densities of the composites containing up to 1.5 

vol.% CNT were higher as compared to the monolithic Fe50Co alloy Fig.5. The highest 

density was achieved for the 0.5 vol. % CNTs composites; while the density dropped sharply 

at higher volume fractions. This is due to the increased agglomeration of the CNTs, which 

induces porosity in the composite material. 

Fig.3. XRD pattern of as received CNTs, the main diffraction planes are labelled.  
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Fig.6 shows a comparison between monolithic FeCo alloy powders before and after 

ball milling processes. The peaks after 1.5 h ball in air atmosphere are identical to the 

maghemite phase. The powder is heated up during ball milling, leading to formation oxide 

layer which deteriorates densification during sintering because it forms a diffusion barrier 

during sintering.  

Fig.4. Shrinkage sintering curve, for the as received FeCo alloy in comparison to the 1 

and 4.5 vol.% CNT composite materials prepared using method A. 

 

Fig.5. Variation of relative density of SPS sintered composite materials fabricated using method 

A against volume fraction of CNTs (%) compared to monolithic FeCo alloy. 
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Fig.7 (a and b) show slow scan XRD patterns (Co Kα) for the sintered Fe50Co as 

received, ball milled and composite forms. The enlarged pattern of the (100) peak (Fig.7 b) 

was used to observe the ordering of the Fe50Co alloy, which was scanned in the range of the 

expected superlattice line [4]. The pattern shows that the addition of 1 vol. % CNTs with ball 

milling produced a reduction in the antiphase domain size for the ordered crystalline phase. 

The crystallite domain sizes were calculated using the Scherrer equation of the (100) peak 

(Fig.7 b) as 45.75 nm to 28.10 nm and 34.32 nm for as received Fe50Co alloy, 1 vol. % CNT 

and 4.5 vol. % CNT, respectively. The composite with a higher volume fraction of CNTs 

displayed an increase in crystallite size, yet a high intensity of ordering was observed in the 

XRD patterns. As such, it appears that an increase in the volume fraction of CNTs produces 

an increase in the volume fraction of ordering as compare to the monolithic alloy and low 

volume fraction composites. Strains are classified to uniform strain and nonuniform strain, 

the former shifting peaks of x-ray reflection to lower angles, while the latter lead to 

broadening and reduce the intensity [25]. Ball milling processes can induce stresses in 

powder, however the intensity of ball milling was very low as the process was performed for 

BPR 1:1 for 1 h to disperse the reinforcement in the base alloy. Residual stress may be 

released during sintering at high temperature. This suggests the effects of strain on 

broadening x-ray reflection are minimal, as the recovery reduces the magnitude of the 

residual stress and recrystallization completely eliminates the residual stress leading to the 

maximum sharpness in diffraction line [25].    

Fig.6. XRD shows oxidation of FeCo alloy due to ball milling in air atmosphere. 
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The optical micrographs for both the Fe50Co alloy and the composites are shown in 

Fig.8. A very fine microstructure was observed for the 0.5 vol. % CNT composite, which 

reflects the role of CNTs in refining the microstructure. However, this behaviour is different 

at higher volume fractions of CNTs due to the segregation of carbon nanotubes to the grain 

boundaries; which cause an increase in the thickness of the grain boundaries of the composite 

materials compared to the monolithic alloy. This agglomeration causes poor densification at 

Fig.7. XRD patterns (a) slow scan for sintered FeCo as received alloy, 1 h ball milled FeCo alloy, 1 

vol.% CNT composite and 4.5 vol.% CNT composite; (b) (100) Superlattice peak for displayed 

material.  

 

(a) 

(b) 
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higher volume fractions. Pores and elongated grains were observed at high volume fractions. 

The ball milling process changes the shape of the powder particles; and as a result, an 

elongated grain structure is observed after sintering. This structure becomes more evident due 

to the increasing fraction of agglomeration and the poor densification at high volume fraction 

of CNT. No difference can be observed in the microstructure between the two methods used 

to prepare the composites. 

 

 

 

3.2. Magnetic and mechanical properties 

 The magnetic properties of the Fe50Co alloy and composite materials fabricated 

following mixing methods A and B are summarised in Fig.9.  

 

Fig.8.Optical microstructure of: (a) FeCo alloy; images (b), (c) and (e) are 0.5 vol.%, 1 vol.% and 3 

vol.% CNT composite, respectively prepared by method A. Images (d) and (f) are 1 vol.% and 3 

vol.% CNT composite, respectively prepared by method B. 
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It is clear that the saturation induction is highly dependent on sample density; with the 

saturation induction trend closely following that of the density trend (Fig.5) with increasing 

volume fraction of CNTs. The highest saturation induction was achieved in the composite 

material at 1 vol. % CNTs, consistent with it having a high density. With an increased 

volume fraction of CNTs, a drop in saturation is seen due to the agglomeration of the 

reinforcement as observed in (Fig.8) and the subsequent of that drops in density.  

A drop in coercivity was observed in the composites produced by both fabrication 

methods in comparison to the monolithic Fe50Co alloy. Coercivity is typically inversely 

proportional to the grain size; however, the results indicate a decrease in coercivity with 

decreasing grain size. Previous models in [26, 27] have explained this behaviour in terms of 

the anisotropy energy. For a very small grain size (D) < 100 nm the ferromagnetic exchange 

length will often be larger than the grain size (D). The exchange length in a soft magnetic 

alloy is calculated by using the following equation: 

Lex= (A/K1)
-1/2   ……………………………………………………………………………………………………… (Equation1) 

Following eq.1 and using exchange constant A=1.7×10-11 J/m and magnetic anisotropic 

constant K1=8 kJ/m3 for calculation the exchange length in Fe50Co alloy [28], giving Lex= 46 

Fig.9. Effect of volume fraction of CNTs on: saturation induction; coercivity of (Fe50Co)-CNT 

composites fabricated by two different dispersion method followed by spark plasma sintering.  The 

monolithic alloy is represented as 0 vol.% CNT.  The insert curve shows the change in resistivity 

with increasing volume fraction of CNTs for composites prepared using method A. 

 



13 
 

nm, which is in value higher than the measured ordered crystallite size, meanwhile the 

change in coercivity with crystallite size follows Néel's model. As a consequence, the 

effective anisotropy energy is averaged over a number of grains and is thus reduced in 

magnitude. In this anomalous behaviour of nanocrystalline magnetic materials, the coercivity 

exhibits D6 dependence, which is in contrast to the conventional rule for polycrystalline 

magnetic materials, which exhibit 1/D dependence. As discussed previously, the Scherrer 

calculations show a crystallite size below 100 nm in the monolithic Fe50Co, which decreases 

further for the composite samples. This may therefore account for some of the trends seen in 

coercivity. However, at the highest volume fraction of CNTs the coercivity increased. Néel 

[29] suggested that the coercivity is directly proportional to the volume fraction of non-

magnetic inclusions. Residual stresses produced due to the difference in the coefficient of 

thermal expansion between the CNTs and the monolithic Fe50Co alloy may lead to domain 

wall pinning, thereby increasing coercivity and creating a trade-off between coercivity 

decrease due to grain size and increase due to domain wall pinning as the volume fraction of 

reinforcement is increased. 

  A high resistivity is crucial for producing low loss components. Resistivity 

measurements of the monolithic Fe50Co alloy and CNT composites fabricated using method 

A are shown as an insert in Fig.9. A slight increase in resistivity is observed from 3.5 µΩ.cm 

for monolithic Fe50Co alloy to 5.6 µΩ.cm for the composite with the highest density up to 

1.5 vol. % CNTs. Higher volume fractions of CNTs (3 and 4.5 vol. %) further increase the 

resistivity of composite materials, which may be due to the increase in the level of porosity.  

The tensile strength and the mechanical hardness of the Fe50Co alloy and composite 

materials prepared using the two different methods are summarized in Fig.10 and Fig.11 

respectively. The addition of a small amount of CNTs up to 1vol. % produces an 

improvement in tensile strength in comparison to the base alloy. The greatest improvement is 

observed with the addition of 0.5 vol. % CNTs. In this case a tensile strength and Vickers 

hardness of 821 ±30.77 MPa and 352 ±15.15 VHN, respectively were measured. The 

mechanisms for an improvement in the mechanical properties of composite materials include 

load transfer between the matrix and reinforcement, grain size refinement and dislocation 

strengthening mechanisms. The mechanical properties are highly correlated to the grain size 

of Fe50Co alloys; following the Hall-Petch relationship in both the ordered and the 

disordered state [30]. 
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 σy = σi+kyd
-1/2  ……………………………………………………………… (Equation 2) 

where σy is the yield strength, d is the average grain diameter, σi is a materials constant 

describing the intrinsic resistance of the lattice to dislocation motion, and ky is the 

strengthening coefficient.  

 

 

 

 

 

Fig.10. Effect of volume fraction of CNTs on:  tensile strength (solid lines) and failure strain 

(dashed lines) of (Fe50Co)-CNT composites fabricated by two different dispersion methods 

followed by spark plasma sintering; the monolithic alloy is represented as 0 vol.% CNT. 

 

Fig.11. Effect of volume fraction of CNTs on: hardness of (Fe50Co)-CNT composites fabricated 

by two different dispersion methods followed by spark plasma sintering; the monolithic alloy is 

represented as 0 vol.% CNT. 
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The optical micrographs of the Fe50Co composites show that the addition of a low volume 

fraction 0.5 vol. % of CNTs refines the microstructure and improves densification. As a 

result, an increase in tensile strength and hardness at low volume fractions is achieved. 

However, the mechanical properties deteriorate at higher volume fractions of reinforcement 

using both fabrication processes. The decrease was higher for composites produced using 

mixing method B. It was experimentally observed that the CNTs tended to separate as a 

surface layer on the powder after drying using method B, leading to more agglomeration of 

the CNTs and subsequently poorer densification.  

 An increase in the failure strain was observed in the composites containing low 

volume fractions of reinforcement. EDS results for monolithic Fe50Co alloy and its 

composites show a deviation in the chemical composition of the composite in comparison to 

the monolithic Fe50Co alloy. This suggests that the CNTs lead to chemical deviations in the 

matrix surrounding them. It has been reported [6] that particles in Fe50Co alloy cause a 

chemical deviation in the matrix around them, which could lead to disorder around the 

inclusions and possible improvement in the ductility. Moreover, additions of small amounts 

of CNTs lead to the development of a very fine microstructure, and may form metal carbides 

as a result of the reaction with any amorphous carbon on the CNTs. This may not necessarily 

be detectable by XRD since the amount of carbides produced would be lower than the 

sensitivity of the technique. These two parameters play an important role in the improvement 

of ductility, as has been reported previously [31]. 

Fractographic images of the monolithic alloy and composite materials with different 

volume fractions of CNTs are shown in Fig.12. Mixed modes of fracture between 

intergranular and transgranular were observed for both the monolithic alloy and the 

composite materials.  Small tubular holes were observed in the fracture surface, as indicated 

by arrows in image (c), which are likely to be the former locations of CNTs which were 

extracted during fracture. Porosity can be seen to increase at high volume fractions of CNTs, 

as shown in image (d), while images (e) and (f) show the agglomeration of CNTs between 

powder particles. The high magnification insert in (f) shows the presence of CNT bundles at 

the boundary. These bundles would have hampered densification in the composite.  
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3.3. Raman spectroscopy 

 Raman spectroscopy is a non-destructive test, which is a powerful tool largely used 

for the characterisation of various carbon based materials for determining the degree of 

structural ordering or presence of contaminants. The characteristic bands in all the graphite 

based materials, including MWCNT, can be classified into: first-order and second-order 

Raman spectra [32]. The former shows a tangential stretching G mode at (1500-1600 cm-1), 

in addition to the D mode around 1350 cm-1. There is also an exceptional band, which can 

only be observed in SWNT, and is a radial breathing mode (RBM) in the range 100 cm-1 to 

400 cm-1 [32, 33]. Furthermore a weak shoulder band (D') is observed around 1620 cm-1on 

the right side of the G band. The second order spectra are characterised by the main peaks of 

(G') at 2705 cm-1 and (D+G) at 2945 cm-1 [32].  The relative intensities between the D band, 

Fig.12. Fractographic images of materials prepared using processing rout A : ( a) FeCo monolithic 

alloy; (b) 0.5 vol.% CNT composite; (c) 1 vol.% CNT composite; (d) 1.5 vol.% CNT composite; 

(e) 3 vol.% CNT composite; (f) 4.5 vol.% CNT composite. High magnification image insert in (f) 

shows CNTs bundle between powder particles boundaries. 
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which is related to structural defects, and G band, which is related to the order of the graphite 

structure (R=ID/IG) is widely used to evaluate the defect density of carbon nanomaterials and 

carbonous nanocomposite [34, 35]. Fig.13 (a and b) show the Raman results for the 

(Fe50Co)-CNT composites and the change in R ratio for the raw plasma treated MWCNTs 

and the composites fabricated by the two different methods with respect to the volume 

fraction of CNTs. 

A split in the G band was observed, which demonstrates that the integrity of CNTs is 

maintained throughout the fabrication process, as reported in [23]. The main reason for this is 

due to the stronger tube morphology of the CNTs in contrast to the flat morphology of 

graphene sheets.  However, the splitting in the G band is less pronounced in MWCNT and in 

large radius CNTs. This suggests that a thinning in the radius of the CNTs may occur during 

the fabrication process, reducing the number of layers; or that the radii of the majority of the 

CNTs in the powder are in the range of band splitting, since DWCNTs were observed in 

TEM images. Mixing method B gives a high value of R at low volume fraction, which 

reflects the effect of the processing route on the quality of CNTs.  The damage of the CNTs 

was reduced at higher volume fraction as compared to mixing method A. This could be due 

to a the less effective ultrasonic dispersion processing of higher volume fractions of  CNTs, 

due to a less effective transmission of the ultrasonic wave in solution, leading to a greater 

segregation of CNTs on the surface of the slurry. With dispersed ‘pockets’ of CNTs present 

in the powder, many of the CNTs were therefore shielded from damage during ball milling. 

Inam et al. [36] reported that the structural features of the CNTs in composites are very 

sensitive to the spark plasma sintering conditions and to the matrix material.  This means that 

the improvement in the quality of CNTs could be due to the effective thermal annealing 

during cooling in SPS furnace following the sintering process. The stress on the surface of the 

CNTs introduced by the functionalization process may be released by removing defects and 

oxides from the CNTs. Improvement in quality of carbon nanostructure composite 

consolidated by SPS has been observed in [37].  
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Fig.13. (a) Raman spectra of MWCNTs and FeCo alloy composites; (b) Intensity 

ratio(R =ID/IG) of composite fabricated by the two methods. 

 

(a) 

(b) 
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4. Conclusions 

1-The addition of CNTs improved the mechanical properties of the binary Fe50Co alloy; with 

0.5 vol. % of carbon nanotubes giving the maximum increase in tensile strength of around 20 

%. Low volume fraction composites had a higher failure strain (3.1 %). 

2-The magnetic properties were improved by the addition CNTs up to 1 vol. %, while a sharp 

deterioration in properties were occurred at high volume fractions as a result of poor 

dispersion and densification. 

3-Dispersing CNTs using ball milling improved the densification of the composite material as 

compared to the as received binary Fe50Co alloy. This was due to the reduced grain size 

produced from ball milling and CNT addition, especially at low volume fraction. Here further 

inhibition of grain growth was provided by the CNTs during spark plasma sintering. A 

cleaning of the grain boundaries also occurred during SPS, leading to an improvement in 

density in the monolithic Fe50Co alloy.  

4-The ball milling of an unmixed powder in a solvent produced a superior CNT dispersion, as 

compared to ball milling following wet mixing in DMF under ultra-sonication. Ultra- 

sonication produced an increase in (R=ID/IG) for composites with a low volume fraction of 

CNTs. However a decrease was seen at higher volume fraction due to the agglomeration of 

the powder, which prevented direct contact between the milling balls and the CNTs. 
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