Space periodic Jacobi elliptic solution for triad modified Schrödinger equations

Usama Kadri

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

We present an analytical solution for triad nonlinear evolution equations with modified Schrödinger terms. An example for application in compressible water waves is presented.

1 Introduction

We consider a two-dimensional problem of an interacting wave triad of the form

$$\Psi_{j,t}(x,t) = i\alpha_j \left[\Psi_{j,xx}(x,t) + \delta_j^2 \Psi_j(x,t) \right] + \gamma_j V_j(t) \Psi_j(x,t) \qquad j = 1, 2, 3$$
 (1)

with α_j , δ_j , and γ are parameters of the physical problem. We also assume that the relations

$$V_1\Psi_1 = \Psi_2\Psi_3, \quad V_2\Psi_2 = \Psi_1\Psi_3^*, \quad V_3\Psi_3 = \Psi_1\Psi_2^*,$$
 (2)

are satisfied, $\delta_2 = \delta_3 = \delta_1/2 \equiv \delta/2$, and asterisks denote complex conjugates. The objective is to derive a periodic analytical solution, for application in long and short wave triad interactions.

Email address: ukadri@mit.edu (Usama Kadri).

2 Solution

Redefine $\Psi_j(x,t) = g_j(x)f_j(t)$, so that equations (1) can be written as

$$g_1 f_{1,t} = i\alpha_1 \left[g_{1,xx} + \delta_1^2 g_1 \right] f_1 + \gamma_1 g_2 g_3 f_2 f_3 \tag{3}$$

$$g_2 f_{2,t} = i\alpha_2 \left[g_{2,xx} + \delta_2^2 g_2 \right] f_2 + \gamma_2 g_1 g_3^* f_1 f_3^* \tag{4}$$

$$g_3 f_{3,t} = i\alpha_3 \left[g_{3,xx} + \delta_3^2 g_3 \right] f_3 + \gamma_3 g_1 g_2^* f_1 f_2^* \tag{5}$$

Based on (2), $g_1 = g_2g_3$, $g_2 = g_1g_3^*$, and $g_3 = g_1g_2^*$, so that equations (3), (4), and (5), can be rewritten as

$$f_{1,t} = \gamma_1 f_2 f_3 + i\alpha_1 \left[g_{1,xx} + \delta_1^2 g_1 \right] f_1 g_1^{-1}$$
 (6)

$$f_{2,t} = \gamma_2 f_1 f_3^* + i\alpha_2 \left[g_{2,xx} + \delta_2^2 g_2 \right] f_2 g_2^{-1}$$
 (7)

$$f_{3,t} = \gamma_3 f_1 f_2^* + i\alpha_3 \left[g_{3,xx} + \delta_3^2 g_3 \right] f_3 g_3^{-1}$$
 (8)

Now we can seek a solution in two parts. The first part requires that

$$g_{j,xx} + \delta_j^2 g_j = 0, \qquad j = 1, 2, 3.$$
 (9)

A general solution of (9) is given by

$$g_j = a_j e^{i\delta_j x} + b_j e^{-i\delta_j x}. (10)$$

For the second part of the solution we need to solve the following simplified system of three ordinary differential equations that amplitudes satisfy

$$f_{1,t} = \gamma_1 f_2 f_3, \qquad f_{2,t} = \gamma_2 f_1 f_3^*, \qquad f_{3,t} = \gamma_3 f_1 f_2^*$$
 (11)

Multiplying (11) by f_j^* and adding its conjugate multiplied by f_j , for j=1,2,3 respectively, we obtain the following set of equations

$$f_1^* f_{1,t} + f_1 f_{1,t}^* = \gamma_1 \left(f_1^* f_2 f_3 + f_1 f_2^* f_3^* \right) \tag{12}$$

$$f_2^* f_{2,t} + f_2 f_{2,t}^* = \gamma_2 \left(f_1^* f_2 f_3 + f_1 f_2^* f_3^* \right) \tag{13}$$

$$f_3^* f_{3,t} + f_3 f_{3,t}^* = \gamma_3 \left(f_1^* f_2 f_3 + f_1 f_2^* f_3^* \right) \tag{14}$$

More compactly we can write $|f_j|_{t}^2 = 2\gamma_j\Im\{f_1^*f_2f_3\}$, where the Hamiltonian $\Im\{f_1^*f_2f_3\}$ is a constant of the motion (*Holm and Lynch* (2002)). Now define $\mathbb{Z}_{t} = \Im\{f_1^*f_2f_3\}$ gives $|f_j|^2 = 2\gamma_j\mathbb{Z} + \psi_{0j}^2$. In order to carry on with the

solution the signs of γ_j have to be determined. Note that for a resonating triad, $\gamma_1 + \gamma_2 + \gamma_3 = 0$, (Lynch et al. (2003)), thus one has a different sign than the others. Assume, with no loss of generality, that γ_1 is negative, that $\Psi_1(x, t = 0) = \psi_{01} = 0$, and that $|\psi_{03}| < |\psi_{02}|$ we obtain

$$\mathbb{Z}_{,t} = \sqrt{-8|\gamma_1|\gamma_2\gamma_3\mathbb{Z}\left(\mathbb{Z} + \frac{\psi_{02}^2}{\gamma_2}\right)\left(\mathbb{Z} + \frac{\psi_{03}^2}{\gamma_3}\right)}$$
 (15)

This is an elliptic function with a solution given by (see *Byrd and Friedman* (1971), equation 236.00, p.79)

$$\mathbb{Z} = -\frac{\psi_{03}^2}{\gamma_3} \operatorname{sn}^2(u, k) \tag{16}$$

where $\operatorname{sn}(u, k)$ is the sine amplitude Jacobian elliptic function of argument u, and modulus k given by

$$u = \sqrt{2|\gamma_1|\gamma_3}|\psi_{02}|t, \qquad k = \frac{|\psi_{03}|}{|\psi_{02}|}\sqrt{\frac{\gamma_2}{\gamma_3}}$$
 (17)

and the expression for $|f_i|$ are

$$|f_j|^2 = |\psi_{0j}|^2 - 2\gamma_j \frac{|\psi_{03}|^2}{\gamma_3} \operatorname{sn}^2(u, k)$$
(18)

Finally, the analytical solution is given by

$$|\Psi_1(x,t)|^2 = -2\gamma_1 \frac{|\psi_{03}|^2}{\gamma_3} \operatorname{sn}^2(u,k) \left[\exp(2i\delta x) + \exp(-2i\delta x) \right]$$
 (19)

$$|\Psi_2(x,t)|^2 = \left[|\psi_{02}|^2 - 2\gamma_2 \frac{|\psi_{03}|^2}{\gamma_3} \operatorname{sn}^2(u,k) \right] \left[\exp(i\delta x) + \exp(-i\delta x) \right]$$
 (20)

$$|\Psi_3(x,t)|^2 = |\psi_{03}|^2 \left[1 - 2\operatorname{sn}^2(u,k)\right] \left[\exp(i\delta x) + \exp(-i\delta x)\right]$$
 (21)

3 Application

The solution presented here can be applied in various long-short wave triad interactions, such as Rossby-type waves (see *Pedlosky* (1987); *Charney* (1948)), or wave motion in an inhomogeneous plasma (*Hasegawa and Mima* (1977)). Nevertheless, the following example considers the interaction of two surface gravity waves with an acoustic wave in a mechanism similar to that proposed by *Longuet–Higgins* (1950), and more recently by *Kadri and Stiassnie* (2013)

and *Kadri* (2015).

Given an acoustic wave and two gravity waves with potential amplitudes ϕ_a , ϕ_{g1} , and ϕ_{g2} , satisfying the following evolution equations

$$\phi_{a,t} = -\frac{ic^2\delta}{2\omega h} \left(\phi_{a,xx} + \frac{4\omega^2}{c^2}\phi_a\right) - \frac{2\omega}{hc}\phi_{g1}\phi_{g2}$$
 (22)

$$\phi_{g1,t} = \frac{2\omega^3}{qc} \phi_a \phi_{g2}^*; \quad \phi_{g2,t} = \frac{2\omega^3}{qc} \phi_a \phi_{g1}^*$$
 (23)

where c = 1500 m/s, is the speed of sound in water, ω is the frequency of the gravity waves, h is the water depth. The solution of evolution equations is then given by

$$|\Phi_a(x,t)|^2 = \frac{2g|\phi_{0(g2)}|^2}{\omega h} \operatorname{sn}^2(u,k) \left(e^{4i\omega x/c} + e^{-4i\omega x/c}\right)$$
 (24)

$$|\Phi_{g1}(x,t)|^2 = \left[|\phi_{0(g1)}|^2 - 2|\phi_{0(g2)}|^2 \operatorname{sn}^2(u,k) \right] \left(e^{2i\omega x/c} + e^{-2i\omega x/c} \right)$$
 (25)

$$|\Phi_{g2}(x,t)|^2 = |\phi_{0(g2)}|^2 \left[1 - 2\operatorname{sn}^2(u,k)\right] \left(e^{2i\omega x/c} + e^{-2i\omega x/c}\right)$$
 (26)

with $u = 2\sqrt{2/gh}\omega^2/c$, and $k = |\phi_{0(g^2)}|/|\phi_{0(g^1)}|$.

References

Byrd, P. F. and Friedman M. D. (1971), Handbook of elliptic integrals for engineers and scientists, *Springer-Verlag*, pp. 358.

Charney, J.G. (1948) On the Scale of Atmospheric Motions. *Geofys. Publ.*, 17, No. 2, 17pp.

Hasegawa, A. and Mima, K. (1977) Pseudo-three-dimensional turbulence in magnetized nonuniform plasmas. *Phys. Fluids*, 21(1), 8792.

Holm, D.D. and Lynch, P., (2002) Stepwise Precession of the Resonant Swinging Spring. SIAM J. Appl. Dy- nam. Systems, 1, 4464.

Kadri, U. (2015) Wave motion in a heavy compressible fluid: revisited, European Journal of Mechanics -B/Fluids, 49(A), 50–57, 10.1016/j.euromechflu.2014.07.008.

Kadri, U. and Stiassnie, M. (2013) Generation of an acoustic-gravity wave by two gravity waves, and their mutual interaction. J. Fluid Mech., 735 R6, doi:10.1017/jfm.2013.539.

Longuet-Higgins, M. S. (1950) A theory of the origin of microseisms, *Philos. Trans. R. Soc. London, Ser. A*, **243**, 1–35, doi:10.1098/rsta.1950.0012.

Pedlosky, J. (1987) Geophysical Fluid Dynamics. Second edition, *Springer*, New York. 710pp.

Lynch, P., Eireann, M., Hill, H. (2003) Resonant Rossby Wave Triads and the Swinging Spring, Bull. Amer. Met. Soc., DOI: 10.1175/BAMS-84-5-605.