
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/95 6 9 0/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Pe t e r so n,  Tho m a s  A., Mo r t ,  M a t t h ew, Coop er, David N eil , Ra divojac,  P r e d r a g ,  Kann,

M a ric el G. a n d  Moo n ey, S e a n  D. 2 0 1 6.  Re g ula to ry single-n ucleo tid e  va ri a n t  p r e dic to r

inc r e a s e s  p r e dic tive  p e rfo r m a nc e  of func tion al  r e g ula to ry va ria n t s.  H u m a n  M u t a tion

3 7  (11) , p p.  1 1 3 7-1 1 4 3.  1 0.1 00 2/h u m u.2 3 0 4 9  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 0 2/hu m u.23 0 4 9  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



Regulatory single nucleotide variant predictor (RSVP) 

increases predictive performance of functional regulatory 

variants by incorporating features from the ENCODE 

project 

 

Thomas A. Peterson1, Matthew Mort2, David N. Cooper2, Predrag Radivojac3, Maricel G. 

Kann1, Sean D. Mooney4* 

 

 

1 Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA 

2 Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom 

3 Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana, USA 

4 Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, 

USA 

 

* Corresponding Author 

 

Email addresses:  

TAP: tpeters1@umbc.edu 

MM: wmgmm123@gmail.com 

DNC: cooperdn@cardiff.ac.uk 

PR: predrag@indiana.edu 

MGK: mkann@umbc.edu 

SDM: sdmooney@uw.edu 

mailto:tpeters1@umbc.edu
mailto:wmgmm123@gmail.com
mailto:cooperdn@cardiff.ac.uk
mailto:predrag@indiana.edu
mailto:mkann@umbc.edu
mailto:sdmooney@uw.edu


 

  



Abstract 

In silico methods for detecting functionally relevant genetic variants are important for 

identifying genetic markers of human inherited disease. Much research has focused on protein-

coding variants since coding- regions have well-defined physicochemical and functional 

properties. However, many bioinformatics tools are not applicable to variants outside the coding-

regions. Here, we increase RSVP’sthe classification performance of our Regulatory Single 

Nucleotide Variant Predictor (RSVP) for variants that cause regulatory abnormalities from an 

AUC of 0.90 to 0.97 by incorporating genomic regions identified by the ENCODE project into 

our Regulatory Single Nucleotide Variant Predictor (RSVP). RSVP is comparable to a recently 

published tool, Genome-Wide Annotation of Variants (GWAVA);, and both RSVP and 

GWAVA perform better on regulatory variants than a traditional variant predictor, Combined 

Annotation Dependent Depletion (CADD). However, our method outperforms GWAVA on 

variants located at similar distances to the transcription start site as the positive set (AUC: 0.96) 

compared to GWAVA (AUC: 0.71). Much of this disparity is due to RSVP’s incorporation of 

features pertaining to the nearest gene (expression, GO terms, etc), which are not included in 

GWAVA. Our findings hold out the promise of a framework for the assessment of all functional 

regulatory variants, providing a means to predict which rare or de novo variants are of 

pathogenic significance.  
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Introduction 

Although it is likely that most single nucleotide variants (SNVs) lack functional 

significance (Sachidanandam, Weissman et al. 2001), SNVs are the most common form of 

human genetic variation (Gibbs, Belmont et al. 2003) and many have been shown to be 

associated with, or even causative of, human disease (Buckland, Hoogendoorn et al. 2004; 

Pastinen and Hudson 2004; Prokunina and Alarcon-Riquelme 2004; Campino, Forton et al. 

2008; Savinkova, Ponomarenko et al. 2009; Ward and Kellis 2012). A substantial body of 

research has been devoted to characterizing functional SNVs in human genes (Mottagui-Tabar, 

Faghihi et al. 2005; Buckland 2006; Pampin and Rodriguez-Rey 2007; Chorley, Wang et al. 

2008). However, it is currently impractical to investigate each variant in vitro given the very 

large number that have been identified in the human genome. Thus, computational, (in silico ) 

approaches for the prediction of functional SNVs represent a promising alternative to laborious 

large-scale in vitro analyses (Mooney 2005; Peterson, Doughty et al. 2013).   

 

Several studies have been conducted to predict functional SNVs within the human 

genome using information that could be biologically relevant to gene transcriptional regulation. 

A number of such studies, focusing exclusively on promoter regions, have considered only the 

disruption of transcription factor binding sites (TFBS) for prediction (Ponomarenko, Orlova et al. 

2002; Andersen, Engstrom et al. 2008; Lapidot, Mizrahi-Man et al. 2008). However, these 

methods rely on the completeness of genome-wide TFBS annotation and blithely ignore coding 

variants which may also influence gene transcriptional regulation. Moreover, these methods lack 

information pertaining to the distance to the nearest transcription start site (TSS), the presence of 

a CpG island, and local sequence repetitivity, which were found by Montgomery et al. 



(Montgomery, Griffith et al. 2007) to be important features for the prediction of functional 

regulatory variants. In addition, the integration of information from the Encyclopedia of DNA 

Elements (ENCODE) has previously been reported to improve the prediction of functional 

regulatory elements (Torkamani and Schork 2008), a finding that was recently confirmed by the 

Genome-Wide Annotation of Variants (GWAVA) tool (Ritchie, Dunham et al. 2014).  However, 

all the aforementioned tools utilize only SNV-based information about the variant itself and 

ignore important information about the gene being regulated (gene-based features) such as gene 

expression, gene function, interaction complexity of gene products, frequency of optimal codons 

(FOP), and effective number of codons (ENC). In our previous study, where we developed a 

classifier to distinguish functional regulatory variants from putatively neutral variants, Zhao et 

al. (Zhao, Clark et al. 2011), we demonstrated that these gene-based features are very important. 

The GWAVA tool did not incorporate replication timing information from the ENCODE project, 

which we found to be a very informative feature (Zhao, Clark et al. 2011). 

 

In our Regulatory Single nucleotide Variant Predictor (RSVP), we have employed a 

supervised machine learning method using a set of 1,999 known functional regulatory SNVs 

from the Human Gene Mutation Database (HGMD) (Stenson, Mort et al. 2014) together with a 

dataset of putatively neutral SNVs that commonly occur in human genomes. The integration of 

both SNV-based and gene-based features enabled comparable performance to GWAVA when 

predicting all types of variant, with both methods achieving an area under the receiver operating 

characteristic (ROC) curve (AUC) value of 0.97. However, RSVP exhibits improved 

performance when classifying using only negative variants in close proximity to the true 

regulatory variants (0.95 AUC as compared to GWAVA’s 0.71 AUC). Additionally, we 



demonstrate that RSVP’s performance improves when analyzing only disease-causing (DM) 

variants from HGMD that are supported by functional evidence from in vitro expression assays 

(achieving an AUC of 0.98).  

 

In this analysis, we determined that genomic features discovered in the ENCODE project 

are powerful predictors of regulatory variants while emphasizing the importance of gene-based 

features and the variant’s distance to the transcription start site. Our findings hold out the 

promise of an in silico framework for the assessment of all functional regulatory variants and, 

more importantly, provide a means to predict which rare or de novo variants may be involved in 

genetic disease. To annotate new variants with the RSVP predictor, a script may be obtained 

from our FTP site (http:// http://bioinf.umbc.edu/RSVP/ftp/) or precomputed scores for all 

variants in dbNSFP (Liu, Jian et al. 2011) can be obtained upon request. 

 

Materials & Methods 

Data Preparation 

 

In order to evaluate features (attributes) with the potential to be useful in identifying sites 

that play a functional role in gene regulation, two datasets were collected. First, a positive set 

was obtained from the HGMD database (Stenson, Ball et al. 2012) on Jan. 30th, 2014 and this 

was filtered so as to include only "disease-causing mutations" (DM), "functional 

polymorphisms" (FP), and "disease-associated polymorphisms" with additional supporting 

functional evidence (DFP), resulting in a total of 1,999 regulatory variants. Second, variants 

were obtained from the dbSNP database and were filtered so as to include only validated variants 

http://bioinf.umbc.edu/RSVP/ftp/


with an allele frequency greater than or equal to 5%, yielding a set of 4,804,913 negative 

variants. To make the analysis computationally viable, down-sampling was employed on the 

dbSNP database with a random selection of 1% of these variants beingen used, yielding a set of 

51,147 variants, which we shall henceforth refer to as the “full” negative set.  OwingTo control 

for the to the  different distribution of distances relative to the transcription start sites between 

the positive and negative datasets, we created two additional negative datasets to assess the 

possible impact of this feature. The “±1,000bp” and “±500bp” region sets comprise all variants 

from the dbSNP databasethe full negative set within a window around any positive variant of 

length 1,000 and 500 base-pairs (bp), respectively. This resulted in a total of 90,628 variants for 

the ±1,000bp region set and 18,872 for the ±500bp region set. To analyze the predictor’s 

performance on independent datasets, we obtained the full genome sequences of 454 individuals 

from the Wellderly Project (downloaded Dec. 26th, 2014), 2,513 individuals from the 1,000 

Genomes Project (Abecasis, Auton et al. 2012) (v5a.20130502), somatic mutations from the 

tumors of 1,043 patients with Breast Invasive Carcinoma (BRCA) from the TCGA project 

(Collins and Barker 2007) (downloaded July 2nd, 2014), and a list of genes with a known relation 

to cancer from the Cancer Gene Census (CGC) (Futreal, Coin et al. 2004). In addition, an update 

to the HGMD regulatory variant dataset was obtained on May 20th, 2015 which was used as an  

unseen dataset for further validation of the method. 

 

Features 

 

Features used in this study were divided into two distinct sets: those directly annotated to 

the SNV under consideration (SNV-based) and those annotated to the gene within whose 



transcription regulatory region the SNV lies (gene-based). A summary of all features used in this 

analysis can be found in Supplementary Table S1. SNV-based features include SNV distance to 

the nearest transcription start site (TSS), flanking nucleotide GC-content, flanking nucleotide 

conservation, and SNV occurrence within known functional elements. The SNV-based known 

functional elements used were collected from several independent studies as well as the 

ENCODE project (Kellis, Wold et al. 2014). These binary SNV-based features describe the 

variant as being located within functional elements collected from independent studies for 

enhancers (Pennacchio, Loots et al. 2007), insulators (Bell, West et al. 2001), RNA polymerase 

II-enriched regions (Barski, Cuddapah et al. 2007),  conserved noncoding sequences (Wang, 

Zhang et al. 2006), and nuclease hypersensitive sites (Crawford, Holt et al. 2006). In addition to 

the nuclease hypersensitive sites from the independent study, “DNase peaks” were obtained from 

the ENCODE project and were treated separately from the other nuclease hypersensitive sites. 

Also obtained from the ENCODE project were continuous-value features for histone peaks, 

FAIRE peaks, DNA methylation sites, and replication timing. Where a genomic region had not 

been annotated for replication timing, the average between the two nearest annotated regions was 

used. Two binary features from ENCODE were used to specify if the variant was located within 

a transcription factor binding site or a CpG island. Furthermore, two other binary features, one 

for exonic and one for intronic, were used to describe the location of the variant in the context of 

the gene. Finally, a database of sequences known to be exonic splicing enhancers (ESE) and 

exonic splicing silencers (ESS) were obtained from Sterne-Weiler et al. (Sterne-Weiler, Howard 

et al. 2011) and one feature for each was used, indicating a gain or loss of an ESE or ESS site. 

 



Gene-based features for a given variant refer to features that are associated with the 

closest gene on the chromosome and all variants found near that gene would share this 

annotation. Gene-based features were further divided into two sets: those pertaining to the 

function of the associated gene (function-based) and those relating to the mRNA expression of 

the associated gene (expression-based). For function-based features, a set of prediction scores for 

GO biological process (1,788 features) and molecular function terms (344 features) was 

generated using the FANN-GO (functional annotator that uses multi-output artificial neural 

networks) predictor of protein GO term annotations (Clark and Radivojac 2011). The use of 

predicted GO terms instead of experimentally determined annotations allowed us to obtain 

values for all data points and a set of features that was less likely to be biased toward genes 

frequently studied by biomedical researchers (which could have resulted in an overestimation of 

performance accuracy). We also included interaction complexity (node degree in a protein–

protein interaction network), which is derived from high-throughput experiments in this subset of 

functional features. Expression-based features were generated using microarray platforms 

GPL1074 and GPL96 (Su, Wiltshire et al. 2004). A set of 158 features was generated that 

represent the normalized expression levels of each gene across 79 tissues. Features pertaining to 

the mean, standard deviation, coefficient of variation, and maximum and minimum expression 

levels of each gene across tissues were also generated. Finally, two codon-usage features that 

were not classified as being either expression-based or function-based were generated using 

CodonW’s (Sharp and Li 1986) frequency of optimal codons (FOP) and effective number of 

codons (ENC). 

 

Machine Learning & Cross -Validation 



 

An ensemble of decision trees was employed using the ‘treefit’ function in MATLAB 

with default parameters; and 10-fold cross-validation was used to assess our prediction 

performance with respect to unseen variants not found in our training set. An ensemble of 1,000 

trees was used, which was found to have better performance than ensembles of 100 or 500. A 

random selection of features was used for each tree with a minimum of 5 and a maximum of 

1,000 features per tree, ensuring that the ensemble is not dominated by a few powerful features.  

HereFor cross- validation, our dataset was divided into ten partitions each containing a random 

selection of 10% of the positive variants and 10% of the negative variants. For each of the ten 

folds, one partition was left out for testing and 9 partitions were used for training. During this 

process, each partition was used only once for testing. At each fold, a predictor was trained using 

1,000 decision trees. For each tree, we balanced our training data by down-sampling our negative 

variants using random selection until our positive and negative variants were of equal size. The 

final prediction score was an average of all 1,000 scores’ output by the ensemble of decision 

trees; and we calculated the area under the ROC (AUC) of all predicted scores using 1,000 

evenly spaced thresholds between 0 and 1. Separately, to examine the effect of training on some 

of the same genes that are in the test set, we performed a cross-validation using “gene co-

location”, meaning that each gene could be found in either only the test set or only the training 

set. In this analysis, the predictor will never train on any gene that is in the test set or vice versa. 

Classification performance was calculated using the Area Under the Receiver Operator 

Characteristic curve (AUC). Spanning the interval between 0 and 1 with 1 being the best possible 

predictor, the AUC measures the true positive rate (sensitivity) as a function of the false positive 

rate (1 – specificity). 



 

Results 

Cross-Validation Performance 

 

When evaluating the ability of RSVP to discriminate between putatively neutral variants 

and variants that cause gene regulatory abnormalities, we achieved an AUC of 0.97. This 

indicates a marked improvement over our previous model, Zhao et al., which achieved an AUC 

of 0.90.  To demonstrate that RSVP out-performs a traditional approach better for regulatory 

variants than a traditional approach, we compared it to Combined Annotation Dependent 

Depletion (CADD) (Kircher, Witten et al. 2014), a meta-predictor that also uses ENCODE 

features in addition to scores from PolyPhen, SIFT and several other predictors as features for a 

SVM. We scored the entire positive and negative dataset created in this study with the CADD 

webserver and normalized the PHRED scores between 0 and 1. This resulted in an AUC of 0.84 

for the CADD predictor, indicating that RSVP will perform better with respect to identifying 

variants that play a role in gene regulation.  Additionally, we compared RSVP’s results to 

DeepSEA (Zhou and Troyanskaya 2015){Zhou, 2015 #40}{Zhou, 2015 #211}, a deep learning-

based tool for predicting chromatin effects of disease-associated HGMD variants. We found that 

DeepSEA achieves an AUC of 0.81 on our training data, suggesting thea need for tools that are 

trained specifically on variants that cause regulatory abnormalities since theysuch variants are 

expected to have different properties than disease-associated variants that may not affectwith no 

impact on gene regulation.  AdditionallyFinally, we compared RSVP’s results to the GWAVA 

tool, which achieved a similar AUC (0.97) using the same HGMD regulatory variant dataset and 

a similar negative dataset. However, RSVP performs significantly better when compared to 



GWAVA’s AUC of 0.71 for their “region” negative dataset, which comprises all negative 

variants in the region of ±500 bases around the positive variants. When training and testing our 

model on our ±1,000bp and ±500bp region sets, our model achieved AUCs of 0.96 and 0.95 

respectively (Figure 1). In addition to analyzing our performance on all variants from the HGMD 

regulatory variant dataset, we also performed our analysis on the DM, DFP and FP subsets of the 

positive variants (Figure 2). Of these subsets, training and testing using only the DM subset 

showed the best performance (AUC of 0.98), followed by DFP (AUC of 0.96), and finally FP 

(AUC of 0.96). This suggests that RSVP performs better on variants that are causatively 

involved with disease but the tool still performs well on known functional variants with no 

known disease association. Furthermore, since the performance of our tool will inevitably rely on 

the chosen threshold, we provide users with the F-measure and accuracy performance at different 

thresholds corresponding to an estimated 1%, 5%, and 10% false positive rates (Table 1). 

 

In practice, our predictor will see many of the same genes during training and testing. 

However, since our predictor uses several thousand gene-based features which can be identical 

for many variants, it is important that our model performs well on genes that were not found in 

the training set. Additionally, since our model uses many gene-based features, it is also important 

that we do not overfit for genes that are already in the HGMD database. Thus, we performed a 

separate cross-validation using “gene co-location” where no genes appeared in both the training 

and testing sets in any fold. This analysis resulted in an AUC of 0.94 for all regulatory variants, 

0.96 for the DM subset, 0.93 for the DFP subset, and 0.92 for the FP subset. This suggests that 

our model will still perform well on genes for which there is no known disease-association or 



functional evidence, and does not overfit in relation to genes already logged in the HGMD 

database. 

 

Individual Feature Performance 

 

For each feature (or group of features, as is the case with the FANN-GO and expression 

datasets), the classification performance was tested individually to assess predictive power. Here, 

we obtained AUCs for each feature or group of features by building the ensemble of decision 

trees using only that feature subset. The results for individual features are reported in Table 12 

with similar results found when using both the disease-causing mutation positive subset 

(Supplementary Table S21) and when using the ±500bp region negative set (Supplementary 

Table S32). These results indicate that the distance to the transcription start site is important for 

identifying variants that play a functional role in gene regulation, a conclusion which supports 

the findings of previous research. Also highlighted is the importance of incorporating gene-based 

features (FANN-GO, expression data, FOP, ENC, etc.) in the analysis, a key finding of our 

previous study. Furthermore, incorporating newly discovered functional genomic sites from the 

ENCODE project improved the ability of our method to identify variants that play a functional 

role in gene regulation. Thus, replication timing, histone peaks, transcription factor binding sites, 

DNase sensitivity peaks and FAIRE peaks were found to be ‘power features’ for identifying 

functional regulatory variants.  

 

Independent Dataset Validation 

 



To assess the model’s performance on data not used in training, the genomes of healthy 

individuals from  the 1,000 Genomes Project and the Wellderly project were scored with the 

RSVP predictor in order to provide a comparison with an independent set of variants that cause 

regulatory abnormalities (Figure 3). Labeled “HGMD Update” in Figure 3A are scores for 199 

new variants in 169 genes that were recently added to the HGMD regulatory variant subset of the 

database, and hence which were not originally used to train the classifier. The second dataset, 

termed “Wellderly Project Germline Variants” (Figure 3B), were 18,157 variants from the same 

169 genes as the HGMD update set found in the genomes of individuals from the Wellderly 

Project, which are assumed to be depleted in deleterious variants compared to other populations. 

Finally, the third dataset, labeled “1,000 Genomes Germline Variants” (Figure 3C), comprised 

21,203 variants that are present in the 1,000 Genomes Project for these 169 genes. We found that 

variants from healthy individuals in the Wellderly Project and the 1,000 Genomes Project exhibit 

a significant difference in RSVP scores as compared to variants in the independent HGMD 

dataset (t-test p-value: <1x10-15 for both comparisons).  

 

Somatic Variants Associated with Regulatory Abnormalities in Breast Invasive Carcinoma 

Patients 

 

In Figure 4, RSVP scores are compared between somatic variants found in tumor samples 

from TCGA breast invasive carcinoma patients,  somatic variants in regulatory/intergenic 

regions near genes with known cancer relevance from the Cancer Gene Census (CGC) database 

(Figure 4A), somatic variants in regulatory/intergenic regions near genes that were not in the 

CGC (Figure 4B), and germline variants in regulatory/intergenic regions in from the 1,000 



Genomes Project (Figure 4C). Overall, in comparison to germline variants located in 

regulatory/intergenic regions from the 1,000 Genomes Project, somatic variants in 

regulatory/intergenic regions from TCGA breast invasive carcinoma patients tend to have higher 

RSVP scores (t-test p value: 1.9x10-12) and similar results were found using variants from the 

Wellderly Project (t-test p-value: 1.3 x10-11).  Moreover, we find that somatic variants near genes 

with known cancer relevance from the CGC tend to have higher RSVP scores (t-test p-value: 

2.3x10-2) than genes with no known cancer relevance.  

 

Discussion 

In this paper, we have evaluated the performance achieved by our Regulatory Single 

nucleotide Variant Predictor (RSVP) by incorporating the wealth of information generated in 

recent years by the ENCODE project. In comparison to our previous study which did not include 

features from the ENCODE project, Zhao et al., RSVP’s performance (measured in AUC) 

improved from 0.90 to 0.97 during cross-validation when trained using the full HGMD 

regulatory variant dataset. Additionally, we demonstrate that our tool also performs well on all 

types of functional regulatory variant recorded in the HGMD database, with "disease-causing 

mutations" (DMs) achieving an AUC of 0.98, "disease-associated polymorphisms" with 

additional supporting functional evidence (DFPs) achieving an AUC of 0.96, and "functional 

polymorphisms" (FPs) achieving an AUC of 0.96.  

 

To benchmark our tool, we compared RSVP’s results to a recently published tool, 

Genome Wide Annotation of Variants (GWAVA), which also employs a machine learning 

approach that incorporates data from the ENCODE project as features to predict regulatory 



variants, and to a traditional variant predictor used to classify coding variants, the Combined 

Annotation Dependent Depletion (CADD) tool. We found that our overall performance is 

comparable to GWAVA, which also achieved an AUC of 0.97, and that both tools perform better 

on regulatory variants than a traditional tool, CADD, which only achieved an AUC of 0.84.   

RSVP and GWAVA also outperform a predictor trained with similar ENCODE-based features 

but which utilizeduses the entire HGMD database, DeepSEA (AUC of 0.81), thereby 

underscoring the utility of a predictor trained specifically for variants that cause regulatory 

abnormalities. However, as highlighted in the publication describing the GWAVA tool, it is 

important to evaluate the predictor’s performance on variants displaying similar distances to the 

transcription start site as those in the positive set, since this could be considered to be a ‘power 

feature’ as a single-feature classifier, achieving an AUC of 0.95. Thus, to determine how the 

GWAVA tool performs on these variants, we performed a separate analysis using a subset of the 

negative variants during cross-validation that comprised all negative variants within a 1,000bp 

window around any HGMD variant. Here, the GWAVA tool achieved an AUC of only 0.71 

whereas RSVP achieved an AUC of 0.96. In addition, our method performs well when only 

considering those negative variants within a 500bp window around any HGMD variant, 

achieving an AUC of 0.95. This disparity likely stems from the choice of features used in RSVP 

since the GWAVA tool does not include any gene-based features, which were determined to be 

highly predictive features in our previous study, Zhao et al., [21] as well as our current study. 

Intuitively, gene-based features such as predicted GO terms and expression level in various 

tissues should be key to predicting the effect of variants on the regulation of genes in relation to 

disease. Indeed, these were found to be highly predictive features with individually assessed 

AUCs of 0.88 and 0.86 respectively. Not surprisingly, as seen in Supplementary Table S4, many 



of the most predictive FANN-GO features are involved with regulatory activity (e.g., response to 

stimulus, phosphorylation, transcription factor activity, etc.). Likewise, all other gene-based 

features also displayed good discriminatory power with AUCs of 0.81 for Frequency of Optimal 

Codons, 0.76 for Effective Number of Codons, and 0.72 for PPINT complexity). However,  

 

sSince our methodwe use employed multiple gene-based features, one possible source of 

bias could be introduced if our predictor overfits for genes that are already in the HGMD 

database. To assess this potential bias, we performed a separate cross-validation using “gene co-

location” where no genes appeared in both the training and testing sets in any fold. Resulting in 

an AUC of 0.94 for all regulatory variants, 0.96 for the DM subset, 0.93 for the DFP subset, and 

0.92 for the FP subset (Figure 2), we determined that our model is unaffected by this bias and 

that it will perform well for new genes for which there are no known disease-associations or 

functional evidence. Overfitting can also become a concern when using large feature vectors like 

the FANN-GO feature set. Thus, in addition to using 10-fold cross- validation, we also address 

this problem in our random forest algorithm, where we randomly select between 5 and 1,000 

features for each tree. This ensures that each tree will be trained using different features and that 

no tree will have more features than variants in the positive dataset. This also ensures that power 

features likesuch as distance to the transcription start site do not dominate the entire ensemble of 

trees. 

 

The selection of a negative training dataset is crucial for assessing performance and 

comparing models. Thus, in this study, we employed several negative datasets  that were similar 

to the ones used in our previous study, Zhao et. al., and to the negative datasets used in the 



GWAVA tool. Like GWAVA, our “unmatched” dataset was randomly sampled from variants 

that are not known to cause regulatory abnormalities. WhileAlthough our performance was 

unchanged from an AUC of 0.97 for three random samples of variants from dbSNP (data 

available upon request), we did notice a marked change when analyzing only negative variants 

within a 1,000 or 500 bp window around any positive variant. Indeed, we find that the most 

predictive feature, distance to the nearest transcription start site, achieves an AUC of 0.95 in 

cross- validation alone for the unmatched dataset but although the AUC decreases to 0.91 and 

0.86 for the 1,000 and 500 bp negative datasets respectively. Thus, it is vital for any comparison 

between methods to consider the unequal distribution of distances to the transcription start site in 

the negative datasets chosen. 

 

To assess RSVP’s performance on an independent dataset, we scored and compared 

variants from a recent update to the HGMD regulatory variant database that were not used to 

train the model to and germline variants from the Wellderly and 1,000 Genomes Projects. As 

expected, variants from the independent HGMD update dataset that were not used to train the 

model were scored significantly higher than variants from the same genes found in the Wellderly 

and 1,000 Genomes Projects, indicating that RSVP has the power to detect novel variants that 

will cause regulatory abnormalities. Additionally, to assess the potential application of the RSVP 

tool to identifying somatic variants with the potential to drive tumor progression, we performed 

an analysis of RSVP scores for a dataset of somatic variants from the tumors of patients with 

breast invasive carcinoma from The Cancer Genome Atlas project. We found that, overall, 

somatic variants in regulatory/intergenic regions are predicted by RSVP to be more involved 

associated with regulatory abnormalities than similar variants from the Wellderly and 1,000 
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Genomes Projects. Moreover, we find that somatic variants located near genes known to play a 

role in cancer from the Cancer Gene Census tend to have higher RSVP scores than somatic 

variants near genes with no known cancer relevance. This indicates that the RSVP tool could 

also be used to identify variants that likely play a role in the regulation of pathways involved in 

tumor progression.  
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Figure Legends 

 

Figure 1: Comparison of classifier performance using three different negative variant sets to train 

the model in cross- validation. The model trained using “full” negative dataset, a random selection of all 

variants from dbSNP with an allele frequency of ≥ 5%, had an Area Under the Receiver Operator 

Characteristic curve (AUC) of 0.974. Restricting the negative variants to just those within ±1,000bp and 

±500bp regions around any positive variant, the model achieved AUCs of 0.955 and 0.949 in cross- 

validation respectively. 

 



Figure 2: Regulatory variant classification performance using different positive datasets during 

cross- validation. The Area Under the Receiver Operator Characteristic curve (AUC) was calculated 

during cross- validation for all regulatory variants (AUCs of 0.969, 0.955, and 0.949 for the full, 

±1,000bp, and ±500bp negative sets) as well as subsets containing only disease-causing mutations (AUCs 

of 0.983, 0.977, and 0.974 for the full, ±1,000bp, and ±500bp negative sets), only disease-associated 

functional polymorphisms (AUCs of 0.962, 0.944, and 0.935 for the full, ±1,000bp, and ±500bp negative 

sets), and only functional polymorphisms with no disease-association (AUCs of 0.959, 0.943, and 0.935 

for the full, ±1,000bp, and ±500bp negative sets). 

 

Figure 3: Prediction scores for variants from three independent variant datasets. (A) 199 variants on 

169 genes from the HGMD regulatory variant database, which were added to HGMD after Jan. 30th, 

2014. (B) 18,157 variants from patients sequenced in the Wellderly Project from the same 169 genes as 

the HGMD update. (C) 21,203 variants from patients sequenced in the 1,000 Genomes Project, also from 

the same 169 genes.  

 

Figure 4: Comparison of prediction scores for somatic variants from TCGA breast invasive 

carcinoma patients. (A) RSVP scores for regulatory/intergenic somatic variants near genes with known 

cancer relevance from the Cancer Gene Census. (B) RSVP scores for regulatory/intergenic somatic 

variants near genes that were not in the Cancer Gene Census. (C) RSVP scores for regulatory/intergenic 

germline variants from the 1,000 Ggenomes Pproject. 

 


