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Thesis Abstract 

There are currently no disease-modifying therapies to halt or prevent the onset of Alzheimer’s 

disease (AD). Immunotherapy and antibodies targeting the neurotoxic amyloid-β (Aβ) peptide for its 

removal from the brain have provided a promising opportunity to provide disease-modifying therapies. 

However, despite promising pre-clinical data, any benefits have failed to translate to the clinic. This thesis 

evaluated an antibody approach that, rather than targeting amyloid per se, binds to the amyloid precursor 

protein (APP) at the β-secretase cleavage site to reduce amyloid production by steric hindrance (Thomas 

et al. 2011, 2013). The main hypothesis of this thesis was that 2B3 administration to aged PDAPP mice 

(Games et al. 1995), which overexpress a mutated form of APP (Indiana mutation; V717F), would (1) 

reduce APP metabolism and (2) Aβ production and (3) alleviate age-associated cognitive deficits in 

PDAPP mice. 

In order to test this hypothesis, PDAPP mice underwent behavioural and pathological 

characterisation at a range of ages to identify the nature and onset of cognitive deficits. Behavioural 

characterisation included an in-house spatial working memory (SWM) foraging paradigm and a battery of 

object and spatial recognition tests. PDAPP mice showed age-dependent deficits in SWM starting at 10-

12 months. Novel object memory remained intact across all ages tested, however an age-dependent deficit 

was observed at 14-16 months of age in a visuo-spatial object-in-place  (OiP) recognition task. ELISA 

analyses confirmed an age-related significant increase in amyloid production in the hippocampus of 

PDAPP mice at 15 months of age. 

In the second phase of the programme of work, 17-18 month old PDAPP mice received 

intracerebroventricular infusion of antibody 2B3 using osmotic minipumps for a period of 14 days. 2B3 

administration reversed the OiP recognition memory impairment in PDAPP mice. Improved memory 

performance was accompanied by a significant reduction in soluble Aβ40 and βCTF, but not soluble 

Aβ42. Further investigation also revealed that 2B3 significantly reduced the phosphorylation of NMDA 

receptor subunit NR2B at the tyrosine 1472 residue to a level similar to age-matched WT controls. 

Increased phosphorylation of the NR2B residue has been linked with neuronal excitotoxicity and 

impaired cognitive function in other mouse models (Ittner, Ke, Delerue, Bi, Gladbach, van Eersel, 

Wölfing, Chieng, Christie, Napier, et al. 2010).  It is hypothesised that reduced phosphorylation of the 

NR2B following 2B3 administration in PDAPP mice most likely played a significant role in improving 

OiP performance. 



viii

Data from this thesis provides evidence that in vivo administration of 2B3 and inhibition of APP 

metabolism/Aβ production by steric hindrance provides a viable approach for the further development of 

immunotherapies targeting early stage AD pathology. 

In Loving Memory of Frances Maundrell 

1950 - 2016
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Chapter 1: Introduction 

“When Alois Alzheimer revealed the plaques and neurofibrillary tangles under his microscope 

more than a century ago, one wonders whether he anticipated that the proteins forming these lesions 

would have such profound roles and be directly linked in the pathogenesis of the disease”

Lars M. Ittner and Jürgen Götz, 2011  
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1.1 Thesis Overview 

Currently, the clinically available treatments for Alzheimer’s disease (AD) target AD-related 

symptoms only and not the underlying pathological mechanisms or causes. Therefore, there is a 

great demand for the development of these treatments in order to slow the progression or onset 

of AD. Transgenic mouse models have provided a useful tool in which to investigate 

pathological mechanisms associated with AD, as well as to evaluate potential disease-modifying 

compounds. 

This introduction will initially outline the clinical observations of AD prevalence, 

clinicopathology and aetiology (section 1.2). A more in-depth discussion of the molecular 

pathology of AD will then be discussed (section 1.3). A focus will be on the amyloid-β (Aβ) 

peptide. Aβ has been argued to trigger the pathological cascade of events associated with the 

progressive neurodegeneration and cognitive decline reported in AD (Hardy & Allsop 1991; 

Hardy & Higgins 1992; Hardy & Selkoe 2002). Further mechanisms and pathological hallmarks, 

such as neurofibrillary tangles (NFTs) and hyperphosphorylated tau protein will also be 

discussed. This will then lead onto an overview of the current transgenic mouse models of AD-

like pathology (section 1.4). These models are extensively used in order to provide a better 

understanding of the pathological mechanisms and behavioural phenotypes associated with AD. 

A focus will be on the PDAPP model, which was used throughout the research conducted in this 

thesis (Games et al. 1995). A further common use for Tg AD models is to assess novel 

compounds to potentially treat AD. A review of the currently available and developing 

treatments for AD will then be provided in the final section (section 1.5). A focus of this will be 

on immunotherapy, particularly passive anti-Aβ immunotherapies. Despite the success of these 

anti-Aβ antibodies in preclinical studies, little success has been translated in clinical trials 

(Karran & Hardy 2014). The remaining review of developing immunotherapies will focus on an 

anti-APP β-secretase cleavage site antibody, 2B3. 2B3 is able to reduce Aβ in vitro in a range of 

cell lines, including mouse primary cortical neurons (Thomas et al. 2011; Thomas et al. 2013). 

Thus, this introduction will hypothesise that administration of 2B3 in PDAPP mice will reduce 

levels of Aβ and improve memory performance.  
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1.2 An Overview of Alzheimer’s Disease

1.2.1 Prevalence and cost 

Alzheimer’s disease (AD) is the most prevalent neurodegenerative condition afflicting an 

estimated 44 million people worldwide (World Alzheimer's Disease Report 2014). It is the most 

common form of dementia making up 64% of all cases (Alzheimer’s Society: Dementia UK, 

2014).  Within the UK, it is estimated that 850,000 people will have been diagnosed with 

dementia by 2015, which is equal to 1.3% of the entire UK population (Alzheimer's Society: 

Dementia UK update, 2014). Of the cases diagnosed, approximately 1 in 14 people are aged 65 

and above and 1 in 6 people are over the age of 80, indicating that AD is a disease of age. These 

figures appear more aggressive in the United States where 5.2million American citizens have 

been reported to have AD. Of these, 1 in 9 people are over the age of 65 and 1 in 3 are over the 

age of 85 (Alzheimer's Association: Facts and Figures, 2014).  

AD is a debilitating condition not just for the patient, but also the primary care giver. 

Caregivers are reported to be under supported and overworked, collectively spending over 1.3 

billion hours caring for those with dementia in the UK in 2013 (Alzheimer’s Society: Dementia 

UK, 2014). It has further been reported that AD caregivers are susceptible to stress, anxiety as 

well as depression (Ferrara et al. 2008). In addition to this, in 2014, AD had a reported annual 

cost of £26.3 billion in the UK (Alzheimer's Society: Dementia UK update, 2014) and a further 

$214 billion in the US (Alzheimer's Association: Facts and Figures, 2014). These figures are 

estimated to double by 2030 due to modern medicines increasing life expectancy.  For reasons 

such as these, research into the mechanisms of AD are important to identify therapeutic targets, 

as currently there is no preventative treatment. Therefore, there is an ongoing need to continue to 

improve the understanding of AD aetiology and disease mechanisms in order to develop 

potential treatments.

1.2.2 Clinical symptoms 

Clinical symptoms of AD are consistent with the pathological progression of the disease, 

starting initially in the medial temporal lobes (MTL) (i.e., entorhinal cortex (EHC) and 

hippocampus (HPC)), before further progressing into isocortical association areas, including the 
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parietal and frontal lobes (explained in more detail in section 1.3; Braak & Braak 1991; Braak & 

Braak 1995). The earliest clinical symptoms observed in patients with AD are a deficit in MTL-

dependent episodic memory and semantic memory (Hodges et al. 1990; Bondi et al. 2008). 

These deficits are commonly observed in the preclinical phase of AD prior to the development of 

mild AD and mild cognitive impairment (MCI;) (Förstl & Kurz 1999; Bäckman et al. 2001; 

Bondi et al. 2008). As the disease continues to worsen into the moderate and severe stages of 

AD, patients express severe impairment of recent memory and appear to “live in the past” 

(alzheimers.org.uk) and develop further changes in personality, speech and gradual loss of 

everyday activities of daily living (Beatty et al. 1988; Förstl & Kurz 1999). The average duration 

of life following clinical diagnosis of AD is approximately 5-10 years. Despite the relatively 

rapid decline following diagnosis, it is thought that pathological changes in neurochemistry and 

AD biomarkers may precede this stage decades before clinical symptoms present (Förstl & Kurz 

1999; Zanetti et al. 2009; Jack et al. 2010; Jack et al. 2013).  

1.2.3 Diagnosing Alzheimer’s Disease

Criteria for diagnosing AD were originally established in 1984 with the National Institute 

of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA) criteria (McKhann et al. 1984). These criteria 

allowed for a “possible” and “probable” diagnosis of AD with a “definite” diagnosis through 

combined clinical and histopathological examination (McKhann et al. 1984). Similar clinical 

diagnostic criteria have since been established including the Diagnostic and Statistical Manual of 

Mental Disorders, 4th edition (DSM-IV) and the International Classification of Diseases, 10th

revision (ICD-10) (World Health Organization, ICD-10, 1992; American Psychiatric 

Association, DSM, 1994; American Psychiatric Association, DSM-IV-TR 2000). The three share 

many approaches to diagnose AD: including mental status exams (MSE) and memory tests. 

These assessments are highly sensitive to cognitive and behavioural symptoms associated with 

AD and allow the progression of decline to be monitored (Schmitt et al. 2000; Salmon & Bondi 

2009). Two of the most frequently used assessments to diagnose cognitive impairment are the 

Mini-Mental Status Examination (MMSE) and the Cambridge Neuropsychological Tests 

Automated Battery (CANTAB) (Folstein et al. 1975; Cockrell & Folstein 1988; Fray & Robbins 

1996; Fray et al. 1996). The MMSE consists of a brief questionnaire able to assess both episodic 

and semantic memory, working memory, as well as attention and orientation to time and place 
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(Folstein et al. 1975; Snyderman & Rovner 2009). CANTAB however, is a non-verbal 

assessment tool, utilizing a touch-screen testing system examining memory, attention and 

executive function (Fray & Robbins 1996). Similar clinical test procedures are also used in order 

to track memory and cognitive decline in AD patients including the Montreal Cognitive 

Assessment, Alzheimer’s Disease Assessment Scale and Logical Memory Test I and II (Rosen et 

al. 1984; Wechsler 1997; Nasreddine et al. 2005). In 1999 a further stage of cognitive decline, 

MCI, was defined as a translational stage between normal cognition (relative to age and 

education) and dementia (Petersen et al. 1999). This definition further helped to define and 

identify those at risk of developing AD (Morris et al. 2001; Petersen 2002). However, AD 

cognitive symptoms alone show much over lap with other dementias, including frontotemporal 

dementia (FTD), and accuracy of diagnoses remains variable until postmortem neuropathological 

examination; which remains the “gold standard” of diagnosis of AD (McKhann et al. 1984; 

Dubois et al. 2007; Beach et al. 2012).  

To better improve AD diagnosis recommendations from the National Institute of Aging 

(NIA) and Alzheimer’s Association workgroups proposed improvements to the diagnostic 

guidelines for AD based on the advances made in understanding AD since 1984 (Dubois et al. 

2007; Jack et al. 2011; Sperling et al. 2011; McKhann et al. 2011; Albert et al. 2011). These 

recommendations focus on detecting AD in its earliest stages by observing a clinical deficit in 

episodic memory as well as at least one or more abnormal biomarkers relative to AD 

neuropathology. These include: molecular neuroimaging with positron emission tomography 

(PET) with Pittsburgh B compound (PiB) to quantify amyloid levels within the brain, structural 

neuroimaging with magnetic resonance imaging (MRI) to assess potential MTL atrophy, as well 

as the analysis of cerebrospinal fluid (CSF) to detect altered levels of amyloid and phospho-tau. 

However, these recommendations appear to target diagnosis of AD predominantly for research 

purposes, while the recommendations for a more clinical criterion remain unfeasible in many 

memory clinics. Due to the relative expense of imaging techniques and the invasive procedure of 

lumbar puncture to obtain CSF, development of screening procedures incorporating blood-based 

biomarkers are being developed. These should allow a more clinically-valid and reliable method 

to diagnosing AD (Burnham et al. 2014; Henriksen et al. 2014; Kiddle et al. 2015).  
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1.2.4 Aetiology of Alzheimer’s Disease

 Two predominant forms of AD have been classified, familial AD (FAD) and sporadic 

AD (SAD). FAD accounts for approximately 1-5% of all cases. SAD accounts for more than 

95% of AD cases. Although causal genetic mutations lead to the development of FAD, no single 

definitive cause has been determined for SAD and it is most likely caused by a combination of 

genetic and environmental factors (Bettens et al. 2013b; Reitz & Mayeux 2014). Despite this 

difference, the clinical and neuropathological cascade of events remains similar across both 

forms of AD (Lippa et al. 1996). 

 FAD is an autosomal dominant inherited form of AD. To date, 260 causal mutations have 

been reported for FAD (http://www.molgen.ua.ac.be/ADMutations). These mutations are divided 

between three genes leading to the clinical and neuropathological onset of AD: APP, PSEN1 and 

PSEN2 (Levy et al. 1990; Goate et al. 1991; Rogaev et al. 1995; Levy-Lahad et al. 1995; 

Sherrington et al. 1995). APP encodes the amyloid precursor protein (APP), which is 

metabolized to generate the neurotoxic β-amyloid (Aβ) peptide, the main component of neuritic 

plaques (Selkoe 2001). PSEN1 and PSEN2 encode presinilin 1 and 2 respectively. These proteins 

help compose a large enzyme complex, γ-secretase, directly related to the production of Aβ (De 

Strooper 2003). These causative mutations commonly result in an increased ratio of Aβ42 to 

Aβ40, where Aβ42 is reportedly a more neurotoxic species of Aβ (Scheuner et al. 1996; Klein et 

al. 1999; Chávez-Gutiérrez et al. 2012). The identification of these mutations acted as a 

foundation of the “Amyloid Cascade Hypothesis” and the generation of Aβ (discussed in detail 

in section 1.3.1), remains the dominant hypothesis for the pathological cascade of events in AD 

(Hardy & Higgins 1992; Musiek & Holtzman 2015;).

 Unlike FAD there have been no causal genetic mutations reported for SAD. However, 

twin studies have predicted that the heritability of SAD may be as high as 80% (Gatz et al. 

2006). Initial genetic studies revealed the APOE ε4 allele as a common risk factor for the onset 

of AD in later age. People who are homozygous for the APOE ε4 allele have a 15 times 

increased risk of developing AD while those who are heterozygous show a three times increased 

risk when compared to homozygotes for APOE ε3, the most common genotype (Farrer et al. 

1997). Due to the continued high risk of developing AD associated with the expression of APOE 

ε4, it was proposed as a semi-dominant inherited gene with moderate penetrance (Genin et al. 

2011). Studies have also indicated that apolipoprotein E (Apo-E) has an important role in Aβ 

metabolism and APOE ε4 genotypes have a greater density of neuritic plaques suggesting it may 

http://www.molgen.ua.ac.be/ADMutations
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increase Aβ brain deposition (Klunk et al. 2004; Kok et al. 2009; Liu et al. 2013) However, 

despite these findings, APOE expression is not sufficient to cause AD. More recently, large-scale 

GWAS studies have identified several other risk loci associated with SAD. Single nucleotide 

polymorphisms were initially reported in CLU, PICALM, CR1 and BIN1, while more recent 

studies have further identified PLD3, FRMD4A, EPHA1, ABCA7, CD2AP, CD33 and MSA4

cluster (Harold et al. 2009; Seshadri et al. 2010; Naj et al. 2011; Lambert et al. 2013; Lambert et 

al. 2015). Although the precise biological role of these polymorphisms in AD is yet to be 

defined, functional roles have been reported in lipid processing, immune system regulation, 

synaptic function and endocytosis, functions which are reportedly affected in AD (Lynch et al. 

2003; Tateno et al. 2007; Tebar et al. 1999; Ivanov & Romanovsky 2006; Jones et al. 2010; 

Bettens et al. 2013a). 

 Numerous lifestyle and environmental factors have also been associated with SAD. 

Given that most people diagnosed with AD are 65 years or older, with the risk of diagnosis 

increasing with age, the most significant risk factor of AD is ageing. Other medical conditions 

such as elevated blood-pressure, type 2 diabetes and body weight have also indicated increased 

risk of developing AD ( Leibson et al. 1997; Razay & Vreugdenhil 2005; Whitmer et al. 2005; 

Reitz & Mayeux 2014). However, lifestyle choices have also been reported as protective against 

the onset of AD. For example, Mediterranean-style diets are associated with a reduced incidence 

of AD and MCI (Scarmeas et al. 2009; Gu et al. 2010). Similar effects have also been reported in 

those who undergo regular physical activity as well as engage in cognitively stimulating 

activities (Fratiglioni et al. 2004; Carlson et al. 2008). 

 The identification of both genetic as well as lifestyle/medical-based risk factors 

exemplifies the complexity of SAD. As a result, it is likely that a therapeutic approach using just 

one method of therapy may be insufficient to combat AD and a more multi-targeted strategy may 

be required; based on individual risk profiling. Further research is required to understand how 

these multiple risk factors interact and affect AD-related pathogenic mechanisms.   
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1.3 Alzheimer’s Disease Pathology

The “Amyloid Cascade Hypothesis” has dominated many avenues of AD research since 

its original report in 1992. Following the identification of extracellular senile plaques, composed 

of aggregated Aβ, and intracellular NFTs composed of hyperphosphorylated tau protein, it 

hypothesized that the gradual build up of plaques caused a downstream cascade of events 

including NFT development, neurodegeneration and clinical dementia. The two major 

pathological hallmarks of AD therefore have been intensively studied. This section will start by 

explaining the amyloid cascade hypothesis before further reviewing the current findings 

implicating Aβ and tau in the progressive pathology of AD. Given the focus of this thesis 

concentrating on hAPP overexpression and downstream effects of modulating its metabolism a 

predominant focus will be given to APP metabolism and neurotoxic effects of Aβ, however the 

toxic roles of tau and the pathological relationship between tau and Aβ will also be discussed.

1.3.1 The Amyloid Cascade Hypothesis 

A number of hypotheses have been proposed to explain AD pathology, including 

elevated oxidative stress, the “mitochondrial cascade hypothesis” (declining mitochondrial 

activity), the “calpain-cathepsin hypothesis” (age-related decline in the autophagic-lysosomal 

system) and declining blood-brain barrier (BBB) function (Erickson & Banks 2013; Sutherland 

et al. 2013; Yamashima 2013; Swerdlow et al. 2014). However, the most commonly accepted 

AD hypothesis is the amyloid cascade hypothesis, which has remained a focal point of AD 

research since 1991 (Hardy & Allsop 1991). 

The focus on Aβ followed from its sequencing from meningeal blood vessels of AD and 

Downs syndrome (DS) patients prior to the finding that it was the primary component of senile 

plaques (Glenner & Wong 1984; Masters et al. 1985). It was later discovered that the gene 

encoding the precursor of Aβ, the amyloid precursor protein (APP) was located on chromosome 

21 (Goldgaber et al. 1987; Tanzi et al. 1987). Coupled with the observation that individuals with 

DS express a trisomy of chromosome 21 and frequently develop AD neuropathology in later life 

it was proposed that the generation of Aβ was the primary pathological event of AD (Olson & 

Shaw 1969). It was later discovered that mutations in APP gene locus were causative of FAD 

and lead to increased levels of Aβ (Goate et al. 1991; Mullan et al. 1992). Preliminary studies 

had already reported Aβ-mediated neurotoxicity and further disruption of calcium homeostasis 
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leading to NFT development (Yankner et al. 1989; Mattson et al. 1991; Pike et al. 1991; Mattson 

et al. 1992).  Collectively, these findings provided a genetic and pathological basis for the 

amyloid cascade hypothesis. The amyloid cascade hypothesis stated that the “deposition of 

amyloid β protein, the main component of the plaques, is the causative agent of Alzheimer’s 

pathology and the neurofibrillary tangles, cell loss, vascular damage and dementia follow as a 

direct result of this deposition” (Hardy & Higgins 1992).  

The amyloid cascade hypothesis has fuelled AD research for over 20 years and still 

provides a framework for investigation of putative treatments. However, the findings reported 

over the past two decades have generated considerable controversies and challenges for the 

amyloid cascade hypothesis. The most salient challenges concern the spatiotemporal pathology 

of senile plaques and lack of Aβ plaque correlation with neuronal loss and clinical disease 

progression (Braak & Braak 1991; Serrano-Pozo et al. 2011). Contradicting the amyloid cascade 

hypothesis is the fact that NFT pathology shows a significant correlation with neuronal loss 

(Arriagada, Marzloff, et al. 1992; Gómez-Isla et al. 1997; Serrano-Pozo et al. 2011). However, 

despite this aggregated phosphorylated tau has been reported to be present in the brainstem and 

EHC of young adults who are both cognitively normal and amyloid-free (Braak & Del Tredici 

2011). With age, this aggregated tau becomes ubiquitous in the HPC (Price & Morris 1999; 

Knopman et al. 2003). However, the toxic spread of these tau aggregates into neocortical regions 

is dependent on the presence of plaque and increased amyloid SAD (Price & Morris 1999; 

Knopman et al. 2003; Petersen et al. 2006). Similar to the spread of aggregated tau, only 

individuals with plaque pathology display HPC neuronal loss (West et al. 1994; Gómez-Isla et 

al. 1996). It would therefore seem that despite neuroanatomical discrepancies, Aβ aggregation is 

required to initiate and accelerate the neurotoxic properties of NFTs.  

Research suggests that Aβ deposition may commence over a decade prior to the onset of 

clinical AD (Jack et al. 2013a; Jack et al. 2013b). However, it is argued that despite elevated 

levels of plaques in asymptomatic individuals, this should be considered a “preclinical” phase of 

AD (Jack et al. 2013; Roe et al. 2013; Vos et al. 2013). Interestingly, it has been observed that 

individuals who are ostensibly normal, but show plaque pathology demonstrate subtle deficits 

when using the AD Cooperative Study-Preclinical Alzheimer Cognitive Composite (ADCS-

PACC), which combines tests that assess episodic memory, timed executive function and global 

function, as well as accelerated HPC atrophy compared to plaque free controls (Chételat et al. 

2012; Donohue et al. 2014). This suggests that Aβ deposition may exhibit progressive, mild, 

pathology prior to much more rapid disease progression, following the onset of NFT pathology. 
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In contrast to amyloid plaques, soluble (pre-plaque) forms of Aβ are better correlated with tau 

pathology (Handoko et al. 2013; Lesné et al. 2013). As discussed in more detail below, Aβ 

oligomers can directly initiate tau phosphorylation in vitro and in vivo (Ittner et al. 2010; Choi et 

al. 2014; Zhang et al. 2014;). These findings have led to a revised amyloid cascade hypothesis in 

which soluble Aβ oligomers are responsible for the cascade of neuropathological events 

associated with AD (Hardy & Selkoe 2002) (see Figure 1.1). Despite this revised hypothesis, it 

still remains unclear as to why the long prodromal phase of AD, when plaques are known to be 

present, causes little or no neurodegeneration. 

There are several studies that suggest Aβ production and deposition precedes NFT 

pathology in support of the amyloid cascade hypothesis For example, amyloid-based 

immunotherapies in preclinical mouse models of AD have shown that Aβ monoclonal antibodies 

reduced levels of soluble Aβ and phosphorylated tau, improved cognition and electrophysiology 

markers of synaptic plasticity (Schenk 2002; Oddo et al. 2004; Buttini et al. 2005; Hartman et al. 

2005; Klyubin et al. 2005). In contrast to these positive changes in mouse models, 

immunotherapy has not been successful in clinical trials (Mangialasche et al. 2010). The reasons 

for this discrepancy may be numerous but one important aspect of the data is that patients are 

often treated in the mild-moderate stages of AD when neuronal loss is already manifested (in 

contrast to mouse models). However, more recent results released at the Alzheimer’s Association 

International Conference 2015 revealed promising improvements in cognitive measures and CSF 

biomarkers in Phase III clinical trials for anti-Aβ antibodies Solanezumab and Gantenerumab 

and Aducanumab (Phase Ib trial) treating patients in much earlier stages of AD pathogenesis 

(Qian et al. 2015; Reardon 2015). Current ongoing pharmacological studies and Aβ 

immunotherapy trials using pre-symptomatic FAD cohorts, including the Dominantly Inherited 

Alzheimer’s Network (DIAN) and Alzheimer’s Prevention Initiative (API), will provide a key 

test of the amyloid cascade hypothesis (Reiman et al. 2011; Mills et al. 2013). 
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Figure 1.1: A revised schematic overview of the amyloid cascade hypothesis. This shows the sequence of events 

leading to the clinical onset of AD. The curved arrow represents the theory that soluble Aβ oligomers may directly 

cause synaptic and neuronal injury in addition to the activation of neuroinflammatory mediators. (Hardy and Selkoe 

2002) 
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 The evidence summarized above suggests the early version of the amyloid cascade 

hypothesis that originally focused on plaque pathology, as the cardinal event in AD was 

inaccurate. Aβ appears to gradually accumulate for several years before somehow triggering the 

spread of neurotoxic tau pathology, neuronal loss and cognitive decline. It is likely that 

accumulating Aβ may need to reach a threshold before triggering intermediary signaling and / or 

kinase cascades, declining mitochondrial function or altered immune system function that lead to 

pathological changes in brain function and viability (Musiek & Holtzman 2015). Nevertheless, 

the long preclinical phase of AD offers a window of opportunity to prevent accumulation of 

amyloid and thus slow-down or prevent the cascade of events that ultimately causes neuronal 

loss. Results from the DIAN and API studies will be key to testing whether Aβ-related 

interventions provide a viable method of disease modification/prevention in humans.  

1.3.2 β-Amyloid Production 

APP is a highly conserved single transmembrane protein found in both neuronal and non-

neuronal tissue (Jacobsen & Iverfeldt 2009). Three major APP isoforms (APP695, APP751 and 

APP770) have been reported as a result of alternative splicing of exons 7 and 8 (Moir et al. 1998; 

Tanaka et al. 1989). Of these, APP751 and APP770 are mainly (but not exclusively) expressed 

within non-neuronal tissue. APP695 is the most highly expressed isoform in neurons, and recent 

reports suggest ratios of APP isoform mRNAs to be approximately 1 : 10 : 20 (APP770 :  APP751 : 

APP695) (Tanaka et al. 1989; Haass et al. 1991; Selkoe 2001). APP is metabolised in one of two 

separate pathways (Figure 1.2), the non-amyloidogenic and the amyloidogenic pathway. The 

activation of each pathway is determined by the sequential cleavage of APP by enzyme 

complexes, termed α- and γ-secretase (non-amyloidogenic pathway) and β- and γ-secretase 

(amyloidogenic pathway). (Zhang et al. 2011).  

The non-amyloidogenic pathway sequentially cleaves APP by initial -secretase activity. 

α-Secretase activity is mediated by one or more membrane bound enzymes from the family of 

disintegrin and metalloproteinase domain proteins (ADAM), including ADAM9, 10, 17 and 19 

(Asai et al. 2003; De Strooper et al. 2010). α-secretase cleaves APP in the Aβ encoding domain 

of APP, thus preventing the generation of Aβ in this metabolic pathway. The resulting products 

of α-secretase cleavage are the membrane bound C-terminal fragment, 83 amino acid residues in 

size (CTF83) and an amino (N) terminal metabolite, soluble APP (sAPP), which is released 

into the extracellular domain. The CTF83 fragment is further processed by the intramembrane 
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enzyme complex, γ-secretase which generates a small peptide, p3 and a remaining APP 

intracellular domain (AICD) (Haass et al. 1993; Kojro & Fahrenholz 2005; De Strooper et al. 

2010b). The γ-secretase is composed of enzymes PS1 or PS2, nicastrin, anterior pharynx 

defective, and presinilin enhancer 2, all four of which are reported necessary to reconstitute -

secretase activity (Levitan et al. 2001; Francis et al. 2002; Steiner et al. 2002). 

Figure 1.2: Schematic diagram illustrating the two main pathways of APP metabolism. The non-

amyloidogenic pathway shows sequential APP cleavage by α-secretase, followed by γ-secretase. The amyloidogenic 

pathway shows the sequential APP cleavage initiated by β-secretase, followed by γ-secretase and the production of 

neurotoxic Aβ.
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APP can also be metabolised via the amyloidogenic pathway, which leads to the 

production of the neurotoxic Aβ peptide. The initial cleavage of APP is located 99 amino acid 

residues from the C-terminal of APP by β-secretase, or β-site APP cleaving enzyme 1 (BACE1) 

(Sinha et al. 1999; Vassar et al. 1999; Vassar et al. 2009). The cleavage generates soluble APPβ 

(sAPPβ), which is released into the extracellular space, and a remaining 99 amino acid residue, 

C-terminal fragment (CTF99) or βCTF, which encodes Aβ and remains within the membrane 

compartment. The CTF99 then further undergoes multiple intramembrane cleavages by -

secretase at sites referred to as ,  and  (Gu et al. 2001; Zhao et al. 2004; Kakuda et al. 2006; 

Zhao et al. 2007). The initial cleavage at the -cleavage site allows for the release of the AICD 

fragment into the cytosol. The remaining fragment is processed at the -site prior to the final -

site cleavage to generate A. The -site cleavage occurs at variable positions in the A peptide 

domain, mainly after amino acids 38, 40 and 42. This generates A peptides of varying length, 

which has an important effect on the pathogenicity of A (Walsh & Selkoe 2007). Most A

produced is 40 amino acid residues in size (A40), however, approximately 10% is composed of 

42 amino acid residues (A42). It is A42 that is believed to express the most potent neurotoxic 

effects in vivo and is the most commonly found isoform in amyloid plaques (Jarrett et al. 1993; 

Walsh & Selkoe 2007).   

The non-amyloidogenic pathway accounts for more than 90% of APP metabolism, which 

is thought to occur at the cell surface. Evidence has shown -secretase to be enriched at the 

plasma membrane where it is able to outcompete β-secretase cleavage of APP (Parvathy et al. 

1999; Zhang et al. 2011). Studies have also shown that increased APP trafficking to the cell 

surface or inhibition of its internalisation leads to significant reductions in A (Cataldo et al. 

1997). However, BACE1 cleavage of APP occurs within endocytic vesicles. This is due to the 

optimum activity of BACE1 occurring at low pH and for this reason BACE1 is predominantly 

localised within acidic compartments of the cell, such as endosomes and the trans-Golgi network 

(Vassar et al. 1999; Hook et al. 2002). Impaired APP trafficking to the cell surface or stimulating 

APP internalisation showed an increase in BACE1 cleavage products of APP (Haass et al. 1992; 

Lee et al. 2005). However, despite our understanding of these two metabolic pathways, no 

evidence has yet materialised as to what factors increase the processing of APP down the 

amyloidogenic pathway. 
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1.3.3 β-Amyloid Pathology and Senile Plaques 

Following its production from APP metabolism, Aβ is released into the extracellular 

space in a soluble monomeric form. Although not much is understood about the physiological 

roles of Aβ in the healthy brain, it is thought that Aβ plays a role in modulating synaptic activity 

and promoting neuronal survival (Kamenetz et al. 2003; Plant et al. 2003; Plant et al. 2006; 

Pearson & Peers 2006). Kamenetz and colleagues (2003) reported that evoked activity in 

hippocampal neurons in brain slices increased β-secretase cleavage of APP and stimulated Aβ 

production. This increase in Aβ production was thought to act as a negative feedback mechanism 

to depress synaptic activity and prevent excitotoxicity. γ-Secretase inhibitors supported this 

hypothesis in hippocampal neurons by observing greater excitatory activity as determined by 

excitatory postsynaptic current frequencies (Kamenetz et al. 2003). Regulation of synaptic 

activity was further observed in primary cortical neurons following NMDA receptor stimulation. 

(Lesné et al. 2005). This stimulation inhibited α-secretase APP processing and promoted Aβ 

production. The authors from this study suggested that even a modest deregulation of 

glutamatergic neurotransmission may significantly increase the production of Aβ and plaque 

deposition (Lesné et al. 2005). Plant and colleagues have also reported a significant role in 

physiological Aβ and neuronal survival (Plant et al. 2003). Both γ- and β-secretase inhibitors 

incubated with neuronal cell lines for 24 hours led to an increase in cell death, compared to non-

neuronal cell lines. This effect was prevented by co-incubation with Aβ40. (Plant et al. 2003). 

This effect was later associated with Aβ-mediated regulation of potassium channel Kv4 subunit 

expression and hence, further involvement in neuronal excitability (Plant et al. 2006). 

Collectively, these studies provide evidence that Aβ plays an important role in regulating 

neuronal activity. Deregulation of these mechanisms clearly contributes to the pathogenesis 

observed in AD and understanding Aβ, both at a physiological and pathological level, is greatly 

important. 

In AD Aβ monomers aggregate into oligomeric forms of dimers, trimmers and larger 

soluble aggregates before further aggregating into insoluble protofibrils and amyloid plaques 

(Haass & Selkoe 2007; De Strooper 2010). The spatiotemporal pattern of amyloid deposition has 

been reported in two separate staging systems, initially a three-stage progression distinguished 

by Braak and Braak in 1991. More recently, Thal and colleagues proposed a five stage process 

(Braak & Braak 1991; Thal et al. 2002). Thal and colleagues have reported that the spread of 

amyloid initiates exclusively in the neocortex in stage 1 before progressing into allocortical brain 

regions, including the HPC and EHC in the second stage. Aβ deposits continue to spread to the 
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cholinergic nuclei of the basal forebrain and striatum in phase 3 prior to numerous brainstem 

nuclei in stage 4. Finally, cerebellar Aβ deposits occur in stage 5 (Thal et al. 2002; Serrano-Pozo 

et al. 2011). An interesting observation reported by Thal and colleagues was the anterograde 

pattern by which amyloid spread into regions receiving neuronal projections from those already 

exhibiting Aβ deposition (Thal et al. 2002). It was further confirmed that large areas of amyloid 

accumulation, including in the HPC and EHC can be observed prior to the onset of clinical 

symptoms, such as episodic memory deficits, and suggests that early treatment for AD in 

preclinical stages may prevent the further spread of amyloid and subsequent clinical changes 

(Braak & Braak 1991; Thal et al. 2002). 

In contrast, Aβ in its two opposing forms, soluble monomeric Aβ and insoluble plaques, 

shows relatively low levels of neurotoxicity (Martins et al. 2008). However, an interesting 

hypothesis suggests that plaques may act as an inert “sink” that most likely exist in equilibrium 

with neurotoxic soluble oligomeric Aβ (Benilova et al. 2012; Hefti et al. 2013). Indeed, neurons 

in close proximity of plaques exhibit synaptic loss and changes in neuronal activity in a mouse 

model of amyloid pathology (Bezprozvanny 2009). Moreover it has been reported that soluble, 

toxic species of Aβ appear to “seed” amyloid plaques and return to a soluble state in the presence 

of biological lipids leading to cognitive impairments in mice (Martins et al. 2008; Gaspar et al. 

2010). This is suggestive that it is soluble oligomeric forms of Aβ that act as neuropathological 

triggers in AD pathology. 

Over a decade of research has revealed specific neurotoxic “species” of Aβ (Haass & 

Selkoe 2007; De Strooper 2010; Hefti et al. 2013). The collective term for these species is 

otherwise known as “Aβ-derived diffusible ligands” (ADDL) or “soluble oligomeric Aβ” and 

includes Aβ dimers, trimmers, Aβ*56 and Aβ protofibrils. These studies have examined the 

relative toxicity of different ADDLs generated in a variety of methodologies either from in vitro

culture techniques or from transgenic mouse or human AD brains (Podlisny et al. 1998; Chromy 

et al. 2003; Lesné et al. 2006; Shankar et al. 2008). Evidence supporting the neurotoxic 

properties associated with ADDLs comes from a variety of sources. For example, in vitro

evidence has shown that treatment of hippocampal neurons with soluble Aβ dimers extracted 

from the cortices of AD patients caused aberrant tau phosphorylation and neuritic degeneration; 

which was prevented by co-administration of an Aβ immunotherapy (Jin et al. 2011). 

Furthermore, treatment of rodent HPC slices with soluble Aβ oligomers blocks the induction of 

long-term potentiation (LTP), a model of synaptic plasticity processes thought to underpin 

learning and memory (Bliss & Collingridge 1993; Lambert et al. 1998; Townsend et al. 2006). 
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Observations from Townsend and colleagues (2006) that Aβ oligomers blocked LTP appear to 

be supported by in vivo studies showing intracerebroventricular (ICV) administration of soluble 

oligomeric Aβ in rats as well as in transgenic mice caused memory deficits (Lesné et al. 2006; 

Reed et al. 2009). Finally, soluble Aβ is believed to exhibit high-affinity binding to cell surface 

receptors. These receptors include the nerve growth factor (NGF) receptor, and the Frizzled 

receptor, involved in Wnt signaling, binding to which leads to proapoptotic signaling and 

inhibition of canonical Wnt signaling, involved in hippocampal neurogenesis and synaptic 

plasticity (Yankner et al. 1990; Magdesian et al. 2008; Knowles et al. 2009). Aβ-mediated 

inhibition of Wnt signaling is also implicated in reduced inactivation of tau kinase, glycogen 

synthase kinase 3 (GSK3), which can lead to increased tau phosphorylation and NFT 

development (Magdesian et al. 2008). Other synaptic receptors have been identified as Aβ 

receptors and will be discussed in more detail in section 1.3.5. However, it must be considered 

that ADDL preparation protocols vary considerably and treatment concentrations in vitro are 

often orders of magnitude in excess of the nanomolar Aβ levels believed to be in AD brain. 

Therefore findings from these studies must be treated with caution. Nevertheless, the collective 

studies provide convincing evidence for the presence of soluble oligomeric forms of Aβ in the 

brain and their role in mediating neuronal dysfunction. 

1.3.4 Tau Pathology and Neurofibrillary Tangles 

Similar to amyloid plaques, pathological NFTs spread through the brain in a characteristic 

fashion that is a hallmark of AD. The progressive spread of NFTs was characterized by Braak 

and Braak (1991, 1995) into six neuropathological stages. Pathology is first present in the 

transenterohinal layer (stage I-II), including EHC and HPC, before spreading into the limbic 

system (stage III-IV) and isocortical associated areas (V-VI) (Braak & Braak 1991; Braak & 

Braak 1995). In contrast to plaque pathology, NFTs account for a significant amount of neuronal 

degeneration during disease progression and their presence is highly correlated with the cognitive 

decline in patients (Arriagada, Growdon, et al. 1992; Bierer et al. 1995). It is not surprising 

therefore that a wealth of AD research has focused on understanding the pathogenesis of tau and 

developing tau-based therapy ( Giacobini & Gold 2013; Pooler et al. 2013; Herrmann & Spires-

Jones 2015) 
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Tau is most commonly known for its roles in the central nervous system where it is 

predominantly localized in the cytosol of neuronal axons, but is also present in oligodendrocytes, 

somatodendritic compartments and the plasma membrane (Klein et al. 2002, Ittner et al. 2010, 

Pooler et al. 2012). Tau is a microtubule-associated protein that physiologically stabilises 

microtubules regulated by the phosphorylation/dephosphorylation of serine/threonine (Ser/Thr) 

residues by enzymes GSK3, casein kinase 1 (CK1), cyclin dependent kinase 5 (Cdk5) and 

protein phosphatase 2A (PP2A) (Mandelkow et al. 1992; Baumann et al. 1993; Gong et al. 1994;  

Singh et al. 1995). In AD, this regulated phosphorylation of tau becomes deregulated leading to 

abnormal or hyperphosphorylation of the tau microtubule binding domain to develop a toxic 

loss-of-function (Ballatore et al. 2007). Hyperphosphorylated tau protein aggregates into paired 

helical filaments (PHFs), which aggregate further to form NFTs (Mandelkow & Mandelkow 

1998). This abnormal/hyperphosphorylation of tau is caused by increased activity of specific tau 

kinases, such as GSK3 and cdk5, which are also reported to show increased activity in the 

presence of Aβ (Takashima et al. 1998; Alvarez et al. 2001; Noble et al. 2003). Other dementias 

expressing NFT pathology (known as tauopathies), are independent of Aβ pathology, and include 

Frontotemporal dementia with parkinsonism, which is linked to chromosome 17 (FTDP-17), and 

Pick’s disease (reviewed in Yancopoulou & Spillantini 2003). These tauopathies also show 

abnormally phosphorylated tau, similar to AD (except for the absence of amyloid pathology), and 

therefore implicate tau as a significant factor in neurodegeneration.   

An initial difficulty in studying the neurotoxic properties of tau emerged following a lack 

of NFT development in APP mouse models of amyloid pathology (Schwab et al. 2004; Götz & 

Ittner 2008). Therefore, subsequent models have used causative genetic mutations associated 

with FTD to study neurotoxic properties of abnormally phosphorylated tau protein (as reviewed 

in Götz et al. 2007). Investigation of the relationship between amyloid and tau pathology has

demonstrated a more hierarchical relationship whereby Aβ is able to increase tau 

phosphorylation in vitro and in vivo in APP models. However, there is no evidence of plaque 

pathology in tau mouse models (Greenberg et al. 1994; Busciglio et al. 1995; Stein et al. 2004). 

Moreover, transgenic mice simultaneously expressing FAD mutations and FTD tau mutations 

show exacerbated NFT pathology without any significant change in plaque pathology (Lewis et 

al. 2001; Oddo et al. 2003; Ribé et al. 2005). A common mouse model used to study AD is the 

triple transgenic model (3xTg) containing two FAD mutations and one FTD tau mutation and 

generating both plaque and tangle pathology (Oddo et al. 2003). Aβ immunotherapy in this 

model has been reported to both reduce amyloid pathology as well as reduce levels of 
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hyperphosphorylated tau protein (Oddo et al. 2004). However, tau also acts as a mediator of Aβ 

pathology (Roberson et al. 2007; Ittner et al. 2010). Thus, it appears that both Aβ and tau interact 

and express a synergistic relationship (this will be discussed in more detail in Section 1.3.5).

It has previously been reported in vivo that reduced synaptic density and impaired 

synaptic function precedes NFT formation in the P301S model of tau pathology (Yoshiyama et 

al. 2007). Research into the neurotoxic properties of NFTs and tau has suggested that 

synaptotoxic events and cognitive decline modeled in transgenic tau models are better correlated 

to toxic soluble tau oligomers than PHFs and NFTs (Spires et al. 2006; Berger et al. 2007; 

Sydow et al. 2011). These tau oligomers have been reported to be present in the AD brain at 

levels four-fold higher than present in healthy control brains and are likely to contribute to 

cognitive decline and AD neuropathology (Lasagna-Reeves, et al. 2012a). When extracted from 

AD brains, tau oligomers impair LTP in HPC slices of C57Bl/6 mice and when infused via ICV 

administration into the brains of wild type (WT) C57Bl/6 mice lead to impairment in novel 

object recognition memory (Lasagna-Reeves et al. 2012b). These effects reported by Lasagna-

Reeves and colleagues were not observed in tau knockout (KO) models indicating that 

endogenous tau plays a significant role in mediating oligomeric tau toxicity. It was also observed 

that tau pathology had spread from the initial injection site into HPC as well as cortical 

structures. These results compliment previous findings by both Liu et al and deCallignon et al 

who reported that tau pathology was able to spread in a circuit-based manner both in vitro and in 

vivo (Liu et al.,2012; de Calignon et al.,2012). Interestingly, recent reports have suggested that a 

further physiological function of tau may be as a cell signaling molecule (Pooler et al. 2013; 

Pooler et al. 2014). Pooler and colleagues reported that following glutamate stimulation in vitro

neurons appeared to release tau into the synapse. If these oligomeric forms of abnormally 

phosphorylated tau act as potent toxic aggregates contributing to AD, this mechanism may be a 

significant contribution to the progressive spread of tau pathology in AD. Given that Aβ 

treatment of neurons in vitro caused a reduction in glutamate uptake, this may cause a knock-on 

effect and stimulate a release of toxic oligomeric tau further contributing to AD pathology 

(Lauderback et al. 2001; Fernández-Tomé et al. 2004; Li et al. 2009). It is therefore tempting to 

postulate that combined therapies (targeting both amyloid and tau-mediated pathologies), 

dependent on disease state, may offer a more optimal treatment for AD.  
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1.3.5 Aβ and Tau, a toxic synergy at the synapse 

 For well over a decade now, the synapse has been a prime target of amyloid pathology 

(Selkoe 2002). As discussed above, soluble oligomeric Aβ has been reported to cause a loss of 

synapses as well as altering electrophysiological recordings of neurons as observed by impaired 

LTP and enhanced long term depression (LTD) (Walsh et al. 2002; Walsh et al. 2005; Shankar et 

al. 2008; Li et al. 2009). Aβ has been reported to interact with a number of synaptic receptors, 

including the N-methyl-D-aspartate (NMDA) receptor (NMDAR), metabotropic glutamate 

receptor 5 (mGluR5), and the α7 nicotinic acetylcholine (ACh) receptor (α7nAChR) (Wang et al. 

2000; Renner et al. 2010; Rammes et al. 2011; Shankar et al. 2008). The cellular prion protein 

(PrPc) has also recently been observed to act as an Aβ receptor, altering the interaction between 

the PrPc and NMDAR or mGluR5, leading to neurotoxic downstream events (Laurén et al. 2009; 

You et al. 2012; Um et al. 2013). Studies have also suggested that the precise toxic insult may be 

dependent on the receptor influenced by Aβ. The mGluR5 has been implicated in LTD 

induction, while NMDAR have been more linked to Aβ-mediated spine loss (Shankar et al. 

2008). Collectively, evidence continues to demonstrate a convincing role for Aβ-mediated 

toxicity at the synapse, although synaptotoxicity is also thought to be, at least in part, mediated 

by tau. 

Although Aβ and tau are thought to exert toxicity through separate mechanisms, a more 

synergistic relationship has been reported at the synapse. Aβ-mediated NMDAR excitotoxicity 

appears to be dependent on tau, aspects of which will further be examined in Chapter 5 (Ittner et 

al. 2010). Ittner and colleagues identified a unique interaction between tau and an Src kinase, 

Fyn. It had previously been reported that phosphorylated tau, both in the physiological and 

pathological form, resulted in an increased tau-Fyn interaction influencing the spatial distribution 

of tau in vitro (Lee et al. 1998; Bhaskar et al. 2005). It had also been observed that 

hyperphosphorylated tau accumulates in somatodendritic compartments (Götz et al. 1995). Fyn 

phosphorylates the NMDA NR2B subunit, increasing its interaction with postsynaptic density 

scaffolding protein, PSD95, an event associated with NMDAR-induced synaptic excitotoxicity 

(Salter & Kalia 2004; Ittner et al., 2010). Moreover, tau KO mice are less susceptible to synaptic 

Aβ toxicity (Roberson et al. 2007; Ittner et al., 2010). From these observations Ittner and 

colleagues postulated that this tau-Fyn interaction was required for the translocation of both Fyn 

and tau to the somatodendritic compartments in a manner based on tau phosphorylation. 

Successful completion of this would lead to increased phosphorylation of the NR2B subunit, 
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enhanced PSD-95-NR2B interaction and increased synaptic excitotoxicity, which may be 

mediated by increased levels of soluble Aβ as illustrated in Figure 1.3. Ittner and colleagues used 

both a tau KO mouse model and truncated tau model lacking the microtubule binding domain of 

tau, but maintaining the Fyn binding region in order to test this hypothesis. It was thus reported 

in both models that increased Fyn was observed in the soma and reduced Fyn, tau and 

phosphorylated NR2B in synaptosomal preparations in comparison to WT controls. These 

effects were repeated when these tau models were crossed with an APP model of FAD and 

further showed improved spatial working memory (SWM) performance on a T-maze task (Ittner 

et al., 2010). 

 Collectively these results suggest an initial tau-dependent synaptotoxic mechanism 

influenced by Aβ. However, it is likely that with disease progression, continued exposure of 

neurons to Aβ will lead to increased hyperphosphorylation of tau and an overall downstream 

increase in NMDA-NR2B mediated excitotoxicity. It has also recently been reported that Aβ-

PrPc interaction leads to increased Fyn activation and phosphorylation of the NR2B subunit (Um 

et al. 2012). This effect is likely to further contribute to the synaptotoxic effects of this 

mechanism. These observations highlight the attraction towards the development of tau-based 

therapies as well as the importance of targeting Aβ production early in disease progression.
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Figure 1.3: Schematic illustration demonstrating the interactions between Aβ, tau and Fyn leading 

to neuronal excitotoxicity. Src kinase Fyn interacts with phosphorylated tau protein leading to the 

translocation of both proteins to the post synapse (1-2). Fyn at the synapse phosphorylates the NR2B 

subunit of the NMDAR complex, stabilizing its interaction with PSD95 and expression at the synapse (3-

4). Increased Aβ and enhanced expression of NR2B containing NMDARs at the synapse causes 

disproportionate influx of Ca2+ leading to downstream neurotoxicity. 
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1.4 Modeling Alzheimer’s Disease

 One goal of the research presented in this thesis was to characterize the cognitive 

phenotype of the PDAPP mouse model of amyloid pathology; prior to using the model to test the 

effects of an APP antibody on cognition and pathology. This section aims to provide an 

overview of methods used to model AD pathology and cognitive decline in animal models. 

Given the review of AD pathology described in section 1.3, the main focus will be a summary of 

the behavioural abnormalities observed in transgenic models and their relationship to human AD 

abnormalities.   

There has been extensive use of Tg animals to model the pathological features of AD and 

evaluate potential therapies based the amyloid cascade hypothesis. Tg models were first 

developed on the basis of APP mutations linked with FAD. There are currently 49 APP 

mutations that have been identified, located throughout the APP loci and a further 216 Presinilin 

1 mutations within the PSEN1 loci (http://www.molgen.ua.ac.be/ADMutations). Genetic 

constructs of these human FAD mutations have been expressed under the control of a variety of 

promoters in mice (Capecchi 1989; Kobayashi & Chen 2005; Webster et al. 2014). However, no 

APP animal model has to date replicated all core pathological features of AD patients, including 

amyloid-induced tau pathology and substantial neuronal loss (Lee & Han 2013). Regardless of 

this, these models have been used to provide a more detailed understanding of the effects of 

excess amyloid production on brain function, cognition and the potential of therapeutic 

interventions targeting amyloid processing.  

1.4.1 Human APP mutant models of amyloid pathology 

A number of hAPP mutations in mice result in increased levels of A and age-dependent 

cognitive deficits (see Table 1.1; Games et al. 1995; Kobayashi & Chen 2005; Moechars et al. 

1999; Hsiao et al. 1996). The most commonly used mouse models overexpress the Swedish 

double K670M/N671L mutation, located at the BACE1 cleavage site, the Indiana V717F 

mutation, located at the -secretase cleavage site, and the Arctic E693G mutation, located within 

the A sequence (see Table 1.1; Murrell et al. 1991; Mullan et al. 1992; Nilsberth et al. 2001; 

Games et al. 1995; Hsaio et al. 1996; Mucke et al. 2000). Other Tg models have expressed two 

or more separate hAPP and/or human presinilin mutations in one model in an effort to promote 

http://www.molgen.ua.ac.be/ADMutations
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the onset and severity of pathology. Indeed, these models show a more rapid onset of pathology 

and cognitive symptoms (See Table 1.1 for gene mutations expressed and comparison of age-

related pathology; Mucke et al. 2000; Puoliväli et al. 2002; Trinchese et al. 2004; Oakley et al. 

2006). Collectively, these models, similar to human AD patients, show an age-related increase in 

levels of Aβ plaque deposition as well as soluble Aβ, relative to WT littermate controls. 

However, they do not show any apparent NFT pathology, nor MTL atrophy; a feature that has 

been correlated with early episodic and semantic memory deficits in patients (see section 1.2.3).  

Nevertheless, similar to AD patients, most APP models display age-related cognitive 

deficits (as illustrated in Figure 1.4 and the progression of different memory deficits detailed in 

Table 1.2; see also Webster et al. 2014). Generalising across a number of cross-sectional and 

longitudinal designs, one common pattern emerges and that is there is an onset of SWM deficits 

that frequently precedes the onset of deficits in object recognition memory (Webster et al. 2014). 

The precise age at which these pathological and cognitive deficits present varies across AD 

models. However, the precise background strains and nature of the APP and/or presinillin

transgene overexpression likely contributes to this variance. 

SWM will be thoroughly discussed in Chapter 3 and object recognition memory in 

Chapter 4. However, in order to better understand the comparisons of behavioural tasks used to 

determine cognitive deficits in AD models, SWM refers to an animals ability to process spatial 

information within one trial of an experiment, but not for subsequent trials thereafter (Honig 

1978; Olton et al. 1979). Tasks commonly used to assess SWM include the radial arm maze, 

which consists of an eight-arm maze whereby each arm is baited with a food/liquid reward. 

Rodents must forage all rewards before completing the task. Any time an animal enters an arm 

that has previously been visited, this is counted as a working memory error. Many more SWM

tasks are also used, an extensive review of which has been reported by (Dudchenko 2004). The 

tasks that test SWM function show particular sensitivity to hippocampal lesions, which has been 

shown to be critical to the processing of spatial information (Olton & Paras 1979; Aggleton et al. 

1986). AD patients also exhibit visuospatial memory impairment and significant hippocampal 

pathology, which is most likely a cause of the memory disorders in AD (Hyman et al. 1984; Jack 

et al. 1992; Carlesimo et al. 1994). 
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Model Mutation Pathology Cognitive Impairments Synaptic Deficits

PDAPP

(Games et al. 1995)

APP Indiana V717F, 
PDGFβ promoter1

Soluble Aβ and dense core and diffuse Aβ plaques in at 4-6 
months2,3. Dystrophic neurites, gliosis, loss of synaptic 

densities, hippocampal atrophy1,4,5.

Spatial learning6,7,8, Spatial reference 
memory7, spatial working memory6,8, 

object recognition memory6, contextual 
fear conditioning9

Rapid decay of LTP at 4-5 months10. 
Reduced cholinergic signalling11

Tg2576

(Hsaio et al. 1996)

APP Swedish, 695.K670N-
M671L, Hamster PrP 

promoter12

Increased soluble Aβ at 6 months of age, plaque deposition 
by 9-12 months of age13. Astrogliosis, microgliosis and 

dystrophic neurites observed14,15

Spatial reference memory16,17, spatial 
working memory18,19, object recognition 

memory20,21, contextual fear 
conditioning22

Reduced dendritic spine density from 
4 months and impaired LTP at 5 

months in the DG23

APP23

(Sturchler-Pierrat et al., 1997)

APP Swedish, 695.K670N-
M671L, Murine Thy-1 

promoter24

Aβ plaques, astrogliosis and increased phospho-tau at 6 
months of age24 . 14-25% neuronal loss at 18 months of 

age25

Spatial working memory26, spatial 
reference memory26,27,28, passive 

avoidance27, Barnes Maze29

Intact HPC LTP up to 24 months, but 
reduced synaptic transmission at 12 

months30. Behavioural training 
induces a more rapid decay of LTP31

TgCRND8

(Chishti et al., 2001)

APP Swedish, 695.K670N-
M671L, and Indiana V717F, 

Syrian hamster PrP 
promoter32

Aβ deposits at 3 months, dense core plaques by 5 months32. 
Increased microglia activation focussed around Aβ 

plaques33

Spatial learning32, spatial reference 
memory32,34, spatial working memory34,35, 

contextual fear conditioning36

Reduced number of HPC neurons and 
dendritic spine loss37.  Diminished 

LTP38

J20

(Mucke et al., 2000)

APP Swedish, 770.K670N-
M671L and Indiana V717F, 

PDGFβ promoter39

Early increase in Aβ-42 at 2 months of age and plaque 
deposition at 5-7 months39. Increased Aβ*56 at 5-6 months 

of age40,42. Increased astrogliosis41 and phospho-tau42

Spatial reference memory40,41, spatial 
working memory41, object recognition 

memory42, contextual fear conditioning43

Reduced neuronal c-fos in the 
DG40,41, HPC synapses41, impaired 

basal synaptic transmission and LTP44

APP/PS1

(Citron et al., 1997)

APP Swedish, 695.K670N-
M671L, PS1, M146L, 

PDGFβ, PrP promoter45

Amyloid deposits by 3m, abundant plaques by 6-9m45.
Early increase of insoluble Aβ-42 and -40 relative to 

Tg2576 mice from 2 months of age 46. 

Spatial reference memory46, spatial 
learning47 and fear conditioned learning48

Impaired LTP from 3-4 months and 
basal transmission from 6 months47.  

5xFAD

(Oakley et al., 2006)

APP Swedish 695.K670N-
M671L, Florida I716V, 

London V717I, PS1 M146L-
L286V, Thy-1 promoter49.

Aβ-42 accumulation and astrogliosis from 2-3 months49,51, 
reduced whole-brain synaptophysin at 4 months49

Spatial working memory49,51, spatial 
reference memory50, context fear 

conditioning50,52 

Impaired LTP at 6 months and 
reduced basal synaptic 

transmission52,53 

3xTg

(Oddo et al., 2003)

APP Swedish, 695.K670N-
M671L, PS1 M146V, Tau 
P301L, Thy1.2 promoter54.

Aβ deposition (6 months) precedes NFT pathology (15 
months)54. Increased phospho-tau at 6 months55 Elevated 
levels of Aβ*56 by 12 months56. Soluble oligomeric Aβ 

originating intraneuronally at 6 months57

Spatial reference memory55,56, spatial 
working memory59, object recognition 

memory54,58, passive avoidance54

Reduced levels of synaptophysin and 
PSD9560. Impaired LTP and reduced 

synaptic transmission54



34

Table 1.1: Overview of commonly used transgenic mouse models of AD. 1: (Games et al. 1995), 2: (Masliah et al. 1996), 3: (Johnson-Wood et al. 1997), 4: 

(Reilly et al. 2003), 5: (Redwine et al. 2003), 6: (Dodart et al. 1999), 7: (Chen et al. 2000), 8: (Hartmann et al. 2005), 9: (Gerlai et al. 2002), 10: (Larson et al. 

1999), 11: (Bales et al. 2006), 12: (Hsiao et al. 1996), 13: (Kawarabayashi et al. 2001), 14: (Irizarry et al. 1997), 15: (Frautschy et al. 1998), 16: (Kotilinek et al. 

2002b), 17: (Pedersen et al. 2006), 18: (Chapman et al. 1999), 19: (Barnes et al. 2004), 20: (Good & Hale 2007), 21: (Hale & Good 2005), 22: (Corcoran et al. 

2002), 23: (Jacobsen et al. 2006), 24: (Sturchler-Pierrat et al. 1997), 25: (Calhoun et al. 1998), 25: (Vloeberghs et al. 2006), 27: (Kelly et al. 2003), 28: (Lefterov et 

al. 2009), 29: (Prut et al. 2007), 30: (Roder et al. 2003), 31: (Middei et al. 2010), 32: (Chishti et al. 2001), 33: (Chauhan et al. 2004), 34: (Janus 2004a), 35: 

(Lovasic et al. 2005), 36: (Hana et al. 2012), 37: (Steele et al. 2014), 38: (Kimura et al. 2012), 39: (Mucke et al. 2000), 40: (Meilandt et al. 2009), 41: (Galvan et al. 

2007), 42: (Escribano et al. 2010), 43: (Saura et al. 2005), 44: (Saganich et al. 2006), 45: (Citron et al., 1997), 46: (Westerman et al., 2002), 47: (Trinchese et al., 

2004), 48: (Dineley et al., 2002), 49: (Oakley et al. 2006), 50: (Ohno et al., 2006), 51: (Jawhar et al. 2012), 52: (Kimura & Ohno 2009), 53: (Crouzin et al. 2013), 

54: (Oddo et al. 2003), 55: (Clinton et al. 2007), 56: (Billings et al. 2007), 57: (Oddo, Caccamo, et al. 2006), 58: (Filali et al. 2012), 59: (Carroll et al. 2007), 60: 

(Revilla et al. 2014) 
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Object recognition memory refers to an animals ability to discriminate previously 

encountered objects over novel objects that have not previously been encountered (Ennaceur 

& Delacour 1988; Ennaceur 2010). When carried out as originally described by Ennaceur and 

Delacour (animals are presented with two identical objects (A+A) for a short acquisition 

phase then allowed a delay period prior to testing. In the test phase one original object, A, will 

be presented with a new, novel object B) recognition memory has been reported to be 

sensitive to perirhinal cortex (PRC) function, independent of the HPC (Barker & Warburton 

2011). However, manipulations of this task to involve spatial or temporal information 

(detailed in Chapter 4 and outlined in Table 4.1) are able to activate neural circuits that 

involve both the HPC and PRC (Barker & Warburton 2011; Warburton & Brown 2015b). 

Many behavioural tasks used to assess cognition in mouse models of AD require intact 

functioning of specific neuroanatomical structures, including the HPC. They further rely on 

the ability of these structures to process and retrieve information dependent on the function of 

specific neuronal circuits. For example, in object recognition memory, the PRC has been 

observed to be responsible for encoding object information, but the HPC for the spatial 

associative information (Barker & Warburton 2011). Moreover, the ventral CA1/subiculum, 

prefrontal cortex and nucleus accumbens have been reported to play significant roles in 

processing information in the RAM in a delay-dependent manner (Floresco et al. 1997). The 

different anatomical structures and circuits involved in these behavioural tasks allows for the 

investigation of their sensitivity toward pathologies associated with Tg AD mouse models and 

potentially how these circuits may be affected in AD. Table 1.1 outlines the onset of amyloid 

pathology in multiple Tg models used to investigate AD. Table 1.2 displays the progressive 

cognitive deficits observed within individual memory systems determined by behavioural 

tasks that are able to assess these types of memory (i.e. RAM – SWM, novel object 

recognition – object recognition memory) and also allows for a comparison of these memory 

types and their decline with age in Tg mouse models. The data presented in Tables 1.1 and 1.2 

suggest that certain neuroanatomical structures and/or circuits are more susceptible to amyloid 

pathology in Tg models based on a similar progressive pattern of deficits illustrated in Figure 

1.4. 
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Figure 1.4: Overview of the progressive cognitive decline in AD. The pattern of cognitive deficits is 

illustrated in order of clinical AD disease severity (A) and cognitive impairment in murine models of AD (B). 

(Webster et al., 2014)   
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Model
Memory Type

AgeWorking 
Memory

Reference 
Memory

Fear 
Conditioned 

Memory

Object 
Recognition 

Memory

PDAPP

≤ 2 months
2, 3 2 2 3-5 months 

1* 2 2 1, 2 6-10 months
1, 2, 3 2 1 2 11-15 months
1, 3 1 ≥ 16 months

Tg2576

≤ 2 months
5 7 4*, 5 3-5 months
5 6 7* 4, 5 6* 6-10 months

7* 11-15 months
6, 7 6* ≥ 16 months

APP23

8 8 ≤ 2 months 
8 9* 8, 9 3-5 months

8 8 6-10 months
11-15 months

9 9 ≥ 16 months

TgCRND8

10 ≤ 2 months
10 11 3-5 months
10 11 6-10 months

11 11-15 months
≥ 16 months

J20

≤ 2 months
12 14 12 15 3-5 months

13, 14 12 15 6-10 months
13 11-15 months

12 ≥ 16 months

APP/PS1

16 ≤ 2 months
16 17* 3-5 months
16 17 6-10 months

11-15 months
≥ 16 months

5xFAD

18 ≤ 2 months
18 20 19* 3-5 months

20 19 6-10 months
20 11-15 months

≥ 16 months

3xTg

21, 22 21, 22 21 ≤ 2 months
23 22 22 3-5 months
23 21 22* 21 22* 21 6-10 months
23 21 21 21 11-15 months

≥ 16 months
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Table 1.2: Overview of the progressive cognitive decline observed in Tg models of AD from 

longitudinal and cross-sectional studies. Tg Models of AD show a pattern of progressive cognitive 

decline within individual tasks, but also across different memory tasks/systems. Earlier deficits are 

commonly observed in spatial working and reference memory tasks and later deficits in object 

recognition memory.  All studies referred to in this table assess cognitive performance at two or more 

age points in either cross-sectional or longitudinal design protocols. Boxes in a light shade of grey 

represent a time point when Tg mice show no significant difference to age-matched WT littermates. * 

Represents Tg mice showing a deficit in any manipulation of the behavioural task being tested, e.g., 

increased retention period prior to test. Those in darker shades represent a deficit when compared to 

WT controls across all manipulations. Numbers in boxes refer to referenced studies reported below. 

All other deficits not reported here are reported in table 1.1, which were taken at one age point only. 

Working memory measures are taken from reported T/Y-maze (Y-M) and specific MWM protocols as 

detailed in (Chen et al. 2000). Reference memory deficits are taken from RAM, or probe trial results 

of RAWM or MWM following repeated acquisition. This measure from MWM has previously been 

defined as reference memory following the escape platform remaining in the same location during the 

repeated acquisition trials (Frick et al. 1995). Fear conditioned memory measures are reported from 

context association and conditioned stimulus (CFC) as well as passive avoidance (PA) of aversive 

stimulus experiments associating either a context of tone with a foot shock. Finally, object recognition 

memory measures an animal’s ability to discriminate novel objects (or object novelty (ON)) from 

those previously encountered. Studies reported here: 1: MWM, ON (Chen, Chen, Knox, Inglis, 

Bernard, Martin, Justice, Mcconlogue, et al. 2000), 2: RAM, ON (Dodart et al. 1999), 3: MWM 

(Hartman et al. 2005), 4: CFC (Dineley et al. 2002), 5: Y-M, CFC (King et al. 1999), 6: Y-M, BM, 

ON, OL (Yassine et al. 2013), 7: MWM (Westerman et al. 2002), 8: MWM, PA (Van Dam et al. 

2003), 9: MWM, PA (Kelly et al. 2003), 10: MWM (Hyde et al. 2005), 11: CFC (Hanna et al. 2012), 

12: MWM, CFC (Saura et al. 2005), 13: RAWM (Du et al. 2008), 14: RAWM (Arancio et al. 2004), 

15: ON (Escribano et al. 2009), 16: RAWM (Trinchese et al. 2004),  17: CFC (Dineley et al. (2002), 

18: Y-M (Oakley et al. 2006), 19: CFC (Kimura & Ohno 2009), 20: Y-M (Shukla et al. 2013), 21: 

MWM, PA, ON (Clinton et al. 2007), 22: MWM, PA (Billings et al. 2005), 23: Y-M (Carroll et al. 

2007).    
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It is intriguing that there is a lack of evidence to suggest a worsening of the cognitive 

deficits once they become apparent. As these deficits are thought to be caused by increasing 

deposition of Aβ, it would be logical that the severity of the deficit should increase with time. 

A numerical age-related worsening of SWM is observed in the PDAPP mouse model at 17-19 

months of age following an initial deficit at 4-6 months of age (Hartman et al. 2005). 

However, Hartman and colleagues fail to show any increase in levels of Aβ at 4-6 months, but 

do report a small increase at 10-12 and much greater deposition by 17-19 months of age. One 

interpretation of this pattern is that the initial deficit is due to an effect of APP

overexpression, whereas Aβ deposition may contribute to the later decline in memory at 17-

19 months of age (Hartman et al. 2005). A further two studies in the Tg2576 and 5xFAD 

models also suggest an age related worsening of memory potentially related to accumulating 

levels of amyloid (Westerman et al. 2002; Shukla et al. 2013). Westerman and colleagues 

demonstrated an initial decline in spatial reference memory at 6-11 months of age. This 

deficit was ameliorated in mice up to the age of 12-18 months by reinforcement of spatial 

reference information (by increased training), however older cohorts  (20-25 months) 

remained impaired. Further analysis revealed that these deficits in older mice were 

significantly associated with levels of insoluble Aβ (Westerman et al. 2002). Similar to this, 

other studies have also demonstrated that increased stimulus (e.g. increased number of foot 

shocks received in a fear conditioned response task), training to criterion protocols in the 

Morris Water Maze (MWM) or simplification of a task can change the age of which a 

cognitive deficit manifests (Chen et al. 2000; Dineley et al. 2002; Kelly et al. 2003; Daumas 

et al. 2008). However, no further studies present evidence that age-dependent increases in 

levels of amyloid lead to progressive cognitive changes. 

The absence of evidence suggesting Aβ-mediated worsening of memory may be due a 

lack of sensitivity in behavioural tests. Alternatively, the absence of severe tau pathology in 

hAPP models may also restrict the severity of cognitive change. Indeed, in human studies, a 

much stronger correlation is reported between tau biomarkers and cognitive decline (Jack et 

al. 2010; Jack et al. 2013). Moreover, cognitive tasks more closely associated with memory 

deficits observed in AD may provide a closer parallel for AD-related cognitive deficits. For 

example, AD patients display episodic memory deficits; an inability to recall events in 

relation to their content and temporal-spatial information (Tulving 1972; Butters et al. 1987; 

Greene et al. 1996). Rodent cognitive tasks have been able to assess an analogue of episodic-

like memory that determine an animals ability to exhibit a memory of “what” happened, 
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“where” and “when”. These tasks include adaptations of object-based and fear conditioned 

memory paradigms (Good et al. 2007; Iordanova et al. 2008; Iordanova et al. 2011). Tg2576 

mice have been reported to express “episodic-like” deficits in an object-based memory task 

(Good et al. 2007). However, no study has yet assessed episodic, or episodic-like memory 

across a range of ages in Tg models of AD. Collectively, these data suggest that Tg models 

provide an important tool for understanding the neural circuits and anatomical structures 

sensitive to AD pathogenesis. The tasks commonly used to assess cognition in mouse models 

of AD have been extensively characterised and it is clear that although there is critical 

involvement of the HPC in these tasks (discussed in Chapter 3 and 4), other circuits and 

structures are also required for the processing of information. For example, fear conditioned 

memory tasks rely on an anxious response to a foot shock in order to form the required 

memory. This task has been shown to be sensitive to both HPC function and the amygdala 

(Phillips & LeDoux 1992; Nader et al. 2000). Increased fear response has been reported in 

PDAPP, J20 and 3xTg mice previously, which was associated with Aβ pathology in the 

amygdala (España et al. 2010). Therefore, when assessing memory in Tg models, appropriate 

control measures or prior assessment of emotionality is advised in order to carry out the most 

optimal cognitive task and provide more reliable conclusions to the structures and circuits 

effected by AD pathogenesis and possible pharmacological intervention. 

1.4.2 The PDAPP Model 

The PDAPP model was originally reported in 1995 by Games et al., and has since 

been used widely in AD research (Games et al. 1995). The transgene, otherwise known as the 

hAPPV717F mutation, expresses a point mutation located around the γ-secretase cleavage site, 

leading to an altered amino acid structure of APP at Valine 717 (Murrell et al. 1991). The 

expression of this transgene is driven by the platelet-derived growth factor (PDGF) β-

promoter, which targets the expression of this mutant transgene to neurons (Sasahara et al. 

1991). The overexpression of hAPP generates a total APP protein level 10-fold higher than 

the amount of endogenous brain murine APP (Games et al. 1995). 

The PDAPP model has traditionally been bred on a mixed background with Swiss-

Webster, DBA/2 and C57Bl6 (Games et al. 1995). However, variations in behaviour have 

been reported to occur between different genetic backgrounds (Brooks et al. 2005; Kobayashi 

& Chen 2005). Brooks and colleagues assessed several mouse strains commonly used as Tg 
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background strains, including DBA/2 and C57Bl/6. Brooks (2005) reported differences in a 

range of behavioural tasks, including novel object recognition task (described and used in 

Chapter 4). One interesting observation was that the total exploration time of objects in the 

novel object recognition memory task was greatest in DBA/2 and BALB/c mice, which 

significantly differed from the 129S2/Sv strain. C57Bl/6 mice also appeared to show reduced 

contact time with objects relative to the DBA/2 strain, of which both of these strains are used 

in the mixed PDAPP background (Games et al. 1995; Brooks et al. 2005). Interestingly, when 

comparing the behavioural data between different labs using the PDAPP model differences in 

object recognition memory have been reported (Dodart et al. 1999; Chen et al. 2000). Dodart 

and colleagues (1999) reported an age-dependent deficit in object recognition memory, where 

as Chen et al (2000) showed no deficit in object recognition memory across all ages tested. 

These mice were generated from different colonies and no data were provided to determine if 

each colony had an equal contribution of each strains phenotype, which may have lead to 

altered behavioural phenotypes. This question of age-related changes in object recognition 

memory in the PDAPP model will be further evaluated in chapter 4. Gender-specific 

differences of behavioural performance have also been reported within background strains, 

including C57Bl/6 (Võikar et al. 2001; Frick & Gresack 2003; Gresack & Frick 2003). 

Studies by Frick and Gresack have revealed that male C57Bl/6 mice showed greater object 

recognition memory performance and lower SWM and reference memory errors in the radial 

arm maze when compared to female C57Bl/6 mice (Frick & Gresack 2003; Gresack & Frick 

2003). For these reasons, in this study, we have bred the PDAPP model on a C57Bl/6 

background and used only male mice to increase the potential of any alteration in behaviour 

between wild type and transgenic to be a phenotype of the hAPPV717F mutation. 

The neuropathology of this model has previously been characterised, both on the 

original mixed background, and C57Bl/6 background only. In summary PDAPP mice have 

shown increased soluble amyloid levels at ages as young as 4 months and plaque development 

from approximately 6-8 months; which significantly increase with age (Games et al. 1995; 

Johnson-Wood et al. 1997; Fryer et al. 2003; Redwine et al. 2003; Reilly et al. 2003; Basak & 

Holtzman 2011). These effects were not observed quite as early in PDAPP mice on a C57Bl/6 

background (Hartman et al. 2005). Hartman and colleagues observed plaque pathology at 10-

12 months of age in the HPC of PDAPP mice, which increased significantly by 17-19 months 

of age (Hartman et al. 2005). This age-related increase in soluble and aggregated plaque 

pathology appears similar to ages reported in Tg2576 mice (6 months soluble, 9 months 
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insoluble) and APP23 mice (6 months of age) (Struchler-Pierrat et al. 1997; Kawarabayashi et 

al. 2001). However, more rapid plaque pathology appears to be common in Tg APP mice 

expressing 2 or more FAD APP genes, including the TgCRND8 (plaque pathology at 3 

months) and 5xFAD (amyloid deposits at 2 months of age; Chishti et al. 2001; Oakley et al. 

2006). However, although these latter models offer a more rapid onset of pathology, multiple 

FAD mutations have not been reported in patient populations and therefore offer an 

unrealistic model compared to those expressing single FAD APP mutations. Thus, the more 

progressive onset of amyloid pathology in the PDAPP mouse model offers a more realistic 

parallel to model AD pathology. 

 The hAPPV717F mutation causes a significant shift in the production of Aβ42 over 

Aβ40, most likely causing the increased propensity for Aβ aggregation in PDAPP mice 

(Suzuki et al. 1994; Zerbinatti et al. 2004). This differs in comparison to other models such as 

the Tg2576, which exhibit a greater level of Aβ40 than Aβ42 and may therefore offer a tool to 

investigate differences in amyloid pathology, aggregation and cognitive effects based on 

individual FAD mutations (Kim et al. 2007). Nonetheless, Aβ deposits appear initially in the 

cingulate cortex before accumulating in the molecular layer of the dentate gyrus (DG), CA1 

region of the HPC, the EHC and further progressing into cortical structures in brains of 

PDAPP mice (Games et al. 1995; Irizarry et al. 1997; Johnson-Wood et al. 1997; Su & Ni 

1998;). No deposition has been reported in the thalamus and cerebellum. The areas of greatest 

deposition are the DG and EHC suggesting the perforant pathway to be most susceptible to 

Aβ pathology (Irizarry et al. 1997; Johnson-Wood et al. 1997). This pathway has been 

reported to show plaque pathology in human AD and is most likely a cause of cognitive 

deficits in tasks sensitive to HPC function (Lippa et al. 1992; Hyman et al. 1986). 

As reported in Tables 1.1 and 1.2, PDAPP mice exhibit age-related cognitive deficits. 

However, age-independent deficits in spatial reference memory have also been reported as 

early as 3 months of age, which precedes plaque pathology (Dodart et al. 1999; Hartman et al. 

2005). Moreover synaptic changes have also been reported early on in PDAPP mice. Mice at 

4-5 months of age show a rapid decay in LTP compared to WT controls (Larson et al. 1999). 

They also exhibit a reduced basal level of acetylycholine (ACh), and reduced ACh release 

following pharmacological stimulation. The latter is consistent with an early impairment in 

cholinergic signalling (Bales et al. 2006). This is most likely an effect of hAPP

overexpression. It has been reported that an overall 12% reduction in total HPC volume of 

PDAPP mice can be observed at 3 months of age (Weiss et al. 2002; Redwine et al. 2003; 
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Reilly et al. 2003). This HPC atrophy is likely to contribute to early age-independent 

cognitive deficits in this model (Dodart et al. 1999; Hartman et al., 2005). Some studies have 

reported age-related changes in object recognition memory and SWM (Dodart et al. 1999; 

Chen et al. 2000; Hartman et al. 2005). These age-related cognitive deficits are associated 

with insoluble Aβ and plaque deposition. Furthermore, treatment with Aβ-immunotherapy has 

showed significant improvement in both object recognition memory and SWM suggesting 

these age-related cognitive deficits observed in PDAPP mice are caused by Aβ accumulation 

(Dodart et al. 2002; Hartman et al. 2005). A more thorough evaluation of SWM and object 

recognition memory will be provided in Chapters 3 and 4 respectively.  

Further differences in PDAPP and WT controls have also been reported. PDAPP mice 

exhibit lower body temperatures with age, compared to WT controls (Huitrón-Reséndiz et al. 

2002). These reduced body temperatures complicate behavioural paradigms using water maze 

protocols, such as the MWM, which would require set water temperatures to prevent 

hypothermia in mice, which has previously been reported to cause impaired learning and 

memory in the MWM (Rauch et al. 1989). PDAPP mice also exhibit increased locomotor 

activity in younger ages (3-5 months) during dark period (active period) of the 12hour light 

dark cycle, but not the light period (Huitrón-Reséndiz et al. 2002). A confounding observation 

was reported that this effect was no longer observed in aged PDAPP mice (20-26 months of 

age), to which the authors provided no explanation of how this effect was likely reversed 

(Huitrón-Reséndiz et al. 2002). Alternative Tg models have also been reported to exhibit 

increased locomotor activity, including 3xTg and Tg2576 mice (Ognibene et al. 2005; Knight 

et al. 2013). Hyperactivity has been associated with impaired spatial learning and memory in 

cognitive tasks including the MWM and RAM (Cain et al. 1996; D’Hooge & De Deyn 2001). 

Therefore considerations must be made when using cognitive tasks to assess memory in Tg 

models of AD, whether underlying behavioural phenotypes, such as hyperactivity, impact on 

impaired memory function reported in these models. 

The data discussed above provide evidence that PDAPP mice model an age-related 

increase in amyloid levels, which are associated with progressive cognitive decline. Early 

cognitive deficits have been reported from 3 months of age, which precede amyloid pathology 

and are likely an effect of APP overexpression (Johnson-Wood et al., 1997; Dodart at el. 

1999). These early changes in behavioural performance must be considered when using 

PDAPP mice to study pharmacological interventions for AD as well as amyloid pathology in 
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this model. However, the PDAPP model provides a useful tool for studying age-related 

cognitive decline associated with amyloid pathology.  

Collectively, Tg models of AD, despite not recapitulating the full human AD 

pathology, have been invaluable in studying the neurotoxic properties of tau and amyloid in 

AD as well as other dementias. These models demonstrate age-related increases in soluble Aβ 

and plaque pathology, which have been correlated to the onset of cognitive deficits. They 

have also provided an in vivo system to test pharmacological compounds or antibody-based 

therapies as well as potential amyloid/tau based therapies. However, from the studies carried 

out thus far it is apparent that a number of considerations must be made before using Tg 

animals in these types of experiments. For example, if characterising the cognitive phenotype 

of a Tg model, it is ideal to have a starting age at which both Tg and WT mice perform at 

relatively equal levels in at least one behavioural task. As amyloid levels increase with age it 

allows the observation of these age-related effects instead of any early developmental effects 

of transgene overexpression. Moreover, it presents an age point to test whether 

pharmacological intervention may reverse or prevent this amyloid-induced deficit. Thus, for 

both cognitive phenotyping and pharmacological assessment of compounds in vivo

considerations of precise model, pathologies reported, age of onset of cognitive deficits and 

sensitivity to relative difficulty of specific cognitive tasks must all be carefully considered for 

appropriate completion of these studies.  
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1.5 Current and Developing Treatment for Alzheimer’s Disease

 In this final introductory section, an overview of the current and developing treatments 

for AD will be discussed. The focus will be on therapies targeting amyloid production and 

Aβ. Given that one of the main aims of this thesis is to test the in vivo effects of 2B3, an anti-

APP BACE cleavage site antibody, a more thorough description of BACE1 inhibitors and 

modulators will be provided in chapter 6. However, current therapy strategies including γ-

secretase inhibitors, passive and active immunotherapies will be discussed below. 

1.5.1 Current Alzheimer’s Disease Treatment

Despite promising therapeutic results from in vivo data, currently only symptomatic 

treatments are approved for AD (NICE Guidelines 2011).  There are currently two main types 

of pharmacological intervention for AD patients. The first major group of pharmacological 

compounds, and the first line of treatment available for AD, are anticholinesterase inhibitors; 

donepezil (Aricept; Pfizer), rivastigmine (Exelon; Novartis) and galantamine (Reminyl; 

Janssen), which act to enhance ACh levels by targeting acetyl cholinesterase, the enzyme 

involved in the breakdown of ACh. Despite all three compounds having similar mechanisms, 

all are reported to be variable in their pharmacology and pharmacokinetics (Scarpini et al. 

2003).  

Galantamine has been further reported to enhance cholinergic neurotransmission 

through postsynaptic mechanisms (Scott & Goa 2000). Rivastigmine is also reported to 

inhibit butyrylcholinesterase as well as acetyl cholinesterase. Butyrylcholinesterase is thought 

to contribute to cholinergic pathology in AD and this may therefore be a further beneficial 

effect of rivastigmine (Arendt et al. 1992; Perry et al. 1978). Memantine is a moderate-to-

severe stage treatment (Ebixa; Eli Lilly), and is an NMDA receptor antagonist (Scarpini et al. 

2003). Memantine disrupts neuronal death mediated by the deregulation of Ca2+ homeostasis, 

caused by excess extracellular glutamate via activation of NMDA receptors (Greenamyre & 

Young 1989; Danysz & Parsons 2012). Drug trials with memantine in advanced AD patients 

reported a significant reduction in deterioration in cognitive and functional measures (Tariot 

et al. 2003). However, all these treatments only target symptoms of AD and are thought to 

modify disease processes per se. For these reasons, scientific research has continued to 
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explore methods to promote clearance, modify processing and/or accumulation of amyloid, as 

well as tau-based interventions (for review please see Pedersen & Sigurdsson 2015) 

1.5.2 Non-immunotherapy-based treatments 

Secretase Inhibitors 

Given the role of β- and γ-secretase in the metabolism of APP and production of Aβ 

they have both been attractive targets for therapeutic intervention. Both targets have 

undergone clinical trials in forms of secretase inhibitors, currently of which 4 clinical stage 

II/III trials are being carried out for BACE1 inhibitors (Qian et al. 2015). A more detailed 

discussion of β-secretase inhibition as a therapy for AD will be reserved until Chapter 6. The 

next section will consider γ-secretase based therapies. 

Early studies indicated that selective mutation or deletion of PS1 (γ-secretase) 

complex prevented transmembrane APP cleavage and significantly reduced levels of Aβ 

(Wolfe et al. 1999; De Strooper et al. 1998). Soon after, pharmacological γ-secretase 

inhibition was reported to reduce Aβ in vitro as well as in vivo, including total Aβ in the brain 

(Dovey et al. 2001). However, the initial preclinical success of γ-secretase inhibitors was not 

reflected in clinical trials. Semagacestat (Eli Lilly) was discontinued following a phase III 

trial due to a lack of cognitive improvement in patients with probable AD, as well as high 

levels of adverse effects, including skin cancer (Doody et al. 2013). A similar failure of 

avagacestat (Bristol-Myers Squibb) was also reported following clinical stage II trials, with 

adverse reaction at higher doses that included skin cancers (Coric et al. 2012). These adverse 

reactions are most likely due to the fact that both γ- and β-secretases are involved in multiple 

physiological pathways (Haass 2004). Indeed, γ-secretase has been reported to have a role in 

Notch signalling, which when disrupted has been linked to oncogenic changes (De Strooper et 

al. 1999; Shih & Wang 2007). 

 The presence of adverse reactions with γ-secretase inhibitors have lead to the 

development of more selective γ-secretase inhibitors, specifically targeting γ-secretase 

cleavage of APP, while have no or limited impact on Notch or other substrates. γ-secretase 

modulation modifies PS1 conformation allowing for altered APP processing and can lead to 

reduced levels of Aβ42 (Lleó et al. 2004; Crump et al. 2013). Second generation γ-secretase 

modulators with increased potency have recently been synthesized and have reduced Aβ42 
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production and improved cognitive measures in Tg2576 mice, without any alteration in Notch 

signalling (Kounnas et al. 2010; Rogers et al. 2012). Whether this strategy will prevent the 

adverse reactions observed with older γ-secretase inhibitors as well as show cognitive benefit 

will be a key question for current and future clinical trials. 

Anti-Aggregation Therapy 

Aβ monomers secreted at physiological pico-nano molar ranges show no signs of 

neural toxicity. An alternative strategy developed for AD treatment prevents the toxic 

aggregation of monomeric Aβ into soluble oligomeric and aggregated forms of amyloid 

(Haass & Selkoe 2007; Selkoe 2013). Early reports showed that a naturally occurring 

glycolipid, scyllo-inositol was able to inhibit Aβ aggregation in vitro (McLaurin et al. 1998). 

Later in vivo studies with TgCRND8 mice showed that scyllo-inositol derivatives reduced Aβ 

plaques and improved spatial memory on the MWM (McLaurin et al. 2006). Scyllo-inositol 

also prevented Aβ-mediated inhibition of LTP in the hippocampus, and prevented cognitive 

deficits in rats receiving ICV administered of Aβ (Townsend et al. 2006). Following these 

positive animal studies, a clinical phase II trial assessed the beneficial effects of ELND005 

(Elan/Transition Therapeutics), a stereoisomer of scyllo-inositol, in mild-moderate AD 

patients. Reports showed a significant reduction in CSF Aβ, however the end point targets of 

improved cognition and activity of daily living were not met (Salloway et al. 2011). This 

compound continued into a clinical phase 2/3 with investigation into secondary aggressive 

and aggitative symptoms in moderate AD patients. In October 2015 it was announced that 

results from this trial had shown significantly reduced aggressive/aggitative behaviours in 

severe AD patients (Transition Therapeutics Press Release, October 2015). This compound is 

now seeking clinical phase III assessment. 

1.5.3 Immunotherapy in Alzheimer’s Disease
In 1996 Beka Solomon’s group suggested that anti-Aβ antibodies could prevent Aβ 

fibril formation in vitro (Solomon et al. 1996; Solomon et al. 1997). This work was later 

demonstrated in vivo following active immunisation against full length Aβ-42 in young, pre-

plaque, and old PDAPP mice with Aβ plaque pathology (Schenk et al. 1999). This study 

demonstrated that immunisation prevented the build up of Aβ plaques in younger mice and 

significantly reduced Aβ-mediated pathology in older mice (Schenk et al. 1999). Soon after, it 
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was reported that systemic delivery of anti-Aβ monoclonal antibodies showed similar effects 

in PDAPP mice; crossing the BBB, binding Aβ plaques and leading to plaque clearance via 

Fc receptor mediated microglial phagocytosis (Bard et al. 2000). Following the publication of 

these two original studies, immunotherapy has been a popular therapeutic strategy. 

β-Amyloid Passive Immunotherapy 

Swiftly following the early success of active Aβ vaccination, Bard and colleagues 

were able to demonstrate significant reduction of amyloid pathology in the PDAPP model, a 

large amount of research has focussed on the removal of A from the brain with the use of 

passive Aβ immunotherapy (Bard et al. 2000; Lemere 2013; Wisniewski & Goñi 2015). 

Passive immunotherapies targeting different A epitopes have reported variable clearance of 

aggregated and soluble A, but often show improved cognition (Solomon & Frenkel 2010; 

Lemere 2013). Peripheral administration of m266, a monoclonal antibody binding the central 

region of A, in the PDAPP model showed improved cognition in object recognition memory 

and SWM (Dodart et al. 2002). Furthermore, following m266 treatment, PDAPP mice were 

reported to show increased serum A, suggesting increased clearance from the brain. 

However, no effects on amyloid burden were observed in the brain (DeMattos et al. 2001; 

Dodart et al. 2002). Similar to this study, Kotilinek and colleagues treated Tg2576 mice with 

BAM-10, an antibody directed against the N-terminal region of A, and reported improved 

spatial learning and memory, without showing a significant reduction in soluble or insoluble 

forms of A (Kotilinek et al. 2002a). A further study utilising the PDAPP model, peripherally 

administered 10D5, an N-terminal directed anti-Aβ antibody (Hartman et al. 2005). Hartman 

et al reported that chronic treatment with 10D5 showed improved spatial learning in the 

MWM, but not on spatial reference memory performance. Mice also showed improved 

hippocampal LTP as well as increased plasma A levels and overall reduced plaque and A

SAD in the HPC (Hartman et al. 2005).  

Collectively the above summary shows that passive immunotherapy improved 

cognitive deficits in multiple transgenic models of amyloid pathology. However, the 

mechanism for the improvement in cognition and how Aβ is cleared from the brain remains 

unclear. Several hypotheses have been proposed for the mechanism by which Aβ is removed 

from the brain, including the peripheral sink, microglial-mediated phagocytosis, antibody-

mediated alteration of Aβ aggregation and neutralization of Aβ toxicity (Fu et al. 2010). 

These mechanisms will be discussed in more detail in chapter 6. A further observation to note 
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is that different species of ADDLs and localisation of Aβ may be contribute to the impaired 

cognition in Tg models (Billings et al. 2007). Billings and colleagues observed that 3xTg 

mice, that received extensive behavioural training performed better on the MWM and showed 

reduced insoluble Aβ42, but increased soluble Aβ42 when compared to 3xTg mice naïve to 

any behavioural training (Billings et al. 2007). This study also reported that Aβ*56 was 

significantly reduced in 3xTg mice with extensive training, despite the overall increase in 

soluble Aβ42. This pattern of results suggests that precise species of soluble Aβ may 

contribute to the onset of cognitive deficits in the 3xTg model. A study prior to this also 

reported that the accumulation of intraneuronal Aβ was responsible for the onset of cognitive 

deficits in the 3xTg model (Billings et al. 2005). Following ICV administration of anti-Aβ 

immunotherapy, spatial reference memory deficits were reversed and levels of intraneuronal 

Aβ were significantly reduced. A more recent study by Liu et al., (2015) showed that different 

models of AD show different levels of Aβ*56, which may be related to the extent of cognitive 

deficits in each models (Liu et al. 2015). The lack of changes in total soluble Aβ discussed 

above argues for caution when interpreting/analysing changes to Aβ in whole brain extracts 

following an immunotherapy. It may be conceptually more informative to investigate changes 

in different soluble Aβ species. 

Although immunotherapies targeting A directly have shown promising results in 

preclinical studies, early clinical trials provided little support for their use in in humans 

(Winblad et al. 2014; Wisniewski & Goñi 2015). Bapineuzemab (Pfizer), the humanised 3D6 

antibody, was one of the first passive immunotherapies to pass through clinical phase I, II and 

III. Despite showing a reduction in Aβ burden in the brain following PET imaging, little 

clinical benefit was observed in terms of neuropsychological assessment in patients with 

mild-moderate AD (Rinne et al. 2010; Lemere 2013). The Bapineuemab clinical phase III 

trial was terminated in 2012, for reasons believed to be related to little clinical benefit 

(www.clinicaltrials.gov). The humanized m266, Solanezumab (Eli Lilly), is currently in an 

extended clinical phase III trial (www.clinicaltrials.gov). Initial results of Solanezumab 

clinical phase III trial failed to report improved cognition in mild-moderate AD patients. 

However, in 2012, promising results were shown when Lilly combined data of mild AD 

patients only across two separate phase III clinical trials and reported slowed cognitive 

decline (Lilly press release 2012). Clinical phase III trials are now continuing in mild AD 

patients only. Clinical data reported at the Alzheimer’s Association International Conference 

(AAIC) 2015 revealed reduced disease progression and cognitive rating scores 34% better 

http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
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than placebo treated patients (Qian et al. 2015; Reardon 2015). However, these are 

preliminary data of the 108-week time point and not the study end point, which will be 

available following study completion in October 2016. Improved cognitive measures and CSF 

biomarkers were also reported at the AAIC 2015 conference for clinical phase III trials of 

Crenezumab (Roche/Genetech/AC Immune) and Gantenerumab (Roche/Genetech) and 

clinical phase Ib trial data of Aducanumab (Phase Ib trial) (Qian et al. 2015; Reardon 2015). 

These current clinical Aβ immunotherapy trials focus on the prevention as well as treatment 

of AD patients in earlier disease stages. Further prevention trials are also currently 

commencing in individuals with FAD. These include a consortium of Lilly, Roche and the 

Alzheimer’s Association, (The Dominantly Inherited Alzheimer’s Network; DIAN) as well as 

the Alzheimer’s Prevention Initiative partnered by Genetech, the Banner Institute and the 

National Institute of Health (www.nia.nih.gov/alzheimers/clinical-trials). 

2B3, an Anti-Amyloid Precursor Protein Antibody 

Despite the predominant target of immunotherapies being the Aβ peptide itself, other 

groups have focussed on targeting APP and its metabolism by antibody-induced steric 

hindrance of the BACE1 cleavage site of APP (Arbel et al. 2005; Thomas et al. 2006; Thomas

et al. 2011). Thomas et al date developed a novel monoclonal antibody, 2B3, which binds to 

the BACE1 cleavage site of APP, and showed that it reduced the production of A by steric 

hindrance (Thomas et al. 2011). Targeting APP processing has advantages over other 

immunotherapies that target A directly. For example, by targeting the BACE1 cleavage site 

of APP, 2B3 avoids direct inhibition of BACE1. This feature of 2B3 avoids interference with 

BACE1 activity in its alternate processes and pathways, thus reducing the risk of adverse 

reactions (Vassar et al. 1999; Cole & Vassar 2007; Hunt & Turner 2009; Vassar et al. 2009). 

APP metabolic products other than Aβ (e.g., β-CTF) are also believed to express neurotoxic 

properties that may induce behavioural abnormalities (Griffin 2010; Pimplikar et al. 2010; Xu 

et al. 2015;). Moreover, proteolytic cleavage of A has been reported to produce several 

isoforms with truncated N- and C-terminus, which exhibit different pathological properties 

(Pike et al. 1991; Pike et al. 1995; Tekirian et al. 1999; Cleary et al. 2005). Therefore, the 2B3 

or steric hindrance approach avoids issues related to targeting specific forms of A.  

Thomas et al. (2011) showed that 2B3 reduced levels of A in a concentration- and 

time-dependent manner in human astrocytoma (MOG-G-UVW) cells, which express 

http://www.nia.nih.gov/alzheimers/clinical-trials
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endogenous APP (Thomas et al. 2011). More recently, the reduction in levels of Aβ with 2B3 

administration has been shown in primary cortical neurons derived from a transgenic model 

of AD expressing the hAPP London mutation (Thomas et al. 2013). These data indicate that 

2B3 may also bind to APP in vivo, reduce levels of A and potentially improve cognitive 

function in mouse models of amyloid pathology. 

To date, only one other APP immunotherapy, using BBS1, has been reported in vivo 

(Rakover et al. 2007; Rabinovich-Nikitin et al. 2012). These studies were carried out in 2 

different mouse models, Tg2576 and the 3xTg model, respectively. Both studies reported 

differing effects on levels of A. Rakover et al do not report a reduction in A, but 

Rabinovich-Nikitin et al did. This may be due to differences in BBS1 delivery.  Rakover and 

colleagues administered treatment via peripheral administration, whereas Rabinovich-Nikitin 

and colleagues delivered BBS1 via ICV infusion direct into the brains. However, both studies 

reported improved object recognition memory following BBS1 treatment. However, it must 

be noted that the study using 3xTg mice used a very small number of mice in the treatment 

group (n=3). Given the variability in amyloid production shown by transgenic lines, these 

results should be confirmed in a larger sample of mice (Dodart et al. 1999; Chen et al. 2000; 

Dodart et al. 2002; Hale & Good 2005; Rabinovich-Nikitin et al. 2012). A further point of 

concern is that Rabinovich-Nikitin et al. (2012) did not report data from a WT control group 

to establish baseline levels for behaviour or normal physiological levels of protein. For this 

reason, data from this study must be considered with caution. Further assessment of anti-

BACE1 cleavage site antibodies is still required to validate this strategy as a useful 

therapeutic tool. Assessment of 2B3 in vivo will provide further information of the effects of 

targeting APP metabolism as a treatment for AD and further show any alterations of brain 

biochemistry and cognitive performance regarding this approach.

β-Amyloid Active Immunotherapy 

 Following the successful preclinical results reported by Schenk and colleagues in 

1999, subsequent studies have confirmed reduced amyloid pathology and improved cognition 

in APP transgenic mice following β-amyloid active immunotherapy (for review see Lemere & 

Masliah 2010). Studies also revealed differential biding epitopes of B and T cells. The B cell 

epitopes were located in the first 15 amino acid residues of the Aβ sequence and T cell 

epitopes were located in the mid- and C-terminal region of Aβ (Lemere et al. 2000; Cribbs et 
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al. 2003; Lee et al. 2005). The first clinical trial assessing active immunisation, AN1792, in 

moderate to severe AD patients was comprised of full length Aβ-42, a strong adjuvant (QS-

21) and polysorbate 80, which increased the stability and solubility of the vaccine. This trial 

was ceased because 6% of the treatment group developed meningoencephalitis (Gilman et al. 

2005). Whilst 19% of patients generated plaque-binding anti-Aβ antibodies, those that came 

to autopsy still showed severe cognitive impairment determined by MMSE (MMSE 

scores=0), despite reduced Aβ deposition in the cerebral cortex (Holmes et al. 2008). These 

results indicated that perhaps plaque removal in late stage AD was not an appropriate strategy 

given the level of established NFT pathology and neuronal loss. Although the precise reason 

for the meningeoencephalitis is unknown, there was evidence that an overactive Th1 response 

was present surrounding a number of plaques. This suggested that immunization with the full 

Aβ42 peptide may have induced an autotoxic T cell reaction (Boche & Nicoll 2008). 

 This initial problem in active immunisation triggered interest in passive 

immunotherapy, but also generated a surge in second generation active vaccines focussing on 

the B cell epitope, consisting of the first 15 amino acid residues of the Aβ peptide (Winblad et 

al. 2014). Currently, seven active immunotherapies are in development and under clinical 

trials (www.clinicaltrials.gov; Winblad et al. 2014; Wisniewski & Goñi 2015). Two of the 

most advanced in these trials are CAD106 (Novartis) and ACC-001 (Janssen/Pfizer). Both of 

these vaccines are currently being tested in clinical phase II trials (www.clinicaltrials.gov). 

Currently, no adverse reactions similar to those originally reported with AN1792 have been 

observed and high antibody titres have so far been reported over a chronic vaccination period 

(Hagen et al. 2011; Winblad et al. 2012; Winblad et al. 2014). Cognitive measures in these 

studies are yet to be reported. 

While both active and passive immunotherapies demonstrated positive changes in 

preclinical AD studies, both methods have their limitations. Active immunotherapy engages 

the cellular and humoral immune system to generate and maintain the production of anti-Aβ 

antibodies. This immunisation process uses an antigen (either full length Aβ, or a small 

fragment) that can be delivered with an adjuvant to stimulate high antibody titres. Whilst this 

approach can induce a more chronic antibody production and offer a cost-effective method of 

treatment, the active vaccine can also induce T cell activation and stimulate a pro-

inflammatory response. This adverse reaction can then take a long period of time to stop, 

leading to potentially extensive autoimmune damage. (Gilman et al. 2005; Winblad et al. 

2014; Wisniewski & Goñi 2015). Passive immunotherapy on the other hand focuses on the 

http://www.clinicaltrials.gov/
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peripheral delivery of monoclonal antibodies designed to target specific epitopes. This 

approach has the advantage of prompt reversal, should any adverse reactions occur. In 

addition, it has the advantage of being highly specific in terms of targeting individual species 

or conformations of Aβ without disrupting other forms of the protein. However, this method 

of treatment requires more routine administration and is a much more costly method of 

treatment. Moreover, chronic treatment with humanized monoclonal antibodies may lead to a 

gradual development of anti-antibodies, neutralizing the anti-AD treatment effects 

(Brüggemann et al. 1989; Lemere 2013). 
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1.6 Thesis Summary, Aims and Hypotheses 

This chapter has provided an overview of the clinical and pathological hallmarks of 

AD as well as providing a review of some of the systems adopted to model this 

neurodegenerative condition. The current therapies in clinical trials have also been discussed. 

To-date, no significant success has been translated from in vivo studies to clinical trials 

(Karran & Hardy 2014). For this reason, further efforts into developing effective treatments 

that may be translated to the clinical levels are still under investigation. Results so far using 

anti-APP β-secretase cleavage site antibodies 2B3 and BBS1 have shown promising results 

by reduction of Aβ levels in vitro and BBS1 has been reported to have shown this effect in 

vivo with further improved memory performance in Tg models (Arbel et al. 2005; Rakover et 

al. 2007; Arbel-Ornath et al. 2009; Thomas et al. 2011; Rabinovich-Nikitin et al. 2012; 

Thomas et al. 2013). However, this assessment of 2B3 in vivo has not yet been carried out. 

Therefore, to assess the in vivo effects of 2B3 administration, PDAPP mice were 

characterised in terms of behavioural and biochemical phenotype across a range of ages in 

order to determine an optimal age to assess whether 2B3 would be able to improve memory 

performance in vivo and replicate reductions in Aβ as reported in vitro (Thomas et al. 2011; 

Thomas et al. 2013).  PDAPP mice were tested on a foraging-based task, which assessed 

SWM, in Chapter 3, prior to object recognition memory and object-place associative memory 

assessment in Chapter 4. Aβ pathology in the HPC of PDAPP mice was also determined in 

Chapter 4. A hypothesis was determined that PDAPP mice would show an age-dependent 

decline in memory performance that would be associated with an increase in Aβ pathology. 

Once an age-dependent impairment was observed, PDAPP mice were administered 2B3 as 

reported in Chapter 5. Chapter 5 thus tests the main hypothesis of this thesis that inhibition of 

APP metabolism at the β-secretase cleavage site by 2B3 will inhibit Aβ production and 

improve memory performance in PDAPP mice. 
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Chapter 2: General Methods  
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2.1: Introduction 
This chapter details the methods used to breed, maintain and characterise the 

behavioural phenotype and pathological hallmarks of the PDAPP colony, used throughout this 

thesis. It further describes the procedures and experimental design used to characterise 

behavioural phenotypes in PDAPP mice. The biochemical techniques used to analyse and 

quantify protein levels in brain tissue from PDAPP & WT mice are also described. Protocols 

that are specific to individual Experiments are described in the relevant Chapter.  

2.2 Maintenance and breeding of the PDAPP colony 

2.2.1 Housing conditions 

All mice used were housed in standard conditions in cages measuring L 48cm x W 15 

cm x H 13cm with an opaque plastic base and a wire top. The cage floors were covered in 

sawdust, approximately 1cm deep, and contained a cardboard tube, wooden gnawing block 

and approved nesting material. Holding rooms were maintained at a stable temperature and 

relative humidity levels at around 21oC ± 2oC and 60 ± 10% respectively. Mice were given ad 

libitum access to food and water, unless otherwise stated as part of a behavioural test, and 

were kept on a 12hr light/dark cycle. All behavioural testing was carried out during the light 

hours. All animals were health-checked weekly and maintained according to UK Home Office 

and EU regulations and the Animal Scientific Procedures Act (1986). 

2.2.2 PDAPP Breeding 

PDAPP mice have been previously bred on a mixed triple background comprised of 

Swiss-Webster, DB2 and C57Bl/6 to maintain the hAPPV717F genetic mutation (Games et al. 

1995, Eriksen & Janus, 2007). However, the PDAPP colony used throughout this work was 

maintained on a C57Bl/6 (Harlan) background. Heterozygous male PDAPP mice were 

crossed with female C57Bl/6 (Harlan) mice.  At approximately 5 weeks of age pups were 

weaned and males from the litter were group housed or individually housed depending on 

numbers of males in the litter. It was not possible to house two individual males from 

different litters due to aggressive behaviours.  An ear-biopsy was then taken from each mouse 

for genotyping. 
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2.2.3 Genotyping using polymerase chain reaction 

In order to identify the PDAPP mice, a polymerase chain reaction (PCR) was used to 

amplify the hAPP V717F transgene DNA (Figure 2.1). A tissue sample (ear clip) was 

collected from each mouse at 6-8 weeks of age and stored at -20oC. Tissue was digested and 

DNA extracted using DNeasy Blood and Tissue kits (Quiagen, UK). To carry out the PCR, 

5µL of DNA was added to 20µL of Master Mix on ice in DNase, RNase-free aliquots. A 

20µL measure of Master Mix contained 15.425µL nuclease free water (Fisher), 2.5µL 10x 

PCR Buffer (InVitrogen, Paisley, UK), 0.5µL 50mM MgCl2 (InVitrogen, UK), 1.25µL 

deoxynucleotide tri-phosphates (dNTPs, GE Healthcare, Little Chalfont, UK), 0.05μl of each 

primer at a concentration of 100pmol, and 0.125µL of Taq polymerase (InVitrogen, UK). 

Two sets of primers were used in the APP (V717F) Master Mix to target and amplify APP

and Actin. The primers 2010 (Eurofins MWG Operon; 5’ -

ATCTGGCCCTGGGGAAAAAAG- 3’) and 2011 (5’ -GATGTCCTTCCTCCTCTGTTC- 3’) 

targeted and amplified the hAPP V717F mutation, whilst primers MusA-ActinF1 (Eurofins 

MWG Operon; 5’ -CACCACACCTTCTACAATGAGCTG- 3’) and MusA-ActinR1 (5’ -

TCATCAGGTAGTCAGTGAGGTCGC- 3’) targeted Actin. Samples were immediately 

transferred from ice to a thermocycler (MJ Research, Massacheusettes, USA) for 

amplification and run at the following conditions: 72oC for 2 minutes, 36 cycles at 94oC for 1 

minute for DNA denaturing, 60oC for 1 minute for primer annealing, and 72oC for 2 minutes 

to allow for strand elongation. Following these cycles, samples were incubated at 4oC 

overnight. 

DNA products were separated by gel electrophoresis on a 1% agarose gel in TAE 

buffer (Pierce) in an ethidium bromide-free docking system (Bio-Rad, Hertfordshire, UK). 

Prior to separation, 20µL of DNA product was loaded with a loading dye, “Novel Juice” 

(GeneDirex, Newmarket, UK) at 1 part novel juice to 5 parts sample. Samples were run at 

100V for 120minutes and were run alongside a 100bp DNA ladder (GeneDirex), a water 

control, containing nuclease-free H2O in place of DNA and a negative and a positive control 

from mice of a known genotype. Products were visualised using (Olympus X3 camera to 

capture the image and Alpha DigiDoc to process the image) and sized against the DNA 

ladder. The hAPPV717F transgene DNA product is approximately 900bp and appears in 

transgenic (Tg) samples only, whilst the Actin DNA product appears as a band at 

approximately 500bp in each both wild type (WT) and Tg samples containing genomic DNA. 
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Figure 2.1: Example of visualised DNA bands following PCR and gel electrophoresis to identify 

wild type and PDAPP mice. Transgenic mice produce 2 bands of approximately 900 and 500 bp 

representing the hAPP V717F mutation and Actin, whilst wild-type mice produce only the band 

representing Actin. 

2.3 Characterising the behavioural phenotype of male PDAPP mice 
2.3.1 Design 

Heterozygous male PDAPP mice were subjected to three separate tasks to assess 

memory across a range of ages. A full scientific justification for the use of these tasks will be 

reserved for the appropriate empirical chapters; here I describe the basic procedures. These 

tasks tested object-novelty memory, object-in-place (OiP) memory and spatial working 

memory (SWM) in a foraging-based task. All three behavioural tasks were run in a 

counterbalanced design at 6-8, 10-12 and 14-16 months of age (Figure 2.2). Mice were 

divided into to 2 groups, A and B; counterbalanced for age, and genotype. Initially, both 

groups underwent 3 days of habituation. Group A was then subjected to object novelty 

memory assessment, followed by SWM assessment and finally OiP memory. Group B 

underwent this sequence of memory tasks counterbalanced to group A to prevent order effects 

(Figure 2.2). All mice were previously trained at 3-4 months of age as detailed in the tasks 

below to habituate them to handling, the behavioural room, test arena and task-specific details 

(objects and foraging apparatus). 



59

Figure 2.2: Schematic diagram illustrating the counterbalancing of the behavioural design to 

characterise memory in PDAPP mice across a range of ages. The same design was used at each age 

point (6-8, 10-12 and 14-16 months of age) in the experiment. ON – object novelty; OiP – object in 

place; SWM – spatial working memory. 

Subjects: 

Heterozygous male PDAPP mice expressing the hAPPV717F genetic mutation and 

WT littermate control mice (all maintained on a C57Bl/6 genetic background (Harlan) as 

previously described (Hartman et al. 2005)) were used in the present study. There were a total 

of 16 Tg and 16 WT littermate controls at the start of this study. Therefore, 8 Tg and 8 WT 

mice were in group A and an equal proportion in group B.  However, due to attrition, the final 

time point assessed cognitive function of 14 Tg mice and 15 WT mice. The same mice were 

used across all tests and ages examined. During this longitudinal study, the aim was to 

maintain mice in group housing conditions although, due to attrition, 3 mice were re-housed 

individually. 

2.3.2 Object Recognition Memory 

Apparatus: 

 A square arena measuring 60cm x 60cm with 40cm high walls was used for all tasks 

in this study. The walls were made of clear Perspex and covered externally with white card. 

The arena was placed on a stand that elevated it 50cm above floor level and was situated in 

the centre of a quiet testing room. The room contained a variety of extra-maze visual cues 

(e.g., wall posters, shelving, equipment etc.) around the walls of the test room at a height 

observable from inside the arena. The position of the extra-maze cues, the experimenter and 
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recording equipment remained constant throughout the study. The floor and walls of the arena 

were wiped clean with 70% ethanol wipes after each sample and test phase to remove odour 

cues. Each trial was recorded using a camera (VM-904K, Shiba Electrics Ltd, Hong Kong) 

suspended above the centre point of the arena connected to a DVD recorder (Panasonic), and 

interaction with the objects was recorded with an electronic stopwatch (Thermo Scientific, 

UK) by the experimenter.

Objects:  

Objects were obtained from a variety of sources. They were matched in size and were 

made of materials such as ceramic, glass and plastic. Objects included garden gnome, vinegar 

bottle an empty salt/pepper grinder. They were weighted appropriately to withstand the 

investigative behaviour of mice. Objects were of a height and shape that made it difficult for 

mice to climb onto them. All objects were wiped clean with 70% ethanol wipes after each 

sample and test phase to reduce the use of differential odour cues.   

Scoring: 

 Object exploration was defined according to the methods described by Ennaceur & 

Delacour, (1988). The time spent actively interacting with an object; this included sniffing, 

gnawing and pushing at a distance no greater than 2cm. Object exploration was not scored if 

the animal was using the object to explore extra-maze environment or was within the 2cm 

area of the object, but not facing it. Time spent exploring objects was recorded across all 

testing with an electronic timer. A discrimination ratio (DR) was used to index the animals’

discriminative performance that was independent of individual differences in contact times; 

this was calculated as follows: 

As each trial was carried out twice, this score was averaged across both trials. DR 

sores above 0.5 indicate a preference to explore novel over familiar objects. 

Total Time Spent Exploring Novel Object (A)

Total Time Spent Exploring Novel and Familiar Objects (A+B)
= Discrimination Ratio 

(DR)
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Procedures:   

Object Recognition Task 

Habituation: Mice were always transferred from a holding cage into the centre of the 

test arena. The start location remained constant throughout all testing in these procedures. 

Mice were allowed to explore freely for 10 minutes on Day 1 in an empty arena. Mice were 

then further habituated for 2 consecutive days to the arena containing 2 identical objects for 

10 minutes each day. Objects were positioned approximately 30cm apart and were positioned 

in a different location on each day. A different pair of objects was used each day and across 

all ages tested.  

Novel-object memory: To assess object novelty memory two identical objects were 

placed in the centre of the arena and mice were allowed to explore the objects for 10 minutes 

during the sample phase (see Figure 2.3A). Preliminary experiments revealed that 3 sample 

phases produced robust recognition across delays. Thus, following each sample phase, the 

mouse was removed from the arena and placed in a holding cage for a delay period of 5 

minutes. Following the third sample phase, mice received either a 5 minute and 24 hour delay 

period in a counterbalanced order. Subsequently, one familiar and one novel object were then 

replaced in the arena (Figure 2.3A). The mouse was returned to the arena for 10 minutes 

during the test period. For both sample and test phases the animals’ exploratory behaviour 

was assessed as described above. Time spent exploring objects in both sample and test phases 

was recorded by an experimenter out of view of the animal. Animals received 2 consecutive 

days of testing for each delay period, which occurred immediately following the 3 

consecutive days of habituation. No sets of objects were re-used for an individual mouse. 

Object-in-Place memory: Four different objects were placed in the centre of the arena 

in a square formation (see Figure 2.3B). Each object was approximately 15cm from the walls 

and 25cm apart from each other. Mice were placed in the centre of the arena and exposed to 

the four different objects for three separate 10 minute sample phases as described for object 

novelty memory. Time spent exploring these objects was recorded. Following the 10-minute 

sample phase, mice were removed from the arena and returned to their home cage for a 5-

minute retention interval. Following the third sample phase, mice underwent either a 5-minute 

or 24-hour delay period before the test phase, whereby the position of one set of two objects 

positioned diagonally opposite each other were switched. Mice were then given a 10-minute 
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test phase and time spent exploring the familiar and novel location of objects was recorded. 

Animals received 2 consecutive days of testing for each delay period. Counterbalancing was 

conducted for the order of objects animals were exposed to and the novel spatial location of 

objects.  

Figure 2.3: Illustration to demonstrate object recognition memory testing paradigms. A) Object 

novelty memory was assessed following 3 sample phases, each separated by a 5-minute retention 

delay indicated by the arrow. Following a delay of 5 minutes or 24 hours mice were subjected to a test 

phase. In the test phase mice were presented with one familiar object and one novel object for a period 

of 10 minutes. B) Object-in-Place memory was assessed in an identical manner as object novelty, 

however, animals were presented with 4 different objects during the sample phase. In the test phase 

the spatial orientation of 2 of these objects was changed. 

2.3.3 Data Analysis 

Data were analysed using Microsoft Excel for calculation of means, DR scores, 

standard deviations and standard error of the mean.  IBM SPSS statistics was used for all 

statistical data analysis as described below. 

Statistical Analysis

IBM SPSS Statistics software was used to statistically analyze all data. An -level of 

0.05 was used for all measures showing statistical significance. All data were checked for 

violations of normality by Shapiro-Wilk test and violations of equal variance by Levene’s 
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test. Due to high levels of variability in contact times, violations of these tests were observed 

(p<0.05). Therefore, data that violated these tests were subjected to transformation based on 

the level of positive/negative skew and reassessed. Data that showed no (further) violations of 

any tests of normality were analysed by mixed measures analysis of variance (ANOVA), 

One-Way ANOVAs and students’ t-tests (one sample, independent samples and paired 

samples) where appropriate. All significant main effects and interactions were obtained 

following Bonferroni correction to adjust for multiple post hoc comparisons. Any data where 

transformation were either not possible or did not prevent violations were analysed by non-

parametric equivalent tests; Mann-Whitney U (Independent Samples t-test), Kruskal-Wallis H 

Test (One-Way ANOVA), Wilcoxn-Signed Rank (Paired-Samples t-test), Friedman Test 

(Repeat Measures ANOVA). Any further statistical analysis carried out in experimental 

chapters will be described in the relevant chapter. 

2.4 Biochemical Analysis of PDAPP and Wild-Type Brains 

2.4.1 Preparation of Brain Samples for Biochemical Analysis 

Brain Dissection 

Mice were culled by cervical dislocation and brains were removed immediately. 

Brains were then dissected bilaterally and the hippocampus removed. Samples were snap 

frozen on liquid nitrogen. Dissected samples were stored at -80oC until further processing.  

Protein Extraction 

Brain samples of each mouse were homogenised in 2% sodium dodecyl sulphate 

(SDS) in dH20 with 1% inhibitor cocktail (Millipore) at 75mg/ml of wet tissue weight. The 

samples were homogenised using a Precellys 24 Dual (Bertin technologies, Montigny

le Bretonneux, France) at 6000rpm for 2*30 seconds with a 30 second delay. The 

homogenate was rotated at 4oC overnight. Homogenate was removed and centrifuged at 100 

000Xg (28 300rpm) for 1 hour at 4oC. The supernatant was carefully removed and diluted 

either in 1:5 EC Sodium Buffer (All chemicals were purchased from Fischer Scientific, 

Loughborough, UK unless otherwise stated; 20mM Na2HPO4/NaH2PO4, 0.2mM EDTA, 

0.4M NaCl, 0.2% (w/v) bovine serum albumin (BSA; Sigma Aldrich, UK), 0.05% (w/v) 
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CHAPS (Sigma Aldrich, UK), 0.05% (w/v) NaN3 at pH 7) or 2:3 in 3 X sample buffer (SB) 

(6.3mMTrisBase, 0.8% (w/v) SDS (BioRad, UK) 20% (v/v) Glycerol, 10% (v/v) -

mercaptoethanol, 2% (v/v) bromophenol blue, dH2O to 50ml). Samples were stored at -20oC.

The insoluble pellet was further dissolved in 70% formic acid (Sigma Aldrich, UK) 

at 150mg/ml original wet tissue weight. Samples were centrifuged again at 100 000xg (28 

300rpm) for 1 hour at 4oC. The supernatant was carefully removed and added 1:20 to a 

neutralising buffer (1M Tris, 0.5M Na2HPO4, pH 11) and stored at -20oC.

Bicinchonic Acid Protein Assay 

A bicinchonic acid (BCA) protein assay kit (ThermoScientific, UK) was used to 

determine the protein concentration of soluble fractions. Diluted bovine serum albumin 

standards (Pierce) were prepared ranging from 2 - 0.003mg/ml in a serial dilution. All 

standards samples and blanks were analysed in duplicate on a 96 well plate. The standards 

and negative blank control (dH2O) were loaded at a volume of 25uL, and samples and 

sample blanks (2% SDS) at 1uL to ensure protein concentrations could be determined by the 

standard curve. A volume of 200μl BCA Working Reagent consisting of 50 parts Reagent A 

and 1 part Reagent B was further added to wells. The plate was mixed thoroughly for 30 

seconds on a plate shaker and incubated at 37o C for 30 minutes. The plate was read at 

absorbance 540nm using a spectrophotometer. Protein concentration of each sample was 

then calculated using Microsoft Excel from the standard curve generated by the BSA 

standards.  

2.4.2 Western blotting 

Samples were diluted 1:3 with 3x Sample Buffer and heated at 70oC for 40 minutes 

to reduce samples prior to first use in Western blot analysis. Samples were then re-frozen for 

subsequent use when they were briefly thawed at 70oC for five minutes before loading. 10μL 

of the molecular weight marker (Precision Plus Protein Standards marker, Bio- Rad 

Laboratories, Hercules, California, USA) were loaded and samples were loaded at 20μg onto 

a 10% polyacrylamide gel (H2O, 3.3% (v/v) acrylamide, 1.25% (v/v) (BioRad) Tris.HCl, 

0.1% (v/v) SDS, 0.05% (BioRad) APS, 0.005% TEMED (Sigma Aldrich, UK)) and 

separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) in 

running buffer (25mM Tris base, 190mM glycine, 0.05% SDS, pH 8.3). The separated 

proteins were then blotted on to a 0.2μm nitrocellulose membrane (Amersham Biosciences, 
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Little Chalfont, UK), before being washed in Tris-buffered saline with Tween 20 (TBST, 2 

mM Tris, 15 mM NaCl, 0.1% Tween-20, pH 7.5) and blocked for 1 hour at RTP in 5% (w/v) 

blotto (non-fat milk powder; Tesco). Membranes were washed three times in TBST for five 

minutes and incubated in 1% blotto with primary antibody prepared as described in Table 

2.1. Membranes were incubated overnight on a roller. The membranes were washed as 

above in TBST. Membranes were then incubated for 2 hours at RTP in secondary antibody, 

conjugated to horseradish peroxidase (HRP; according to primary antibody species, Table 

2.2) prepared in 1% blotto. Membranes were washed again in the same fashion. Bands were 

visualised using enhanced chemiluminescent detection (Super Signal, West Dura, Perbio 

Science, UK) and exposed to high performance chemiluminescent X-ray film (Amersham 

Biosciences). Films were scanned and analysed using ImageJ software. 

Table 2.1: Primary antibodies used in this thesis for Western blot analysis. Species, dilution 

factor and antibody distributor are described. 

Table 2.2: Secondary antibodies used in this thesis for Western blot analysis. Species, dilution 

used and distributor are also described. 

Primary Antibody Species Dilution Source

APP (22C11) Mouse 1:1000 Millipore

NMDAR1 Mouse 1:1000 BD Biosciences

NMDAR2B Rabbit 1:500 Millipore

NMDAR2B Y1472 Rabbit 1:750 Millipore

PSD95 Rabbit 1:1000 AbCam

GAPDH Pre-Conjugated 1:50,000 Sigma

Secondary 

Antibody

Species Dilution Factor Source

Anti-Mouse Horse 1:15,000 Pierce

Anti-Rabbit Goat 1:15,000 Pierce
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2.4.3 Enzyme linked immunosorbent assay (ELISA) 

Amyloid Precursor Protein (APP) ELISA

 APP levels were determined using human APP DuoSet ELISA (R&D Systems, 

Abingdon, UK). A detailed protocol can be found at https://www.rndsystems.com/. In brief, a 

96-well plate (Greiner Bio-One, Frickenhausen, Germany) was coated with the “Capture 

Antibody” at a concentration of 4μg/ml, prepared in phosphate-buffered saline (PBS) 

(137mM NaCl, 2.5mM KCl, 8mM Na2HPO4 and 1.5mM KH2PO4) and incubated overnight at 

RTP. Wells were then washed four times with 0.05% (v/v) PBS-Tween (PBST). Unbound 

sites were blocked by adding 200μL/well of “Reagent Diluent” (RD) (PBS with 1% w/v 

bovine serum albumin (BSA)) with 5% (w/v) sucrose for 60 minutes at RTP. Wells were 

washed and aspirated four times with PBST. Standards and samples were prepared in RD. 

Standards were prepared in two-fold serial dilutions ranging from 20-0.625ng/ml. Samples 

were diluted 1:50 in RD. Standards and samples were loaded at 100μL/well in duplicate and 

incubated at RTP for 2 hours. Wells were then washed four times in PBST. “Detection 

Antibody” was prepared at 300ng/ml and loaded at 100μL/well and incubated for 2 hours at 

RTP. Wells were washed and aspirated four times with PBST. Enzyme-labelled HRP 

Strepavidin was then loaded at 100μL/well and incubated for 20 minutes at RTP in the dark. 

Wells were washed and aspirated four times with PBST. Each well was then loaded with 

“Enzyme Substrate” (0.02M Citric Acid, 0.03M Phosphate, 20mg OPD (o-phenylenediamine 

dihydrochloride; Sigma Aldrich, UK), 0.012% (v/v) H2O2 and incubated at RTP for 30 

minutes in the dark. “Stop Solution” (2.5M H2SO4) was loaded at 50μL/well to stop any 

further colour change. Wells were read at 492nm using a plate reader. Concentrations of APP 

were determined using GraphPad Prism 4.0 and Microsoft Excel and normalised to the total 

protein concentration of each sample.

Amyloid-β (Aβ) 40 (Non-Commercial)

The methods utilised to determine the levels of soluble and insoluble Aβ40 were as 

previously described by Thomas et al., (2006, 2011). A 96-well plate (Greiner Bio-One, 

Frickenhausen, Germany) was coated in the anti-N-terminal human Aβ monoclonal antibody 

(MAb) 6E10 (Covance, Princeton, USA) at a concentration of 0.167μg/ml, diluted in 

carbonate/bicarbonate buffer (15mM Na2CO3, 35mM NaHCO3, pH 9.6) overnight at 4oC. The 

plate was aspirated and washed with PBST (137mM NaCl, 2.5mM KCL, 8mM Na2HPO4, 

https://www.rndsystems.com/
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1.5mM KH2PO4, 0.05% Tween20) in between each stage. All incubations were at room 

temperature (RT). Unbound sites were blocked with 1% non-fat milk powder (Tesco) in PBS 

for 30 minutes. Standards and negative controls were prepared in an identical final buffer 

solution as samples (eg. Where samples were diluted 1:10, the PBST was 9 parts to 1 part 

sample preparation buffer; 1 part 2%SDS, 4 parts EC sodium buffer as described in 2.4.1). 

Samples were prepared in PBST. Samples and standards were loaded at 100μl per well in 

duplicate for 2 hours. Standards (Invitrogen) ranged from 10-0.019ng/ml in doubling 

dilutions. Samples of the soluble fraction were prepared at 1:10. Insoluble fraction samples 

were prepared 1:20. Negative controls included the final buffer used to prepare standards. The 

detection antibody, BAM401AP (affinity purified, Autogen Bioclear, Calne, UK), an affinity-

purified antibody specific to the C-terminal of the Aβ40 peptide was used as the detection 

antibody at a concentration of 0.45μg/ml in PBST for 1.5 hours. BAM401AP has been 

verified as specific through western blotting work within the laboratory group (Thomas, 

unpublished data). The secondary HRP-labeled anti-rabbit IgG (Pierce Thermo Scientific) 

was applied at 0.33μg/ml in PBST for 1 hour. The enzyme substrate, o- phenylenediamine 

(OPD), in 0.1M citrate-phosphate buffer (24mM citric acid, 51mM Na2HPO4, pH5) was 

applied and incubated for approximately 20 minutes in the dark. The reaction was stopped 

using 50μl 2.5M H2SO4 and read at 492nm using a spectrophotometer. The ELISA protocol 

provides a lower sensitivity limit of around 0.1ng/ml (Thomas et al., 2006). The concentration 

of Aβ40 was then determined using GraphPad Prism 4.0 and Microsoft Excel and normalised 

to the total protein concentration of each sample.

Aβ40 ELISA (IBL)

A commercial Aβ40 ELISA kit (IBL International GmbH, Hamburg, Germany) was 

used to determine smaller changes in amyloid levels following 2B3 administration in PDAPP 

mice, Chapter 5. A detailed protocol may be found at http://www.ibl-international.com/. In 

brief, standards were prepared in “Assay Buffer” in 2 fold serial dilutions ranging from 100-

1.56pg/ml. Samples were prepared at a 1:4 dilution in “Assay Buffer”. Samples and standards 

were loaded at 100μL/well onto a microtitre plate (pre-coated with Anti-Human Aβ35-40 

(1A10)) and incubated at 4oC overnight. Each well was then washed and aspirated thoroughly 

7 times. “Enzyme Conjugate” (HRP conjugated Anti-Human Aβ NH2 terminus (82E1)) was 

loaded at 100μL/well and incubated for 60 minutes at 4oC. Wells were washed again in an 

identical fashion. “TMB Substrate” was then loaded at 100μL/well and incubated at RTP for 

http://www.ibl-international.com/
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30 minutes in the dark. “TMB Stop Solution” was then added at 100μL/well in order to stop 

any further colour change. Change in colour went from blue to yellow. Wells were read in a 

plate reader at 450nm and data analysed in an identical fashion as described above. 

Aβ42 ELISA (Invitrogen)

All assays to quantify levels of soluble and insoluble Aβ42 were carried out using a 

human Aβ42 ELISA kit (Invitrogen Corporation, California, USA). A detailed protocol for 

this kit can be found at www.invitrogen.com. In brief, standards and samples were prepared in 

Standard Diluent Buffer. Standards were prepared in serial two-fold dilutions with a range 

from 1000-15.63pg/ml. Soluble and insoluble samples were diluted at 1:10 in Standard 

Diluent Buffer.  50μL of standards and samples were loaded to the appropriate wells on the 

microtitre plate (Aβ Antibody Coated Wells (antibody targeted the NH2 terminus region of 

Aβ)). 50μL of the Human Aβ42 Detection Antibody was loaded and mixed on a plate shaker. 

The microtitre plate was incubated at 4oC overnight. Wells were washed and aspirated 

thoroughly four times. Anti-Rabbit IgG HRP Working Solution was then added at 100μL/well 

and incubated for 30 minutes at RTP. Wells were washed and aspirated thoroughly again 

before adding Stabilized Chromogen at 100μL/well. Plates were incubated at RTP for 30 

minutes in the dark. 100μL Stop Solution was then added to cease any further colour change 

leading to a change from blue to yellow. Wells were read in a plate reader at 450nm. Data 

were analysed as described above. 

β Carboxy Terminal Fragment ELISA (IBL)

A commercial βCTF ELISA kit (IBL International GmbH, Hamburg, Germany) was 

used to determine changes in βCTF levels following 2B3 administration in PDAPP mice, 

Chapter 5. A detailed protocol may be found at http://www.ibl-international.com/. In brief, 

standards were prepared in “EIA Buffer” in 2 fold serial dilutions ranging from 12-

0.19pmol/L. Samples were prepared at a 1:10 dilution in “EIA Buffer”. Samples and 

standards were loaded at 100μL/well onto a microtitre plate (pre-coated with Anti-APP-C 

Rabbit IgG) and incubated at 4oC overnight. Each well was then washed and aspirated 

thoroughly 9 times. “Labelled Antibody Solution” (HRP conjugated Anti-Human Aβ NH2

terminus (82E1)) Mouse IgG) was loaded at 100μL/well and incubated for 60 minutes at 4oC. 

Wells were washed again in an identical fashion. “Chromogen” was then loaded at 

100μL/well and incubated at RTP for 30 minutes in the dark. “Stop Solution” was then added 

at 100μL/well in order to stop any further colour change. Change in colour went from blue to 

http://www.ibl-international.com/
http://www.invitrogen.com/
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yellow. Wells were read in a plate reader at 450nm and data analysed in an identical fashion 

as described above. 

2.4.4 Data analysis 
ImageJ software was used to quantify Western blot images. GraphPad Prism software 

was used to analyse all ELISA data presented in this Thesis. All data were further analysed in 

Microsoft Excel and SPSS statistics as described in Section 2.3.3. 
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Chapter 3: Characterising Foraging Behaviour in PDAPP Mice 
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Chapter Overview 

Chapter 3 describes a foraging-based task that aimed to determine spatial working 

memory (SWM) performance in PDAPP mice across a range of ages. The task used was 

based on a design previously carried out to assess SWM in pigeons, which was shown to be 

sensitive to hippocampal function (Pearce et al. 2005). Pearce and colleagues presented 

pigeons with eight baited pots in different spatial locations in a training arena. To assess WM, 

pigeons had to forage the food reward from all eight pots and any return visits to pots during 

the trial was considered a WM error. In the task used in this chapter, six pots were placed in a 

radial formation, each containing a small liquid reward. Mice were trained to forage rewards 

and during testing were assessed on their ability to forage all six pots. Errors were determined 

as a mouse returning to a pot, which had already been foraged. However, to date, no 

published data have yet been presented using this task in mice in order to show sensitivity to 

hippocampal (HPC) function in the processing of spatial information.  

The first two experiments in this chapter therefore aimed to assess if the successful 

completion of this foraging-based task required HPC function. Male C57Bl/6 mice received 

either bilateral HPC lesions or sham procedures and were assessed on this task in an 

environment enriched with extra-maze spatial stimuli (Experiment 1) and without 

(Experiment 2). The final experiment (Experiment 3) of this chapter determined the 

performance of PDAPP mice on this task across a range of ages to investigate how foraging 

behaviour was affected by age and amyloid pathology in this mouse model. Results from 

these experiments will be discussed with reference to the involvement of the HPC in 

processing spatial information in SWM tasks and other foraging behaviours.  

3.1 Chapter Introduction  

Working memory (WM) was first described by Werner Honig in 1978 as stimulus 

information that is used during one trial of an experiment, but not for subsequent trials 

thereafter (Honig 1978). One of the most common tasks used to assess WM is the radial arm 

maze (RAM), which was first described by David Olton and Robert Samuelson in 1976, 

(Olton & Samuelson 1976). In this task, eight arms radiate from a central platform. At the end 

of each arm is a small food (or liquid) reward, which is readily consumed by rodents. Olton 
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and Samuelson initially observed that rats would retrieve all eight rewards with minimal re-

entries to previously baited arms. Subsequent experiments were carried out testing the theory 

that rats completed the task using WM, as opposed to exploiting kinaesthetic strategies (such 

as simply entering a series of adjacent arm or through the use of odour cues in previously 

visited arms) (Olton et al., 1979; Olton & Samuelson, 1976;  Olton et al., 1977). These 

experiments provided evidence that rats would complete the task by remembering which arms 

had been visited in a single session. However, this information was not transferred between 

sessions when arms were re-baited. It was therefore concluded that rats used a type of WM to 

complete the RAM (Olton et al., 1979). 

Animals use spatial navigation processes to manoeuvre quickly and safely through 

their environments when foraging and/or exploring, as described by Vorhees & Williams 

(2014). In order to reduce energy expenditure and predatorial risk whilst doing so, animals 

must form a memory or cognitive map. The capacity to navigate effectively relies on two 

main navigation systems. Allocentric navigation uses environmental, or distal, cues, whereas 

egocentric navigation relies more on the internal cues generated by the animal’s movement 

and/or proximal cues. The use of allocentric navigation is believed to be supported by the 

hippocampal (HPC) formation (O’Keefe & Nadel 1978; O’Keefe & Conway 1978; Olton & 

Collison, 1979; O’Keefe & Kraemer et al., 1983; Morris et al., 1986; Speakman 1987; Morris 

et al., 1990). Since the early reports by O’Keefe and colleagues, more recent studies have 

revealed distinct contributions of HPC sub-regions, as well as specific receptors, in the 

processing of spatial WM (SWM) information (Steele & Morris 1999; Bannerman et al. 2004; 

van Strien et al. 2009; Sanderson et al. 2010; Murray et al. 2011; Sahay et al. 2011). For 

example, GluA1 receptor knock out mice have been observed to show impaired SWM, but 

not spatial reference memory in a modified version of the six-arm RAM, whilst HPC lesion 

mice showed impairment in both measures (Schmitt et al. 2003). Furthermore, HPC NMDA 

receptor NR2B subunit knockout mice showed impaired SWM performance as determined by 

reduced spontaneous alternation in the T-maze, but intact spatial reference memory 

performance on the MWM (von Engelhardt et al. 2008). Collectively, these observations 

showed that the HPC plays a key role in the processing of spatial information for these tasks, 

however different neuronal mechanisms within the HPC appear to support the processing of

different types of information.

WM deficits are commonly observed in patients with AD and are clinically assessed 

with tests such as the Mini-Mental Status Examination (MMSE), the Montreal Cognitive 
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Assessment (MCoA; Folstein et al. 1975; Nasreddine et al. 2005; Snyderman & Rovner 

2009). These tests lend themselves well to study the progressive cognitive decline associated 

with AD over a longitudinal period. Ideally, cognitive testing in rodents would assess 

identical cognitive functions in paradigms matching those mentioned above. Although not 

identical, SWM tasks provide a method to assess WM in rodent models of dementia. 

Although no current AD model fully recapitulates the full pathology of AD, Aβ-

induced HPC pathology is observed in models expressing FAD mutations in APP and/or 

Presinilin (Games et al. 1995; Hsiao et al. 1996; Sturchler-Pierrat et al. 1997; Holcomb et al. 

1998). Studies have shown significant HPC involvement in WM and the processing of spatial 

information in these tasks and it is therefore not surprising that many of the rodent dementia 

models show age-related cognitive impairments in these types of tasks (Chapman et al. 1999; 

Chen et al. 2000; Minkeviciene et al. 2008; Wirths et al. 2008). Interestingly, the SWM 

deficits in AD models often manifest before the onset of other cognitive deficits, such as 

associative learning and recognition memory impairments, similar to the progressive decline 

of cognitive functions in clinical AD (Webster et al. 2013; Webster et al. 2014). For reasons 

such as these, SWM tasks provide a valuable tool to study the effects of AD-related 

pathologies and their effect on cognition.

Cognitive deficits related to AD-like pathology are sensitive to age, therefore, the 

nature of the tasks and the time it takes to run is an important consideration. Many SWM 

memory tasks require either multiple trials in one day, such as the T-maze and MWM (Steele 

& Morris 1999; Dudchenko 2001). This can be highly time consuming with larger cohorts of 

animals. Furthermore, tasks such as RAM require extensive training with long testing 

protocols lasting over 14 days (Olton et al., 1977; Hodges, 1996). In fact, it has been reported 

that mice have varying levels of performance on the RAM and require extensive training for 

successful performance (Foreman & Gillett 1998; Foreman & Ermakova 1998).  In order to 

promote learning, a water-based version of the RAM (the radial arm water maze; RAWM) is 

often used to assess SWM (Alamed et al. 2006). In this version of the task, mice must swim to 

the end of each arm in order to find a submerged platform. Any re-visits to arms already 

explored is a measure of WM error.  

Water-based tasks exert high levels of stress on animals as observed by increased 

levels of corticosterone and glucocorticoids (Francis et al. 1995; Harrison et al. 2009). The 

HPC has a dense population of glucocorticoid receptors, which have been associated with 
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altered cognitive performance following a stressful episode (Francis et al. 1995; Magarin & 

McEwen 1995; Lupien & McEwen 1997). The results of these tasks may therefore be 

confounded with stress effects on cognition and potential interaction with on-going 

pathological processes. Moreover, extended periods of stress in AD models has been 

associated with increased levels of Aβ production and accelerated learning and memory 

deficits (Green et al. 2006; Jeong et al. 2006; Srivareerat et al. 2009). For this reason the 

differences between control animals and AD models must be treated cautiously. Finally, 

specific tasks require equal performance in other behaviours influencing task performance to 

more thoroughly assess the memory systems involved in successful task completion. For 

example, motor performance as well as anxiety and motivation are non-cognitive based 

behaviours that are associated with these tasks (Kobayashi & Chen 2005; Webster et al. 

2014). These behaviours are affected differentially across AD models. Therefore careful 

consideration must be made when choosing the precise behavioural task(s) for a given mouse 

model of AD.  

 With the above points taken into consideration, we have developed a foraging-based 

task that was designed to provide efficient and effective assessment of SWM. The original 

basis of this task was taken from an avian foraging task reported by Pearce and colleagues 

(Pearce et al. 2005). In this study, pigeons were presented with eight baited pots in different 

spatial locations in a training arena. To assess WM, pigeons had to forage the food reward 

from all eight pots and any return visits to pots during the trial was considered a WM error. I 

adapted this task for mice using an open arena containing six pots positioned in a similar 

formation as the reward locations in a RAM (Figure 3.1). Extra maze stimuli surrounding the 

test arena were available to assist spatial navigation. In each session, the mouse was placed in 

the centre of the arena and was allowed to freely explore and forage the six rewards available 

in the pots. Each pot was baited with a single liquid reward and was not replenished during 

the trial. Mice were required to consume all six rewards in order to complete the task. The 

most efficient behaviour was to visit each pot only once during the session. This required the 

animals to remember within a given trial which pots had been foraged in relation to their 

spatial location. Within a trial, the difficulty of task increased with each successful forage. 

The animals received 4 trials in total, 1/day. A WM error was scored within a trial when a 

mouse returned to a pot previously visited in that session. As well as WM errors, additional 

measures included total time to complete the task, and time taken to engage with the task 

(indices of motivation and motor performance).  
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In order to validate the task as one that requires a functionally intact HPC, the first 

experiment examined the effects of excitotoxic lesions of the HPC in male C57Bl/6 mice on 

the foraging task (Experiment 1). It was hypothesised that HPC lesioned mice would show a 

significant increase in the number of WM errors compared to control animals. Experiment 2 

was designed to determine whether any disruption caused by HPC cell loss was restricted to 

conditions under which animals used extramaze (i.e., spatial) information. All distal 

extramaze cues were removed by drawing a black curtain around the arena and the forging 

pots were each made visually distinctive by the addition of a unique pattern on the outside of 

each pot. The task was then carried out in an identical fashion. To the extent that the HPC 

contributes to processing spatial information but not to a visual discrimination, it was 

predicted that mice with HPC lesions would perform at a similar level to control mice. 

Experiment 3 examined foraging behaviour in PDAPP mice across different age ranges. 

Based on results from previous studies assessing SWM in PDAPP mice, it was hypothesised 

that PDAPP mice would show an age-related deficit in efficient performance of the foraging 

task.    

3.2 Experiment 1: The effects of hippocampal cell loss of foraging behaviour 

3.2.1 Introduction: 

Assessment of the effect of HPC lesions on SWM was carried out on 6-month-old 

C57Bl/6 male mice. C57Bl/6 mice used were wild-type (WT) littermate controls taken from 

PDAPP breeding line to ensure that the mice used to assess HPC involvement in the foraging 

task were as similar as possible to the PDAPP background strain.  

3.2.3 Methods: 

Subjects: 

A total of 26 male C57Bl/6 mice aged 6 months were used to assess HPC involvement 

in this foraging-based WM task. 13 mice received bilateral HPC excitotoxic lesion surgery 

and 13 received control (SHAM) surgery (as described) 3 weeks prior to behavioural 

assessment.  

All mice in experiment 1 and 2 were maintained on a 12-hour light/dark cycle. Two 

days before training and throughout test days, all mice were water deprived to 85% of their 
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original body weight and allowed access to water for only 2 hours per day after testing, but 

maintained on ad libitum food throughout. 

Surgery:  

Mice were anaesthetised with Isoflurane [2-chloro-2-(difluromethoxy)-1, 1, 1-

trifluoro-(ethane)] in O2 during stereotaxic surgery. The skull was exposed by a scalp 

incision. Two holes were drilled on opposite sides of the midline at the appropriate 

coordinates (see Table 3.1). Infusions of 0.09mM N-Methyl D-Aspartic Acid (NMDA, 

Sigma-Aldrich, UK) in sterile phosphate were delivered at a rate of 0.3μl per minute into each 

hemisphere using a 30G cannulae microinjection 2μl Hamilton #75 syringe (Hamilton 

Company, Reno, USA). Following each infusion, the needle was left in place for 2 minutes 

before being retracted slowly. Upon completion, the wound was sutured and the animal was 

given a subcutaneous injection of glucosaline to aid rehydration. In SHAM-operated mice, 2 

holes were drilled in accordance to the stereotaxic coordinates in table 3.1 before being 

sutured. Each mouse was then placed in a 30oC temperature controlled recovery chamber with 

monitoring until the mouse was deemed alert and mobile. Following this mice were returned 

into a new home cage containing a sawdust bedding, covered in tissue paper to prevent any 

sawdust entering the wound. Mice were also provided with sweetened porridge (ReadyBrek) 

and ad libitum supply to food and water.  

Perfusion: 

 Mice were given an intraperitoneal (IP) injection of 0.2ml 200mg/ml pentobarbitol 

(Euthetal, Merial, Harlow, UK) to induce terminal anaesthesia. A cannula was inserted into 

the left ventricle of the heart whereby approximately 50ml of 0.1M PBS (pH 7.4) was pumped 

through the circulatory system. Following this, approximately 100ml of 4% paraformaldehyde  

in 0.1M PBS (PFA) was further pumped through the circulatory system to initially fix brain 

tissue. The brain was then extracted and post-fixed in 4% PFA at room temperature (RTP) for 

6 hours before being transferred to 30% reagent grade sucrose in dH2O. The brain remained in 

sucrose until sinking, indicating it was fully saturated (approximately 48 hours). Brains were 

then sliced using a freezing microtome. 40μm coronal sections were mounted on gelatinised 

slides in 0.1M PBS. Slides were left to dry for 48 hours. 
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Site

Stereotaxic Coordinates

Anterior/Posterior 

(-) 

Lateral

( )

Ventral

(-)

Volume

(uL)

1 1.2 1.0 2.0 0.15

2 1.7 1.0 2.0 0.15

3 1.7 1.5 2.0 0.15

4 2.2 1.0 2.0 0.15

5 2.2 2.0 2.0 0.15

6 2.5 1.5 2.0 0.15

7 2.5 2.2 2.2 0.15

8 3.0 3.0 4.2, 3.0, 2.5 0.15

9 3.6 3.0 4.0, 3.0, 0.15
Table 3.1: The stereotaxic coordinates for bilateral HPC lesions outlined as mm from bregma 
(anterior posterior), from the midline (lateral) and from the dura (ventral). 

Cresyl violet staining:

 Staining of coronal sections was carried out by immersing slides in xylene for 4 

minutes before immersion into descending concentrations of ethanol (100%  90%  70%) 

for 2 minutes per ethanol concentration. Slides were then immersed in dH2O for 2 minutes 

before 0.005% Cresyl violet was applied for 3 minutes. Slides were then further immersed in 

dH2O for 30 seconds before dehydrated in an ascending concentration of ethanol (70% 

90%  100%  100%) for 3 minutes per immersion. Slides were given two final exposures 

to xylene, each for 5 minutes. Finally, slides were cover-slipped with DPX Mounting media 

and allowed to dry for 48 hours. Sections were then imaged using a Leica DMRB microscope 

and images were captured using an Olympus DP70 camera and the programme analySIS-D.  

Apparatus: 

All training and testing was carried out in the same testing room as described in 

2.3.3. Initial training of the task was carried out in identical homecages (L 48cm x W 15 cm x 

H 13cm) with a 1cm deep bed of sawdust covering the floor. White ceramic pots (Lakeland, 

UK) with a diameter of 6.5cm and a depth of 3.5cm were mounted on a wooden cube base 

measuring 3x3x6cm. Pots were secured to the floor of the cage/arena with blue-tac. Following 

initial training, mice were exposed to the same pots in the same arena used in 2.3.3. The floor 
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of the arena was also covered in sawdust, approximately 1cm in depth. In the arena pots were 

arranged approximately 20cm apart. Each trial was recorded using a camera (VM-904K, 

Shiba Electrics Ltd, Hong Kong) suspended above the centre point of the arena connected to a 

DVD recorder (Panasonic DMR E50EBS), and time taken to complete the task was measured 

with an electronic stopwatch (Fischer Scientific, UK) by the experimenter. 

Procedure: 

Training (homecage): Throughout the training and test phase mice were water-

deprived to approximately 90% of their pre-training weight. Water was given for 2 hours 

immediately after training or testing each day.  The first stage of training focussed on mice 

associating a reward with a ceramic pot. During this training the mice had to learn to forage 

the ceramic pots to gain a liquid reward of 1:3 sweetened condensed milk (Nestle) solution 

(prepared in water; H20).  During initial training, mice were removed from their home cage 

and placed into an identical home cage with sawdust bedding together with one ceramic pot 

placed in the centre of the cage for three successive trials. The cage wire lid was removed to 

increase exploration and paper was taped around the edges of the cage to prevent climbing 

out as shown in Figure 3.1A. Between each mouse, pots were wiped clean with 70% ethanol 

wipes to remove any odour cues, and the milk solution replenished accordingly. On the first 

day, the ceramic pot was baited with lowering volumes of milk solution (50, 10 and 5ml) to 

initially engage mice and to encourage interaction with the pot. Once a mouse had foraged a 

small volume of the liquid reward it was removed immediately from the cage and returned to 

its home cage. Mice were given no more than 10 minutes per trial. When mice had 

successfully demonstrated foraging behaviour with the volumes used above, 30uL was 

pipetted into the centre of the pot, the volume used for the remainder of training and testing. 

This process was repeated until each mouse had consumed the 30uL reward in all trials for 2 

consecutive days.  

Training (Test Arena): Mice continued training in the test arena. Mice were 

initially exposed to an empty arena with sawdust covering the base for 10 minutes to allow 

free exploration. For the following consecutive days of training, 2 baited pots were placed 

diagonal across from one another in the arena, 40cm apart (Figure 3.1B). On each day, the 

location of the pots was moved to prevent the development of a spatial bias in the test phase. 

Mice were placed into the centre of the arena and allowed to explore until they had 

consumed both rewards or a 10-minute time limit was reached.  After this the mouse was 
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returned to its home cage.  This process was repeated until all mice foraged in both pots in 

less than 3 minutes.  

Testing: Mice were then tested over the next four consecutive days with one 

session per day.  During these sessions the arena was set up with six pots arranged in a 

circular shape, each 20cm apart (Figure 3.1C). Each pot contained 30uL of milk solution. 

Each mouse in turn was taken from their home cage and placed in the centre of the arena 

always facing away from the experimenter.  The mouse was allowed to explore the arena 

and forage pots until they had consumed the reward in all 6 pots or until 10 minutes had 

elapsed from when the first pot was foraged. Following the trial, mice were returned to their 

home cage. The pots were then wiped clean with 70% ethanol wipes and the milk solution 

replenished before the next mouse.  All test sessions were recorded onto a DVD player using 

an overhead camera.  

Scoring

A score of foraging behaviour was defined as a mouse jumping onto the rim of a pot 

and directing its nose in toward the bottom to consume a reward. A number of error scores 

were taken from this task to assess SWM performance and foraging behaviour. They are 

detailed in Table 3.2 below. It was hypothesized that mice in this task would adopt a win-shift 

strategy whereby a pot that has been foraged from should not be returned to, as no further 

reward will be obtained. A win-shift strategy on the RAM implies that rats will search for 

food in different spatial locations (or maze arms) once foraging a reward from a given arm 

(Olton & Schlosberg 1978). Win-stay implies that rats will return to the same arm to obtain a 

further reward. Olton and Scholberg (1978) determined that rats adopted a win-shift over a 

win-stay strategy when being tested on the RAM (Olton & Schlosberg 1978). Mice have also 

been reported to exhibit win-shift foraging behaviour in both RAM and RAWM protocols 

(Hyde et al. 1998; Anagnostaras et al. 2003). This would suggest that mice would be likely to 

adopt a win-shift foraging strategy for successful task completion. Therefore, WM should 

prevent mice from returning to pots where a liquid reward has already been consumed.  
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Figure 3.1: Figure to illustrate pots and the pot arrangement through training and testing. (A) 

Shows an individual pot in a homecage used for initial training. (B) Two pots placed opposite each 

other in the arena-training phase. (C) Six pots are placed in a radial formation for the test phase of the 

foraging task.  
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Error 

Measurement

Definition Example of behaviour

Error A mouse returning to a pot where the 

reward was previously consumed.

A mouse forages a reward from 

pot A and leaves pot A. The 

mouse then returns to pot A 

(Error).

Repeat Error A mouse returning to a pot where an 

error was already made. Hence, 

repeating the error.

A mouse forages a reward from 

pot A, and leaves pot A. The 

mouse then returns to pot A 

(error). It leaves pot A again, 

forages in pot B before 

returning to pot A (repeat 

error). 

Error in neighbouring  

pot

A mouse making an error 

immediately in the same pot or the 

neighbouring pot to which it has just 

foraged (if this pot has already been 

foraged in).

A mouse forages a reward from 

pot A. The mouse then forages in 

pot B before foraging in pot A

Error in distal pot A mouse making an error in a pot 

one or more distant from a pot it has 

just foraged or made an error in.

A mouse forages in pot A. The 

mouse then forages in pot C 

before retuning to pot A.

Chaining Response When a mouse forages pots in a 

sequence of 3 or more pots 

immediately adjacent to one another

A mouse forages in pot A, B, and 

C etc. until the sequence is 

broken. 

Perseverative Error A mouse returning to a pot 

immediately after receiving a 

reward, or immediately after making 

an error.

A mouse forages in pot A. The 

mouse leaves pot A and 

immediately returns to pot A.

Table 3.2: Overview of the types of errors scored to assess SWM in a foraging-based task. Errors are 

defined and examples of when these errors are scored are described.
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In this scoring procedure, “total error” acts as a baseline measure of SWM function. 

As described in Table 3.2, further measures were used to assess within-trial behaviours, such 

as foraging strategy, perseveration and factors representing more severe working memory 

deficits. 

A repeat error was scored as a mouse returning to a pot where an error had already 

been made during the trial. This type of error was independent of the perseverative error 

described, as it was not an immediate return to a pot that had just been foraged. As total error 

incorporated all types of errors made within the trial, the repeat error was able to provide a 

more distinctive WM error measure.  

A measure of chaining response was recorded to determine whether mice foraged in a 

random sequence or had a tendency to alternate pot choices within a given trial. This measure 

aimed to establish if animals adopted different foraging strategies to complete the task. The 

spatial distribution of errors was also assessed to compliment the measure of chaining 

response. Errors made in pots neighbouring a pot that had just been foraged or distal to those 

just foraged were recorded. This score was calculated as a ratio against total errors made by 

each mouse to give a measure that was unbiased by differences in total errors between groups. 

Perseverative errors were also scored when a mouse returned immediately to a pot it 

had just successfully foraged in or made an error in. Perseverative errors were recorded as this 

behaviour has been observed in HPC lesioned animals and have further been reported in AD 

patients and mouse models (Lamar et al. 1997; Huitron-Resendiz et al. 2002; Wang & Cai 

2006; Yoon et al. 2008).

Further measures were taken to look at motor performance as a measure of total time 

taken to complete the task from when the mouse was placed into the arena to when the final 

reward was consumed. Lastly, the time taken to observe engagement with the task (i.e. the 

time taken from when the mouse was placed into the arena to when it foraged the first pot) 

was recorded. This measure was thought to reflect the effect of anxiety or motivation on 

engagement with the task. 

Statistical Analysis

Data were analysed using Microsoft Excel for calculation of mean number of 

errors, times and standard error of the mean. IBM SPSS Statistics software was used to 
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analyse all data statistically. An -level of 0.05 was used for all measures showing statistical 

significance. All data were checked for violations of distribution and homogeneity of 

variance by Shapiro-Wilk test and Levene’s test respectively. Due to high levels of 

variability in data sets, and a large number of zero scores in the error measures, violations of 

these tests were observed (p<0.05). Therefore, data that violated these tests were subjected to 

transformation (i.e. Square root, log-10) based on the level of positive/negative skew and 

reassessed. Data that then showed no further violations of distribution were analysed by 

repeat measures ANOVA and independent samples t-test. In t-tests that reported violations 

of Levene’s test for equality of variance, results reported were from a modified t-test, the 

Welch t-test, which accommodates for unequal variances. Data that could not be transformed 

due to the presence of zeros in the data were analysed using non-parametric statistics. Mann-

Whitney U Tests were used to compare between group factors and Wilcoxon Signed-Rank 

Tests or Friedman’s test with Bonferroni correction to adjust for multiple post hoc 

comparisons were used to compare within subject factors.  

3.2.4 Experiment 1 – Results: 

Histology: 

An example of bilateral HPC lesions are presented in figure 3.3 and the maximum 

and minimum tissue damage obtained as a result of excitotoxic lesions are displayed in 

Figure 3.3 and 3.4 respectively. In this study 2 lesioned animals were removed from the 

study following histological analysis due to completely intact ventral hippocampal structure. 

Eight mice showed a complete lesion of the HPC with the exception of the most posterior 

ventral DG (mostly observed unilaterally) and small sparing of the ventral pyramidal cell 

layer of the HPC. Three mice showed complete removal of the dorsal HPC with further 

bilateral damage to the ventral HPC. As observed in Figure 3.4, the minimal lesion effect 

showed intact ventral HPC structure unilaterally at the most posterior reference. However 

damage was observed in the ventral DG. Cortical damage around the infusion site was 

observed in all lesioned animals, predominantly of the parietal association cortex and visual 

cortex. No HPC damage or other damage was present in the SHAM control mice except two 

mice that displayed a small amount of damage unilaterally to the visual cortex. Further 

damage observed was not focussed around the craniotomy site and was likely related to 

mechanical damage during tissue sectioning.  
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Figure 3.2: Cresyl stained example of hippocampal lesion and SHAM control mice. HPC lesions 
(right) show a significant loss of the HPC structure compared to intact HPC formation in the SHAM 
control mice (left). 
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Figure 3.3: Schematic illustration of the maximum hippocampal lesion. The level of HPC (and 
cortical) damage is illustrated by the shaded areas. Each section is denoted from the distance posterior 
to bregma.
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Figure 3.4: Schematic illustration of the maximum hippocampal lesion. The level of HPC (and 
cortical) damage is illustrated by the shaded areas. Each section is denoted from the distance posterior 
to bregma. 
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Time Taken:

The mean measurements of time taken across all 4 trials can be observed in Table 3.3. 

Lesion mice showed very similar times to SHAM controls for the total time taken to complete 

the task as well as the time taken to engage with the task. This was confirmed following 

independent samples t-tests. Total time taken showed no significant difference between 

groups, t(22)=-0.15, p>0.5. Time taken to engage with the task also showed no significant 

difference between groups, t(22)=0.83, p>0.1. These results indicate that any changes in 

memory performance between these two groups are not an effect of gross motor and/or 

motivational changes. 

Perseverative Errors:

Lesion mice appear to show a greater number of perseverative errors as observed in 

Table 3.3. Data were analysed using Mann-Whitney U Test, which confirmed that HPC 

lesioned mice made a greater number of perseverative errors when compared to sham-control 

mice, U=118.5, z=2.7, p<0.01. 

Chaining response: 

 To determine if HPC lesioned mice showed any difference in strategy to complete the 

task, chaining responses were determined (Table 3.3). HPC lesioned mice showed a greater 

number of chaining responses compared to SHAM controls as determined by Mann-Whitney 

U test, U=113.0, z=0.1, p<0.05. 

Time Measure Treatment

SHAM Lesion

Mean SD Mean SD

Total Time (s) 190.8 56.10 194.4 64.33

Engagement Time (s) 43.1 24.57 36.1 19.15

Perseverative Errors 0.73 0.61 2.80 3.53

Chaining Response 0.69 0.36 1.06 0.36

Table 3.3: Results table showing motor and foraging behaviours in the foraging task. Means and 

standard deviation (SD) in HPC lesion mice (n=11) and SHAM controls (n=13) are reported.  
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Total Errors:

To determine if there was any main effect of lesion on total errors and task acquisition, 

a repeated measures ANOVA with the between subject main effect of lesion and within-

subject main effect of trial was used to assess the number of errors recorded across the 4 

trials, as observed in Table 3.4 and Figure 3.5A. Results showed no significant main effect of 

trial, F(3, 66)=0.48, p>0.5 and no significant trial * group interaction, F(3, 66)=0.03, p>0.5 

when assessing with-subjects factors. However, a main effect of treatment was reported, F(1, 

22)=154.2, p<0.05.  

Trial Treatment

SHAM Lesion

Mean SD Mean SD

Trial 1 4.38 2.33 6.75 5.96

Trial 2 4.69 2.84 7.08 3.88

Trial 3 4.15 2.19 6.17 3.88

Trial 4 3.54 3.13 6.17 3.56
Table 3.4: Table showing the mean number of errors made in each trial by HPC lesion mice (n=11) 

and SHAM controls (n=13).

Repeat Errors:

Inspection of Figure 3.5B showed that HPC lesioned mice displayed a greater number 

of repeat errors. This was confirmed following analysis by independent samples t-test, 

t(16.29)=-2.86, p<0.05. 

Ratio of Neighbouring and Distal errors to Total errors:

The number of errors in neighbouring and distal pots are presented as a ratio of total 

errors, corrected for perseverative errors (Figure 3.5C). Independent samples t-test revealed 

that HPC lesion mice have a significantly higher ratio of error scores in neighbouring pots 

than SHAM controls, t(22)=2.14, p<0.05. HPC lesion mice further made less errors in distal 

pots when compared to SHAM control mice, t(22)=2.14, p<0.05.  
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Figure 3.5: Foraging behaviour in HPC lesion mice. Measures of SWM in SHAM control (n=13) 

and HPC lesion mice (n=11). Data were averaged across four trials for each mouse and mean score 

for each group is reported. Error bars represent the S.E.M. A) Total number of errors. B) Total 

number of repeat errors. C) The ratio of neighbouring and distal errors to total errors made. *p<0.05. 
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3.2.5 Discussion 

Results from Experiment 1 demonstrate that lesions of the HPC impair performance of 

the foraging task. HPC lesion mice made a greater number of total errors and repeat errors, 

which were used to determine WM performance in this study. This result agrees with previous 

HPC lesion experiments assessing SWM function in both rats and mice in WM tasks (Nadel 

& Moscovitcht 1997; Cassel et al. 1998; Deacon et al. 2002; Winters et al. 2004). However, 

interestingly previous studies in SWM assessment have reported task acquisition over a 

period of trials or days on maze-based WM tasks (Cassel et al. 1998; Morgan et al. 2000; 

Richter et al. 2013; Wilson et al. 2015;). This was not observed in this task by either sham-

controls or HPC lesioned mice. This indicates a validity to compare means of HPC lesion 

mice and sham-controls across all four trials, which are unbiased by any changes across trials. 

The analysis of the distribution of errors showed that HPC lesioned mice made a 

greater portion of their errors in adjacent pots than in distal located pots. This result was 

consistent with the observed increase in chaining foraging responses in HPC lesioned mice 

whereby mice would forage three of more pots immediately adjacent to one another before 

breaking this response and foraging in a pot in a more distal location. Thus, HPC lesioned 

mice appeared to adopt a different foraging strategy in order to complete the task by foraging 

in a sequential pattern and in pots with adjacent locations, whereas SHAM control mice 

appeared to forage pots in neighbouring and distal locations in an equal ratio, likely using the 

extra-maze spatial stimuli to complete the task.  

HPC lesioned mice showed no difference in total times and latency to engage with 

foraging compared to SHAM controls. This suggests that performance was not affected by 

gross motoric or motivational changes following the lesion. HPC lesioned mice showed a 

greater level of perseverative behaviours. This result is further in agreement with other reports 

observing this type of behaviour in HPC lesion animals (Olton & Werz, 1978; Johnson et al., 

1996; Whishaw & Tomie, 1997; Pouzet et al., 2002).  

Collectively, the data from the present experiment indicated that the HPC was required 

for effective foraging behaviour. Experiment 2 evaluated whether the changes in total errors, 

response perseveration and pattern separation were restricted to circumstances where 

performance did not rely on processing extra-maze cues.  
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3.2 - Experiment 2:  Assessment of non-spatial WM in HPC lesion mice 

3.2.1 Introduction: 

To test that the deficits in the foraging task were due to impaired processing of spatial 

information, a non-spatial version of this task was carried out. Two distinct types of 

navigation have been reported, allocentric and egocentric. Egocentric navigation employs the 

use of more internal cues such as self-movement or internal markers of the environment and 

therefore is not considered as spatial information. Allocentric navigation relies strongly on the 

use of distal cues or landmarks in order to form a cognitive map and has been associated with 

HPC function (Morris et al. 1986; Morris et al. 1990; Vorhees & Williams 2014). It is 

hypothesized that mice used allocentric navigation in order to complete the foraging task in 

Experiment 1. 

To test this hypothesis, in Experiment 2, extramaze cues were removed by drawing a 

black curtain around the arena and pots were each given a novel pattern. Mice therefore relied 

upon non-spatial cues in order to complete the foraging task. Studies have previously found 

conflicting results when assessing HPC involvement in non-spatial memory tasks (Olton & 

Feustle 1981; Aggleton & Road 1986; Morris et al. 1986; Raffaele & Olton 1988; Ennaceur & 

Meliani 1992). For instance, Olton and Feustle examined non-spatial WM through the use of 

an enclosed 8-arm RAM where each arm was given a distinctive discriminative stimuli. Rats 

with fimbria-fornix lesions showed working memory impairments relative to sham controls 

(Olton & Feustle 1981). However, Aggleton and Road used a three-arm Y-maze delayed non-

matching-to-sample task, which revealed that rats with HPC lesions were able to learn and 

perform the task similar to sham controls (Aggleton & Road 1986). Precise reasons for these 

differences remain speculative and are likely influenced by factors including task difficulty, 

levels of proactive interference, maze type etc. Despite conflicts between studies implicating 

the HPC in non-spatial WM tasks, experiment 2 aims to test a hypothesis that the working 

memory deficits reported in experiment 1 were due to impaired processing of spatial 

information instead of a more total WM impairment. 

3.2.2 Design: 
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The same mice used in experiment 1 were used in experiment 2. In this task each pot 

was given a novel design and all visual spatial extra-maze cues were obscured.  

Apparatus: 

All apparatus used was identical to that used in experiment 1. A black curtain was now 

drawn around the test arena to remove the distant spatial cues in the testing room. The pots 

were also changed. The size and shape remained identical, however, each pot was now 

individually designed and patterned distinctively from one another (Figure 3.6). 

Figure 3.6: Novel pot designs used in experiment 2. All 6 pots were given a novel design (4 are 

shown in this figure). Position of the pots was changed each day, but the radial formation remained. 

Procedure: 

  No pre-training was carried out and animals received training as follows:  
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Test Phase: Following testing in the spatial version of the task, mice were then 

subjected to a non-spatial WM assessment. An identical testing procedure was used as 

described above, however a black curtain was drawn around the test arena to remove all 

visual extra-maze cues. All pots were placed in the same arrangement as previously described, 

but each pot now had a unique design (Figure 3.6). To prevent any familiarity in the pattern of 

the pots occurring across the 4 days of testing, pots were swapped in their location each day 

so that no individual pot was neighbouring the same 2 pots on any test day. 

3.2.3 Experiment 2 - Results: 

Time Taken:

The mean measurements of time taken across all 4 trials can be observed in table 3.5.  

HPC lesion mice showed very similar times in both total and engagement times to SHAM 

control. This was confirmed following independent samples t-tests. There was no significant 

difference in total time taken to complete the task between groups, t(22)=-0.28, p>0.5, or for 

animals to engage with the task, t(22)=0.20, p>0.5. 

Perseverative Errors:

Initial observation of Table 3.5 shows a greater number of perseverative errors made 

by HPC lesion animals. This observation was supported by independent samples t-test 

statistical analysis, which revealed a significant difference between SHAM controls and HPC 

lesioned mice, t(22)=-0.97, p<0.05. 

Chaining strategy

 HPC lesioned mice showed a greater chaining response when compared to SHAM 

control mice as determined by independent-samples t-test, t(22)=-4.20, p<0.001 (Table 3.5). 
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Time Measure Treatment

SHAM Lesion

Mean (s) SD Mean (s) SD

Total Time 169.85 71.02 178.06 69.87

Engagement Time 40.12 16.51 38.77 15.99

Perseverative Errors 0.75 0.51 1.65 1.53

Chaining Response 0.62 0.47 1.44 0.45

Table 3.5: Results table showing non-WM measures made by HPC lesion mice (n=11) and SHAM 

controls (n=13). 

Total Errors:

To determine if there was any overall mean difference in total errors and task 

acquisition, a repeated measures ANOVA with the between subject main effect of lesion and 

within-subject main effect of trial was used to assess the number of errors recorded across the 

4 trials, as observed in Table 3.6 and the total mean in Figure 3.7A. Results showed a non-

significant difference between lesion group, F(1, 22)=131.4, p>0.1, a non significant within-

subjects main effect of trial, F(3, 66)=2.44, p>0.05, and a non-significant trial * treatment 

interaction, F(3, 66)=2.42, p<0.05.  

Trial Treatment

SHAM Lesion

Mean SD Mean SD

Trial 1 4.23 3.14 7.92 3.49

Trial 2 4.31 2.53 4.23 3.85

Trial 3 4.77 4.95 3.92 1.94

Trial 4 3.77 1.54 4.15 2.10
Table 3.6: Table showing the mean number of errors made in each trial by HPC lesion mice (n=11) 

and SHAM controls (n=13). 

Repeat Errors:

No significant difference between groups was reported for mean repeat errors (Figure 

3.7B), as determined by Mann-Whitney U Test, U=89.0, z=1.02, p>0.1. 
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Neighbouring/Distal Errors:

The ratio of neighbouring and distal errors are presented as a ratio to total errors made 

(figure 3.7C) to assess the pattern of errors in lesion and SHAM control mice. An independent 

samples t-test reported that HPC lesioned mice made a greater number of errors in 

neighbouring pots, t(22)=-3.04, p<0.01 and less in distal pots,  t(22)=3.58, p<0.01 when 

compared to SHAM control mice. 

Figure 3.7: Foraging behaviour in HPC lesion mice. Measures of SWM in SHAM control (n=13) 

and HPC lesion mice (n=11). Data were averaged across four trials for each mouse and mean score 

for each group is reported. Error bars represent the S.E.M. A) Total number of errors. B) Total 

number of repeat errors. C) The ratio of neighbouring and distal errors to total errors made. *p<0.05. 
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3.2.4 Discussion: 

 Results from this experiment indicated that HPC lesion mice displayed a similar WM 

performance to SHAM control mice when spatial stimuli were removed. Similar to 

experiment 1, no differences were observed in the times taken to complete the task or engage 

suggesting the removal of spatial cues did not affect states of emotion in these mice or motor 

performance differentially. Moreover, perseverative behaviour was observed in HPC lesion 

mice across both spatial and non-spatial versions of the foraging task.  

Two further group differences that were observed in experiment 1 continued to 

present in experiment 2; chaining response and the greater ratio of errors made around a 

previous search location in mice with HPC lesions. The former effect showed that HPC 

lesion mice continued to display a chaining response pattern, ie, animals would tend to 

simply forage in the adjacent pot (1, 2, 3) regardless of whether this pot had had previously 

been foraged in or not. Complimentary of this response, HPC lesioned mice also continued 

to show a greater level of errors made in pots adjacent to where they had just foraged. 

Collectively, as discussed in experiment 1, these differences imply that HPC lesion mice 

adopted a different strategy for task completion compared to SHAM control mice. Given a 

continued response across both experiments, this strategy is likely independent of spatial 

stimuli.  

Despite HPC lesion and SHAM mice displaying apparent different strategies, mice 

performed at comparable levels in regards to total errors and repeat error measures. These 

results indicate that HPC lesion mice were more able to use local cues to guide overall 

performance in this version of the foraging task and performed at a comparable level to 

SHAM controls. Moreover, these results suggest that inhibition of processing of spatial 

information by HPC ablation was responsible for impaired performance in experiment 1. 

 The results of experiment 2 show that HPC lesion mice are able to perform the 

foraging task at levels that are similar to sham-control mice. This would suggest that HPC 

lesions have minimal involvement in non-spatial WM processes in the foraging task. 
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3.4 - Experiment 3: Assessing foraging behaviour in PDAPP mice 

3.4.1 Introduction: 

To date, little work has been carried out to assess SWM in the PDAPP model. The 

only existing data were reported by Dodart et al., who showed age-independent WM deficits 

in the 8-arm RAM from as early as 3 months of age, which appeared to worsen with age by 

9-10 months of age (Dodart et al., 1999). Similar to reports by Dodart et al. (1999), PDAPP 

mice have also been observed to exhibit early spatial learning deficits on the circular Barnes 

maze at 3-5 months of age (Huitrón-Reséndiz et al. 2001). Evidence of perseverative 

behaviour and different search strategies were also reported. These deficits appeared to 

worsen with age and by 22-26 months of age PDAPP mice displayed a greater number of 

total trial errors, perseverative behaviour and showed impaired spatial search strategies with 

a greater tendency to display random search strategies (crossing the arena) compared to WT 

littermate controls (Huitrón-Reséndiz et al. 2001). Chen et al., reported an age-dependent 

deficit in spatial learning following a training to criterion protocol of the MWM (Chen et al., 

2000). This study predominantly focussed on the PDAPP models ability to learn a spatial 

location following multiple trials in order to meet a performance criterion (3 successive trials 

with a mean escape latency of <20 seconds). Results of this procedure showed an age-

dependent worsening in spatial learning from 6-9 months to 13-15 months of age (Chen et 

al., 2000). Further studies have since confirmed these observations of age-dependent effects 

in the processing of spatial information in the MWM and confirmed the significant 

involvement of Aβ in PDAPP mice (Hartman et al., 2005; Daumas et al., 2008). However, 

still no study to date has determined age-dependent effects of SWM in the PDAPP model.  

Reports in alternate APP and APP + PS1 models have reported age-related 

worsening in SWM performance in tasks such as the T-Maze and RAWM (Chapman et al. 

1999; Wirths et al. 2008; Webster et al. 2013). Age-dependent cognitive effects also appear 

to be relative to the distribution of Aβ in the HPC (Chapman et al., 1999; Westerman et al., 

2002). Given that PDAPP mice are reported to show age-dependent increases in levels of 

Aβ, particularly in areas such as the HPC, it is likely that SWM performance of PDAPP 

mice will be sensitive to aging (Games et al. 1995; Reilly et al. 2003; Hartman et al. 2005). 

Following evidence that the foraging task is sensitive to HPC function in experiment 1 it was 
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hypothesised that PDAPP mice would show an age-dependent decline in SWM performance 

on the foraging task. 

3.4.2 Design 

Design and subjects are fully described in section 2.3. PDAPP mice were not tested 

on the non-spatial version of this task due to time restraints as described in section 2.3. For 

this reason, all PDAPP and WT littermate control mice were initially trained on the foraging 

task at 4 months of age and were re-trained at each age point starting in the test arena, not in 

the home cage. 

3.4.3 Methods 

The apparatus, procedure and scoring used in this experiment were as described in 

experiment 1 (3.3.3).  

Statistical Analysis: 

The statistical analysis and treatment of data (transformations etc.) carried out in this 

experiment were as described in 4.3.3. However, because PDAPP mice were assessed across 

a range of ages, a further factor of age was analysed in all subsequent analyses. When 

violations in data distribution were observed by Shapiro-Wilk test, that were not rectified by 

transformations, the non-parametric Friedmans test of multiple within-subject comparisons 

was used. Post-hoc comparisons were made with appropriate Bonferroni corrections for 

multiple comparisons. This method is a more conservative non-parametric statistical test 

than multiple within-subject comparisons using only Wilcoxon signed order rank tests.  

3.4.4 Results 

Time Taken:  

Initial inspection of the time measures (Table 3.8) suggests that on average PDAPP 

mice took numerically longer to complete the foraging task than their WT littermate 

controls. A repeat measures ANOVA comparing the main between subject factor of 

genotype and within subject factor of age was used to analyse these data. Analysis of total 

time revealed a non-significant main effect of genotype, F(1, 27)=3.48, p>0.05, a non-
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significant main effect of age, F(1.56, 42.13)=2.62, p>0.05 and no significant age * 

genotype interaction, F(1.56, 42.13)=0.19, p>0.5. 

Engagement Time:

 Repeated measures ANOVA of engagement times (Table 3.8) revealed no significant 

main effect of genotype, F(1, 27) = 3.88, p>0.05 when comparing engagement times with 

the first pot in the foraging task. There was a a significant main effect of age, F(1.64, 44.37) 

= 3.57, p<0.05, but no significant age * genotype interaction, F(2, 54) = 0.67, p>0.5. This 

analysis revealed that with age, engagement time decreased, but this effect was not different 

between genotype. 

Perseverative Errors:

Inspection of the number of perseverative errors in Table 3.8 across the age range 

reveals that while WT mice have varying levels of perseverative behaviour, PDAPP mice 

show an age-related increase. These measures were analysed with non-parametric Mann-

Whitney U Tests for between-subject analysis and Friedman Test for within subject effects 

of age. Man-Whitney U Tests revealed no significant main effect of genotype at 6-8 months, 

U=104.5, z=-0.2, p>0.5, 10-12 months, U=129.5, z=1.09, p>0.1, but a significant main effect 

of genotype at 14-16 months of age, U=174.5, z=3.09, p<0.01. A Friedman test reported that 

there was a significant within-subject effect of age in WT mice, X2(2)=6.70, p<0.05. 

Pairwise comparisons were then performed with a Bonferroni correction for multiple 

comparisons and revealed no significant differences between any individual age range. A 

significant within-subject effect was also obtained in PDAPP mice, X2(2)=6.37, p<0.05. 

Pairwise comparisons further revealed a significant difference between perseverative errors 

made at 6-8 months and 14-16 months of age, p<0.05, but no other age comparisons. 

Chaining response:

 Analysis of chaining response as observed in Table 3.8 in PDAPP mice was carried 

out using a repeated measures ANOVA. Analysis revealed a main effect of genotype, F(1, 

27) = 39.77, p<0.001, a main effect of age, F(2, 54) = 5.18, p<0.01 and no significant age * 

genotype interaction, F(2, 54) = 1.09, p>0.1. 
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Measure Genotype

Age

6-8 Months 10-12 Months 14-16 Months

Mean SD Mean SD Mean SD

Total Time 

(s)

WT 135 11.9 114 17.7 100 10.9

PDAPP 175 26.1 134 23.9 141 19.9

Engagement 

Time

WT 26.95 20.30 23.92 30.03 12.48 13.45

PDAPP 38.40 29.14 40.31 40.10 32.09 36.98

Perseverative 

Error

WT 0.38 0.06 0.65 0.12 0.25 0.07

PDAPP 0.39 0.09 0.91 0.17 1.25 0.32

Chaining 

Response

WT 0.67 0.36 0.83 0.43 0.82 0.52

PDAPP 1.08 0.48 1.45 0.48 1.63 0.44

Table 3.7: Results table showing motor and foraging behaviours in WT (n=15) and PDAPP (n=14) 

mice across all ages tested. 

Total Errors:

Initial observation of Table 3.8 and Figure 3.8A suggested a trend that PDAPP mice 

showed a greater number of total errors with age. A repeat measures ANOVA was used to 

ascertain if mice showed any overall changes in total errors made or acquisition to the 

foraging task, which may be affected by age and/or genotype (Mean values reported in Table 

3.6). In this analysis, the between-subject factor remained as genotype and within-subject 

factors were age and trial. Results revealed a non significant main effect of genotype, F(1, 

27)=1.84, p>0.1, a non significant main effect of age, F(2, 54)=0.13, p>0.5, a non significant 

age x genotype interaction, F(2, 54)=2.50, p>0.05, a non significant main effect of trial, 

F(2.09, 56.52)=0.23, p>0.5, a non significant trial x genotype, F(3, 81)=0.71, p>0.5, a non-

significant age x trial interaction, F(6, 162)=0.60, p>0.5 and a non-significant age x trial x 

genotype interaction, F(6, 162)=0.46, p>0.5. 



101

Genotype Age

Trial

1 2 3 4

Mean SD Mean SD Mean SD Mean SD 

6-8 WT 4.27 2.49 4.73 2.22 5.20 3.53 4.47 2.29

PDAPP 4.29 3.07 4.64 5.05 4.57 3.25 4.57 3.20

10-12 WT 5.53 2.75 3.40 2.59 5.00 2.70 4.73 3.06

PDAPP 5.00 2.72 5.64 4.92 4.86 4.02 4.79 5.31

14-16 WT 3.67 2.16 3.07 2.12 3.20 2.91 4.67 3.96

PDAPP 7.07 8.26 6.14 5.40 4.71 5.20 5.93 5.57

Table 3.8: Mean numbers and standard deviation of working memory errors across trials in 

the foraging task in wild type (n=15) and PDAPP mice (n=14).

Repeat Errors:

A similar observation can be made of figure 3.8B as with total errors. These data 

were assessed using non-parametric Mann-Whitney U test (between-subjects) and 

Friedman’s test (multiple within-subjects comparison) due to violations of Shapiro-Wilk test, 

p<0.05 and inability to transform data due to a number of zero scores in the data set. Results 

from Mann-Whitney U test revealed no significant differences between genotypes at 6-8 

months of age, U=104.5, z=-0.22, p>0.5, 10-12 months of age, U=139.5, z=1.52, p>0.1, but 

a significant difference between WT and PDAPP mice at 14-16 months of age, U=150.5, 

z=1.99, p<0.05. Within-subjects analysis revealed no significant effect of age in WT mice, 

X2(2)=1.2, p>0.5, or in PDAPP mice, X2(2)=2.33, p>0.1. 

Neighbouring/Distal Errors:

The number of errors in neighbouring and distal pots were converted to a ratio of total 

errors (figure 3.8C) to assess group differences in the pattern of errors. These data were 

analysed with a repeated measures ANOVA. Analysis of errors in neighbouring pots revealed 

a significant main effect of genotype, F(1, 27) = 20.51, p<0.001, a significant main effect of 

age, F(2, 54) = 7.39, p<0.001 and no significant age * genotype interaction, F(2, 54) = 0.41, 

p>0.5. Analysis of the ratio of distal errors revealed a main effect of genotype, F(1, 27) = 

18.54, p<0.001, a main effect of age, F(2, 54) = 7.01, p<0.01, but no significant age * 

genotype interaction, F(2, 54) = 0.33, p>0.5. Collectively this analysis revealed that PDAPP 
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mice make a greater portion of errors in neighbouring pots and less in pots in distal locations 

when compared to WT controls at each age tested.  

Figure 3.8: Foraging behaviour and SWM performance in PDAPP (n=14) and WT control mice 

(n=15). Data were averaged across four trials for each mouse and mean score for each group is 
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reported. Error bars represent the S.E.M. A) Total number of errors. B) Total number of repeat errors. 

C) The ratio of neighbouring and distal errors to total errors made. 

3.3.5 Discussion 

The results of experiment 3 demonstrate an overall general decline in SWM 

performance in PDAPP mice with age. Although numerically different, no significant 

differences were observed when comparing time taken to complete or engage with the task. 

The latter result suggests that gross changes in motor performance, motivation or anxiety did 

not influence the performance of PDAPP mice on this task. However, perseverative behaviour 

was observed by 14-16 months of age. This finding is similar to results observed with PDAPP 

mice in a holeboard maze and 3xTg mice using a touchscreen-based 5-choice serial reaction 

time-task (Huitrón-Reséndiz et al. 2002; Romberg et al. 2011a). Previous evidence showing 

that HPC lesions displayed similar behaviour, as well as observations from experiments 1 and 

2, suggests that this pattern of deficit may reflect an age-dependent impairment in HPC 

function in PDAPP mice (Wang & Cai 2006; Yoon et al. 2008). The differences observed in 

the mean total number of errors, although by eye appearing to worsen with age, showed no 

significant difference in PDAPP mice at any age compared to WT mice. Nevertheless, 

PDAPP mice made a greater number of repeat errors compared to WT mice at 14-16 months 

of age.  

PDAPP mice were also observed to use a chaining response during the foraging task. 

This was complimented by an overall increase in the number of errors made in pots adjacent 

to those that had just been foraged in. PDAPP mice have shown altered strategies from a 

young age (3-5 months) in a circular holeboard maze (Huitrón-Reséndiz et al. 2002). Huitrón-

Reséndiz (2002) observed an age-related change in escape strategy in the holeboard maze in 

PDAPP mice at 20-26 months of age. Altered escape patterns were also observed in PDAPP 

mice in the MWM up to 18-21 months of age (Chen et al. 2000). This different pattern of 

response appears to worsen with age in PDAPP mice in the foraging task by 14-16 months of 

age, although no age * genotype interaction was observed and a main effect of age appears to 

effect foraging behaviour similarly between both PDAPP and WT control mice. This suggests 

that overexpression of APP, prior to the significant onset of amyloid pathology observed at 15 

months (chapter 4) leads to altered foraging strategies in PDAPP mice from 6-8 months of 

age.  
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Collectively, these data were consistent with age-related impairments in the processing 

of SWM previously reported in PDAPP mice (Dodart et al. 1999; Chen et al. 2000; Hartman 

et al. 2005; Daumas et al. 2008). Levels of amyloid have been reported to increase from as 

early as 6 months and continue to rise with age (Dodart et al. 2002; Dodart et al. 2000; Games 

et al. 1995; Hartman et al. 2005; Reilly et al. 2003). Data reported in Chapter 4 showed that 

PDAPP mice showed a significant increase in the levels of soluble and insoluble Aβ42 in the 

HPC at 15 months of age. This age-dependent increase in levels of Aβ in the HPC is likely to 

impair the processing of spatial information required for the successful completion of the 

foraging task and influence the behaviour of mice reported in experiment 3. 

3.4 Chapter Discussion  

The main aim of this chapter was to determine an age-dependent profile of SWM 

performance in the PDAPP model. To do this, a foraging based task was used that was less 

aversive than other water or fear motivated tests, and promoted rapid acquisition suitable for 

within-subject longitudinal designs. In order to evaluate the role of the HPC to this form of 

spatial working memory, Experiments 1 and 2 tested the hypothesis that mice with excitotoxic 

lesion of the HPC would show a selective deficit in the foraging task when extramaze cues 

guided performance compared to a similar task in which intramaze cues guided successful 

foraging. 

The results from experiments 1 determined that HPC ablation caused impaired 

foraging behaviour, most likely because of a deficit in processing extramaze spatial 

information. This was further confirmed by a non-spatial manipulation of the foraging task 

(experiment 2) whereby all distal spatial cues were removed to prevent allocentric navigation. 

Despite evidence from experiments 1 and 2 suggesting a role for the HPC in this foraging-

based task, alternative factors may influence task performance, such as the use of odour cues, 

which was not controlled for in this task. Rodents have been shown to use odour trails to aid 

navigation in water-escape and other WM tasks previously (Means et al. 1992; Hughes 2004). 

However, Olton and Collison (1979) reported that in the RAM, intramaze cues including 

odour trails were insufficient to govern accurate choice behaviour (Olton & Collison, 1979). 

Olton and Collison determined this by rotating the maze after each choice and food was either 
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kept in the same arm to determine if intramaze cues were used or food was kept in the same 

location to determine if extramaze cues were used to govern behaviour. Results from the 

study by Olton and Collison concluded that the use of extramaze stimuli governed accurate 

choice behaviour in rats (Olton & Collison, 1979). Thus, a further manipulation of the task 

described in this chapter, similar to that described by Olton and Collison, could be used in 

order to confirm whether mice used odour trails to navigate foraging behaviour, whereby the 

spatial locations of foraged pots could be changed half way through the trial (Olton & 

Collison, 1979). 

Across both experiment 1 and 2 HPC lesion mice were observed to show a greater 

number of errors in pots adjacent to those just foraged in, which was complimented by a 

significantly greater chaining response. This reported behaviour to alternate in a preferred 

direction has previously been reported in foraging tasks such as the RAM (Olton & Werz 

1978; Timberlake & White 1990). Contradicting to the results reported in experiment 1, 

Olton and Werz reported that HPC lesioned rats showed a more random response pattern and 

showed a preference for foraging in arms far away from the arm where they had just 

received a reward, whereas control rats showed a preference in foraging adjacent baited arms 

(Olton and Werz, 1978). This difference in behaviour may be influenced by the open arena 

design of the foraging task reported in this chapter compared to the radial arm design of the 

RAM whereby rodents must always return to a central platform prior to making their next 

choice. Interestingly, HPC lesioned rats have been reported to exhibit circling search 

strategies in the MWM in order to find the hidden platform (Pouzet et al. 2002). These 

results indicate that different types of maze may cause altered search strategies in rodents in 

order to successfully complete the given task. The differences in foraging strategy observed 

in this chapter and in HPC lesioned rats in the RAM and other spatial tasks may thus be an 

effect of the differences in maze type and/or the stimulus driving the goal-response (ie. food-

reward/escape from aversive stimulus). This observation further adds to the caution that 

must be taken when comparing results of spatial memory and foraging behaviours across a 

range of tasks.  

 Collectively, evidence from experiments 1 and 2 suggest 3 main conclusions. First, 

the HPC plays a significant role in the processing of spatial-based allocentric information in 

the foraging task. Secondly, the processing of extra-maze information is likely sensitive to 

proactive interference as determined by the increase in number of total errors and repeated 

error choice made by HPC lesion mice. Thirdly, impaired HPC function can lead to altered 
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foraging behaviours and strategies in both the spatial and non-spatial versions of the foraging 

task. 

The findings from experiment 1 and 2 provided a task with rapid acquisition and 

testing periods on which to assess SWM in PDAPP mice across a range of ages. To date, no 

study has used a within-subject longitudinal design to assess SWM performance in the 

PDAPP model; other studies have used cross-sectional designs (Dodart et al. 1999). Due to 

the evidence of age-dependent increases in Aβ production and deposition, particularly in the 

HPC, and the evidence of age- and Aβ-related cognitive deficits, it was hypothesised that 

PDAPP mice would display an age-related deficit in the foraging task (Games et al. 1995; 

Chapman et al. 1999; Dodart et al. 2002; Hartman et al. 2005). In experiment 3 no significant 

difference was reported when observing mean total errors only as a measure of SWM 

performance. However, differences were observed with age in regard to repeated errors. This 

identified a SWM deficit in 14-16 month old PDAPP mice only, relative to WT littermate 

controls. As total errors take into account all forms of “error” across the foraging task, repeat 

errors allow for the identification of a more severe WM deficit as mice repeat an error already 

made. Although speculative, one possible reason for increased repeat errors is an increased 

sensitivity to proactive interference. PDAPP mice have been reported to show age-dependent 

deficits in spatial learning at 13-15 months of age in a manipulation of the MWM, which 

could be reversed following Aβ immunotherapy (Chen et al. 2000; Hartman et al. 2005;

Daumas et al. 2008). This spatial learning deficit was further shown to be sensitive to 

interference (Daumas et al. 2008). Daumas and colleagues showed that as the number of 

spatial locations learned in the MWM increased, the ability of PDAPP mice to recall them 

reduced in mice at 5-6 months of age and thus concluded that PDAPP mice were sensitive to 

spatial interference (Daumas et al. 2008). It was hypothesised that earlier deficits would most 

likely be an effect of soluble oligomeric forms of Aβ that had been implicated in disrupted 

neuronal function and preceded overt plaque deposition (Walsh et al. 2005; Lesné et al. 2006;

Daumas et al. 2008). The sensitivity to interference observed by Daumas and colleagues 

presents an interesting comparison to the observations of patients with AD who show faster 

forgetting on recall tasks and remote memory and hence, examining memory interference in 

AD may be sensitive to earlier diagnosis (Kopelman, 1985; Christensen et al.,1998). A similar 

approach to Daumas and colleagues may better test the sensitivity of proactive interference in 

PDAPP mice in the foraging task by increasing the number of pots placed in the open arena. 
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This would require a greater level of spatial information to be processed within-trial in order 

to remember the spatial locations of pots already foraged and further confirm this observation.  

Across all experiments in this chapter HPC lesion mice and PDAPP mice displayed a 

greater tendency to show a chaining response in foraging behaviour. This was further 

complimented by a significant increase in the ratio of errors made in pots adjacent to those 

just foraged in. Altered foraging responses and escape strategies have previously been 

reported in HPC lesioned mice and Tg models of amyloid pathology, including PDAPP mice 

(Olton & Werz 1978; Chen et al. 2000; Huitrón-Reséndiz et al. 2002; Janus 2004). In 

PDAPP and TgCRND8 models of amyloid pathology altered search strategies in the Barnes 

maze and MWM have been associated with age and with age-related increases in amyloid 

pathology (Johnson-Wood et al. 1997; Chishti et al. 2001; Huitrón-Reséndiz et al. 2002; 

Janus 2004). However, PDAPP mice also displayed age-independent, non-spatial search 

strategies in the Barnes maze from 3-5 months of age (Huitrón-Reséndiz et al. 2002). Similar 

to this, chaining strategies were observed in the foraging taging task in PDAPP mice from 6-

8 months of age. This preceeded the significant increase in levels of Aβ in the HPC of 

PDAPP mice (Chapter 4, experiment 6). It has previously been observed that 100-day old 

PDAPP mice have a reduced HPC volume, an effect likely caused by APP overexpression 

(Redwine et al. 2003). It is probable that these early detrimental effects of the HPC play a 

role in spatial search strategies in spatial memory tasks and may be a reason for the early 

differences in foraging behaviours observed in PDAPP mice at 6-8 months of age in 

experiment 3. 

  The significant increase in errors made in adjacent pots may not purely be an effect 

of chaining response. It is difficult to distinguish the extent to which the reported increase in 

errors made in the adjacent pots is a direct effect of this chaining strategy used by HPC 

lesioned and PDAPP mice. It may reflect a deficit in pattern separation ability. Spatial pattern 

separation is the process in which memory components containing similar or overlapping 

spatial information are separated to form independent, distinguished memories (Rolls 2013). 

This process in believed to occur through inputs to the HPC and subsequent processing of 

information in the DG and CA3 (Gold & Kesner 2005; Yassa & Stark 2011). Pattern 

separation is reportedly effected by age, but more significantly by the pathological effects of 

AD (Stark et al. 2010; Holden et al. 2012; Ally et al. 2013; Stark et al. 2013). However, to 

date, no study has reported any specific deficits in pattern separation in any transgenic model 

of AD. Interestingly, one report has predicted aberrant processing of information within 
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DG/CA3 networks based on differential c-fos expression in Tg2576 mice following exposure 

to novel spatial stimuli in a familiar arena setting (Palmer & Good 2011). Palmer and Good 

further predicted that, based on these results, APP overexpression would likely impact on 

pattern separation processes supported by the DG/CA3 region. In this study, PDAPP mice 

made a significantly greater proportion of errors in pots adjacent to one another in comparison 

to WT littermate controls; an effect that was also observed in mice with HPC cell loss. This 

overall distribution of errors appeared to be age-independent, however, numerically a greater 

proportion of errors were made in adjacent pots with age. It has previously been reported that 

100-day old PDAPP mice have a 12.3% reduction in total HPC volume as well as a localized 

28% volume reduction in the DG compared to age-matched WT controls (Redwine et al. 

2003). Thus, APP overexpression and reports of HPC morphological abnormalities may 

contribute to the overall increase in errors made in adjacent pots as reported in experiment 3. 

Furthermore, evidence from fMRI studies have reported hyperactive signals in the CA3 and 

DG and hypoactive signals in the EHC in patients with MCI (a preclinical marker of AD) 

undertaking a pattern separation task (Petersen et al. 1999; Yassa et al. 2010). Although 

speculative, a significant increase in levels of insoluble Aβ40 and a numerical increase in 

Aβ42 were observed in the HPC of 7-month old PDAPP mice (Chapter 4, experiment 6), 

which may have also contributed to this early change in error distribution. None-the-less, this 

measure and speculative hypothesis of pattern separation deficits requires further 

examination, independent of the reported chaining response. Therefore, more specific task 

manipulation that may inhibit chaining responses, or more precise lesions or pharmacological 

intervention of the HPC sub regions would be required to confirm this pattern separation 

hypothesis in this task.  

In summary, the aims of this experimental chapter were to validate a new behavioural 

assay that was sensitive to HPC function to assess SWM performance in PDAPP mice. The 

main features of this task was that it would act to be less aversive than tasks such as the 

MWM and RAWM, and require less repeated training and extensive testing protocols, as is 

necessary for example, in the RAM. The results from this study demonstrate that the HPC 

played a significant role in forging behaviour when animals were able to use extramaze 

information. PDAPP mice showed altered foraging behaviour and strategies as well as an age-

related WM deficit. Due to the age-dependent increase in levels of Aβ in the PDAPP model 

(Chapter 4), it would appear that the foraging task acts as a unique tool for testing SWM 

performance that may be sensitive to amyloid burden. However, further characterisation and 
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evaluation of the task is required in order to provide a more conclusive understanding of the 

deficits and foraging behaviours observed in mice during this task. This task therefore 

presents itself as a rapid and unique assay in which to test age-related effects of SWM 

performance and foraging behaviours in animal models of progressive neurological disorders, 

such as AD.   
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Chapter 4: Characterising object recognition memory and age-related 

amyloid pathology in PDAPP mice 
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Chapter Overview 

 This chapter describes experiments that evaluate object recognition memory in the 

PDAPP model across a range of ages. The main aim of these experiments was to identify any 

age-dependent deficit that could be used as a behavioural target for in vivo administration of 

the anti-APP antibody, 2B3. Two versions of the object recognition procedure were used. The 

first was the object novelty recognition memory task. The second task was the object-in-place 

(OiP) procedure. The former task was used to assess the encoding and memory for object 

information, the latter to assess encoding of object-place associations. An age-related profile 

of soluble and insoluble levels of Aβ40 and Aβ42 was also carried out by ELISA in order to 

establish the relationship between age-related behavioural phenotypes and pathological 

hallmarks of excess amyloid production in the hippocampus (HPC) of the PDAPP model. The 

first section of the chapter will provide an overview and rationale for the use of object 

recognition memory paradigms. Subsequently, a succinct review of the current literature 

regarding age related changes in recognition memory in the PDAPP mouse model and other 

transgenic lines will be provided. In summary this chapter reports that PDAPP mice showed 

intact memory for object novelty/familiarity across age and delay intervals, but impaired OiP 

memory that manifested at 14-16 months of age. The latter appeared to be related to a 

significant increase in levels of Aβ in the hippocampus (HPC). The results are discussed with 

reference to previous findings and how they contribute to our understanding of recognition 

memory processes in PDAPP mice.  

4.1 Chapter Introduction 

The novel object recognition procedure was originally developed in 1988 by 

Ennaceur and Delacour as a one-trial task to examine recognition memory in rats. The task 

exploited the natural tendency of rodents to explore objects (Ennaceur & Delacour 1988). 

This task removed the need for explicit training and food deprivation (Aggleton 1985; 

Rothblat & Hayes 1987). In the basic procedure, rats are first placed in an arena with two 

identical objects. This sample trial (T1) lasted for 3 or 5 minutes before varying delays of up 

to 24 hours were introduced prior to the test trial. In the test trial (T2), rats were presented 
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with one identical object that had been previously encountered in T1 and one novel object that 

had never been seen before. The total time spent exploring/interacting with the novel and 

familiar objects were recorded. Exploration was defined as directing the nose at a distance of 

≤2cm to the object and/or touching the object with the nose. Any further interaction with the 

object that was not directly exploring the object, ie, sitting on the object, was not considered 

exploring the object and was not scored. Findings from this study reported that rats showed a 

preference for exploring novel objects, which was highly influenced by the total time given in 

T1 to explore the sample objects and the interval between T1 and T2 (Ennaceur & Delacour 

1988). This task therefore offered itself as a novel, more rapid one-trial memory testing 

protocol without the necessity for explicit training or positive/negative reinforcement.  

Since the original report, the novel object recognition procedure has been used in 

many studies to assess recognition memory in a range of rodent models of neurological 

disorders, pharmacological studies, as well as studies designed to understand the 

neuroanatomical substrates of recognition memory (Antunes & Biala 2012; Warburton & 

Brown 2015a). The basic procedure has been extended to test memory for other features of 

objects, such as their spatial location (Figure 4.1 and Table 4.1). Results of this work are a 

comprehensive literature that has described major roles for three interconnected brain 

systems, the perirhinal cortex (PRC), HPC and medial prefrontal cortex (mPFC). Given that 

the experiments carried out in this chapter focus on object novelty memory and object-in-

place (OiP) memory, the neural systems supporting information processing relative to these 

tasks will be the main focus. The object-location task will also be considered due to the HPC 

sensitivity in the processing of spatial information in this task (Barker et al., 2011). A more 

detailed review of the neural substrates of the temporal order memory can be found in 

Warburton et al. 2013 and Warburton & Brown 2015. 
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Figure 4.1: Illustration to show the varying object recognition memory tests used to assess object 

recognition memory in rodents. A. Object novelty memory. B. Object location memory. C. Object-

in-Place memory. (Warburton & Brown 2015) 
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Task Task 

Description

Successful Memory 

Performance

Anatomical Structures 

Involved

Object Novelty Animals are exposed to two identical objects in a sample phase 

for a given period of time before a retention period. In the test 

phase one familiar object from the sample phase and one novel 

object is presented to the animal. These objects are presented 

in the same spatial locations as the objects presented in the 

sample phase.

Animals will explore the novel 

object in preference to the 

familiar object

Perirhinal Cortex 

(Object-based information)

Object Location Two identical objects are presented to animals for a given period 

of time in the sample phase. Following a retention interval, 

animals are re-exposed to the same two objects, however, one is 

now in a novel spatial location. 

Animals show preference to the 

object in the novel spatial 

location.

Hippocampus 

(Spatial-based information)

Object-in-Place Animals are exposed to four different objects in the sample 

phase. Following a retention interval, animals are re-exposed to 

the same four objects. However, two objects remain in the same 

place as in the sample phase and two are switched in place. 

The animal will explore the two 

objects that have switched from 

their original place.

Perirhinal Cortex

(Object-based information)

Hippocampus 

(Spatial/contextual-based information)

Medial Prefrontal Cortex

(Spatial/contextual-based information)

Table 4.1: Table describing the variations of object recognition memory tasks. These tasks are used in order to test object recognition memory and the functioning of specific 
neuroanatomical structures and/or pathways. Anatomical structures and neuronal circuits reviewed in Warburton et al. 2013 and Warburton & Brown 2015.
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In animals, novel object recognition memory has been proposed to be dissociated from 

HPC function (Borwn & Aggleton 2001). Brown and Aggleton proposed that the PRC 

supported object recognition memory and the HPC processed more complex information and 

stimuli, including spatial and environmental aspects (Brown & Aggleton 2001). Evidence 

from lesion studies showed that HPC ablation did not prevent rodents from discriminating 

novel and familiar objects. In contrast, lesions of the PRC resulted in an inability of animals 

to dissociate novel and familiar objects with delays of up to 24 hours (Bussey et al. 2000; 

Winters et al. 2004; Winters & Bussey 2005; Barker et al. 2007). However, other reports have 

identified a role for the HPC in object novelty memory (Gaskin et al. 2003; Hammond et al. 

2004).  

Gaskin (2003) reported that in rats with HPC lesions object novelty deficits were 

observed when familiar objects were presented prior to surgery, but not after. To determine 

this effect, rats were presented with sample objects for 5 minutes/day for 5 consecutive days, 

1 or 5 weeks prior to surgery. 15-20 days after surgery object novelty memory was tested. 

Rats with HPC lesions showed impaired object novelty memory, however, sham controls 

showed a preference to explore novel objects over familiar. Object novelty memory was 

further tested in HPC lesioned rats after surgery with a new pair of familiar objects. Object 

memory was tested in all rats using a 15-minute and 24-hour delay period. In these trials, both 

HPC lesioned and sham control rats performed at similar levels. The authors concluded that 

extrahippocampal circuitry is involved in object recognition memory when the HPC is not 

involved in object encoding (Gaskin et al. 2003). However, an alternative or further 

observation could propose that the HPC plays a role in recognition memory over much longer 

delay periods than 24-hours. Unfortunately, Gaskin and colleagues did not repeat the primary 

experiment whereby rats were exposed to sample objects prior to a delay period of up to 7 

weeks to observe if HPC lesioned rats were able to display novelty preference independent of 

the HPC over such a long-term delay period. Hammond and colleagues (2004) also reported 

that C57Bl/6 mice with HPC lesions showed object novelty deficits when recognition 

memory was tested 24-hours following sample phase, but not after a 5-minute delay. 

However, alothough less than sham controls, HPC lesioned mice still showed a significant 

preference to novel objects following a 24-hour delay and were therefore able to show 

memory towards the familiar object (Hammond et al. 2004).  

These conflicting reports to the independent role of the PRC in object-novelty memory 

appear most likely an effect of delays ≥24-hours. However, many studies report in-tact 

recognition memory using delays of ≤24-hours (Clark et al. 2000; Broadbent et al. 2010; 
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Barker & Warburton 2011; Warburton & Brown 2015a). Thus, evidence has suggested that 

successful completion of the object novelty memory task is sensitive to PRC function, and is 

independent of the HPC and mPFC across short term delay periods, however delays ≥24-

hours require further investigation to better conclude the function of the HPC in long-term 

object recognition memory. More recently, studies have identified receptors involved in the 

processing of object recognition memory within the brain structures involved within object 

recognition memory tasks (Warburton et al. 2013). These precise receptor based mechanisms 

will be discussed in Chapter 5 and in more detail in the thesis General Discussion. 

OiP memory refers to an animals’ ability to associate object information with a place 

or location (see Figure 4.1 and Table 4.1). Lesion data has revealed that the mPFC, HPC and 

PRC are essential for successful memory performance in this task, in both rodents and 

monkeys (Bussey et al. 2000; Barker et al. 2007; Bachevalier & Nemanic 2008; Wilson et al. 

2008; Barker & Warburton 2011). The interaction between these three brain regions plays a 

major role in the formation of object and place associations (Barker et al. 2007; Barker & 

Warburton 2011). Barker and colleagues (2007) reported that rats with bilateral lesions of the 

mPFC, PRC or unilateral lesions of the PRC and mPFC in contralateral hemispheres, showed 

a significant impairment in the OiP memory task compared to rats with unilateral PRC and 

mPFC lesions within the same hemisphere and SHAM controls (Barker et al. 2007). Barker et 

al., (ibid) also showed that all lesion groups were unimpaired in the object-location task and 

object novelty memory tasks following a 5 minute and 2 hour delay period, except rats with 

bilateral lesions of the PRC (Barker et al. 2007). These data provided evidence that an 

interaction between the mPFC and the PRC is essential for successful object and place 

associations required for the OiP task. In contrast, no lesions group was sensitive to the 

object-location task. These studies also confirmed the crucial role of the PRC in object-

novelty memory.  

A later study by Barker & Warburton (2011) examined the role of the HPC in 

recognition memory. In this study, rats initially received bilateral lesions of either the PRC, 

mPFC or HPC and were tested on object-novelty memory and spatial recognition (OiP and 

object-location) tasks (Barker & Warburton 2011). This study reported that HPC lesioned 

animals showed impairments in the OiP and object-location task, but no impairment in object-

novelty detection with delays of up to 24 hours. PRC lesioned animals, however, showed 

impairments in the OiP task and object-novelty memory at all delays tested (5 minutes, 3 and 

24 hours), whereas no impairment was observed in the object-location task. Therefore, the 

HPC appeared crucial in processing spatial information, while the PRC was essential for 
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encoding information regarding familiar objects. Collectively, both the PRC and HPC were 

essential for object recognition memory and spatial-associations (Barker & Warburton 2011). 

Similar to Barker and colleagues (2007), the interactions between the HPC, mPFC and PRC 

were assessed. Rats received unilateral lesions to the HPC combined with a further ipsilateral 

or contralateral lesion to either the PRC or the mPFC (Barker & Warburton 2011). These 

results showed that contralateral HPC-PRC and HPC-mPFC lesioned rats, but not ipisilateral 

lesioned groups were significantly impaired in the OiP task following a 5 minute delay, but 

not in the object-location or object-novelty task (Barker & Warburton 2011). This 

observation, confirmed a dual role of the PRC and HPC in the encoding of object and place 

associations and collectively with the dissociation study reported by Barker (2007), further 

suggested an intact PRC-HPC-mPFC circuit was essential for successful memory 

performance in the OiP task. Thus, disruption to this circuit by lesion or disease pathology is 

likely to impair the processing of object and place associative information.  

Tg mice overexpressing mutated hAPP have elevated levels of A that develop with 

age (Johnson-Wood et al. 1997; Hartman et al. 2005). In PDAPP mice, dense Aβ deposits 

appear in the molecular layer of the DG and the lateral entorhinal cortex (EHC) suggesting 

that the lateral perforant pathway may be particularly sensitive to amyloid pathology and may 

underpin some of the cognitive deficits in this mouse line (Games et al. 1995; Chen et al. 

2000; Reilly et al. 2003). Consistent with this pattern of pathology, PDAPP mice have also 

shown age-dependent deficits in spatial learning and memory that correlated with levels of 

amyloid (Chen et al. 2000; Hartman et al. 2005). Other Tg models of amyloid pathology, such 

as Tg2576 mice display age-related increased levels of Aβ in regions that include the HPC 

and the mPFC (Hsiao et al. 1996; Kawarabayashi et al. 2001; Zhuo et al. 2008). Tg2576 mice 

also showed age-related deficits in spatial-based memory tasks, including the OiP task, while 

object-novelty memory remained in tact (Hsiao et al. 1996; Hale & Good 2005; Good & Hale 

2007). One interpretation of this pattern of results is that the PRC remained unaffected by 

amyloid pathology in aged Tg2576 mice. In contrast, object-place associative memories are 

clearly impaired. Collectively these data would suggest that impaired OiP memory in Tg2576 

mice is likely due to amyloid-related pathology within the PRC-HPC-mPFC circuit

previously described by Barker and Warburton (Barker & Warburton 2011; Warburton & 

Brown 2015). Given that similar age-related pathology is observed in the cortex and HPC of 

PDAPP mice, it is likely that the PDAPP model will be sensitive to spatial recognition 

memory in the OiP task.
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 To date, no studies have assessed object recognition memory in male PDAPP mice 

bred on a C57Bl/6 background. The dissociation between the HPC and PRC in processing 

object and spatial information permits assessment of these systems across age in relation to 

the hAPPV717F mutation. Previous studies with PDAPP mice bred on a mixed background 

strain have reported an age-related deficit in object recognition memory (Dodart et al. 1999). 

However, this result has been inconsistent across laboratories (Chen, Chen, Knox, Inglis, 

Bernard, Martin, Justice, Mcconlogue, et al. 2000). There are a number of discrepancies 

between studies that must be considered. Differences in acquisition/familiarisation to the 

objects in the sample phase differed between both studies. Dodart (1999) allowed mice a 10 

minute sample phase, whilst Chen (2000) allowed mice to accumulate a 30 second total 

inspection time of objects (or a maximum of 20 minutes sample phase). Previous reports have 

observed that an increased time for acquisition in the sample phase can significantly improve 

object recognition memory (Ennaceur & Delacour 1988; Antunes & Biala 2012). However, 

neither study reported contact times with objects for WT and PDAPP mice. The delay period 

used in both studies prior to testing also differed. Chen (2000) reported 10 seconds, 1 and 10 

minutes, 1 and 4 hour delays, whereas Dodart (1999) used only a single 3-hour delay prior to 

testing. Dodart (1999) reported a significant difference at 9-10 months of age following a 3-

hour delay. Chen (2000) reported no significant differences between PDAPP and WT mice up 

to latest age point tested (18-21 months) with a 4-hour delay. It therefore appears unlikely that 

this difference was an effect of delay, or age, and is tempting to speculate that contact times 

with objects may have contributed to the differences between studies.  

One further experimental procedure differed across sample and test phase in these two 

studies that likely contributed to the differences in behavioural results reported. During the 

sample phase, Chen et al., (2000) exposed mice to two identical objects in fixed locations 

before replacing one of the sample objects with a novel object in the test phase. In contrast, 

Dodart and colleagues (1999) exposed mice to a single object in the sample phase and 

presented the familiar and a novel object in the test phase. The task used by Dodart et al., 

confounds object novelty with novel location information (of the novel object) and thus, the 

contribution of the spatial component to the recognition deficit in PDAPP mice remains 

unclear. Importantly, no study has yet directly assessed OiP memory in PDAPP mice. This 

analysis further highlights the need for careful and considered assessment of behavioural 

changes in Tg mice. Furthermore, mice from these studies were generated from different 

colonies and it is unclear if each study had an equal representation of each background strains 

phenotype. 



119

The aim of the present experiment was to characterise object and object-in-place 

recognition memory in male PDAPP mice across an age range. Based on evidence for an age-

related deficit in spatial memory in PDAPP mice and intact object novelty memory as 

reported by Chen (2000), the hypothesis for this experiment was that transgenic mice would 

show a task specific and age-related deficit in visuo-spatial memory.  

4.2 - Experiment 4: Object Novelty Memory in PDAPP Mice   

4.2.1 Experiment Introduction 

 This chapter is composed of 3 experiments; 4, 5 and 6. Experiment 4 assessed object 

novelty memory in PDAPP mice across a range of ages, 6-8, 10-12 and 14-16 months of age 

in order to determine any age-dependent changes. The protocol used to assess object 

recognition memory in this experiment was similar to the original protocol reported by 

Ennaceur and Delacour (1988) and that used by Chen and colleagues (2000). Experiment 5 

assessed spatial and object associations using procedures similar to those adopted by Barker 

& Warburton (2011).  Experiment 6 assayed brain Aβ level across an age range, similar to 

previous studies (Games et al. 1995; Johnson-Wood et al. 1997; Dodart et al. 2000; Hartman 

et al. 2005). This experiment used ELISA assays to quantify levels of soluble and insoluble 

Aβ40 and Aβ42 changed at 3, 7, 11 and 15 months of age in the HPC of PDAPP mice. 

4.2.2 Design  

Subjects, Apparatus, Method: 

All mice used in the behavioural protocols to assess object novelty and OiP memory 

were identical to those described in Chapter 2 (section 2.3) 

Mice used to quantify Aβ were obtained from separate cohorts. A total of 26 male 

PDAPP mice were used to determine the levels of Aβ across ages. 5 PDAPP mice were culled 

by cervical dislocation at 3 months of age and a further 7 at 7, 11 and 15 months of age. The 

HPC was dissected and snap frozen and stored at -80oC. All extraction and ELISA protocols 

are described in Chapter 2, (section 2.4). 
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Statistics

Data were analysed as described in Chapter 2 (section 2.3 and 2.4). Due to high 

levels of variability in data sets, violations of Shapiro Wilk’s test and/or Levene’s test were 

observed (p<0.05). Therefore, data that violated these tests were subjected to transformation 

(ie. Square root, log-10) based on the level of positive/negative skew and reassessed. Data 

that no longer violated these assumptions were analysed by mixed measures ANOVA to 

determine age and genotype-related changes. Any further violations of Mauchly’s Test of 

Sphericity were reported according to Greenhouse-Geisser analysis. One sample t-tests were 

used to determine if the performance of each group of mice was above chance (0.5) level. 

Where data remained in violation of these tests, despite transformations, non-parametric tests 

were used. This was only apparent in data assessing levels of Aβ42. As these measures were 

compared as a between-subject analysis a Kruskal-Wallis test was performed with Dunn’s 

test with a Bonferroni correction for multiple comparisons. The adjusted p-values are 

reported. 

4.2.3 Experiment 4 - Results: 

PDAPP mice showed intact object-novelty memory at 6-8, 10-12 and 14-16 months of age:

Sample Phase Contact Times 

Table 4.2 shows the mean contact time with objects across sample phase of PDAPP 

mice and WT littermate controls at 6-8, 10-12 and 14-16 months of age. Inspection of these 

data suggests that PDAPP mice explored the two identical objects less in the initial sample 

phase, however both PDAPP and WT mice showed a reduced exploration of object contact 

times as the sample phase progressed. Exploration of the data and tests for normality revealed 

that distribution was not normal in specific data sets as assessed by Sahpiro-Wilk’s test, 

p<0.05. For this reason, the data were transformed by square rooting which avoided further 

violations, p>0.05. Results of repeat measures ANOVA revealed a significant main effect of 

genotype, F(1, 27) = 8.6, p<0.01, a main effect of age, F(2, 54) = 3.2, p<0.05, a main effect of 

sample phase, F(1.6, 43.6) = 271.8, p<0.001, a significant genotype x sample phase 

interaction, F(1.6, 43.6) = 16.8, p<0.001. No other main effects or interactions were 

significant (maximum F(4, 108) = 2.1, p>0.05: sample phase x age x genotype).  

Tests for simple main effects (between-subject comparison) revealed a main effect of 

genotype in terms of contact time at sample phase 1, F(1, 27) = 21.3, p<0.001, and sample 
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phase 2, F(1, 27) = 5.8, p<0.05, but not at sample phase 3, F(1, 27) = 1.9, p>0.05. A further 

within-subjects main effect of sample phase in both PDAPP, F(2, 26) = 56.2, p<0.001, and 

WT mice, F(2, 26) = 161.8, p<0.001 was also reported. Thus, WT mice explored the objects 

more during sample phase 1 and 2 than PDAPP mice, however both groups performed at 

similar levels by sample phase 3. Indeed, both PDAPP and WT mice show habituation of 

object exploration across sample phase, indicating successful processing of objects 

information prior to test phase.  

WT PDAPP

6-8 

Months

10-12 

Months

14-16 

Months

6-8 

Months

10-12 

Months

14-16 

Months

Sample 

Phase 1

Mean 25.69 17.15 11.86 18.48 12.21 8.87

SD 6.39 3.91 3.10 7.01 3.63 3.71

Sample 

Phase 2

Mean 21.40 14.10 9.38 13.51 9.90 8.01

SD 8.16 7.74 5.73 6.58 5.96 3.92

Sample 

Phase 3

Mean 25.97 13.64 9.81 14.60 11.01 7.81

SD 9.76 7.69 6.78 9.62 10.10 6.55

Table 4.2: Mean contact times (in seconds) of WT mice (n=15) and PDAPP mice (n=14) across all 3 
sample phases and ages tested. Standard deviations of the mean are also reported. 

Test Phase Contact Times 

Table 4.3 shows the mean contact time with objects during test phase for PDAPP mice 

and WT littermate controls across both delay periods (5 minutes and 24 hours) at 6-8, 10-12 

and 14-16 months of age. Inspection of this table suggests that across both delay periods and 

all ages, WT and PDAPP mice explored novel objects more than familiar. It further suggests 

that WT mice explored objects more than PDAPP mice. Tests for normality revealed that 

distribution of data were not normal in specific data sets as assessed by Sahpiro-Wilk’s test, 

p<0.05. Data were therefore transformed by square root to prevent further violations in 

distribution p>0.05.  

Transformed data were assessed by repeat measures ANOVA with genotype, object, 

delay and age as factors. Results revealed a significant main effect of genotype, F(1, 27) = 

22.1, p<0.001, a main effect of object, F(1, 27) = 351.1, p<0.001, a significant object x 

genotype interaction, F(1, 27) = 18.0, p<0.001, age x delay interaction, F(2, 54) = 7.0, 

p<0.001, age x object interaction, F(2, 54) = 13.8, p<0.001 and delay x object interaction, 



122

F(1, 27) = 121.8, p<0.001. No further main effects or interactions were reported; maximum 

effect, F(2, 54) = 2.7, p>0.05; age x delay x genotype interaction. 

Tests for simple main revealed that following a significant object x genotype 

interaction WT mice explored both the novel object, F(1, 27) = 22.5, p<0.001 and familiar 

object, F(1, 27) = 19.7, p<0.001, more than PDAPP mice. However, both WT mice, F(1, 27) 

= 273.6, p<0.001 and PDAPP mice, F(1, 27) = 101.5, p<0.001 explored the novel object in 

preference to the familiar object in the test phase when data were collapsed across age and 

delay. 

An age x delay interaction revealed that mice explored objects more at 14-16 month of 

age following a 5-minute delay than mice at 6-8 months of age, F(2, 26) = 4.1, p<0.05. No 

further main effects of age were reported. The main effect of delay reported that mice 

explored objects more following a 24-hour delay at 6-8 months of age, F(1, 27) = 12.6, 

p<0.001. However, at 14-16 months of age, mice explored objects more following a 5-minute 

delay, F(1, 27) = 4.5, p<0.05. No effect of delay was observed at 10-12 months of age, p>0.1. 

The age x object interaction revealed that mice explored the novel object more at 14-

16 months of age when compared to mice at 10-12 months of age only, F(2, 26) = 3.5, 

p<0.05. No further effect of age was observed in this interaction. A main effect of object was 

observed across all ages, whereby all mice explored the novel object more than the familiar; 

minimal effect, F(1, 27) = 290.5, p<0.001. 

A delay x object interaction revealed a main effect of delay on object exploration. 

Mice explored the novel object less following a 24-hour delay compared to novel object 

exploration following a 5-minute contact time, F(1, 27) = 11.6, p<0.01. An opposite effect is 

observed for the familiar object whereby mice explored the familiar object more following a 

24-hour delay than familiar object exploration following a 5-minute delay, F(1, 27) = 60.8, 

p<0.001. Despite these differences a main effect of object was observed across both delay 

periods, whereby mice explored the novel object more than the familiar following a 5-minute 

delay, F(1, 27) = 302.6, p<0.001 and a 24-hour delay. F(1, 27) = 234.5, p<0.001. 

Collectively these data suggest that PDAPP mice explored objects less in the test 

phase than WT mice. However, both WT and PDAPP mice still showed a preference to 

explore the novel object over the familiar object. An effect of delay appeared to increase 

forgetting of the familiar object as determined by increased exploration of this object 
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following a 24-hour delay period when compared to the 5-minute delay exploration time. 

However, this effect was the same across genotype and age. 

5 minutes 24 hours

Wild Type PDAPP Wild Type PDAPP

Age Object Mean SD Mean SD Mean SD Mean SD

6-8

months

Novel 18.97 5.96 10.79 5.84 20.26 8.23 10.62 5.42

Familiar 5.37 2.02 3.55 2.06 10.57 4.01 7.33 3.54

10-12 

months

Novel 19.52 9.70 11.39 9.57 19.27 10.77 7.03 5.20

Familiar 6.55 3.07 4.10 3.51 12.80 8.09 5.09 4.38

14-16 

months

Novel 33.81 18.98 18.01 18.68 21.29 9.58 11.41 2.60

Familiar 8.13 6.00 5.52 5.98 10.55 3.27 6.45 1.73
Table 4.3: Mean contact times (s) with novel and familiar objects of WT mice (n=15) and PDAPP 
mice (n=14) during the test phase following a 5-minute and 24-hour delay. Standard deviations (SD) 
of the mean are also reported. 

Test Phase Discrimination Ratios 

To ensure sensitivity towards the differences between groups, the data were converted 

into a discrimination ratio (DR) (time spent exploring the novel object/ time spent exploring 

the novel and familiar objects). Figure 5C shows the DR scores of both PDAPP and WT mice 

across all ages and delays. A repeat measures ANOVA was carried out on the ratio scores 

with factors of genotype, age and delay to confirm the absence of impairment between 

PDAPP mice and WT littermate controls. Results revealed no main effect of genotype, F(1, 

27) = 2.5, p>0.1, a significant main effect of age, F(2, 54) = 7.7, p<0.001, and a main effect of 

delay, F(1, 27) = 248.7, p<0.001. No further main effects or interactions were reported 

(maximum effect observed, genotype x delay interaction, F(1, 27) = 2.8, p>0.1).  

 One sample t-tests showed that both WT and PDAPP mice differed from 0.5 (no 

discrimination) at each age and delay: WT mice at 6-8 months, 5 minutes and 24 hours delay, 

t(14) = 22.2 and 12.4, p<0.001, and PDAPP mice, t(14) = 13.1 and 5.5, p<0.001, WT mice at 

10-12 months, 5 minutes and 24 hours delay, t(14) = 18.7 and 7.1, p<0.001 and PDAPP mice, 

t(13) = 12.9 and 8.6, p<0.001 and WT mice at 14-16 months, 5 minutes and 24 hours delay, 

t(13) = 10.4 and 11.6, p<0.001 and PDAPP mice, t(13) = 16.1 and 14.5, p<0.001.  

These results confirm that both PDAPP and WT mice show an ability to discriminate 

novelty at a comparable level across all ages and delays tested in this study. Moreover, all DR 
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scores are significantly above chance level (0.5) indicating successful memory performance at 

each delay and age tested. 

Figure 4.2 PDAPP mice show comparable novel object recognition memory to WT littermate 
controls across all ages and delays tested. Mean discrimination ratio (DR) calculated from test phase 
data for PDAPP (n=14) and WT (n=15) control mice. Chance level (0.5) is represented as a solid black 
line on the graph. Error bars show the S.E.M.  
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4.3 Experiment 5: Object-in-Place Memory in PDAPP mice 

PDAPP mice show intact object location memory at 6-8 and 10-12 months of age, but 

impaired object-location memory at 14-16 months of age:

Sample Phase Contact Times 

Table 4.4 shows the mean contact time with objects across sample phase of PDAPP 

mice and WT littermate controls at 6-8, 10-12 and 14-16 months of age. Inspection of these 

data suggests that PDAPP mice explored four different objects less in the initial sample phase, 

however both PDAPP and WT mice showed a reduced exploration of objects as the sample 

phase progressed. Exploration of data and tests for normality revealed that distribution of data 

were not normal as assessed by Sahpiro-Wilk’s test, p<0.05. For this reason, the data were 

transformed by square root. Further exploration of transformed data revealed normal 

distribution across all WT and PDAPP exploration times, as assessed by Shapiro-Wilk’s test, 

p>0.05.  

Transformed data were assessed by repeat measures ANOVA with genotype, sample 

phase and age as factors. Results revealed a significant main effect of genotype, F(1, 27) = 

22.9, p<0.001, a main effect of age, F(2, 54) = 4.3, p<0.05, a main effect of sample phase, 

F(2, 54) = 277.8, p<0.001, a significant genotype x age interaction, F(2, 54) = 3.8, p< 0.05, 

and a significant genotype x sample phase interaction, F(2, 54) = 19.9, p<0.001. No other 

main effects or interactions were significant (maximum effect (Greenhouse-Geisser 

corrections), F(2.4, 63.4) = 1.7, p>0.05: sample phase x age x genotype).  

Tests for simple main effects carried out on the significant genotype x age interaction 

revealed WT mice explored objects more at 10-12 months of age, F(1, 27) = 16.0, p<0.001 

and 14-16 months of age, F(1, 27) = 14.5, p<0.001, but not at 6-8 months of age, F(1, 27) = 

3.3, p>0.05. A further simple main effect of age showed that WT mice displayed greater 

contact time with objects at 14-16 months of age, F(1, 27) = 6.0, p<0.01 when compared to 

contact times of WT animals at 6-8 and 10-12 months of age. This effect was not observed in 

PDAPP mice, which appeared to exhibit similar contact times across all ages examined, F(2, 

26) = 0.2, p>0.05.  

Tests for simple main effects on the genotype x sample phase interaction revealed that WT 

mice explored objects more at sample phase 1, F(1, 27) = 56.3,  p<0.001, and sample phase 2, 

F(1, 27) = 14.6, p<0.01, and sample phase 3, F(1, 27) = 8.0, p<0.05 than PDAPP mice when 
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analysis was collapsed across age. Analysis revealed a main effect of sample phase in both 

PDAPP F(2, 26) = 57.6,  p<0.001, and WT mice F(2, 26) = 189.5, p<0.001. These data 

indicate that WT mice showed greater contact with objects across sample phases than PDAPP 

mice. However, both PDAPP and WT mice showed reduced object exploration across sample 

phase, indicating both WT and PDAPP mice habituated to the four objects prior to test phase. 

WT PDAPP

6-8 

Months

10-12 

Months

14-16 

Months

6-8 

Months

10-12 

Months

14-16 

Months

Sample Phase 1 Mean 27.16 36.77 46.53 20.70 19.40 21.42

SD 9.48 8.06 17.03 7.64 6.31 12.21

Sample Phase 2 Mean 18.26 21.57 29.80 14.59 11.99 16.01

SD 5.95 10.19 14.55 5.70 4.67 11.52

Sample Phase 3 Mean 13.64 14.53 22.08 11.60 10.62 11.67

SD 3.88 7.52 10.59 4.57 3.35 6.45

Table 4.4: Mean contact times (s) of WT mice (n=15) and PDAPP mice (n=14) across all 3 sample 
phases and ages tested. Contact time measures are taken from animals exploring four different objects. 
Standard deviations of the mean are also reported. 

Test phase Contact Times 

Table 4.5 shows the mean contact time with objects during test phase of PDAPP mice 

and WT littermate controls across both delay periods (5 minutes and 24 hours) at 6-8, 10-12 

and 14-16 months of age. Data suggested that across both delay periods and all ages, WT and 

PDAPP mice explored objects in a novel spatial arrangement more than those in a familiar 

spatial location. However, WT mice explored novel arrangements more than PDAPP mice 

overall. It further suggests that WT mice explored objects more than PDAPP mice, as 

previously observed in object-novelty task. Similar to exploration times assessed in sample 

phase, exploration of data and tests for normality revealed that distribution of data were not 

normal as assessed by Sahpiro-Wilk’s test, p<0.05. Data were transformed by square root. 

Further exploration of transformed data revealed normal distribution across all WT and 

PDAPP exploration times, p>0.05.  

Repeated measures ANOVA with genotype, place, delay and age as factors. revealed a 

significant main effect of genotype, F(1, 27) = 25.8, p<0.001, a main effect of place, F(1, 27) 
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= 276.6, p<0.001, a main effect of delay, F(1, 27) = 12.1, p<0.001, a significant place x 

genotype interaction, F(1, 27) = 45.2, p<0.001, a significant place x delay interaction, F(1, 

27) = 14.1, p<0.001, a significant age x place x genotype interaction, F(2, 54) = 4.6, p<0.05. 

No further main effects or interactions were reported (maximum effect; age x delay x 

genotype interaction, F(2, 54) = 2.4, p>0.05). 

Tests for simple main effects following a place x genotype interaction reported WT 

showed greater contact times with objects in novel locations, F(1, 27) = 36.2, p<0.001, and 

familiar locations, F(1, 27) = 22.4, p<0.001 than PDAPP mice. However, both WT, F(1, 27) = 

287.9, p<0.001, and PDAPP mice, F(1, 27) = 44.6, p<0.001 explored objects in novel 

locations in preference to objects in familiar locations. 

A place x delay interaction revealed that animals explored objects in familiar locations 

more following a 24 hour delay, F(1,27) = 33.0, p<0.001, compared to contact times with 

objects in familiar locations following a 5-minute delay. No difference was observed when 

comparing contact times with objects in novel locations, F(1, 27) = 3.6, p>0.05. Despite this 

increased exploration of objects in familiar locations following a 24 hour delay, animals 

continued to explore objects in novel spatial locations more than objects in familiar locations 

following a 5 minute delay period, F(1, 27) = 204.4, p<0.001 and a 24 hour delay, F(1, 27) = 

118.3, p<0.001.  

A three-way interaction of age x location x genotype revealed that WT mice explored 

both novel and familiar object arrangements more than PDAPP mice across all ages (minimal 

effect = F(1, 27) = 8.3, p<0.01, familiar exploration at 14-16 months of age). A main effect of 

place revealed that both WT and PDAPP mice explored objects in novel locations more than 

familiar locations at 6-8 and 10-12 months of age, however, only WT mice showed this 

preference at 4 -16 months of age (minimal effect; PDAPP mice at 10-12 months of age, F(1, 

27) = 23.6, p<0.001). PDAPP mice at 14-16 months of age showed no preference to objects in 

novel locations, F(1, 27) = 3.2, p>0.05. No overall main effect of age was reported when 

comparing overall changes in total contact times with objects in familiar or novel locations 

(maximal effect; novel place exploration of WT mice, F(2, 26) = 2.3, p>0.1). 

 Collectively this analysis showed that WT mice explore objects more than PDAPP 

mice. However, despite increased contact time of WT mice, both WT and PDAPP mice were 

able to discriminate objects in novel spatial locations at 6-8 and 10-12 months of age. 

However at 14-16 months of age WT mice maintained this ability, whereas PDAPP mice no 
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longer showed a preference to explore objects in novel spatial locations over familiar spatial 

locations. 

5 minutes 24 hours

Wild Type PDAPP Wild Type PDAPP

Age Object Mean SD Mean SD Mean SD Mean SD

6-8

months

Novel 18.93 12.80 9.69 5.24 16.64 6.18 11.81 5.37

Familiar 8.59 3.83 5.02 2.49 11.92 4.29 9.56 4.95

10-12 

months

Novel 20.44 14.62 10.25 8.14 26.82 10.99 10.71 8.95

Familiar 10.08 6.26 6.20 5.32 16.36 6.32 7.37 5.97

14-16 

months

Novel 24.57 17.04 8.81 7.88 27.52 16.41 9.82 6.89

Familiar 11.08 7.33 6.69 5.68 15.92 6.01 8.42 5.60

Table 4.5: Mean contact times (s) with objects in novel and familiar spatial locations of WT mice 
(n=15) and PDAPP mice (n=14) during the test phase following a 5-minute and 24-hour delay. 
Standard deviations (SD) of the mean are also reported. 

Test Phase Discrimination Ratios 

Figure 4.3 shows the DR scores of both PDAPP and WT mice across all ages and 

delays. A repeat measures ANOVA was carried out on the DR scores with factors of 

genotype, age and delay to confirm differences between groups observed in Table 4.5.Results 

revealed a significant main effect of genotype, F(1, 27) = 54.9, p<0.001, a main effect of 

delay, F(1, 27) = 25.9, p<0.001, a significant age x genotype interaction, F(2, 54) = 9.2, 

p<0.05. No further main effects or interactions were reported (maximum effect; delay x age 

interaction, F(2, 54) = 2.4, p>0.1). 

 Tests for simple main effects following a significant age x genotype interaction 

revealed that WT mice showed no change in OiP memory performance across all ages tested 

(maximal effect, 6-8 months vs 14-16 months, F(2, 26) = 2.3, p>0.1). However, PDAPP mice 

showed a significant reduction in OiP memory performance when comparing PDAPP DR 

scores at 14-16 months of age with 6-8 and 10-12 months of age, F(2, 26) = 9.8, p<0.001. 

Analysis further revealed a main effect of age in genotype. WT mice showed no difference in 

OiP memory performance compared to PDAPP mice at 6-8 months of age, F(1, 27) = 1.9, 

p>0.1, or 10-12 months of age, F(1, 27) = 2.4, p>0.05. However, PDAPP mice showed 

reduced memory performance compared to WT mice at 14-16 months of age, F(1, 27) = 49.9, 

p<0.001.  
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Figure 4.3 PDAPP mice show an age-dependent deficit in object-in-place memory. Mean 
discrimination ratio (DR) scores of WT (n=15) and PDAPP (n=14) mice with objects of novel object-
place associations. Chance level (0.5) is marked with a solid black line. Error bars show the S.E.M.  
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One sample t-tests showed that both WT and PDAPP mice differed from 0.5 (no 

discrimination) at each age and delay: WT mice at 6-8 months, 5 minutes and 24 hours delay, 

t(14) = 9.5 and 8.7, p<0.001, and PDAPP mice, t(13) = 8.8 and 6.1, p<0.001, WT mice at 10-

12 months, 5 minutes and 24 hours delay, t(14) = 9.4 and 12.8, p<0.001 and PDAPP mice, 

t(13) = 6.4 and 6.5, p<0.01 and WT mice at 14-16 months, 5 minutes and 24 hours delay, 

t(14) = 6.0 and 6.8, p<0.001 and PDAPP mice, t(13) = 3.4 and 3.9, p<0.05.  

Collectively, these analyses of the DR scores revealed that both PDAPP and WT mice 

remained significantly above chance at all ages and delays tested. Therefore mice remained 

able to successfully complete the OiP memory task. However, PDAPP mice showed an age-

dependent deficit in performance.  

4.4 Experiment 6: Amyloid Pathology in PDAPP Mice 

PDAPP mice showed an age-related increase in Aβ

Figure 4.4 shows an age-related profile of amyloid pathology in the HPC of ageing PDAPP 

mice. Inspection of Figure 4A shows an age-related increase in levels of soluble Aβ40. 

However, despite levels of soluble Aβ40 showing a general trend to increase with age, this 

observation was not confirmed statistically following analysis by Kruskal-Wallis test, X2(3) = 

2.7, p>0.1. Nevertheless, a significant change in the levels of insoluble Aβ40 was observed 

following analysis with Kruskal-Wallis test, X2(3) = 14.5, p<0.01. Dunn’s test revealed that 

mice at 7 months of age (p<0.01) and 11 months of age (p<0.01) had a greater level of 

insoluble Aβ40 when compared to mice at 3 months of age. No differences were observed 

with any age when compared to 15 months of age, p>0.1. 

However levels of both soluble and insoluble Aβ42 (Figure 4.4 C, D) increased with 

age in the HPC of PDAPP mice. These age-related changes were confirmed by Kruskal-

Wallis test in soluble Aβ42, X2(3) = 10.5, p<0.05. Dunn’s test for multiple comparisons 

showed a significant increase in the levels of soluble Aβ42 when comparing mice at 3 months 

and 15 months of age, p<0.05. A similar statistical report was observed for levels of insoluble 

Aβ42, X2(3) = 9.9, p<0.05. Dunn’s test confirmed a significant increase in levels of insoluble 

Aβ42 from 3 months of 15 months of age in the HPC of PDAPP mice.
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Figure 4.4: Levels of Aβ increase with age in the HPC of PDAPP mice. Soluble and insoluble 
levels of Aβ40 (A and B) and Aβ42 (C and D) were measured by ELISA. Amyloid levels were 
determined at 3 (n=5), 7 (n=7), 11 (n=7) and 15 (n=7) months of age. Error bars represent s.e.m. 
*p<0.05, **, p<0.01. 
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4.5 Chapter Discussion 
The main aim of the present study was to examine the effect of the hAPPV717F

mutation on object recognition memory processes in PDAPP mice. The primary rationale for 

this was to identify any age-related change(s) in recognition memory that could be targeted 

for treatment with 2B3 (see Chapter 5). An additional rationale for this study was the 

conflicting evidence concerning an age-related deficit in object novelty detection reported in 

the literature (Dodart et al., 1999; Chen et al., 2000). Furthermore, despite some evidence for 

spatial memory impairment in PDAPP mice no study has established the effects of the 

mutation on detecting mismatches in object-in-place (OiP) associations. WT and PDAPP 

mice displayed OiP memory and showed a preference to explore objects in novel locations 

between 6-12 months of age. However, in contrast to their performance in object novelty 

detection, PDAPP mice showed a decline in OiP performance at 14-16 months of age. 

Concurrent with this decline in memory performance, soluble and insoluble forms of Aβ 

showed an age-related increase in the level of Aβ42 in the HPC of PDAPP mice at 15 months 

of age. The absence of a deficit in object novelty discrimination in PDAPP mice in this study 

indicates that the representational processes and neural systems involved in novelty detection 

and object identity remained intact. Furthermore, it would argue for a specific age-dependent 

deficit in processing object-place information, which may be associated with an age-related 

increase in Aβ42.  

It is important to note that the sample phase data from both tasks revealed that PDAPP 

mice explored the objects less than WT mice at all ages. This suggests that hAPP

overexpression may influence either locomotor activity, or engagement with objects. 

Spontaneous locomotor activity has been reported to be altered in PDAPP mice when 

compared to WT controls, however there is conflicting evidence. For example, Dodart and 

colleagues (1999) reported that PDAPP mice showed increased locomotor activity compared 

to WT control mice in ages up to 10 months (Dodart et al. 1999). However, Hartman and 

colleagues reported no significant difference in locomotor activity between PDAPP and WT 

mice in young and aged mice (exact ages not reported; Hartman et al. 2005). A notable 

difference between these studies is that Dodart and colleagues used male PDAPP mice bred 

on a mixed background, whereas Hartman and colleagues used male and female PDAPP mice 

bred on just a C57Bl/6 background (Dodart et al. 1999; Hartman et al. 2005). It has previously 

been observed that different background strains and gender show altered behavioural 
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phenotypes likely to be responsible for such differences between these two studies (Võikar et 

al. 2001; Şık et al. 2003). Due to the differences influenced by gender and background strain, 

it may be plausible that reduced contact times with objects reported in this chapter may be an 

effect of using male PDAPP mice bred on a C57Bl/6 background. Nevertheless, it is 

important to note both WT and PDAPP showed a significant reduction in object contact time 

across the sample phases. This suggests that short-term habituation remained intact in PDAPP 

mice and object information was encoded during the sample phase. This would further 

indicate that the deficit observed in OiP memory is unlikely to be explained by gross visual or 

motor impairments. 

As discussed in the chapter introduction, the PRC is crucial in the processing of object 

information, while the HPC is essential for processing associative context/spatial information 

related to the object (Winters et al. 2004; Good et al. 2007; Barker & Warburton 2011). Given 

the involvement of the PRC in object novelty memory, and the HPC in processing spatial 

associative information, it is unclear whether this deficit in PDAPP mice reported by Dodart 

and colleagues reflected an impairment in object novelty detection per se or impaired 

processing of object position information. The data reported by Chen (2000) and that in this 

chapter showed in tact object novelty memory in PDAPP mice (Chen, Chen, Knox, Inglis, 

Bernard, Martin, Justice, Mcconlogue, et al. 2000). It is therefore likely that PRC function in 

PDAPP mice is relatively unaffected by age and the hAPPV717F mutation.  However, the 

impaired OiP memory observed in PDAPP mice at 14-16 months of age and increased levels 

of Aβ in the HPC of 15 month PDAPP mice suggests impaired functioning of the HPC and 

processing of spatial information required for successful OiP memory performance. 

Moreover, the significant age-dependent impairment in OiP memory and increased levels of 

Aβ in the HPC at 14-16 months of age in PDAPP mice compliments previous findings of 

amyloid and age-related deficits in OiP memory in Tg2576 mice (Hale & Good 2005; Good 

& Hale 2007).  

Interestingly, other Tg models of AD have also showed mixed recognition memory 

profiles. The TgCRND8, J20, APP/PS1 and 3xTg models have been reported to display object 

recognition deficits following amyloid deposition (Mucke et al. 2000; Chishti et al. 2001; 

Oddo et al. 2003; Clinton et al. 2007; Escribano et al. 2009; Francis et al. 2012; Heneka et al. 

2013; McClean & Hölscher 2014). In contrast, PDAPP, Tg2576 and APP23 mice showed no 

deficits in object recognition memory (Chen et al. 2000; Hale & Good 2005; Heneka et al. 

2006; Good & Hale 2007). Interestingly, the Tg models reported to display object recognition 

memory deficits all express multiple transgenes related to AD pathology, including more than 
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one APP mutation. PDAPP, Tg2576 and APP23 mice however only express single mutant 

hAPP transgenes. These deficits may therefore be sensitive to the overall level of mutant APP 

and other transgene expression. Moreover, there is evidence for PRC plaque pathology in 

TgCRND8 and APP/PS1 mice and hypoperfusion in the PRC of J20 mice from a young age 

(Minkeviciene et al. 2009; Romberg et al. 2012; Hébert et al. 2013). To date, no study has 

determined pathology in the PRC of APP23 mice, whilst almost no amyloid burden has been 

reported in the PRC of PDAPP mice by 9-10 months of age (Dodart et al. 2000). Plaque 

pathology in the PRC of Tg2576 mice has been reported at 22.5 months of age. However this 

age is much greater than the age (16 months) at which object recognition memory has been 

assessed in Tg2576 mice (Lim et al. 2005; Good & Hale 2007; Yassine et al. 2013). 

Collectively these data indicate that whereas some Tg models may show intact object 

recognition memory at ages where increased levels of amyloid are present in the HPC and 

cortical regions, others show impaired recognition memory, which may be related to altered 

PRC function. These differences appear to be based on the level of transgene expression and 

differences in regional amyloid pathology. Therefore, caution is required when comparing 

object recognition memory profiles in different Tg models of AD, as well as when 

considering object memory assessment of spatial/contextual associative information such as 

in this experimental chapter. 

In conclusion, this study is the first to characterise object recognition memory in male 

PDAPP mice on a C57Bl/6 background. Following repeated exposure to objects, PDAPP 

showed comparable discrimination of familiar and novel objects over 5 minute and 24 hour 

delays at 6-8, 10-12 and 14-16 months of age. In contrast, PDAPP mice showed a deficit in 

OiP memory only at 14-16 months of age. Collectively these data reveal an age-dependent 

deficit in OiP memory that is unlikely to be a reflection of impairments in novelty detection 

per se. Furthermore, the deficit coincides with an elevation in Aβ levels in the HPC. These 

observations provide a sufficient rationale to evaluate the hypothesis that an antibody directed 

to the β-secretase cleavage site may have impact on Aβ production and cognition in aged 

PDAPP mice.  
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Chapter 5: 2B3 reverses an age-dependent cognitive deficit in PDAPP mice  
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Chapter Overview 

This experimental chapter examines the hypothesis that inhibition of APP metabolism 

and Aβ production by administration of 2B3, an anti-APP antibody, is able to improve 

memory in PDAPP mice. To investigate this, chapter 6 has been divided into two main 

experiments. Experiment 7 assessed the in vivo effects of 2B3 in PDAPP mice following a 14-

day intracerebroventricular (ICV) administration. Experiment 8 assessed ex vivo tissue of 

PDAPP mice treated with 2B3 or PBS for metabolites of BACE1 cleavage of APP and 

NMDAR-related synaptic plasticity mechanisms thought to underpin object-in-place (OiP) 

memory . 

5.1 Chapter Introduction 

β-Secretase as a therapeutic target for Alzheimer’s disease 

Despite promising early findings of anti-Aβ immunotherapy in preclinical AD models, 

little translational benefits has been observed in clinical trials, as discussed in Chapter 1 

(section 1.5.3). Nevertheless, many current therapeutic strategies still focus on the role of 

amyloid and its proteogeneis in AD pathology. One specific target is BACE1, or the BACE1 

cleavage site of APP. Many studies have reported BACE1 to play a significant role in the 

generation of Aβ. Inhibition of BACE1 activity should, therefore, prevent the production of 

Aβ. Consistent with the view, BACE1 knock-out (KO) mice crossed with Tg2576 or PDAPP 

mice have almost undetectable levels of A and βCTF (Luo et al. 2001; McConlogue et al. 

2007). Furthermore, BACE1 deficiency in Tg2576 and 5xFAD models is reported to rescue 

spatial working and reference memory deficits to comparable levels of WT controls (Ohno et 

al. 2004; Ohno et al. 2007). More recently, a human BACE1 knock-in model has been 

reported (Plucińska et al. 2014).  This model showed progressive AD-like pathology, 

including increased levels of βCTF and soluble Aβ*56 as well as cognitive abnormalities at 6 

months of age. Evidence has also revealed Aβ-independent contributions to pathology 

specifically focusing on βCTF (Pimplikar et al. 2010; Tamayev et al. 2012; Kim et al. 2015). 

It has been reported in vitro that increased βCTF stimulated the overactivation of rab5, a 

regulator of early endosomes. This overactivation lead to endosomal swelling, accelerated 

endocytosis and impaired axonal transport of rab5 positive endosomes (Kim et al. 2015). 
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Moreover, in vivo inhibition of BACE1, but not γ-secretase cleavage of APP lead to improved 

LTP and novel object memory in a model of familial Danish dementia (Tamayev et al. 2012). 

This study suggested that βCTF and/or sAPPβ may act as neurotoxic metabolites, independent 

of Aβ. Collectively, these studies provide evidence implicating BACE1 cleavage of APP in 

AD pathogenesis and identify BACE1 as a prominent target for AD therapy. 

Since the discovery of BACE1 and its role in amyloidogenic processing, there has 

been considerable research into developing small molecule BACE1 inhibitors. First 

generation BACE1 inhibitors consisted of non-cleavable peptidomimetic analogues of the 

APP β-secretase cleavage site, which successfully reduced soluble Aβ both in vitro and in 

vivo (Kimura et al. 2005; Asai et al. 2006). However, these first generation peptide-based 

drugs faced early complications and could not deliver appropriate pharmacokinetic properties, 

including poor oral bioavailability, BBB penetrability and long serum half-life (De Strooper et 

al. 2010; Yan & Vassar 2014). Continued development of BACE1 inhibitors has led to small 

molecule inhibitors that exhibit significantly improved pharmacokinetics, display robust Aβ 

reduction and improved cognition in Tg models (Hussain et al. 2007; Fukumoto et al. 2010). 

As a result, several BACE1 inhibitors are currently in clinical trials (www.clinicaltrials.gov). 

One of the most promising of these, MK-8931 (Merck & Co.), is currently in a phase III 

clinical trial with a total of 1500 prodromal and mild-moderate AD patients. This compound 

showed much promise in earlier clinical phase 1b trials in mild-moderate AD patients, which 

reported a robust dose-dependent reduction of CSF Aβ concentrations without any serious 

adverse reactions (Forman et al. 2013).  

However, one major concern about BACE1 inhibition is the potential side effects 

caused by chronic BACE1 inhibition in non-APP processing pathways. Early reports in 

BACE1 null mice suggested a lack of negative phenotypes, however subsequent studies have 

reported more than a dozen abnormalities (as reviewed in Yan & Vassar 2014). BACE1 is 

now reported to have multiple substrates and is a regulator of physiological pathways 

including neuron myelination, axon guidance and neurogenesis (von Arnim et al. 2005; Hu et 

al. 2008; De Strooper et al. 2010; Hitt et al. 2012; Hu et al. 2013; Yan & Vassar 2014). 

However, the effects of BACE1 knockout are present from conception and it is therefore 

unclear to what extent the phenotypes described previously may reflect BACE1 inhibitor side 

effects in later stages of life. For this reason, the risk of BACE1 inhibition-related toxicity will 

depend on the extent of therapeutic efficacy. The results of on going clinical trials will, no 

doubt, provide answers to these questions. 

http://www.clinicaltrials.gov/
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To overcome these challenges an alternative strategy has been developed using 

antibodies targeting the β-secretase cleavage site of APP (Arbel et al. 2005; Thomas et al. 

2006). Arbel and colleagues (ibid) designed a monoclonal antibody  (mAb) called “blocking 

β-site 1” (BBS1), which was raised against multiple antigenic peptides for the β-secretase 

cleavage site of APP (Arbel et al. 2005). These multiple antigenic peptides consisted of eight 

copies of the amino acid sequence representing the β-secretase cleavage site of healthy human 

APP (ISEVKMDA), as well as half of the Swedish APP mutation (ISEVKLDA). This 

approach was taken to overcome poor immunogenicity to short peptides as well as tolerance 

to self-antigens (Arbel et al. 2005). In vitro analysis of BBS1 treatment of CHO cells, 

transfected with the human APP 751 isoform, revealed that BBS1 reduced intracellular and 

secreted Aβ when compared to non-treated CHO-APP cells. Furthermore, Arbel and 

colleagues were able to visualize BBS1 internalisation and co-localisation with EEA1, a 

marker of early endosomes, where BACE1 cleavage of APP is believed to occur (Kinoshita et 

al. 2003; Arbel et al. 2005).  

To determine if BBS1 had a similar effect in vivo, Tg2576 mice and mice harbouring 

the hAPP London mutation were subjected to chronic systemic BBS1 treatment (Moechars et 

al. 1999; Rakover et al. 2007; Arbel-Ornath et al. 2009). Results showed improved object 

recognition memory in Tg2576 mice receiving a dose of 16mg/kg. However, no changes in 

levels of soluble or insoluble Aβ or βCTF were reported, although a reduction in 

neuroinflammation was observed (Rakover et al. 2007). Mice expressing the hAPP London 

mutation, however, did show reduced Aβ plaque burden and reduced intracellular Aβ 

accumulation following BBS1 administration at 16mg/kg (Arbel-Ornath et al. 2009). These 

mice were further assessed on the Morris water maze (MWM), however no significant 

improvement was observed following BBS1 administration. Further studies by this group 

used 3xTg mice administered with BBS1 by ICV administration at 7.5 mg/kg/week for a 

period of 1 month at 17 months of age (Rabinovich-Nikitin et al. 2012; Rabinovich-Nikitin & 

Solomon 2014). Rabinovich-Nikitin and colleagues revealed BBS1 was able to improve 

object recognition memory performance in 3xTg mice to a level comparable to WT controls. 

Ex vivo tissue analysis also revealed that BBS1 treatment lead to reduced plaque size, total Aβ 

load and a reduction in phospho-tau and total GSK3β levels (Rabinovich-Nikitin et al. 2012). 

It was later reported in these mice that BBS1 treatment reduced phospho-GSK3β, the active 

form of GSK3β, as well as p53, a signalling molecule associated with neuronal apoptosis 

(Jordán et al. 1997; Rabinovich-Nikitin & Solomon 2014). Collectively, these data suggest 
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that targeting the β-secretase cleavage site of APP may have therapeutic value for the 

treatment of AD-related pathology. 

Thomas and colleagues (2006) reported that 2B12, a similar mAb directed against the 

β-secretase cleavage site of APP, inhibited BACE1 cleavage of APP and reduced levels of 

Aβ40 in MOG-G-UVW and SH-SY5Y, an astrocytoma and neuroblastoma cell line (Thomas 

et al. 2006). It was later observed that 2B3 was also effective at blocking BACE cleavage of 

APP and showed similar effects to 2B12 (Thomas et al. 2011) Both 2B3 and 2B12 were 

raised against a 15 amino acid sequence spanning the human β-secretase cleavage site of APP 

(EEISEVKMDAEFRHD) (Thomas et al. 2011). However, both were observed to have 

different epitopes, but 2B3 showed a greater recognition of the β-secretase cleavage site of 

APP, as well as full length APP. Thomas et al., (2011) also showed that 2B3 was able to 

maintain a strong interaction with a secondary APP epitope containing the β-secretase 

cleavage site at pH4. This indicated that 2B3 should maintain an ability to inhibit BACE1 

cleavage of APP in an equivalent acidic environment found in early endosomes, which 

provides optimal conditions for BACE1 activity (Vassar & Citron 2000). When determining 

BACE1 activity in a cell free assay containing only culture media, BACE1 and sAPPα, 2B3 

and 2B12 showed little reduction in levels of sAPPα compared to media treated with a control 

N-terminal APP antibody. In fact, 2B3 virtually abolished BACE1 metabolism of sAPPα and 

it was determined that 2B3 inhibited BACE1 cleavage of the APP β-secretase cleavage site by 

“steric hindrance” (Thomas et al. 2011).  

To further determine if both 2B3 and 2B12 were able to reduce levels of Aβ40 or 

Aβ42, Thomas et al. (2011) treated MOG cells with either 2B3 or 2B12 for 48 hours. Results 

indicated that 2B3 was more effective at reducing Aβ40 and Aβ42 as well as levels of βCTF 

when compared to 2B12 treated MOG cells. A more recent study by Thomas et al., (2013) 

showed that 2B3 was able to significantly reduce soluble Aβ40 in mouse C57Bl/6 primary 

cortical neurons. 

 Given the evidence from Rabinovich-Nikitin et al., (2012) for a positive impact of 

mAb-mediated blockade of BACE1 processing on cognition in transgenic APP mice, the 

present study evaluated the hypothesis that inhibition of BACE1 cleavage of APP by 2B3 

administration in vivo would ameliorate the cognitive deficit in visuo-spatial memory in 

PDAPP mice.  
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5.2 Experiment 7: In vivo assessment of 2B3 

5.2.1 Introduction 

 As reported in Chapter 4, PDAPP mice displayed an age-dependent deficit in object-

in-place memory at 14-16 months of age. Given the extensive work carried out to determine 

HPC involvement in the object-in-place task (as discussed in Chapter 4 and reviewed in 

Barker & Warburton 2013), this task was chosen over the foraging task to test the hypothesis 

that 2B3 would attenuate the cognitive deficits in PDAPP mice. 

 In this experiment, the same mice reported in Chapters 3 and 4 mice were 

administered 2B3 by ICV administration at 17-18 months of age. This age point provides an 

appropriate time at which to test 2B3 in vivo. Numerous studies have previously reported 

increased amyloid levels with age and further age-dependent cognitive deficits, sensitive to 

increased levels of Aβ pathology in the HPC (Chapter 3 and 4; Johnson-Wood et al. 1997; 

Chen et al. 2000; Hartman et al. 2005). This age point therefore allows an assessment of the 

abilities of 2B3 to reduce amyloid production and potentially alleviate cognitive dysfunction. 

A concern regarding immunotherapy targeting the CNS is access to the brain via the 

BBB. The BBB is a highly regulated protective membrane separating the CNS from the 

periphery. Despite previous immunotherapy studies delivering mAbs via peripheral 

administration in animals, very few have reported positive antibody presence in the brain 

(Wilcock, Rojiani, Rosenthal, Levkowitz, et al. 2004; Yamada et al. 2009). Moreover, it has 

been estimated that approximately 0.1% of an antibody dose delivered peripherally will cross 

the BBB and spread into the brain (Banks et al. 2002). Therefore, to optimally assess the 

ability of 2B3 to inhibit β-secretase cleavage of APP and improve memory in PDAPP mice, 

2B3 was delivered directly into the left lateral ventricle of the brain using osmotic minipumps 

(Alzet, Cupertino, USA). A pilot study had previously been carried out to show 2B3 was 

successfully delivered into the brain using this method and was able to spread into HPC and 

cortical structures (PhD Thesis: Hvoslef-Eide, 2013). 



142

5.2.2 Method: 

Design 

 To assess the effect of 2B3 on OiP memory, PDAPP and WT control mice used in 

Chapters 3 and 4 were assessed on the OiP task with a five-minute delay between the sample 

and test phase. The experimental protocol was identical to that described in Chapter 2. All 

mice used in this experiment were tested at 14-16 months of age prior to surgical implantation 

of osmotic minipumps in order to allow a pre-treatment as well as post-treatment measure to 

be taken. This allowed for both within-subjects and between subjects comparisons to be 

carried out. 

 Transgenic mice were administered with 2B3 or PBS vehicle control. A group of WT 

mice were also administered PBS vehicle control and a further WT group received no 

treatment. The latter group was included to assess whether osmotic minipump implants 

altered the performance of mice in the OiP task. Treatment was continuous for a 14-day 

period. On days 13 and 14, OiP memory was assessed and mice were culled following the 

final test on day 14 for ex vivo tissue analysis, discussed in Experiment 8 of this chapter. It 

was hypothesised that PDAPP mice receiving 2B3 treatment would show improved memory 

performance relative to PDAPP vehicle treated mice. 

Subjects 

A total of 21 PDAPP mice and 21 WT controls were used in this experiment. The 

same 14 PDAPP and 15 WT mice used in Chapters 3 and 4 were used in this study. A second 

cohort of animals were also used to replicate the age-related changes in PDAPP mice, as 

discussed in Chapter 3 and 4, and were also administered 2B3 in an identical fashion. These 

mice were used in order to increase the sample size of treatment groups in this study and 

improve the statistical power of the analysis used in this study (Baguley 2004; Cohen 1992). 

Therefore, a further 7 PDAPP and 6 WT mice were also used. These additional mice had 

undergone the same behavioural tasks in an identical fashion as described in Chapters 3 and 4, 

however only at 6-8 and 14-16 months of age. These mice therefore received similar levels of 

exposure to behavioural assays as the initial group of mice. At 17-18 months of age 21 

PDAPP mice underwent surgical osmotic minipump fitting. Of these, 10 PDAPP mice 

received 2B3 (2.1mg/ml) treatment and 11 received PBS vehicle control. A further 10 age-

matched WT mice underwent identical surgical procedures and received PBS vehicle only 

and 11 WT mice received no treatment. 
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Production of 2B3 

2B3 producing hybridoma cells, stored in liquid nitrogen, were thawed on ice. Cells 

were resuspended in 1.5ml of cell culture medium [RPMI1640 (Sigma-Aldrich, Dorset, UK), 

2mM Glutamine, 10% Foetal Bovine Serum, 1% Penicillin, 1% Streptomycin] before being 

added to a further 30ml of media. The solution was centrifuged at 1000rpm for 5 minutes at 

room temperature (RTP) and the supernatant removed. Pelleted hybridomas were resuspended 

in 1ml of media, pre-heated in an incubator (Pierce, Rockford, USA) at 37oC. Cells were 

transferred to a single well of a 24 well cell culture plate (Corning Incorporated, NY, USA) 

and grown at 37oC in 5% CO2. Cells were split appropriately when confluent by resuspension 

into fresh, pre-heated media, and further grown in 25 and 75cm2 flasks (Corning 

Incorporated). When cells were grown to confluence, the media containing 2B3 was collected 

at approximately 50% cell viability. The media was centrifuged at 1000rpm for 5 minutes at 

RTP and the supernatant was collected and stored at 20oC. 

Concentration 

2B3 cell media was concentrated using Amicon Ultra centrifugal filter units (Millipore, 

Billerica, USA) with a 100kDa molecular weight cut off. 10ml of media was centrifuged in a 

JS7.5 swing bucket rotor (Beckman Coulter, High Wycombe, UK) at 3000g at 4oC for 1 hour. 

Following centrifugation, media filtrate was discarded, and 10ml of fresh media was added. 

This pattern continued until approximately 70ml had passed through one centrifugal filter 

unit. When multiple centrifugal units were used, the concentrated antibody was pooled before 

the concentration of 2B3 was determined.  

Quantification of 2B3 using ELISA 

The methods utilised to determine the concentration of concentrated 2B3 were based 

on the procedure used by Thomas et al., (2006, 2011). A 96-well plate was coated in a sheep 

anti mouse IgG (Greiner Bio One, Frickenhausen, Germany) at a concentration of 1:4000, 

diluted in a carbonate/bicarbonate buffer (15mM Na2CO3, 35mM NaHCO3, pH 9.6) and left 

overnight at 4oC. The plate was then washed 3 times with PBST (137mM NaCl, 2.5mM KCl, 

8mM Na2HPO4, 1.5mM KH2PO4, 0.05% Tween20) between each stage, and all incubations 

were carried out at RTP. Following washing, the plate was then aspirated and blocked with 

0.1% (w/v) milk powder in PBST for 1 hour. Standards, samples and negative controls were 

then added in duplicate at 100uL/well and were incubated for 2 hours at RT. Standards ranged 

from 200  0.3ng/ml in doubling dilutions. Doubling dilutions of the 2B3 sample were 
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applied, from 1/1000 to 1/2,048,000. 2B3 was detected following a 1-hour incubation with 

100uL/well secondary goat anti-mouse antibody conjugated to HRP, 1:6000 (Pierce). The 

enzyme substrate, o-phenylenediamine (OPD) (Sigma-Aldrich), in 0.1M citrate phosphate 

buffer (24mM citric acid, 51mM Na2HPO4, pH5) was applied at 100uL/well and incubated for 

approximately 20 minutes in the dark. The reaction was stopped using 50μl 2.5M H2SO4 and 

read at 492nm using a spectrophotometer. The concentration of 2B3 was then determined 

using GraphPad Prism 4.0 and Microsoft Excel. 

Purification 

Concentrated media containing 2B3 was purified using an affinity chromatography 

MAb TrapTM Kit (GE Healthcare, Buckinghamshire, UK) with the aim of both purifying and 

further concentrating the IgG solution. Binding and elution buffers, as well as the antibody 

sample were passed through a HiTrap Protein G column containing recombinant protein G, 

genetically altered to lack the ability to bind albumin, while maintaining a high affinity for 

IgG. Binding and elution buffers within the kit were diluted 1:10 with dH2O prior to use, and 

all flow through was collected in 1.5ml Eppendorf tubes containing 60uL neutralising buffer 

to maintain IgG activity. The column was washed with dH2O at approximately 1 drop per 

second, to clear ethanol residues following storage. The column was equilibrated with 3ml of 

binding buffer before 2B3 was applied. 10mls of binding buffer was passed through the 

column to remove molecules other than the 2B3, before 5ml of elution buffer was passed to 

release 2B3.  

Dialysis 

The purified antibody was dialysed to remove MAb Trap buffers using PBS (137mM 

NaCl, 2.5mM KCL, 8mM Na2HPO4, 1.5mM KH2PO4, pH7.2) to ensure compatibility with 

the Tris and Glycine based buffers of the MAb TrapTM Kit. Slide-A Lyzer Dialysis 

Cassettes (Pierce) of 0.5  3ml sample volume with a 10kDa molecular weight cut off were 

utilised. Cassettes were rotated in 2 litres of PBS at 4oC overnight before 2B3 was collected. 

The PBS used for 2B3 dialysis was used as the vehicle control in the minipump study. 

Following dialysis, one last quantification measure was carried out in order to determine the 

final concentration of purified 2B3. This was performed using the NanoVue 

spectrophotometer (GE Healthcare Ltd, Buckinghamshire, UK), which is able to quantify 

IgG concentrations. A final concentration of 2.1mg/ml was determined. 
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Sterilisation

Once the final concentration was determined, both 2B3 and PBS vehicle were 

sterilised. This was carried out by passing 2B3 and vehicle PBS through a 5μm sterile filter 

into sterile collection tubes. Following this, treatment samples were frozen at -20oC until 

required. 

Surgical Insertion of Osmotic Minipumps 

 The purified and sterilised 2B3 was administered to PDAPP mice by 

intracerebroventricular (ICV) infusion via osmotic minipumps. Sterile PBS was administered 

in an identical manner as a vehicle control. 

 Osmotic minipumps (Alzet, 1002) administered both solutions at a constant flow rate 

of 0.25μl/hour for a period of 14 days. Minipumps were filled with 200μl of either 2B3 or 

vehicle and back-filled through a 2.5cm catheter attached to a 28G cannula (Alzet, 0004760). 

Minipumps were then inserted into the mice as follows: Mice were anaesthetised by 

isoflurane carried by O2 for the duration of stereotaxic surgery. One the mouse was under 

anaesthesia, one small hole was drilled through the skull of the animal 0.5mm posterior and 

1.2mm lateral to bregma where the 28G cannula was then inserted upto 3.0mm ventral into 

the left lateral ventricle of the brain. The cannula was fixed to the skull initially with four 

screws and secured in place using dental cement. A small subcutaneous cut was made at the 

lower neck of the mouse and the minipump was carefully inserted below the skin between the 

scapulae, spanning the lower back of the animal. Mice were sutured and allowed to recover in 

an incubator. All mice were then housed individually to prevent any chance of interference 

with the sutures, minipumps or mounts. 

Behavioural Procedure 

 The OiP behavioural procedure was carried out using an identical method to that 

described in Chapter 2. However, only a 5-minute delay interval was interpolated between the 

sample and test phase. 

Scoring and Data Analysis 

 Scoring and data analysis were carried out in an identical manner to that described in 

Chapter 2. 
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5.2.3 Experiment 7: Results 

Pre-treatment analysis

 Prior to minipump implantation, WT and PDAPP mice were divided into 4 groups; 

WT untreated (WT UT), WT vehicle (WT V), PDAPP vehicle (PDAPP V) and PDAPP 2B3. 

To ensure that the groups were matched in terms of their surgical assignments two separate 

2x2 repeat measures ANOVAs were carried out on sample phase and test phase contact time 

data and a one-way ANOVA was performed with post-hoc Tukey analysis on DR data 

previously reported in Chapter 4, Experiment 6.  

 Data displaying contact times in sample phases 1-3 can be observed in Table 5.1. 

Contact times, violated Levene’s test of equality of error variances, p<0.05. Therefore, the 

data were transformed by square root transformation. Despite transformation no longer 

violating this test, Mauchly’s test of Sphericity remained violated, p<0.05. Therefore, 

Greenhouse-Geiser comparisons were reported where appropriate. Repeated measures 

ANOVA revealed a significant main effect of sample phase, F(1.7, 63.5) = 50.2, p<0.001, no 

significant sample phase x treatment group interaction, F(5.0, 63.5) = 0.6, p>0.5 and a 

significant main effect of treatment group, F(3, 38) = 5.6, p<0.01. Post-hoc Tukey analysis of 

the significant main effect of treatment group revealed that only WT UT mice explored 

objects (when collapsed across sample phase) more than PDAPP V mice, p<0.01. No further 

significant differences in total contact times were reported (WT V vs PDAPP V, p=0.052). 

A repeat measures ANOVA analysed the pre-treatment contact times. Times displayed 

in Table 5.2 were transformed by square root due to violations in Levene’s Test of Equality of 

Error Variance. The analysis reported a significant main effect of object location, F(1, 38) = 

70.4, p<0.001, a significant object location x treatment group interaction, F(3, 38) = 10.3, 

p<0.001 and a significant main effect of treatment group, F(3, 38) = 9.1, p<0.001. Post-hoc 

Tukey analysis of the between-subject main effect collapsed across object location revealed 

no significant difference between WT UT and WT V mice, p>0.1. WT UT mice showed a 

greater contact time with objects than PDAPP V, p<0.001 and PDAPP 2B3, p<0.01. No 

further significant differences between treatment groups were reported. Because there was a 

significant object location x treatment group interaction, tests for simple main effects were 

performed. Between-subjects comparisons revealed that WT UT mice explored objects in 

novel locations more than both PDAPP groups, p<0.001. WT V mice explored objects in 

novel locations more than PDAPP V mice only. No further significant effects were reported 
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when the novel location data. WT UT mice showed a greater contact time with objects in 

familiar locations than PDAPP V mice only, p<0.05. No further differences in contact times 

with objects in familiar locations were reported. Within-subjects analysis to determine if 

objects in novel locations were explored significantly more than familiar locations revealed 

that both WT UT and WT V mice explored objects in novel locations significantly more than 

objects in familiar locations, p<0.001. Neither PDAPP V or PDAPP 2B3 mice explored 

objects in novel locations more than objects in familiar locations, both p’s >0.05. 

One-way ANOVA analysis of DR scores revealed a significant main effect of group, 

F(3, 41) = 5.8, p<0.01. Post-hoc analysis revealed no significant differences between either 

WT group, p>0.5, or PDAPP group, p>0.5. The only significant differences were reported 

when comparing WT groups to PDAPP groups respectively, p’s <0.05, which was previously 

reported in Chapter 5, Experiment 6. Taken together, this pre-treatment analysis showed that 

mice habituated to objects across sample phases without differential effects across treatment 

group as determined by a lack of sample phase x treatment group interaction. Test phase 

contact times revealed that both WT groups showed a discrimination toward objects in novel 

locations over objects in familiar locations, whereas both treatment groups of PDAPP mice 

did not. This was further observed when contact times were converted to DRs, both WT 

groups showed significantly greater DR scores than either PDAPP group. Collectively, 

dividing WT and PDAPP mice into 4 separate treatment groups showed no significant 

differences within genotypes or novel differences between groups previously unreported in 

Chapter 4. Therefore, any changes in behaviour reported post surgical treatment cannot be 

attributed to pre-treatment differences in performance.    

Control groups analysis

The initial analysis following pre- and post-treatment determined if any changes were 

observed by the implantation of osmotic minipumps in WT mice. This analysis was 

performed with the intention to collapse across both WT control groups and prevent 

unnecessary multiple comparisons in the mixed measures ANOVA used to determine the 

effects of 2B3 in vivo. Both contact times with objects and DR scores were analysed using 

repeated measures ANOVA. Two main factors, treatment group (between-subject) and time 

(pre- and post-treatment intervention; within-subject), were analysed. One further within-

subject analysis of object location was analysed for the contact time data as well as the effect 
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of sample phase was assessed prior to test phase. Due to violation of Levene’s test of equality 

of error variances, all contact time data were transformed by square root. 

Sample phase contact times were analysed in a 2x3x2 repeat measures ANOVA. 

Analysis revealed a significant main effect of sample phase, F(2, 38) = 53.7, p<0.001, no 

significant sample phase x treatment group interaction, F(2, 38) = 2.0, p>0.1, no significant 

main effect of time (pre-treatment and post-treatment), F(1, 19) = 0.9, p>0.1, no significant 

time x treatment group interaction, F(1, 19) = 0.04, p>0.5, no significant sample phase x time 

interaction, F(2, 38) = 0.9, p>0.1 and no significant sample phase x time x treatment group 

interaction, F(2, 38) = 1.7, p>0.1. No significant main effect of treatment group was reported, 

F(1, 19) = 2.9, p>0.1. Therefore the effect of sample phase remained equal across both WT 

groups. No effect of surgical implantation of osmotic minipumps and vehicle administration 

in WT mice was apparent compared to mice that received no treatment. 

Contact times with objects in novel and familiar locations were analysed with a 2x2x2 

repeat measures ANOVA. This analysis reported a significant main effect of object location, 

F(1, 19) = 89.4, p<0.001, no significant object location x treatment group interaction, F(1, 19) 

= 1.8, p>0.1, no significant main effect of time, F(1, 19) = 0.7, p>0.1, no significant time x 

treatment group interaction, F(1, 19) = 1.7, p>0.1, no significant object location x time 

interaction, F(1, 19) = 0.6, p>0.1, no significant object location x time x treatment group 

interaction, F(1, 19) = 1.7, p>0.1. No significant main effect of treatment group was reported, 

F(1, 19) = 2.5, p>0.1. These results showed no effect of minipumps implantation in WT mice. 

 DR scores were analysed using a 2x2 repeat measures ANOVA. No significant main 

effect of time, F(1, 19) = 0, p>0.5 and no significant group x treatment time interaction, F(1, 

19) = 0.1, p>0.5 was reported. There was no significant main effect of group, F(1, 19) = 0.13, 

p>0.5. As no changes were observed following within- and between-subject comparisons the 

data from both WT groups were collapsed for all subsequent analyses. 

2B3 treatment and habituation to objects

 Sample phase data (Table 5.1) obtained following 2B3 treatment was analysed using a 

3x2x3 repeat measures ANOVA. These violated Levene’s test of equality of error variances

and was therefore transformed using square root. Despite this transformation, sample phase 

data violated the Mauchly’s Test of Sphericity and analysis of this factor was performed with 

Greenhouse-Geisser corrections. This analysis revealed a significant main effect of sample 
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phase, F(1.6, 63.2) = 88.4, p<0.001, no significant sample phase x treatment group 

interaction, F(3.2, 63.2) = 0.5, p>0.1, no significant main effect of time, F(1, 39) = 1.3, p>0.1, 

no significant time x treatment group interaction, F(2, 39) = 0.1, p>0.5, no significant sample 

phase x time interaction, F(2, 78) = 1.2, p>0.1 and no significant sample phase x time x 

treatment group interaction, F(4, 78) = 0.9, p>0.1. A significant main effect of treatment 

group was reported, F(1, 39) = 16.9, p<0.001. A post-hoc Tukey analysis revealed that WT 

mice explored objects significantly more than PDAPP V mice, p<0.001 and PDAPP 2B3 

mice, p<0.01. No significant difference in contact times was reported between either PDAPP 

treatment group, p>0.1. These results indicate that 2B3 treatment did not effect habituation of 

object contact times in PDAPP mice. 

Sample Phase

Treatment Group

WT Untreated WT Vehicle PDAPP Vehicle PDAPP 2B3

Pre Post Pre Post Pre Post Pre Post

Sample 

Phase 1

Mean 43.60 43.52 34.53 27.16 17.10 17.60 24.23 23.10

SD 20.90 13.45 20.56 10.87 6.28 10.62 15.86 10.24

Sample 

Phase 2

Mean 28.84 24.32 25.17 19.47 9.95 9.06 15.95 15.71

SD 14.82 11.71 12.61 13.49 4.14 7.28 10.49 8.81

Sample 

Phase 3

Mean 23.40 17.56 15.67 16.35 8.22 4.80 12.46 10.30

SD 15.71 7.75 8.68 8.90 3.66 3.01 8.28 7.95

Table 5.1: Mean contact time scores with objects of WT untreated (n=11), WT V (n=10), PDAPP V 

(n=11) and PDAPP 2B3 (n=10) mice across sample phase 1-3 and standard deviations (SD). Both pre- 

and post-treatment scores are reported in seconds. 

2B3 treatment and object-in-place memory in PDAPP mice

 Table 5.2 shows the mean contact times with objects in novel and familiar locations 

across treatment groups and pre- and post-treatment intervention. A 2x2x3 repeat measures 

ANOVA analysed the main effects of object location, time and treatment group. This analysis 

revealed a significant main effect of object location, F(1, 39) = 84.1, p<0.001, a significant 

object location x treatment group interaction, F(2, 39) = 15.5, p<0.001, no significant main 

effect of time, F(1, 39) = 0.002, p>0.5, no significant time x treatment group interaction, F(2, 

39) = 0.8, p>0.1, no significant object location x time interaction, F(1, 39) = 1.2, p>0.1, no 

significant object location x time x treatment group interaction, F(2, 39) = 2.8, p>0.05. A 
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significant main effect of treatment group, F(2, 39) = 10.1, p<0.001 was also reported. Post-

hoc Tukey analysis of the significant main effect of treatment group revealed that WT mice 

had higher contact times with objects than either PDAPP V mice, p<0.01 and PDAPP 2B3 

treated mice, p<0.05. No significant difference in contact times were observed between either 

PDAPP treatment group, p>0.1. The significant object location x treatment group interaction 

was further analysed with tests for simple main effects. Within-subjects comparisons reported 

that all groups showed an ability to discriminate objects in novel locations as determined by a 

significant difference in exploration times between objects in novel vs familiar locations, 

p’s<0.05. Between-subjects analysis revealed that WT mice explored objects in novel 

locations more than PDAPP V mice, p<0.001, and PDAPP 2B3 mice, p<0.01. WT mice also 

showed greater contact times with objects in familiar locations than PDAPP V mice, p<0.01, 

but not PDAPP 2B3 mice, p>0.1. No significant difference was reported between PDAPP 

mice for objects in novel or familiar locations, both p’s>0.1 This analysis suggests that 2B3 

treatment in PDAPP mice did not increase overall contact time with objects. 2 

Figure 5.1 displays the DR scores of mice before and following treatment with 2B3. 

These data were analysed using a 3 x 2 repeat measures ANOVA to determine if 2B3 

treatment had any effect on OiP memory in PDAPP mice. The two main factors analysed 

were treatment (PDAPP Vehicle, PDAPP 2B3 etc.) and Time (pre- vs post-treatment). The 

analysis revealed a significant main effect of time, F(1, 39) =  4.12, p<0.05 and a significant 

treatment x time interaction F(2, 39) = 3.27, p<0.05 and a significant main effect of treatment, 

F(1, 39) = 16.59, p<0.001. A post-hoc Tukey analysis of the main effect of treatment revealed 

that overall WT mice showed higher DR scores than PDAPP vehicle treated mice, p<0.001 

and PDAPP 2B3 treated mice, p<0.05. It was also revealed that PDAPP 2B3 treated mice 

showed an overall improvement in DR scores compared to PDAPP vehicle treated mice, 

p<0.05. Tests for simple main effects were performed following the significant treatment x 

time interaction. Within-subjects analysis revealed no change in pre- vs. post-treatment DR 

scores for WT mice or PDAPP vehicle mice, p>0.5. However, 2B3 treated mice showed a 

significant improvement in post-treatment OiP memory performance, p<0.01. The between-

subjects analysis revealed that PDAPP 2B3 treated mice showed significantly lower DR 

scores in the pre-treatment stage when compared to WT mice, p<0.01, but were not 

significantly different compared to PDAPP vehicle mice, p=1.0. However, following 2B3 

treatment PDAPP mice showed no difference in DR scores compared to WT mice, p=1.0, but 

did show significantly better DR scores than PDAPP vehicle control mice, p<0.001. WT mice 
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showed a significantly greater DR score than PDAPP vehicle mice across both pre- and post- 

time periods, p<0.001.  

Treatment 

Group

Pre-Treatment Post-Treatment

Novel Familiar Novel Familiar

Mean SD Mean SD Mean SD Mean SD

WT Untreated 30.51 16.90 13.51 6.77 23.82 19.22 11.40 6.87

WT Vehicle 16.01 5.48 8.77 5.33 18.32 11.32 9.98 8.81

PDAPP Vehicle 6.51 3.54 4.85 1.69 6.53 3.56 4.87 2.91

PDAPP 2B3 12.78 9.17 9.02 6.72 13.19 7.16 7.14 4.65

Table 5.2: Mean contact time scores with objects in novel and familiar locations of WT untreated 

(n=11), WT V (n=10), PDAPP V (n=11) and PDAPP 2B3 (n=10) and standard deviations (SD). Both 

pre- and post-treatment scores are reported in seconds. 

One sample t-tests were also run to determine if WT and PDAPP mice DR scores were 

significantly above chance (0.5). The analysis showed that all treatment groups at both pre- 

and post-treatment time points were significantly above chance level: WT UT mice pre-

treatment, t(10) = 7.9, p<0.001 and post-treatment, t(10) = 10.8, p<0.001, WT V mice pre-

treatment, t(9) = 7.4, p<0.001 and post-treatment, t(9) = 5.8, p<0.001. PDAPP vehicle treated 

mice, t(10) = 3.1, p<0.05 and post-treatment, t(10) = 4.8, p<0.01. PDAPP 2B3 treated mice, 

t(9) = 2.9, p<0.05 and post-treatment, t(9) = 11.2, p<0.001. 

Despite a non significant difference in total contact times between PDAPP treatment 

groups, there was an observed bias of increased overall contact time with objects in 2B3 

administered PDAPP mice (both in pre- and post-treatment conditions). For this reason, the 3 

mice with the highest contact times in the 2B3 administered group and the 3 mice with the 

lowest contact times in the vehicle administered PDAPP group were removed to observe if 

this effect in any way biased the overall DR scores. Following removal of these mice the 

mean contact time with objects can be observed in table 5.3. An identical analysis of DR 

scores was then carried out as described above, revealing the same overall results. Thus, this 

difference in contact times initially observed did not show any bias in the ability of 2B3 

administered PDAPP mice to discriminate objects in novel locations when compared to 
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vehicle treated PDAPP mice. Collectively these results show that 2B3 treatment improved 

OiP memory performance in PDAPP mice. 

Treatment 

Group

Pre-Treatment Post-Treatment

Novel Familiar Novel Familiar

Mean SD Mean SD Mean SD Mean SD

WT Untreated 30.51 16.90 13.51 6.77 23.82 19.22 11.40 6.87

WT Vehicle 16.01 5.48 8.77 5.33 18.32 11.32 9.98 8.81

PDAPP Vehicle 7.77 3.32 5.78 0.57 5.85 3.44 4.36 3.08

PDAPP 2B3 5.14 3.48 3.95 2.63 9.39 5.66 4.66 3.12

Table 5.3: Adjusted mean contact time scores with objects in novel and familiar locations of WT 

untreated (n=11), WT V (n=10), PDAPP V (n=8) and PDAPP 2B3 (n=7) and standard deviations 

(SD). Both pre- and post-treatment scores are reported in seconds. 
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Figure 5.1: 2B3 treatment improved OiP memory in PDAPP mice. Graph shows mean DR 

scores of WT untreated (n=11), WT V (n=10), PDAPP V (n=11) and PDAPP 2B3 (n=10) mice. 2B3 

treatment showed a significant improvement in memory performance in PDAPP mice when compared 

to pre-treatment performance and when compared to PDAPP vehicle treated mice. Graph shows the 

mean DR scores of pre- and post-treatment times for all groups tested. Error bars indicate S.E.M. A 

solid black line indicates chance level at 0.5. ***p<0.001 between-subjects difference between post-

treated PDAPP vehicle mice and post-treated PDAPP 2B3 mice. ++p<0.01 within-subject difference 

between pre-treated and post-treated PDAPP 2B3 mice. 
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5.2.4 Discussion 
 Results from this experiment have shown that ICV 2B3 administration to PDAPP 

mice significantly improved OiP recognition memory performance. To date, two previous 

reports have assessed the cognitive benefits of passive immunotherapy in PDAPP mice 

following the onset of an age-related cognitive deficit (Dodart et al. 2002; Hartman et al. 

2005). For example, Dodart and colleagues reported significant improvements in object 

recognition memory performance following peripheral administration of m266, an anti-Aβ 

antibody, in a dose-dependent manner (Dodart et al. 2002). The results reported in 

Experiment 7 compliment these findings and, in addition, show that interfering with 

Aproduction by steric hindrance of APP β-secretase cleavage site activity can improve 

visuo-spatial object recognition memory in PDAPP mice. 

No overall changes in contact time with objects were observed in any treatment group 

following vehicle or 2B3 treatment in this experiment, suggesting that 2B3 did not interact 

with motor performance or a tendency to engage with novel of familiar objects. Moreover, 

this suggests that overall reduced contact times with objects, also reported in Chapter 4, was 

an effect of APP overexpression and unlikely to be related to age-related Aβ production.  

Observation of test phase contact times in 2B3 administered PDAPP mice suggested a shift in 

the distribution of contact times. PDAPP mice spent more time exploring objects in novel 

locations and less time exploring objects in familiar locations. However, this effect was subtle 

and no significant location x time x treatment group interaction was observed. However, when 

contact times were converted to DR scores a difference in the discriminability of the novel 

and familiar locations within and between groups was clearly observed. Therefore, the results 

reported in this experiment provide evidence that in vivo administration of 2B3 significantly 

improved OiP memory in aged PDAPP mice. 

 These results also compliment other studies using a similar antibody approach. BBS1 

improved non-spatial object recognition memory in both Tg2576 and 3xTg mice following 

chronic intraperitoneal or 4-week ICV administration respectively (Rakover et al. 2007; 

Rabinovich-Nikitin et al. 2012). In contrast to the present study, neither of these earlier 

reports assessed pre-drug performance scores. The partially within-subject design used in the 

present study allowed the severity of memory impairment to be established prior to and after 

2B3 administration. Following 2B3 administration, no significant difference in DR scores was 

observed when comparing 2B3 administered PDAPP mice and WT vehicle mice. Rabinovich-

Nikitin et al. (2012) reported a similar result in 3xTg mice testing the BBS1 antibody. 

However, the comparison to WT controls was not reported in the Rakover et al., (2007) study 
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using Tg2576 mice. A more thorough comparison of the designs used in these studies will be 

reserved until the chapter discussion. 

Collectively, the behavioural analysis reported in Experiment 7 showed significant 

improvements in OiP memory.  This task is exquisitely sensitive to manipulations involving 

the hippocampus. These results support the hypothesis that antibodies targeting the β-

secretase cleavage site of APP can improve memory performance in aged Tg models of 

amyloid pathology and may provide an exciting therapeutic strategy for the treatment of early 

stage AD.   

5.3 Experiment 8: Ex vivo tissue analysis of 2B3 treated mice 

5.3.1 Introduction 

 The aim of this experiment was determine if 2B3 administration changed APP 

metabolism in ex vivo tissue of PDAPP mice. As discussed in Chapter 1 and Chapter 6 

introduction, 2B3 binds at the β-secretase cleavage site of APP, preventing the processing of 

Aβ by steric hindrance in vitro (Thomas et al. 2011; Thomas et al. 2013). It was therefore 

hypothesised that 2B3 administration in PDAPP mice would reduce the levels of APP 

metabolites, including βCTF, Aβ40 and Aβ42.   

The second aim of this experiment was to investigate if 2B3 inhibition of APP 

processing by beta-secretase would have down stream consequences on NMDARs activity. 

The mechanism under investigation has previously been described in Chapter 1. Briefly, 

NMDARs in the hippocampus contribute to OiP memory performance (Barker & Warburton 

2008; Barker & Warburton 2013). Previous reports using hAPP Tg mice have reported 

increased phosphorylation of the NMDAR subunit NR2B (Ittner et al. 2010). This increase in 

NR2B phosphorylation led to impaired spatial working memory, as determined by T-maze 

alternation task (Ittner et al. 2010). It was therefore hypothesised that inhibition of Aβ 

production by steric hindrance of β-secretase cleavage of APP reduced NR2B 

phosphorylation. The administration of 2B3 to PDAPP mice may thereby have improved 

NMDAR-dependent activity required for the OiP memory task.  
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5.3.2 Methods 

 All methods used in this experiment have previously been detailed in Chapter 2. 

Samples 

All samples used in this experiment were prepared as described in Chapter 2.  WT 

vehicle (n=10), PDAPP vehicle (n=11) and PDAPP 2B3 administered (n=10) mice were used 

for analysis in this experiment. All Western blot analysis used all 3 groups. ELISA analysis 

used PDAPP mice only. Due to violations in data normality and distribution (described 

below), one PDAPP 2B3-treated mouse was removed from all ELISA analysis. 

Statistics 

 All data in this experiment were analysed using one-way ANOVA with post-hoc 

Tukey analysis or independent samples t-tests. Prior to these analyses, data were explored for 

normality of distribution using the Shapiro-Wilk test. Extreme outliers were also observed 

using Tukey’s box plots in SPSS. If violations of normality occurred and outliers were 

reported, data were transformed appropriately. If transformations showed no effect it was 

determined if the violations were caused by individual outliers. As it has been reported that 

Tukey’s box plots (used in SPSS) may not be appropriate for detecting outliers in smaller 

sample sizes, more robust models for labelling outliers were used (Iglewicz & Hoaglin 1993). 

Methods for labelling outliers were adopted as according to Hoaglin & Iglewicz for normally 

distributed data and Carling for non-normally distributed data (Hoaglin & Iglewicz 1987; 

Carling 1998). These methods were chosen due to similar mathematical protocols for 

identifying outliers; the method reported by Carling is an adaptation using the “Median Rule” 

as opposed to the adapted “Tukey Rule” proposed by Hoaglin & Iglewicz. If any data points 

labelled as outliers were reported from non-normally distributed data these data points were 

removed and normality was re-analyzed. If the removal of this datum or data generated a 

normal distribution as determined by Shapiro-Wilk test the excluded values were referred to 

as “extreme outliers” and were removed from the study. In this analysis, one mouse from the 

PDAPP 2B3 administered group met the criteria for an extreme outlier in APP, Aβ40 and 

βCTF ELISA analyses and was hence removed from all ELISA analyses.  
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5.3.3 Experiment 8 – Results: 

2B3 treatment alters APP processing ex vivo without affecting levels of APP expression

APP  

To establish that 2B3 administration did not alter levels of total APP, left HPC 

homogenates of 2B3 treated PDAPP mice were compared to vehicle treated PDAPP mice. 

Western blot analysis (Fig 6.2A) showed a small reduction in total levels of APP in 2B3 

treated mice. However, this trend was not observed following ELISA quantification of APP 

(Fig 6.2B). Independent samples t-test reported no difference in APP levels in either Western 

blot, t(19) = 1.02, p>0.1, or ELISA, t(18) = 1.33, p>0.1, measurements. 

APP Metabolites 

To determine if 2B3 altered APP processing in PDAPP mice levels of soluble Aβ40 

and Aβ42 and βCTF were analysed by ELISA (Fig 6.2 A-C). A significant reduction in Aβ40 

was observed in 2B3 treated PDAPP mice (Fig 6.2A), t(18) = 2.28, p<0.05, however this was 

not observed with Aβ42, t(18) = 1.01, p>0.1. Consistent with the finding that levels of soluble 

Aβ40 were reduced following 2B3 treatment, there was a significant reduction in βCTF was 

in 2B3 treated PDAPP mice, t(18) = 2.22, p<0.05. Collectively, these results show that 2B3 

treatment of PDAPP mice altered APP processing in the HPC most likely by steric hindrance 

of β-secretase cleavage of APP. 
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Figure 5.2: Levels of total APP in vehicle and 2B3-treated PDAPP mice. No significant differences 
in total levels of APP were observed in Western blot analysis. (A) shows a representative example of 
three PDAPP mice/treatment group. (B) shows quantified levels of APP in PDAPP vehicle (n=11) and 
PDAPP 2B3 (n=10) determined by Western blot. (C) displays ELISA quantification of APP for 
PDAPP vehicle (n=11) and PDAPP 2B3 mice (n=9). Error bars represent S.E.M.  
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Figure 5.3: Quantification of Aββ40, Aββ42 and ββCTF by ELISA in hippocampal homogenates 

of 2B3 treated PDAPP mice. 2B3 treatment showed a significant reduction in the total levels of 

soluble Aβ40 (A), but not Aβ42 (B). A significant reduction in βCTF levels was also observed 

following 2B3 treatment (C). Error bars represent S.E.M. All measures were determined by ELISA. 

*p<0.05 represents a significant reduction in protein levels in PDAPP 2B3 mice (n=9) compared to 

PDAPP vehicle mice (n=11). 
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Treatment with 2B3 alters NMDA receptor phosphorylation

 Western blot analysis was used to determine if 2B3 caused any changes in total 

PSD95, a synaptic marker, total NMDAR (NR1) expression and the level of NR2B and the 

phosphorylated state of the regulatory tyrosine residue 1472 (pY1472). 

 No significant changes in total levels of NR1 (a measure of total NMDAR) was observed, 

F(2, 28) = 0.05, p>0.5, nor were any differences in total levels of PSD95 reported, F(2, 28) = 

0.3, p>0.5 as determined by one way ANOVA (Fig 6.4A). Following this result, any changes 

observed in NR2B and pY1472 cannot be attributed to changes in total levels of NMDARs or 

total synaptic density.  

Figure 6.4B shows levels of NR2B and pY1472. Analysis by one-way ANOVA 

revealed no significant difference of total NR2B, F(2, 30) = 1.3, p>0.1. Despite a small 

numerical increase in pY1472 being observed in PDAPP vehicle mice, this was not 

significant, F(2, 30) = 1.7, p>0.1. A ratio of total NR2B to pY1472 was calculated to 

determine if levels of NR2B pY1472 were altered relative to the total levels of NR2B. A 

significant difference was reported when analysing the NR2B:pY1472 ratio, F(2, 30) = 8.9, 

p<0.001. Post-hoc Tukey analysis revealed that PDAPP vehicle mice showed a significantly 

greater level pY1472 as a ratio of NR2B than WT vehicle mice, p<0.01 as well as PDAPP 

2B3 administered mice, p<0.001. PDAPP 2B3 mice showed no significant difference when 

compared to WT vehicle administered mice, p>0.5. These results provide evidence that NR2B 

phosphorylation as a ratio of total NR2B is reduced in PDAPP mouse HPC following 2B3 

treatment. 
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Figure 5.4: 2B3 reduced NR2B phosphorylation in PDAPP mice. Quantification by Western blot 

of synaptic proteins in PDAPP mice following 2B3 treatment. (A) Mice showed no overall changes in 

total levels of PSD95, NR1. (B) Numerical reductions in NR2B were observed and small increase in 

total pY1472 can also be observed in PDAPP V mice, however significant changes are observed when 

total levels of pY1472 are expressed as a ratio of total NR2B. Error bars represent S.E.M. **p<0.01 

significant difference between WT vehicle (n=10) and PDAPP vehicle (n=11) groups. +++p<0.001 

significant difference between PDAPP vehicle and PDAPP 2B3 (n=10). 
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5.3.4 Experimental Discussion 

In this experiment, 2B3 administration showed significant reductions of soluble Aβ40 

and βCTF without affecting total levels of APP. No change in the level of Aβ42 was reported. 

A significant reduction in total levels of βCTF was observed in the HPC of PDAPP mice 

following 2B3 administration. No change in Aβ42 was reported following BBS1 treatment in 

3xTg and Tg2576 mice (Rakover et al. 2007; Rabinovich-Nikitin et al. 2012). In contrast to 

the present study, there was no evidence that BBS1 treatment reduced the levels of CTFs 

(Rakover et al. 2007; Rabinovich-Nikitin et al. 2012). This novel finding in the present study 

is consistent with the hypothesis that the 2B3 monoclonal antibody targeted the APP β-

secretase cleavage site.  

 To date, no study assessing the effects of amyloid-based immunotherapies have 

identified changes in a receptor-based mechanism linked to amyloid pathology. This study has 

shown for the first time that the 2B3-induced inhibition of APP processing in vivo reduced the 

phosphorylation of the NR2B subunit. The increased phosphorylation of NR2B has 

previously been linked with working memory impairments in APP23 mice (Ittner et al. 2010). 

There is also compelling evidence for the involvement of NMDAR-dependent synaptic 

processes in the object-in-place memory task used in Experiment 7 (Barker & Warburton 

2008; Barker & Warburton 2013). Taken together the present study suggests that 2B3 

improved memory function in PDAPP mice by reducing the amyloid-related increase in 

NMDAR phosphorylation. A more in-depth analysis of these results will be provided in the 

Chapter Discussion.  

5.4 Chapter Discussion 

Early studies using monoclonal anti-Aβ antibodies as a passive immunotherapy in 

PDAPP mice showed a reduction in amyloid load in the brains of 16 month old mice (Bard et 

al. 2000). Subsequent work showed that passive immunisation of PDAPP and Tg2576 mice 

was able to improve age-related cognitive deficits (Dodart et al. 1999; Dodart et al. 2002; 

Kotilinek et al. 2002a; Westerman et al. 2002). These early studies suggested that the 

reduction and clearance of Aβ from the brain by immunotherapy was a promising therapeutic 
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strategy for the treatment of AD. However, clinical trials using passive immunotherapies have 

yet to deliver successful reductions in levels of amyloid and improved cognition. 

Other strategies to reduce Aβ levels in the brain have also been investigated, 

including the use of β-secretase inhibitors to prevent amyloidogenic metabolism of APP. This 

studies have revealed positive effects of with BACE1 inhibitors as well as BACE1 KO mice 

crossed with Tg models of amyloid pathology (Luo et al. 2001; Asai et al. 2006; Hussain et al. 

2007; Vassar et al. 2009). However, targeting BACE1 directly has lead to concerns about the 

potential negative impact of inhibiting various other roles of BACE1 (Vassar et al. 2009; De 

Strooper et al. 2010a). In order to overcome these challenges, anti-APP antibodies targeting 

the β-secretase cleavage site, such as 2B3 and BBS1, have been generated to selectively 

inhibit amyloidogenic processing of APP (Arbel et al., 2005; Thomas et al. 2011; Thomas et 

al. 2013). 

Previous results assessing the effects of 2B3 in vitro have reported significant 

reductions of Aβ levels in MOG-G-UVW astrocytoma cells, as well as mouse primary 

cortical neurons (Thomas et al. 2011; Thomas et al. 2013). Based on these results, 2B3 was 

hypothesised to reduce amyloid processing and improve behavioural deficits in PDAPP mice 

(reported in Chapters 3 and 4). Experiment 7 showed that following 2B3 administration 

PDAPP mice exhibited a significant improvement in object-in-place memory. Rakover et al. 

(2007); Rabinovich-Nikitin et al. (2012) used a similar antibody to 2B3 (BBS1) which also 

targeted the β-secretase cleavage site of APP, and reported improved recognition memory 

following its administration in Tg2576 and 3xTg mice. A number of differences exist between 

these studies and that reported in Experiment 7, including age of mice, the transgene(s) 

expressed and route of antibody administration and the behavioural design  

The behavioural protocols assessing in vivo effects of BBS1 differ significantly. As 

discussed in detail in Chapter 4, alterations in behavioural methodology can lead to different 

results and performance in recognition memory (Dodart et al. 1999; Chen et al. 2000). The 

protocol used by Rakover and colleagues tests object novelty detection (A+B  A+C) and 

has been reported to rely on perirhinal cortex (PRC) function (Warburton & Brown 2010; 

Barker & Warburton 2011;  Warburton & Brown 2015). Rabinovich-Nikitin and colleagues 

exposed animals to one object during the sample phase followed by a test phase in which the 

familiar object and a novel object were presented (A  A+B), therefore the novel object was 

also presented in a novel spatial location This type of procedure is likely to involve the PRC 

to dissociate novel and familir object information, but also the HPC in relation to processing 
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changes in the spatial organisation of the object array (Winters et al. 2004; Barker & 

Warburton 2011; Barker & Warburton 2013). The behavioural phenotype exhibited between 

models is also reported to be different. 3xTg mice have previously been reported to show 

object-novelty memory deficits at 9 and 15 months of age, which was also observed by 

Rabinovich-Nikitin and colleagues at the 18 month age in the control 3xTg mice tested 

(Clinton et al. 2007; Rabinovich-Nikitin et al. 2012). However, Tg2576 mice have shown 

intact object novelty memory at 14 and 16 months of age, which was not observed by 

Rakover and colleagues (Hale & Good 2005; Good & Hale 2007; Rakover et al. 2007).  

Although both studies using recognition memory to assess in vivo effects of BBS1 

report improved performance, it is unclear given the differences in behavioural methodology 

and Tg model phenotype whether the antibody improved overall HPC function and processing 

of information in the HPC in either Tg2576 or 3xTg mice. No study to date using BBS1 has 

observed a significant improvement in a cognitive task sensitive to HPC function. Therefore 

the improvement in memory function reported in 3xTg mice following BBS1 administration 

may be due to improved PRC function and/or HPC function, but can not be concluded given 

the behavioural protocol used (Rabinovich-Nikitin et al. 2012). The improved memory 

performance in Tg2576 mice following chronic BBS1 treatment is likely to be a consequence 

of improved PRC function (Rakover et al. 2007). However, the PBS administered Tg2576 

control mice showed a preference for the familiar object over the novel object (Rakover et al. 

2007). This suggests a neophobic response (anxiety of novel objects) in the Tg2576 mice used 

in this study and thus any improvement in performance may not have been an overall measure 

of improved memory function, but reduced anxiety. Finally, Arbel-Ornath and colleagues 

assessed the London mutation model following chronic BBS1 administration of the MWM 

(Arbel-Ornath et al. 2009). No significant improvement in spatial reference memory was 

observed in the probe trial of the MWM following BBS1 administration, however a numerical 

improvement was observed (Arbel-Ornath et al. 2009). Collectively, although in vivo

assessment of BBS1 has reported improvements in behaviour following BBS1 administration, 

it is unclear whether these effects are specific to HPC function or altered emotionality and 

require further investigation. 

 In Experiment 7, PDAPP mice showed a significant improvement in OiP memory 

following 2B3 administration. As reported in Chapter 4, PDAPP mice showed no deficit in 

object recognition across all ages tested. A large body of work suggests that the OiP task 

involves an interaction between the PRC and HPC for successful memory performance 

(Warburton & Brown 2015b).  Given the evidence of intact novelty recognition in aged 
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PDAPP mice it is likely that changes the OiP deficit reflected impaired spatial processing and 

not a failure to discriminate between objects. Therefore, the 2B3-induced improvement in OiP 

memory is likely caused by improvements in HPC function or improved connectivity in the 

neural circuit connecting the PRC and HPC in PDAPP mice. This observation is further 

supported by 2B3-induced the changes in hippocampal Aβ and βCTF levels in PDAPP mice. 

Therefore, this study has presented evidence that inhibition of APP cleavage at the β-secretase 

cleavage site improved memory performance in an object-in-place recognition task sensitive 

to HPC dysfunction. 

To compliment the findings that 2B3 improved object-in-place performance in 

PDAPP mice, there were significant changes in markers of APP processing, specifically 

hippocampal Aβ and βCTF levels, without changes in total levels of APP. These neurotoxic 

peptides have been implicated in the cognitive deficits observed in Tg and experimental 

models of AD (Nalbantoglu et al. 1997; Choi et al. 2001; Chishti et al. 2001; Cleary et al. 

2005). In Exeriment 8, levels of Aβ40 were reduced by 51.7% in PDAPP mice by 2B3 

administration. However levels of Aβ42 remained unaffected. Published evidence indicates 

that the Aβ42 peptide is significantly more neurotoxic than the Aβ40 peptide (Klein et al. 

1999; Walsh & Selkoe 2004). Indeed, it has also been shown in PDAPP mice that there is a 

much greater ratio of Aβ42 to Aβ40 (Johnson-Wood et al. 1997; Fryer et al. 2005; Hartman et 

al. 2005). These data are consistent with the view that increasing Aβ42 levels is more likely to 

be the cause of cognitive deficits in PDAPP mice than Aβ40. However, rat models of AD in 

which Aβ40 is infused into the ventricles display cognitive deficits, including impaired spatial 

memory (Nitta et al. 1994; Özdemir et al. 2013; Xu et al. 2015). These models showed that 

Aβ40 pathology is sufficient to drive cognitive deficits and potentially impair HPC function, 

independent of Aβ42. The result that 2B3 reduced levels of Aβ40 in the HPC of PDAPP mice 

and improved memory is consistent with the view Aβ40 peptide contributes to neuronal 

changes that underpin cognitive deficits in APP transgenic mice. This result may imply that 

soluble Aβ40 also contributes to memory deficits in PDAPP mice as well as Aβ42.

2B3 also caused a 23.9% reduction in total levels of βCTF in the HPC of PDAPP 

mice. Despite the fact that most research has focussed on the role of Aβ and tau pathology in 

AD, increased levels of βCTF have been observed in AD patients. Furthermore, βCTF have 

been implicated in the disruption of neuronal physiology and cognitive deficits in rodents 

(Nalbantoglu et al. 1997; Choi et al. 2001; Holsinger et al. 2002; Liu et al. 2009; Tamayev et 

al. 2012; Kim et al. 2015). Indeed, recent research into the role of βCTF has revealed an Aβ-

independent mechanism causing dysregulated endocytosis (Pimplikar et al. 2010; Kim et al. 
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2015). Thus, increased levels of βCTF can cause pathologically accelerated endocytosis and 

up-regulation of rab5, a marker of early endosomes (Grbovic et al. 2003; Kim et al. 2015). 

Enlarged endosomes and endosome related genes, including rab5, are up-regulated in early 

AD (Cataldo et al. 2000; Ginsberg et al. 2010). βCTF-induced acceleration of endocytosis 

caused endosome swelling and impaired axonal transport of endosomes in mouse primary 

cortical neurons (Kim et al. 2015). Endocytosis is involved in multiple signalling pathways 

and trafficking of neuronal receptors, including NMDARs (Washbourne et al. 2004; Nixon 

2005; Lau & Zukin 2007). A disruption of endosomal processing is therefore likely to 

contribute to impaired neurotransmission and thus cognitive deficits. It remains possible that 

this mechanism is improved by the 2B3-induced reduction in βCTF in PDAPP mice and this 

may also contribute to enhanced memory function. However, further work is required to test 

this. 

Similar changes in APP metabolites following in vivo administration of the anti-APP 

antibody BBS1 have also been reported (Arbel-Ornath et al. 2009; Rabinovich-Nikitin et al. 

2012). However, inconsistencies exist between studies. Tg2576 mice administered BBS1 

showed no change in levels of soluble or insoluble Aβ40 and Aβ42 (Rakover et al. 2007). 

3xTg mice administered BBS1 also showed no significant reduction in soluble Aβ42, but 

significant reductions in total Aβ load, plaque size and reduced tau pathology (Rabinovich-

Nikitin et al. 2012). These results were similar to the BBS1-mediated reduction in plaque size, 

intracellular Aβ and Aβ oligomers reported in London mutation APP mice (Arbel-Ornath et 

al. 2009). However, to date, no study assessing BBS1 or any anti-Aβ antibodies ex vivo has 

reported any changes in levels of βCTF.

Despite in vivo assessment of a number of anti-Aβ antibodies and BBS1 showing 

improved cognition and reduced Aβ pathology, no study has yet reported the impact of the 

antibody on a receptor-based mechanism linked Aβ toxicity. Hippocampal NMDARs 

contribute to successful performance on the OiP memory task (Barker & Warburton 2008). 

Experiment 8 showed that there was no overall change in total levels of NMDARs in 2B3 

treated PDAPP mice. However, Aβ has been observed to reduce NMDAR surface expression 

in primary cortical neurons and in primary neurons of APPSwe mice, without affecting total 

levels of NMDARs (Snyder et al. 2005). A reduced surface expression of total NMDARs has 

also been reported in 12 month old Tg2576 mice (Kurup et al. 2010). In this study, the precise 

localisation of NMDARs was not assessed due to differences in protein extraction protocols 

used here and by Kurup and colleagues. However, it is possible that surface NMDARs may 

not have been reduced to the same extent in the present study as that reported by Kurup et al., 
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(2010). In Experiment 8, PBS control PDAPP mice showed increased phosphorylation of the 

tyrosine 1472 (Y1472) residue of the NR2B subunit. This phosphorylation has been reported 

to increase the interaction of PSD95 with NMDA-NR2B containing complexes and prevent 

receptor internalisation (Lin et al. 2004; Prybylowski et al. 2005). Tg2576 mice show a 

reduction in phosphorylated Y1472 (pY1472) when compared to age-matched WT controls 

(Zhang et al. 2010). This may explain why Tg2576 mice showed reduced NMDAR surface 

expression. However, to date, no study has reported NMDAR surface expression of PDAPP 

mice. It is tempting to speculate that it may be increased relative to Tg2576 mice or WT 

control mice because of the increased NR2B pY1472. However, further analysis is required to 

test this hypothesis.  

Figure 5.5: Schematic illustration demonstrating the interactions between Aβ, tau and Fyn 

leading to NMDAR-mediated neuronal excitotoxicity. Src kinase Fyn interacts with phosphorylated 

tau protein leading to the translocation of both proteins to the post synapse (1-2). Fyn at the synapse 
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phosphorylates the NR2B subunit of the NMDAR complex, stabilizing its interaction with PSD95 and 

expression at the synapse (3-4). Increased Aβ and enhanced expression of NR2B containing NMDARs 

at the synapse causes disproportionate influx of Ca2+ leading to downstream neurotoxicity.  

No change in levels of PSD95 was observed in either WT or PDAPP treatment group 

in this study. This may indicate that there was no overall neuronal or synaptic loss. However, 

previous research has shown in PDAPP mice that significant reductions in numbers of 

dendritic spines occurs with age and overall synaptic loss has also been reported (Games et al. 

1995; Lanz et al. 2003). These data were obtained using more optimal protocols (confocal 

microscopy and photomicrographs of Golgi-stained neurons) to determine synaptic 

quantification. It may therefore be likely that the Western blot quantification of HPC 

homogenate used in this study was not sensitive enough to quantify synaptic changes caused 

by Aβ-induced neurotoxicity in aged PDAPP mice. 

Phosphorylation of the NMDAR NR2B subunit has been found to be altered in mouse 

models of AD (Ittner et al. 2010; Zhang et al. 2010) It must be noted however, that while 

Tg2576 and 3xTg mice have been reported to show reduced NR2B phosphorylation, APP23 

mice have shown increased NR2B phosphorylation (further discussion of these conflicting 

studies is provided in Chapter 6, section 6.3). This increased NR2B phosphorylation was 

observed in 18-month control PDAPP mice reported in Experiment 5B. The reasons for these 

differences between Tg models remain undetermined. The increased ratio of total NR2B to 

NR2B pY1472 observed in PBS administered PDAPP mice was reduced by 2B3 without 

affecting total levels of NR2B or total NMDARs. The phosphorylation of NR2B is reported to 

increase NMDAR-PSD95 interaction (Figure 5.5), NMDAR surface expression and has been 

shown to be regulated by SRC kinase Fyn (Prybylowski et al. 2005; Ittner et al. 2010). This 

enhanced NMDAR surface expression is thought to lead to increased NMDAR activation and 

Ca2+ influx leading to excitotoxicity in neurons (Figure 5.5; Ittner et al. 2010) In AD brains 

increased levels of Fyn have been observed (Ho et al. 2005). Indeed, overexpression of Fyn in 

the J9 and J20 mouse model of AD caused more severe cognitive deficits than control Fyn 

overexpression and hAPP overexpression alone, as well as an increased loss of synapses 

(Chin et al. 2004; Chin et al. 2005). The increased loss of synapses and increased cognitive 

impairment is a likely an effect of Aβ-induced and fyn-mediated increased phosphorylation of 

Y1472 of the NR2B subunit as proposed by Ittner and colleagues (Figure 5.5; Ittner et al. 

2010; Ittner & Götz 2011). This mechanism may further be implicated in the synaptic loss 

reported in PDAPP and APP23 mice, both of which have shown increased pY1472 (Games et 

al. 1995; Calhoun et al. 1998). Given the reduced level of Aβ40 in 2B3-administered mice, it 
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may be possible that fyn activity is also reduced leading to the reduction of the 

phosphorylated NR2B Y1472 residue. However, further research is required to confirm this 

mechanism.  

Finally, the phosphorylation state of the NR2B Y1472 subunit has been observed to 

play a significant role in memory performance. APP23 mice exhibited significant 

impairments of a T-maze working memory task and increased pY1472 (Ittner et al. 2010). 

However, following administration with a peptide compound, Tat-NR2B9c, which has been 

shown to prevent NMDA-induced excitotoxicity and perturb the NR2B containing NMDAR-

PSD95 interaction, APP23 mice showed significant improvement in T-maze performance 

(Aarts et al. 2002; Ittner et al. 2010). More recently a mouse model expressing the Arctic APP 

mutation and WT human tau (ArcTau) crossed onto a heterozygous BACE KO line to produce 

ArcTau/BACE+/- and ArcTau/BACE+/+ mice has been reported (Chabrier et al. 2012).

ArcTau/BACE+/- mice showed improved spatial learning and reference memory when 

compared to the ArcTau/BACE+/+ mice. Moreover a significant reduction in soluble Aβ40 and 

phospho-tau S396/404 were also observed in ArcTau/BACE+/-. Interestingly, a reduction of 

PSD95-associated NR2B was also reported as a result of partial BACE KO (Chabrier et al. 

2012).  These data are supportive of those reported in Chapter 5 suggesting altered APP 

processing by BACE can improve learning and memory in mice, which is associated with 

NMDAR function. 

Given the above evidence it is tempting to conclude that improved performance in the 

OiP task may be related to 2B3-induced changes in NR2B phosphorylation. Further research 

is required to confirm the involvement of NR2B-containing NMDAR complexes in the OiP 

recognition memory task. Collectively, results reported Experiment 7 and 8 show that 2B3 

administration reversed an age-dependent OiP recognition memory deficit in PDAPP mice. 

2B3 also reduced total levels of soluble Aβ40 and βCTF without affecting total levels of APP. 

Furthermore, the results have highlighted a receptor-based mechanism linked to amyloid-

induced excitotoxicity. More specifically, the normalisation of NR2B phosphorylation may 

play a role in the improved cognition observed in PDAPP mice administered 2B3. This is a 

novel finding and provides important new evidence that the inhibition of APP processing at 

the β-secretase cleavage site by steric hindrance can improve both memory and synaptic 

pathology in the PDAPP mice.  
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Chapter 6: Thesis Discussion 
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6.1 Thesis Overview 

 The main aims of this thesis were three-fold. Firstly, to characterise the behavioural 

phenotype of the PDAPP model on a C57Bl/6 background and identify any age-dependent 

cognitive deficits and age-associated changes in Aβ pathology. The second was to administer 

2B3, an anti-APP antibody that binds at the β-secretase cleavage site of APP and evaluate its 

impact on cognition in PDAPP mice. The third was to evaluate a possible mechanism by 

which 2B3 improved synaptic and thereby cognitive function. In this chapter, a summary of 

the findings are reported, followed by a more detailed discussion of how these data contribute 

to our current understanding of amyloid pathology, potential therapies associated with this 

target and cognitive decline in AD. 

6.2 Summaries and Discussion of Findings 

 Currently, clinically available treatments for AD target the symptomatology of AD 

and not the underlying mechanisms of the disease (i.e. progressive amyloid and tau 

pathology). Transgenic mouse models of AD have provided insight and theories regarding the 

mechanisms underpinning neurodegeneration and provided tools to investigate therapies 

targeting amyloid and/or tau-based mechanisms of AD (Götz & Ittner 2008; Solomon & 

Frenkel 2010; C. a Lemere 2013; Herrmann & Spires-Jones 2015). Although positive effects 

are often reported in current mouse models there has been little success in translating this to 

the clinical condition. While several factors may contribute to this lack of translation one 

common concern is that there is a marked mismatch between mouse models and patients in 

terms of the severity and stage of the disease (Qian et al. 2015; Reardon 2015). The use of 

therapies derived from mouse models may be beneficial if used at the earliest possible stage 

of disease pathogenesis in humans. In this regard there is still on-going research into the safe 

and effective modulation of APP processing, a mechanism that remains a corner stone of the 

amyloid cascade hypothesis of AD.  

 The main aim of this thesis was to evaluate the hypothesis that an antibody-mediated 

inhibition of -secretase activity would reduce amyloid production and improve memory 

performance in a transgenic mouse overexpressing mutant human APP. Before addressing 

this issue it was first necessary to establish the profile of amyloid pathology and cognitive 
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function in PDAPP mice. Although PDAPP mice have been available for some time, they 

have recently been switched to a pure C57Bl/6 background strain (for reasons as discussed in 

Chapter 1, section 1.4.2). Previous studies have reported age-related memory impairment and 

amyloid pathology in PDAPP mice bred on a mixed genetic background (Swiss-Webster, 

DB2 and C57Bl/6) (Games et al. 1995; Johnson-Wood et al. 1997; Dodart et al. 1999; Chen et 

al. 2000). To-date, only one study has characterised behaviour in PDAPP mice bred on a 

C57Bl/6 background (Hartman et al. 2005). Hartman and colleagues reported age-

independent deficits in spatial learning and spatial reference memory as determined by the 

Morris water maze (MWM), which nevertheless worsened with age. Moreover the age-related 

deterioration in spatial reference memory was correlated with a significant increase in levels 

of Aβ in the HPC (Hartman et al. 2005). This supported the initial aim and hypothesis of this 

thesis that PDAPP mice would show an age-dependent (and task-specific) memory 

impairment, together with increased levels of Aβ production (see Chapters 3 and 4).   

The extensive evidence that human APP mutations cause deficits in spatial navigation 

and spatial working memory (SWM) in several mouse lines led to the decision to evaluate 

SWM in PDAPP using a novel foraging task (based on the Olton radial arm maze procedure 

and prior studies of navigation in pigeons; Pearce et al. 2005). Mice with excitotoxic HPC 

lesions performed poorly on this task relative sham control mice. Moreover when the reliance 

upon spatial cues was removed and each pot was given a unique design, the performance of 

sham and lesioned mice was similar. These data indicated a role for the hippocampus in 

processing spatial information and complimented findings published by Pearce and colleagues 

(2005).  

Given extensive evidence that HPC neuronal function is compromised by excess 

amyloid production, the foraging task was used to examine SWM performance in PDAPP 

mice across a range of ages. In addition, object recognition memory and object-place 

associations were also analysed in Chapter 4 in order to assess the distinct components of 

recognition memory and the integrity of circuits thought to underpin them. Previous studies 

have reported task specific impairments in the PDAPP model and other APP mouse lines, 

including the Tg2576 mouse model (Dodart et al. 1999; Hale & Good 2005; Good & Hale 

2007). Chapters 3 and 4 reported age-dependent deficits in SWM and OiP memory at 14-16 

months of age, but intact object recognition memory across all ages tested. These deficits 

were paralleled by a significant increase in levels of soluble and insoluble Aβ42 in the HPC of 

15-month old PDAPP male mice (Chapter 4, Experiment 6). Data obtained from Chapters 3 

and 4 provide evidence that different tasks that require processing of spatial information are 
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sensitive to amyloid pathology. Collectively, these data further validated the use of the 

PDAPP model of amyloid pathology to assess the in vivo effects of 2B3. 

The main aim of this thesis was to assess a monoclonal antibody, 2B3, in a mouse 

model of amyloid pathology. 2B3 had been shown to bind to APP at the β-secretase cleavage 

site and prevented the production of Aβ in multiple cell lines, including mouse primary 

cortical cultures (Thomas et al. 2011; Thomas et al. 2013). It was hypothesised that in vivo

administration in APP transgenic mice would inhibit β-secretase mediated APP metabolism 

and thus Aβ production. Given a putative reduction in amyloid it was also hypothesised that 

2B3 would improve memory function in transgenic APP mice. Following a 14-day ICV 

administration of 2B3 by osmotic minipumps, PDAPP mice were tested on the OiP task. 2B3 

administration showed a significant improvement in OiP memory, as well as reduced levels of 

soluble Aβ40, βCTF and reduced phosphorylation of the NMDAR NR2B subunit. These data 

support the hypothesis that administration of 2B3 in vivo will improve memory function by 

inhibiting APP cleavage at the β-secretase cleavage site. However, the overall levels of 

soluble Aβ42 were not significantly reduced by 2B3 administration. The absence of a 

significant reduction in Aβ42 may simple reflect the high levels variability in this measure 

and the need for greater statistical power. A similar observation was made with 3xTg mice 

following four-week ICV BBS1 administration. Despite significant reductions in total Aβ 

load and plaque size (Rabinovich-Nikitin et al. 2012), there was no significant change in 

soluble Aβ42. A longer duration of treatment may arguably have a greater impact on Aβ 

production. Nevertheless, the changes in levels of βCTF and soluble Aβ40 provide 

compelling evidence that 2B3 administration in PDAPP mice inhibited APP metabolism via 

the β-secretase cleavage site.  

More recent studies with the antibody BBS1 have assessed its therapeutic values in a 

number of mouse models including Tg2576, the London APP mutation, as well as the 3xTg 

model (Rakover et al. 2007; Arbel-Ornath et al. 2009; Rabinovich-Nikitin et al. 2012). Data 

obtained between these studies however are often variable. For example, chronic 

intraperitoneal administration of BBS1 to Tg2576 mice showed reduced neuroinflammation 

(a reduction in active microglia). However, this effect was not observed in mice expressing 

the APP London mutation or 3xTg mice, which observed no change in either microglia or 

astrocyte activation and a reduction in astroglial activity only, respectively (Rakover et al. 

2007; Arbel-Ornath et al. 2009; Rabinovich-Nikitin et al. 2012). Moreover, improved 

recognition memory performance was reported by Rakover (2007) and Rabinovich-Nikitin 

(2012) in Tg2576 and 3xTg mice, but no improvement in spatial learning and memory was 
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reported in the APP London mutation mice (Rakover et al. 2007; Arbel-Ornath et al. 2009; 

Rabinovich-Nikitin et al. 2012). Changes in amyloid pathology are also inconsistent following 

BBS1 treatment. BBS1 in the London APP mouse model showed significant reduction in 

insoluble Aβ40 and Aβ42, but not total levels of soluble Aβ. However, intraneuronal Aβ was 

significantly reduced (Arbel-Ornath et al. 2009). In the 3xTg mice BBS1 caused a significant 

reduction in plaque size and overall amyloid load (Rabinovich-Nikitin et al. 2012). However, 

no change in soluble or insoluble levels of Aβ40 or Aβ42 was observed in Tg2576 mice 

following chronic IP administration of BBS1 (Rakover et al. 2007). Variability in the impact 

of BBS1 on amyloid pathology may be due to (1) transgene or background differences in the 

Tg model, (2) route of administration, (3) duration of treatment and methodology used to 

assess protein levels ex vivo. Collectively, however, the BBS1 studies suggests that inhibition 

of APP metabolism via the β-secretase site provides a beneficial effect at both the cognitive 

and pathological level in transgenic mice. 

 Similar to 2B3 and BBS1, a non-antibody peptide treatment, S1, has been reported by 

Yang et al. (2012). S1 reportedly interacts and binds to the APP β-secretase cleavage site to 

inhibit BACE1 cleavage of APP. APP/PS1 mice received 5 weekly bilateral ICV infusions of 

S1 by Hamilton micro syringe prior to behavioural testing and ex vivo tissue analysis. S1 

administration showed significant reductions in levels of soluble and insoluble Aβ40, Aβ42 

and total levels of βCTF in ex vivo tissue of APP/PS1 mice (Yang et al. 2012). These mice 

also showed improved spatial learning and memory as determined by the MWM. 

Collectively, these data show that multiple compounds targeting the β-secretase cleavage site 

of APP can significantly improve memory performance and reduce amyloid pathology in 

multiple models of AD. It is therefore likely that the beneficial effects reported in Chapter 5 

are therefore not specific to the PDAPP mouse model. Moreover, the data reported in Chapter 

5 contributes to the growing evidence that inhibition of APP metabolism by β-secretase is a 

potential therapeutic target site for the treatment of early stage AD. 

6.3 Does 2B3 Improve Synaptic Function underpinning memory in PDAPP Mice? 

NMDA Receptors and Recognition Memory 

As discussed in Chapter 4 (Section 4.1 and 4.4), successful memory performance in 

the OiP memory task is sensitive to HPC, mPFC and PRC dysfunction (Barker & Warburton 

2011; Warburton & Brown 2015b). The receptors involved in processing object-based and 
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spatial information in these structures have also been investigated. Bilateral infusion of AP5, 

an NMDA receptor antagonist, into the PRC impaired novel object memory only in delays 

greater than 1 hour, but not less than (Barker et al., 2006; Winters & Bussey, 2005b). 

However, following infusion of kainite and muscarinic antagonists into the PRC, novel object 

memory impairments were observed following delays of less than 1 hour (Barker et al., 2006; 

Tinsley et al., 2011). Collectively these data indicate that object novelty memory is sensitive 

to different receptor mechanisms in a delay-dependent manner. Data reported in Chapter 4 

showed no change in object recognition memory performance in PDAPP mice compared to 

WT controls across all delays and ages tested. As “short-term” delay periods have been 

defined as ≤ 5-minutes and “long-term” as ≥ 1-hour in the studies discussed above, this would 

suggest that all receptor mechanisms involved in processing object-based information remain 

intact in the PRC with age in PDAPP mice.  

 The roles of the HPC and mPFC in the OiP task have been reported to involve 

NMDAR-dependent processes, as the infusion of AP5 into each region independently 

impaired performance (Barker & Warburton, 2008, 2009). The neural circuit involved in 

processing object and place information was further determined following contralateral 

unilateral infusions of AP5 into the mPFC and PRC or HPC and PRC. AP5 infusion caused 

impairment following long delay periods, while short term object-in-place memory remained 

unaffected in rats (Barker & Warburton, 2009; Barker & Warburton, 2013). It has further 

been reported that OiP memory is impaired in both short- and long-term delays after 

subsequent crossed unilateral AP5 and CNQX infusion in mPFC and HPC (Barker & 

Warburton 2009; Barker et al., 2013). Thus, the processing of spatial-based information in the 

OiP memory task is sensitive to NMDA and glutamate receptor manipulations across both 

short and long-term delays. In contrast, object-based information is only NMDA-sensitive 

with long delays. Based on this analysis one can conclude that as PDAPP mice showed intact 

object recognition memory (Chapter 4, Experiment 4), but impaired OiP memory at 14-16 

months of age (at both delays tested; Chapter 4, Experiment 5), it is likely that the behavioural 

impairment is a result of glutamate receptor, and more specifically, NMDAR function. 

Chapter 4 (Experiment 6) reported an age-related increase in levels of soluble and 

insoluble Aβ42 in the HPC of PDAPP mice at 15 months of age, it is likely that Aβ42 played 

a significant role in the impaired processing of spatial information required for successful 

memory performance in the OiP task in PDAPP mice. Elevated levels of A reduced synaptic 

NMDAR expression in cortical neuronal cultures (Kelly et al., 1996; Snyder et al., 2005; 



177

Shankar et al., 2007). This reduced NMDAR expression has also been reported in 

synaptosomal membranes of 3xTg and Tg2576 mice (Zhang et al. 2010). Therefore it is likely 

that increased levels of Aβ in the HPC of PDAPP mice impacted upon the NMDAR-sensitive

mechanisms involved in processing spatial information.

Although conflicting to findings in vitro and in Tg2576 and 3xTg mice, a further 

synaptic mechanism suggesting enhanced synaptic NMDAR expression has also been 

reported (Ittner et al. 2010). A more detailed discussion of these conflicting mechanisms can 

be found in the following section “Aβ and NR2B – An enzymatic imbalance”. The synaptic 

mechanism described by Ittner and colleagues reported an NR2B-associated mechanism 

stimulating NMDA activity and Aβ-mediated hyper-excitotoxicity, which has already been 

discussed in this thesis (Chapter 1, section 1.3.5). More specifically, the phosphorylation of 

the NR2B subunit at the tyrosine 1472 (Y1472) residue by the Src kinase, Fyn. Increased 

phosphorylation of the NR2B Y1472 subunit increases NR2B interaction with PSD95, 

inhibits AP2 clathrin-mediated endocytosis and stabilizes post-synaptic NMDARs 

(Prybylowski et al. 2005). Aβ activates NMDARs causing increased Ca2+ influx and neuronal 

excitotoxicity (Ittner et al. 2010). APP23 Tg mice have been reported to show increased levels 

of phosphorylated NR2B Y1472, leading to increased neuronal hyper excitability and SWM 

deficits in the T-maze. This deficit was reversed following ICV administration of Tat-

NR2B9c, a peptide reported to protect from NMDAR-induced excitotoxicity (Ittner et al. 

2010). APP23 mice have also been reported to show improved spatial learning and reference 

memory in the MWM following administration of memantine, a non-competitive NMDAR 

antagonist (Van Dam & De Deyn 2006)  Results in Chapter 5 (Experiment 5B) revealed that 

vehicle-treated PDAPP mice showed an increase in NR2B phosphorylation at the Y1472 

residue as a ratio to total NR2B levels. It is possible that this effect prevented NMDAR 

internalisation at the synapse in PDAPP mice and further caused neuronal excitotoxicity. 

However, to date, no study has determined NMDAR expression at the synapse in comparison 

to internalised NMDARs in order to confirm this in PDAPP mice.  

The NR2B subunit in the HPC and forebrain of mice has been implicated in spatial 

learning and memory (von Engelhardt et al. 2008). Mice lacking the NR2B receptor 

specifically in the HPC showed in-tact spatial reference memory in the MWM. However, the 

same mice showed an impairment in reversal learning in the MWM and SWM in a 

spontaneous alternation protocol of the T-maze (von Engelhardt et al. 2008). Similarly, 

PDAPP mice show impaired reversal learning on the MWM and SWM deficits reported in 

Chapter 3 (Chen, Chen, Knox, Inglis, Bernard, Martin, Justice, Mcconlogue, et al. 2000; 
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Daumas et al. 2008). Following Aβ active immunotherapy in PDAPP mice, Chen et al., 

(2007) reported reductions in total levels of Aβ that negatively correlated with improved 

learning capacity on a serial reversal learning protocol in the MWM (Chen et al. 2007). In 

Chapter 5 (Experiment 5B) 17-18 month old PDAPP mice showed increased phosphorylation 

of the NR2B Y1472 subunit, which was reversed along following 2B3 administration. This 

reversal of NR2B phosphorylation is likely to have contributed to 2B3 mediated improvement 

in OiP memory in PDAPP mice. This finding parallels that reported by Chen et al., 2007 who 

demonstrated lower overall Ab load and improved learning capacity in PDAPP mice 

following an immunotherapy. Interestingly NR2B has been observed to facilitate both LTD 

and LTP in the CA1 region of the HPC (von Engelhardt et al. 2008; Dong et al. 2013). 

Interestingly, novel object and place associations stimulate the induction of LTD in the rat 

HPC CA1 sub region (Kemp & Manahan-Vaughan 2012). It is therefore tempting to suggest 

that the effects observed following 2B3 administration may be linked to improved LTD 

facilitation in PDAPP mice. However, further investigation is required in order to confirm this 

theory. 

Aβ and NR2B – An enzymatic imbalance 

Although increased NR2B phosphorylation at tyrosine 1472 in PDAPP mice was 

reported in Chapter 5, and in APP23 mice by Ittner and colleagues (2010), contradictory 

findings have been reported in other Tg models of AD (Zhang et al. 2010). Zhang and 

colleagues reported that Tg2576 and 3xTg mice showed an age-related decrease in levels of 

NR2B phosphorylated at the Y1472 residue. Ittner and colleagues reported the 

phosphorylation of the NR2B subunit was regulated by Fyn in a tau-dependent manner (Ittner 

et al 2010). However, Ittner and colleagues (2010) gave no consideration to the regulatory 

STriatal Enriched protein tyrosine Phosphatase (STEP).  

STEP has been reported to act as a regulatory tyrosine phosphatase, which 

dephosphorylates the NR2B Y1472 residue as well as Fyn in order to inhibit Fyn kinase 

activity (Figure 6.1) (Nguyen et al. 2002; Snyder et al. 2005; Zhang et al. 2008). Increased 

levels of STEP have been reported in the brains of AD patients and in Tg models of AD (Chin 

et al. 2005; Kurup et al. 2010; Zhang et al. 2010). As well as being associated with increasing 

Fyn activity, Aβ has been reported to indirectly increase STEP activation and increase its 

translation via interaction with the α7-nicotinic acetylcholine receptor (α7nAChR) and 

metabotropic glutamate receptor 5 (mGluR5) respectively through downstream signalling 
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mechanisms (Snyder et al. 2005; Zhang et al. 2008). Interestingly, oligomeric Aβ coupled to 

the cellular prion protein activates Fyn via a physical interaction with mGluR5 leading to an 

increase in intracellular Ca2+ (Um et al. 2013). Thus, it is plausible that Aβ-mediated 

increased Fyn activation could be counteracted by increased STEP activity. Indeed, in vitro

data have demonstrated this effect in a time-dependent manner (Um et al. 2012). WT cortical 

neurons treated with oligomeric Aβ for 15-minutes showed a significant increase in NR2B 

pY1472 and active Fyn. However, following 3 hours oligomeric Aβ treatment a significant 

increase in levels of STEP was observed compared to baseline conditions. This result was 

paralleled by a reduction in NR2B pY1472 and active Fyn relative to the 15-minute treatment 

group (Um et al. 2012). This result was further complimented by a time-dependent reduction 

in surface NR2B expression and suppressed NMDA-induced calcium signals (Figure 6.1). 

Given that STEP normalises NR2B pY1472 and active Fyn in vitro, it is paradoxical that data 

reported in the literature have observed reduced NR2B pY1472 in Tg2576 and 3xTg mice, but 

increased in APP23 and PDAPP mice (Ittner et al. 2010; Zhang et al. 2010; Chapter 5, 

Experiment 8).

Behavioural studies focusing on this mechanism have shown evidence for Fyn and 

STEP in the deregulation of neuronal activity and cognitive performance. A study using J9 

and J20 mice crossed with mice overexpressing Fyn (double transgenic) reported more severe 

spatial reference memory deficits following MWM assessment than J9 or J20 mice with 

physiological levels of Fyn (Chin et al. 2005). Moreover, when these double transgenic mice 

were further crossed onto a tau knockout background they showed similar spatial learning and 

reference memory to non-Tg controls, whilst double transgenic mice expressing endogenous 

tau remained impaired (Roberson et al. 2011). These data are consistent with the mechanism 

proposed by Ittner and colleagues (2010) that fyn-tau interactions at the synapse in the APP23 

mouse model of AD are responsible for neuronal excitotoxicity (Ittner et al. 2010) . 

Despite this evidence focussing on Aβ, tau and Fyn, STEP knock out (KO) models 

have also been reported (Zhang et al. 2010; Venkitaramani et al. 2011). Zhang and colleagues 

(2010) investigated the role of STEP by crossing STEP KO mice with either 3xTg mice or 

Tg2576 (Zhang et al. 2010). In this study, double mutant 3xTg mice/STEP-/- showed 

improved spatial learning and reference memory in the MWM and SWM in the spontaneous 

alternation Y maze. No behavioural analysis was performed on Tg2576 mice. However, 

biochemical analysis of synaptosomal preparations showed increased membrane NR1, NR2B 

and NR2B pY1472 levels in both Tg2576/STEP-/- and 3xTg/STEP-/-. (see also Zhang et al. 

2010; Venkitaramani et al. 2011 for STEP KO mouse). STEP KO effects were further 
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paralleled to increased Fyn activity as well as active ERK, also involved in synaptic 

strengthening and memory performance (Satoh et al. 2007; Zhang et al. 2010). 

Figure 6.1: Increased activation of STEP reduces NR2B phosphorylation and increases NMDAR 

endocytosis. Aβ interaction with the α7nAChR results to an increase in Ca2+ influx and downstream 

signalling leading to an increase in STEP activity. Active STEP dephosphorylates Fyn kinase causing 

its deactivation and prevents further Fyn-mediated phosphorylation of the NR2B Y1472 residue. 

STEP also dephosphorylates the NR2B Y1472, which leads to an increase in NMDAR endocytosis 

and reduced NMDAR Ca2+ influx and excitotoxicity. Figure from (Venkitaramani et al. 2007) 

The data considered above suggests that enzymatic activity of Fyn and STEP play 

significant roles in cognitive function and neuronal signalling pathways, particularly those 

involving NMDARs and the NR2B subunit. These pathways appear to be modulated by both 
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extracellular Aβ and intracellular tau protein. The physiological balance of the activity of Fyn 

and STEP is clearly of importance in memory performance in Tg AD models. However, it 

appears that discrepancies exist between specific mouse models such as the PDAPP and 

APP23 mouse model and the Tg2576 and 3xTg. Precise reasons why these differences exist 

remain elusive.  

6.4 Are Transgenic Mouse Models of AD a useful tool for preclinical 

investigations? 

Tg APP models of amyloid pathology often only exhibit increased amyloid production 

and deposition without developing NFTs. It has been argued that these models of AD only 

model pre-clinical AD at best (Zahs &Ashe, 2010). Therefore, how useful a tool are they to 

examine immunotherapy or indeed any therapy for AD? Despite a lack of NFT pathology in 

Tg models (except the 3xTg), APP mice show the majority of early stage AD pathologies; 

elevated Aβ, plaque pathology and neuroinflammation (Games et al. 1995; Hsiao et al. 1996; 

Mucke et al. 2000; Oddo et al. 2003; Oakley et al. 2006). Abnormal tau phosphorylation has 

been observed in a number of Tg mouse models, including the Tg2576, TgCRND8, APP/PS1 

and APP23 (Kawarabayashi et al. 2004; Chauhan et al. 2005; Kurt et al. 2003; Bellucci et al. 

2007; Maia et al. 2013). More recently, evidence has suggested that, similar to Aβ, 

hyperphosphorylated tau is likely to be neurotoxic, particularly at the synapse (Tai et al. 2012; 

Perez-Nievas et al. 2013; Pooler et al. 2013; Pooler et al. 2014). Indeed, fibrillar amyloid and 

associated oligomeric amyloid and increased phosphorylated tau protein at the synapse were 

correlated with dementia, whilst NFTs were not when compared to high-pathology controls 

(Perez-Nievas et al. 2013).  

Currently, no anti-Aβ immunotherapy study using Tg APP mice has reported reduced 

tau phosphorylation as an effect of therapy, except when using the 3xTg mouse model (Oddo 

et al. 2004; Oddo, Vasilevko, et al. 2006; Rasool et al. 2013). However, although promising, it 

is unclear whether changes in tau phosphorylation in 3xTg mice are a true reflection of tau 

hyperphosphorylation induced by Aβ, independent of the P301L mutation, which, of course, 

is not a mutation associated with AD. Tg models such as Tg2576 and APP/PS1 mice have 

been observed to show hyperphosphorylated tau at 11 and 12 months of age respectively (Shi 

et al. 2011; G.-P. Liu et al. 2013). To date, very few studies have investigated the benefits of 
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pharmacological intervention in these models and changes in tau phosphorylation. However, 

it has been reported that reduced tau phosphorylation is observed in Tg2576 and APP/PS1 

mice coupled with reduced total Aβ load following silencing of inhibitor-2 of protein 

phosphatase-2A and anti-TNF-α ICV infusion respectively (Shi et al. 2011; Liu et al. 2013). 

These results show that tau hyperphosphorylation in Tg APP models is sensitive to 

pharmacological intervention. However, these effects are yet to be investigated by anti-Aβ or 

anti-APP immunotherapy. Moreover, it would be interesting to investigate if this 

hyperphosphorylation in Tg APP models contributed to overall pathology or impaired 

cognitive function in these mouse models through the use of tau-directed therapies, including 

tau immunotherapy.  

A missing parallel when comparing preclinical immunotherapy assessment with 

clinical trials is a matching stage of pathology between AD patients and AD mouse models. 

Clinical evidence has shown that immunotherapy treatment in late stages of the disease is 

unable to show clinical benefits, whilst preclinical trials in AD mouse models showed 

significant reversals in cognitive deficits and reduced pathology (Karran & Hardy 2014). 

These preclinical data strongly suggest that early intervention prior to NFT pathology may 

have significant benefit. However, no study has yet been able to investigate this in APP 

mouse models or human AD. Therefore, current models of AD are certainly not without 

limitation. Despite showing increased soluble Aβ and plaque pathology and increased tau 

phosphorylation, Tg APP models do not recapitulate the full extent of human AD 

pathophysiology, including NFT development and brain atrophy. Despite the generation of 

the 3xTg, a more representational model of AD that is able to develop the full AD pathology 

is required. At the same time, improved diagnostic protocols, which are not limited to 

research purpose only are required in order to detect the onset of AD at much earlier ages in 

order to optimise chances for significant clinical benefit from immunotherapy and other 

pharmacological trials to prevent/delay the onset of AD.  

6.5 Is there still hope for immunotherapy and Alzheimer’s disease?  

 Numerous pre-clinical studies assessing AD immunotherapies have shown both 

improved cognition as well as reduced pathology in Tg models (Solomon & Frenkel 2010; 

Karran & Hardy 2014). However, as discussed in Chapter 1 (Section 1.5), limited success has 

been observed at the clinical level using anti-Aβ immunotherapy. Despite this, the most recent 

data from clinical immunotherapy trials is beginning to show more promising results 
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(Reardon 2015; Qian et al. 2015). Despite these marginal improvements emerging from on-

going clinical trials, certain risk factors associated with immunotherapy have emerged which 

must be considered for chronic treatment periods that are likely required for AD treatment. 

One major risk factor is an increased incidence of amyloid-related imaging abnormalities 

(ARIA) and micro-haemorrhage. Increased micro-haemorrhage associated with cerebral 

amyloid angiopathy (CAA) has been reported in a number of preclinical investigations 

(Wilcock et al. 2004; Racke et al. 2005; Wilcock et al. 2006; Karlnoski et al. 2008). These 

effects were associated with duration of treatment (Wilcock et al. 2006). This preclinical 

change was also observed following clinical Phase II trials with Bapinezumab (humanized 

3D6), whereby ARIA-related complications, including abnormalities associated with 

parenchymal vasogenic oedema and micro-haemorrhages were reported (Sperling et al. 2012). 

A likely mechanism for these observations was the removal of Aβ from cerebral vasculature 

associated with increased BBB penetrability and the onset of micro-haemorrhage (Sperling et 

al. 2012; Farlow & Brosch 2013).

One interesting observation was reported following comparative immunotherapy of 

3D6 (Bapinezumab, an N-terminal directed anti-Aβ antibody) and m266 (Solanezumab, 

targeting residues 16-24 of Aβ), in PDAPP mice over a period of six weeks. Following 3D6 

treatment, PDAPP mice exhibited an increase in CAA-related micro-hemorrhage, also 

reported to be dose-dependent (Racke et al. 2005; Schroeter et al. 2008). However, this effect 

was not observed following treatment with m266, which showed no effect on CAA-associated 

micro-hemorrhages (Racke et al. 2005; Schroeter et al. 2008). Moreover, no ARIA-related 

complications were reported following clinical evaluation of Solanezumab trials. The 

mechanisms reported for Aβ clearance mediated by either 3D6 or m266 also differ 

significantly. 3D6 has been observed to bind Aβ plaques and induce Fc-mediated microglial 

phagocytosis, whilst m266 is believed to sequestrate peripheral Aβ, shifting the equilibrium of 

Aβ movement and increasing its removal from the brain as proposed by the “peripheral sink” 

hypothesis (DeMattos et al. 2002; Bard et al. 2003). These data indicate that targeting Aβ 

differentially can have significantly different clinical side effects, despite both antibodies 

providing preclinical benefit at the cognitive level. Understanding individual antibody 

mechanisms for Aβ clearance is therefore important in order to best monitor, limit or prevent 

side-effects discussed above.  

The data obtained in this thesis on 2B3, alongside data obtained from BBS1 suggests 

that targeting APP at the β-secretase cleavage site provides a promising alternative/additional 

approach to anti-Aβ immunotherapy. Indeed, the added reduction in βCTF observed in 
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PDAPP mice following 2B3 administration may provide further clinical benefit where anti-

Aβ immunotherapy is unable. However, further evaluation of 2B3 is still required as 

discussed below (section 6.6). It is tempting to suggest that effects such as micro-

hemmorhage are unlikely using 2B3 immunotherapy as Aβ production is inhibited by binding 

to APP, not Aβ for subsequent removal from the brain as with 3D6 and m266. Moreover, a 

significant reduction in brain micro-hemorrhage was observed following BBS1 treatment in 

Tg2576 mice (Rakover et al. 2007). However, inconsistencies between studies assessing 

BBS1 (as discussed in Chapter 5, Section 5.4) exist and therefore these tests should be 

performed following 2B3.  

Despite the lack of translational success from preclinical to clinical evaluation, 

multiple factors complicate such a transition between levels of research. These include the 

obvious differences that mice themselves do not develop (or do not naturally live long enough 

to develop) all AD symptoms. Tg models exhibit symptoms more closely associated with pre-

clinical AD, not the mild-moderate AD that has been used to evaluate immunotherapies. 

Testing memory function in AD mice often relies on visual, non-verbal memory tasks, 

whereas those used in patients with AD often require both verbal communication and visual 

memory. Therefore, the precise memory systems being used in order to complete or show 

successful memory performance likely differ significantly. Despite this, Tg models of AD 

remain a focus for research into the pathological mechanisms of AD and associated cognitive 

deficits. It is arguable that for successful translational research from preclinical to clinical, 

lessons must be learnt from oversights of past research. Thus, future preclinical evaluation 

must be more thorough whilst reducing the clinical gap in terms of the model-based systems 

available to optimise the chance of successful translation of putative AD immunotherapies. 

6.6 Future directions 

 Despite the exciting data obtained in Chapter 5 (Experiments 4 and 5), these results 

merely indicate a proof-of-principle that direct application of 2B3 into the brain and inhibition 

of APP metabolism at the β-secretase cleavage site can improve memory function in PDAPP 

mice. A number of further studies are still required in order to better understand how 2B3 

improves memory, receptor activity and amyloid pathology in the PDAPP model. 
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 Following altered NR2B phosphorylation, it is likely that surface NMDAR expression 

may be altered following 2B3 administration. Thus, it would be worthwhile examining altered 

neuronal activity through use of techniques such as in vivo 2-photon imaging or slice 

electrophysiology. Previous anti-Aβ immunotherapies have recently reported increased 

neuronal hyper-excitability in PDAPP and Tg2576 mice (Busche et al. 2015). However, 

Busche and colleagues determined this effect using 3D6 and β1, both anti-Aβ N-terminal 

antibodies. Therefore, it remains unclear if this is an effect limited to antibodies directed at the 

N-terminus of Aβ. However, it has previously been reported that PDAPP mice administered 

10D5 (anti-Aβ antibody targeting Aβ epitopes 3-6) showed improved spatial learning and 

LTP in the hippocampal CA1 region compared to control PDAPP mice (Hartman et al. 2005). 

Busche and colleagues (2015) determined cortical neuronal activity in PDAPP mice, whereas 

Hartman and colleagues (2005) assessed HPC activity in the CA1 region. It would be of 

interest therefore to assess the effects of immunotherapy, such as 2B3, on neuronal activity in 

multiple regions of the brain, the HPC as well as specific cortical regions such as the 

entorhinal cortex and prefrontal cortex.  

 Further biochemical assays should also be carried out to provide a clearer 

understanding of how 2B3 affects amyloid pathology and NMDAR physiology ex vivo. 

Despite measures of PSD95 being reported in Experiment 5B, analysis was performed on 

whole HPC soluble extracts. A more reliable measure of synaptic density might be obtained in 

Western blot analysis using synaptosomal preparations. Moreover, it would be interesting to 

observe whether altered NR2B phosphorylation changes NMDAR surface expression and 

whether this change in phosphorylation state is an effect of altered Fyn or STEP 

levels/activity in synaptosomal preparations (Ittner et al. 2010; Zhang et al. 2010). Following 

a significant reduction in levels of βCTF, an interesting study would be to examine changes in 

endocytosis, such as those described by Kim and colleagues (2015). Here, persistent rab5 over 

activation caused by increased levels of βCTF led to pathologically accelerated endocytosis 

and impaired axonal transport in AD brain (Kim et al. 2015). It is tempting to postulate that 

investigating this mechanism with 2B3 treatment may reveal that inhibiting APP metabolism 

at the β-secretase cleavage site might improve AD-related pathologies through more than one 

physiological process. 

 Experiment 7 only measured OiP memory following 2B3 administration. However, 

other cognitive deficits associated with age related changes in Aβ pathology have been 

reported and indeed reported in Chapter 3 (Experiment 2) (Dodart et al. 1999; Chen, Chen, 

Knox, Inglis, Bernard, Martin, Justice, Mcconlogue, et al. 2000; Hartman et al. 2005; Daumas 
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et al. 2008). Further investigation into whether 2B3 administration is able to improve memory 

across a range of memory tasks, sensitive to AD pathology would be beneficial to examine 

the generality of cognitive changes across different performance parameters. Moreover, 

cognitive tasks more closely associated with memory deficits observed in AD may provide a 

closer parallel for AD-related cognitive deficits. For example, AD patients display episodic 

memory deficits, an inability to recall events in relation to their content and temporal-spatial 

information (Tulving 1972; Butters et al. 1987; Greene et al. 1996). Rodent cognitive tasks 

have been able to assess an analogue of episodic-like memory that interrogate an animals 

ability to exhibit an integrated memory for  “what” happened, “where” and “when”. These 

tasks include adaptations of object-based and fear conditioned memory paradigms (M. A. 

Good et al. 2007; Iordanova et al. 2008; Iordanova et al. 2011). These types of tasks offer a 

potentially more suitable cognitive platform in which to evaluate immunotherapies such as 

2B3 prior to clinical investigation. 

 A final further investigation for 2B3 focuses on a more clinical application. In Chapter 

5, 2B3 was administered directly into the brain of PDAPP mice. However, clinical application 

requires peripheral administration. The effects observed in Experiments 4 and 5 therefore 

need repeating following a peripheral route of administration, such as delivery into the 

intraperitoneal space, as with previous preclinical immunotherapy investigation of anti-Aβ 

and anti-APP antibodies (Bard et al. 2000; Dodart et al. 2002; Hartman et al. 2005; Rakover et 

al. 2007; Arbel-Ornath et al. 2009). Given that approximately 0.1% of antibody dose crosses 

the BBB, it may be possible that the effects of 2B3 observed following ICV administration 

occur due to the relatively high concentration that might have been present in the HPC. 

Moreover, a more chronic treatment period is also required for investigation, in order to 

assess the long-term affects of inhibiting APP metabolism at the β-secretase cleavage site. 

Indeed such an analysis could be extended to WT mice to explore the normal function of beta-

secretase cleavage of APP 

6.7 Thesis Summary and Conclusions 
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 Over 15 years has passed since the initial report using antibody directed therapy to 

treat AD in Tg mouse models was presented (Bard et al. 2000). This strategy appears to still 

exist as one of the most promising forms of preventative treatment targeting the amyloid 

cascade hypothesis and AD pathogenesis. The success and advance of this potential treatment 

approach for AD owes a great deal to the use of Tg mouse models of AD and their 

contribution to our understanding today of AD mechanisms. It is with much excitement and 

anticipation that the results of on-going clinical trials using immunotherapy (and other forms 

of treatment) are awaited for. 

The data presented in this thesis extends the current understanding of the behavioural 

phenotype of the PDAPP mouse model in relation to age-related amyloid pathology. The 

preclinical evaluation of 2B3 showed a significant improvement in OiP memory and 

significant reductions in Aβ40 and βCTF. These analyses also revealed changes in NMDAR 

phosphorylation; a receptor class inextricably linked visuo-spatial memory. Collectively, 

these data offer novel in vivo and ex vivo findings following immunotherapy targeting the β-

secretase cleavage site of APP. More extensive work to assess, confirm and extend these 

findings is still required. However, the data presented in this thesis are novel and important 

and provide support for the hypothesis that inhibition of Aβ production by steric hindrance 

can improve memory and amyloid-related pathology. 
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