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Abstract

A fundamental step for future uses of biomolecules in electronics is the study of

the bonding, orientation and conductance of a single molecule attached to a con-

ductive substrate, which is the building block of electronic materials and devices

based on molecular conduction. This work provides an in-depth examination of

morphology and electrical properties of different molecules anchored to Au(111)

and to sustainable carbon materials (graphite and graphene). Cytochrome b562

(Cyt b562), TEM beta-lactamase and the superfolded green fluorescent protein

engineered with phenyl azide were exposed to UV irradiation to transform the

azide compound into the nitrene radical, which enabled successful molecule link-

ing to graphene. The UV-based approach was tested on the above molecules to

ascertain its robustness against the specificity of the protein used. The efficiency

of the procedure was inspected by imaging via atomic force microscopy (AFM)

and scanning tunnelling microscopy (STM). By repeated sample preparation and

imaging, we established suitable protein concentrations to enable single-molecule

measurements on the resulting samples (e.g., the concentration range optimal for

cyt b562 on gold was 0.025-0.5 µM). We used a home-built environmental cell in

combination with STM to study the conductance of differently engineered cyt

b562 proteins on Au(111), as well as the conductance of oligothiophene on gold,

under different humidity and temperature conditions. We found that the con-

ductance of cyt b562 is smaller at lower relative humidity and further decreased

when also temperature is reduced. Measuring the conductance as a function of

the tip-substrate distance in both tip approaching and retracting modes revealed

the occurrence of hysteresis. The engineered cyt b562 with two thiols in the long

axis led to less hysteresis in the conductance and larger protein height on gold

(from AFM) compared to the protein with thiols in the short axis. Our results

stress the importance of protein engineering to control the electrical properties of

functionalized surfaces. This study meets the growing demand for achieving more

efficient molecule linking to conductive substrates, and studying environmental

effects on the electrical response of functionalized surfaces (which is relevant, e.g.,

to sensing applications).
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Chapter 1

Introduction

1.1 Introduction to Molecular Elctronics

This study aims to describe the structure, morphology and conductive prop-

erties of electrode surfaces functionalised with biomolecules, under different envi-

ronmental (namely, humidity and temperature) conditions, using scanning probe

microscopies (SPMs) such as atomic force microscopy (AFM) and scanning tun-

nelling microscopy (STM). This work offers a large body of measurements and

pertinent analysis that range from the visualization of functionalized surfaces

to the characterization of the conduction through single biomolecules of differ-

ent types adsorbed on diverse substrates such as Au(111) and sustainable carbon

materials (graphite and graphene). The mentioned imaging techniques also pro-

vided information about our successful implementation of a strategy based on

matter-radiation interaction that enables efficient adsorption of different classes of

molecules on graphene.

Despite many discouraging attempts to fabricate molecular devices with stable and

reproducible behaviour along the lines of standard electronics, recent years have

witnessed a renewed and widespread interest in the subject of this work and, more

generally, in the scientific investigation at the nanometre scale, where quantum

1
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effects play an evident role and nature organizes biological functions at a molec-

ular level. In fact, growing research areas define the evolution of Nanoscience in

directions that go well beyond the expectations at its early stages and that have

significant implications on technological development, and thus on the quality of

our life. These research areas include but are not limited to: Nanometre scale

electronic components, such as, molecular switches [7, 8]. Organic materials and

devices for solar energy harvesting [9–11] and optoelectronics [12, 13]. Strategies

to harness electrons produced and consumed by enzymatic reactions at the chem-

ically modified electrodes of enzymatic (or microbial) biofuel cells [14]. Chemical

sensing [15–17] and signalling (with particular interest in devices that translate

biological signaling into typical electronic signaling [18]. Spintronics [19, 20]. In-

formation processing and quantum computing [13, 21]. Functionalized materials

for biomedical electronics , including cell-chip connections, cyborg cells [22], and

prosthetics.

Technological development in these branches of modern science still demands wide

investigation of structural dynamics, charge and energy conduction at organic/i-

norganic interfaces. In fact, biology offers a broad variety of efficient functional

molecules and molecular materials. The biological function critically depends on

charge transfer reactions and their connections to molecular topology, sequence

of atomic groups (such as the amino acids in proteins), and structural dynamics.

The rich conductive properties of molecules can be exploited for the fabrication

of electronic devices at the nanometre scale [23]. However, the functions of sin-

gle molecules and molecular assemblies may be far from being guaranteed and

optimized in the contexts of technological application. In addition, the contact

of molecules with solid-state materials impose chemical and physical constraints

that need to be explored (especially in terms of structural stability and interfacial

charge transfer) in order to design working functional materials and devices.

The state of art of the substantially redefined and broadened field of molecular elec-

tronics (which, in fact, combines features that pertain to biophysics, biochemistry,

chemistry of materials, energy and environmental sciences, biomedicine, quantum

information and computing) emphasizes the need for novel ways and strategies to
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implement molecular-operation devices. To achieve this goal, we need (a) to ex-

plore ways to exploit the advantages of using single molecules with advanced and

specific functionalities, rather than conventional inorganic materials of standard

electronics; (b) but also to understand what kind and degree of stability should

be demanded from molecular devices in relation to what molecular function is to

be exploited.

Improving on the fabrication of devices with self-assembled monolayers (SAMs),

apart from exploiting the propensity of molecules to self-assemble and the result-

ing polarization properties [21], has been seen as a solution to issues such as, e.g.,

the great variability in the conductance through single molecules [24]; but this

solution should be pursued without losing the nanoscale operation and intrinsic

functionalities of molecules compared to solid-state materials for standard elec-

tronics, that is the purpose of molecular electronic devices. Perhaps a solution to

this problem consists in requiring only an appropriate statistical operation of a

set of molecules rather than the systematic operation that is typical of standard

microelectronics. At any rate, a fundamental step in this search for a working

implementation scheme is studying the bonding, orientation and conduction of a

single molecule on an electrode surface, which sets the limiting size (the build-

ing block) and the electrical behaviour of the basic unit of any molecule-based

electronic material [25, 26].

Within the above general context, this study provides an in-depth examination of

structural and conductive properties of the building block of molecular materials

and devices: a single molecule attached to a conductive substrate. To achieve this

goal, tests during the preparation of the samples, prior to our conduction mea-

surements, aimed to obtain functionalized substrate surfaces with protein densities

sufficiently low to enable tip-single molecule contact.

Redox proteins are good candidates for nanoelectronics by virtue of their charge

transfer function in nature. Redox molecules are characterized by at least two

different charging states (oxidation states) which are long-lived enough for their

observation, and reversible transitions can occur between such oxidation states.
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In the biological context, redox molecules participate in oxidation-reduction reac-

tions, where a molecule is oxidized by losing an electron initially localized in its

active site (redox center), while another molecule takes the electron and its redox

center is thus reduced. In the molecular electronic context, an electrode can take

an electron initially localized in the molecular redox center or supply an electron

to this center. The properties of the redox molecule will generally depend on its

oxidation state. Using redox molecules in nanoelectronics requires their contact

with electrode materials. The firm anchoring of the proteins to the electrodes is

a necessary condition to produce working devices. However, even when this con-

dition is satisfied, electron transfer (ET) from proteins to electrodes is unnatural,

and interposing a molecular species that acts as an ET mediator is sometimes the

solution [14]. Small redox molecules in direct contact with the substrate may en-

able sufficiently efficient interfacial ET, but molecular motion and conformational

changes that depend on the environmental conditions may strongly impair the

efficiency of the charge conduction at the interface. Efficiency is clearly improved

if the molecule can be suitably immobilized and oriented on the surface. This

can be achieved by protein engineering, mutating the molecule at a specific posi-

tion so as to enable site-specific immobilization on the support electrode [27–29].

However, in a molecular junction, the presence of two molecular anchoring sites is

required to enable stable contacts to both electrodes, and this can be achieved by

molecular engineering [4, 30]. In the STM setup, once the substrate electrode is

functionalized with a protein molecule, due to the molecular motion, the tip might

touch the protein in such a way not to bind to the other anchoring site. However,

for example, considering the typical dimensions of gold tips and the capability

of thiols to attach to Au(111), one may expect a good probability that the tip

meets the second thiol group and gets attached to the molecule through this thiol,

especially if the two thiol groups were located in opposite positions on the surface

of the protein. Moreover, measuring the conduction through engineered double-

mutant proteins with anchoring groups along different axes [30] is a valuable tool

to investigate the optimal orientation of the molecule on the substrate in building

molecular junctions. In fact, the extensive measurements of this research allowed
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us to clearly observe differences in the conductive properties of redox proteins

doubly mutated along different (short and long) axes [30] (see chapter 5).

Cyt b562 is a small protein with a redox cofactor (which can therefore closely ap-

proach the surface of a substrate), has a relatively robust structure and is thus

amenable to engineering without losing its native structure, and its ET proper-

ties can be coupled to other processes [31–33]. Based on the above discussion,

all these properties make cyt b562 variants good candidates for bio-nano-electronic

devices. In fact, engineered cyt b562 proteins were vastly studied in this work.

However, our investigation was also extended to other biomolecules. In fact, the

study of different molecules allowed us to investigate general aspects of anchoring

techniques that can go beyond the specificity of the protein employed. In partic-

ular, in this research project we developed a method, based on UV irradiation,

to attach proteins to graphene, and this method that was successfully applied to

different proteins: cyt b562, TEM beta-lactamases, and the superfolded green fluo-

rescent protein (sfGFP). Linking proteins to graphene surfaces offers an attractive

prospect for the development of molecular electronics, especially if the molecu-

lar linkers can be inserted at suitable positions of the proteins without affecting

their functionality. Local charge rearrangement around the molecular anchoring

point and electrostatic changes in the protein can be used to gate the electronic

properties of the graphene material, with potential applications such as sensing at

single-molecule resolution [34, 35].

Developing sensors, as well as other future nanoelectronic devices demand to un-

derstand the influence of environmental conditions on the electrical response of

molecule-electrode interfaces. Studying the effect of changing temperature on the

conductive properties of the adsorbed molecules is important because one expects

that the bio-electronic device will be exposed to a thermal range during its life

and operation. Considering that in nature biomolecules generally work in a sol-

vated or at least humid environment, it is also important to find out the humidity

level for the optimal operation of biomolecule-solid interfaces or, more generally

(for example, in biological and environmental sensing applications) the influence

of humidity on the conductive properties of biomolecule-electrode interfaces. This
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implies studies of the electrical conduction at such interfaces under different hu-

midity conditions. A system for controlling low/high humidity during structural

and electrical characterization of the functionalized surfaces is thus desirable, and

this system was built in our laboratory (see below) and used in this work thesis.

1.2 Dissertation Outline

For all systems studied in this work, prior to conduction measurements we per-

formed imaging of the proteins on the Au(111) or graphene substrates via AFM

and STM, in order to ascertain the effectiveness of the protein anchoring and to

explore the suitability of the functionalized surface for single-molecule electrical

measurements. After that, we measured the current through protein-electrode

interfaces in STM setup as a function of the distance between the tip and the

substrate. These measurements were performed in air as well as under different

conditions of temperature and humidity. To this purpose, a special system (en-

vironmental cell) was built in our laboratory. The use of the home-built STM

inside the environmental cell enabled the control of the temperature and humidity

during the experiments, and thus to study the effect of these parameters on the

conductance of the STM junction. The different types of substrate and engineered

proteins used in our investigations, and the functional groups used for protein

anchoring to the substrate are summarized in Table 1.1.

The thesis is organized as follows. Chapter 2 contains an introduction to the back-

ground theory useful to interpret the conduction measurements, and an overview

of the protein systems used in this study and the reasons for their choice. Chapter

3 describes the scanning probe microscopy techniques and the environmental cell

system used to carry out the imaging of the surfaces before and after the adsorp-

tion of the proteins, and the conductance measurements at different conditions of

humidity and temperature. Chapter 4 describe the new approach (based on the

use of the pyrene functional group and of UV irradiation) that was developed in

this study for linking proteins to graphene surfaces. The linking was proved by
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Proteins List
Chapter Substrate Protein Functional

group
Chapter 4 HOPG TEM105 Pyrene

HOPG sfGFP204 Pyrene
HOPG Cyt b562 Pyrene
HOPG PKA Pyrene
Graphene TEM105 Pyrene
Graphene TEM165 Pyrene
Graphene Cyt b562 Short-linker

pyrene
Graphene TEM105 azF
Graphene TEM165 azF
Graphene sfGFP204 azF
Graphene Cyt b562 azF

Chapter 5 Au (111) Cyt b562 holo
SH-LA

Double thiols

Au(111) Cyt b562 holo
SH-SA

Double thiols

Au(111) Cyt b562 apo SH-
LA

Double thiols

Au(111) Cyt b562 apo
D5C

Single thiol

Table 1.1: List of proteins used in this work

Raman and resistance measurements, and also demonstrated by imaging of the

functionalized surfaces. Moreover, the chapter provides a first study of the UV

effects on the conductance of proteins on graphene.

Chapter 5 presents a vast investigation of the electrical properties of different (and

differently engineered) single cytochrome proteins on Au(111). The focus is on the

study of the conductance as function of the tip-substrate distance under different

environmental conditions, as obtained using the home-built environmental cell.

The conductance of oligothiophene on Au(111) in ambient conditions, as under

different conditions of humidity and temperature, is described in Chapter 6. Fi-

nally, Chapter 7 summarizes the main findings of this work and suggests future

research aimed to its further development towards nanoelectronics applications.

As shown by the above table, we carried out measurements on a broad set of differ-

ently engineered molecules and molecule-substrate combinations. The experiments
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aimed to study the morphology and conductivity of the functionalized surfaces and

were carried out under diverse conditions of tip-substrate distance (also inspect-

ing the occurrence of hysteresis in the conductive response of the system for tip

approach and retraction), temperature and humidity (which are physical parame-

ters of clear relevance to the operation of biomolecular systems). We believe that

our vast body of measurements and their analysis provide useful information on

limitations and values of the rich biochemical, physical and engineering context

offered by hybrid interfaces that involve redox biomolecules.



Chapter 2

Background Theory

Redox proteins and molecular wires are good candidates for the development of

new electronics, by virtue of their charge transfer function in nature and (regarding

redox molecules) because of their ability to operate in different charging states.

Using these molecules in nanoelectronics requires their operation at the interface

with electrode materials. In this context, it is important to understand how the

redox centre can engage in ET with non-biological partners such as the tip and

substrate of an STM setup, and how the ET steps are related to the observed

conductance. In this chapter, we first introduce theoretical models for studying

ET and charge transport at molecule-electrode interfaces. Then, we introduce the

biomolecules used in this thesis and the reasons for their choice.

2.1 Marcus Electron Transfer Theory

In this section we will outline some fundamental concepts in the Marcus theory

for homogeneous and heterogeneous ET. Homogeneous ET refers to the charge

transfer between biological redox partners, which are both biomolecules. Het-

erogeneous ET refers to the charge transfer between an organic component (the

molecule) and an inorganic component, such as a metal electrode. Nowadays,

9
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electrodes made of sustainable carbon materials (graphite, graphene, carbon nan-

otubes) are also used. Yet, the structural and conductive properties of these ma-

terials well distinguish them from the strong asymmetry and charge localization

properties of (redox) molecules, thus leading again to the concept of heterogeneous

ET.

2.1.1 Homogeneous Electron Transfer

Marcus expression for the ET rate constant is essentially a matter of energy

balance in a redox system, and ultimately relies upon the simple consideration that

electrons are much lighter than nuclei, thus being accordingly faster. This leads to

the Born-Oppenheimer approximation that separates the motions of the electronic

and nuclear degrees of freedom: nuclei can be seen as clamped in fixed positions

in the time scale characteristic of electron motion; conversely, the electronic wave

function is capable to adjust itself quasi-statically to the nuclear motion. As a con-

sequence, while the atoms of a molecule move, at each nuclear configuration they

see a well-defined electronic charge density (as given by the square modulus of the

electronic wave function) which is at equilibrium with that nuclear configuration

and that determines an effective potential energy for the same nuclear motion [36].

Hence, the energy of an electronic state can be defined and represented as a func-

tion of the nuclear coordinates, which allows us to draws diagrams such as those

in Figures 2.1 and 2.3 (see below. In analytical terms, the electronic wave function

is obtained at fixed nuclear coordinates, and then the corresponding energy works

as an effective potential for the nuclear motion [36].

Consider two biological redox partners, that is, two biomolecules that engage in an

ET reaction, one of which works as the electron donor and the other as the electron

acceptor. At the simplest and most common level of approximation, one can use

a single reaction (nuclear) coordinate to define the stage of the reaction, that is,

the collective nuclear coordinate Q in Figure 2.1 When the electron is localized

on the donor, the electronic energy as a function of Q, which is the effective

potential energy for the nuclear motion, is represented by curve I in Figure 2.1
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Here I stands for the initial localized or diabatic electronic state. Similarly, F

represent the electronic energy as a function of Q for the final (after the transition)

diabatic electronic state, with the charge on the acceptor biomolecule. Indeed, the

I and F curves represent free energy profiles, since they also include an entropic

contribution, and, under simplifying assumptions, they are two parabolas [37–41].

In this circumstance, one can set a simple expression for the ET activation free

energy, which is the free energy that must be afforded in order for the ET reaction

to occur (see Figure 2.1) and on which the ET rate constant depends exponentially

[39]:

k = κve−∆G‡/kBT (2.1)

where the activation free energy is

∆G‡ =
(λ+ ∆G0)2

4λ
(2.2)

In equation 2.1, κ is the electronic transmission coefficient, v is an effective fre-

quency for the nuclear motion along the reaction coordinate, λ is the reorganization

energy, and ∆G0 is the reaction free energy. As anticipated above, the meaning

of equation 2.1 can be easily understood in terms of energy balance. Before the

ET, the system is in the electronic state I. A is system representative point in Fig-

ure 2.1, and Q 0(I) is the equilibrium collective nuclear coordinate of the system

when the charge is localized in the donor (represented as a sphere with charge

q=1 in suitable units in the left-top corner of Figure 2.2). At this coordinate, a

polar environment (for example, surrounding water) would orient so as to achieve

the minimum energy, which corresponds to the maximum negative electrostatic

interaction energy. If the electronic charge could jump directly (that is, from

the initial equilibrium nuclear coordinates) to the acceptor, it would occur on a
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timescale in which the environment could not rearrange (a vertical arrow repre-

sents this electronic state transition at fixed nuclear coordinate Q in Figure 2.1).

The nuclear configuration would no longer be the most stable one, and the system

energy would increase because of the charge transition (point B in Figure 2.1).

Such a transition could happen only in the presence of an external energy source.

For example, the energy could be supplied by the absorption of a photon. Then,

the system would relax to the equilibrium configuration of state C, releasing a

free energy that is the reorganization energy associated with the occurred charge

transfer process. In the absence of an external energy source, this transition would

violate energy conservation, and thus it cannot occur.

Figure 2.1: Free energy (or effective potential energy) profile for the initial
(I) and final (F ) localized (or diabatic) electronic stats of a typical ET reac-
tion. Q is the nuclear reaction coordinate, and its equilibrium values in the two
electronic states are indicate. Qt is the transition state coordinate, correspond-
ing to the lowest energy on the crossing seam surface. λ is the reorganization
energy and ∆G0 the reaction free energy. A denotes the initial state. B is an ex-
cited state with the electronic charge distributed as in the final electronic state,
but nuclei still at the equilibrium coordinates of the initial electronic state. C
is the final state, which can be achieved starting from B by release the reor-
ganization energy. Starting from state A; state B could be achieved, e.g., by
absorption of a photon. This is a vertical electronic transition with nuclei fixed
at the equilibrium coordinates for the electronic state A, in accordance with the
Franck-Condon principle. The (free) energy released by means of the nuclear

rearrangements that lead from B to C is the reorganization energy.
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Another forbidden transition is the one directly from state A to state C, because, as

it is stated by the Franck-Condon principle and assumed in the Born-Oppenheimer

approach, the nuclei are clamped in fixed positions during the electron transition.

Therefore, where only thermal energy is available, the nuclear system needs to

rearrange (step 1 in Figure 2.2) so as to achieve a configuration (the transition

state coordinate Qt) at which the initial and final electronic charge localizations

have the same energy (namely, the two parabolas in Figure 2.1 cross each other).

Step 2 of Figure 2.2 can take place between these two configurations, and then

step 3 can occur by nuclear relaxation to the optimal geometry for minimizing the

energy in the final electronic state. In Figure 2.1, this relaxation corresponds to a

motion downhill on the F curve until the achievement of state C, and the released

free energy is part of the reorganization energy.

Figure 2.2: The Marcus picture of electron transfer reactions. The two upper
diagrams describe the initial (left) and final (right) states of the reaction. The
solvent is oriented so as to minimize the energy when the charge is localized
on either the charge donor (initial state) or acceptor (final state). The direct
transition between the two states is prohibited, because the solvent should si-
multaneously rearrange in the time scale of the electron transition. Instead, the
reaction proceeds through step 1 (preparation of a suitable configuration of the
nuclear environment for which the initial and final electronic states have the
equal energy), step 2 (electron transfer while the nuclei remain at this given
configuration), and step 3 (nuclei rearrange so as to minimize the energy of
the system with the electron on the acceptor). Figure reprinted from ref. [1].

Copyright 2007 Oxford University Press.
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The activation barrier for the ET is measured by the difference in energy between

the initial state and the state at Q = Qt and correlates with the value of the

reorganization energy, as analytically expressed by equation (2.2). It can be easily

seen that the value of the reorganization energy is strictly related to the curvatures

of the parabolas in Figure 2.1 [1, 42]. The larger the reorganization energy, the

smaller the ET rate constant. In particular, for electron self-exchange (when donor

and acceptor are molecules of the same type, so that the initial and final states

are characterized by the same free energy), the reaction free energy is zero and

the reorganization energy is the only determinant of the activation energy that

appears in the ET rate constant.

The reorganization energy comprises an inner sphere contribution, which is asso-

ciated with the redox centres and their ligands, and an outer sphere contribution

that results from the reorganization of the surrounding environment. For exam-

ple, for solvated redox proteins, the small redox cofactor essentially contributes

to the inner-sphere reorganization energy, while the surrounding protein matrix

and the solvent contribute to the outer-sphere reorganization energy. The solvent

has an important role in determining the value of the latter. Clearly, following

a charge transfer process, the solvent reorganization energy is much larger for a

polar solvent than for an apolar one (where dipole moments can only be induced

ones) and tends to zero as the density of the solvent is decreased in some way.

Reducing the density of the solvent around a biomolecule has also the effect of

changing its structural properties (since molecular folding is generally related to

the presence of the solvent), thus determining a change in the protein contribution

to the reorganization energy but also a different medium for the electron in the

region between the donor and acceptor redox sites.

The change in the ET medium will affect the electronic coupling between the donor

and acceptor, which is the other physical ingredient that enters the expression for

the ET rate constant through the electronic transmission coefficient.
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Equation 2.1 and Figure 2.1 do not show an important fact that occur around

Q = Qt. About this coordinate, the Born-Oppenheimer approximation does not

hold, and the nuclear and electronic degrees of freedom cannot be decoupled. This

circumstance removes the degeneracy of the I and F states at Q = Qt (avoided

crossing), producing the (free) energy landscape in Figure 2.3. In this landscape,

one can distinguish an adiabatic ground state and an adiabatic first excited state,

which can be written as linear combinations of the diabatic states and have a

minimum separation equal to double the effective electronic coupling or ET matrix

element U IF between states I and F .

Figure 2.3: Free energy (or effective potential energy) profile for the initial (I)
and final (F) electronic stats of a typical ET reaction, with introduction of the
electronic coupling UIF between the two electronic states. The diabatic states
are represented by dashed lines, while the two adiabatic states that results from
their linear combinations are represented by solid lines. The minimum splitting
of the adiabatic state energies is 2UIF . Figure reprinted from ref. [2]. Copyright

2006 AIP Publishing.

Elaborating on the coupling of the electronic dynamics (as determined by U IF )

and of the nuclear dynamics around the avoided crossing, Landau and Zener

[1, 38, 42, 43] elaborated an expression for the electronic transmission coefficient
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that depends on both V IF and the nuclear motion, as characterized by the reor-

ganization energy and the temperature. In the limit of suitably small [1, 38, 42]

electronic coupling between donor and acceptor, which is typical of proteins, the

Landau-Zener approach leads to an electronic transmission coefficient that is pro-

portional to |UIF |2. Once the Landau-Zener analysis is combined with the Marcus

free energy factor, the expression for the ET rate constant becomes [39]

kET =

√
π

λkBT

|UIF |2

~
exp

[
−(∆G0 + λ)2

4λkBT

]
(2.3)

The donor-acceptor electronic coupling is responsible for the electron tunnelling

between the two redox centres once the nuclear coordinates rearrange so as to

approach Qt , but the expression for the electronic transmission coefficient in

equation 2.3 results from the coupling of the tunnelling event with the nuclear

dynamics at a given temperature, and in fact this coefficient contains not only

|UIF |2 but also the nuclear reorganization energy and the temperature. As we

will see below, the presence of |UIF |2 , with its role in the electron tunnelling

event, introduces an exponential dependence of the ET rate on the donor-acceptor

distance.

2.1.2 Heterogeneous Electron Transfer at Molecule-Electrode

Interfaces

When a redox molecule is adsorbed on a solid-state component such as a metal

electrode, the ET rate constant for the interfacial ET process changes in some

important ways. A main difference arise from the diverse electronic structures of

molecules and metals or other conductive materials with periodic structure and

a huge number of electronic levels available for conduction. A number (which is

essentially infinite for a metal) of electronic states will be coupled to the molecular

electronic state, and the availability of electrode electronic states for the ET with

the molecule will depend on the direction of the ET, on the temperature and on

the potential difference applied between electrode and molecule. Consider, for
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example, Figure 2.4. At zero temperature, all electronic energy levels in the metal

until the Fermi level (µ , represented by a yellow dash in the figure) are occupied,

while all levels above are empty. In fact, the occupancy of the electronic levels

is described by a step-wise Fermi-Dirac distribution, which is represented by the

green curve in Figure 2.4. If an occupied molecular level (blue dash) is below the

metal Fermi level, the molecule cannot deliver the electron to the metal unless the

temperature is raised (so that the distribution of level occupancy is described by

the black curve and levels with non-zero probability of occupation are available

at the energy of the electronic state localized on the molecule) and/or a metal-

molecule potential difference is applied, so as to shift up the molecular level with

respect to the metal levels.

Another important difference between homogeneous intermolecular ET and het-

erogeneous ET at a molecule-electrode interface lies in the reorganization energy

associated with the ET process. While the localization of the excess charge in the

molecule causes a suitable rearrangement of the surrounding nuclear environment

(for example, solvent molecules will suitably orient their permanent electric dipole

moments), the electronic charge is not spatially localized in the metal, where it

spreads throughout (and it is immediately swept away under applied bias voltage)

on a time scale fast relative to the atomic motion. The consequence is that only

the molecular system contributes to the reorganization energy. To get a rough

estimate of the resulting reorganization energy, one can consider that: (a) when

two similar molecular redox centres are far enough from each other, their similar

contributions to the reorganization energy are approximately additive; (b) one of

the two molecules involved in the ET is replaced by the electrode in the interfacial

process. Based on these two considerations, the reorganization energy associated

for the ET is roughly half of that for the molecular electron self-exchange reaction

[1].
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Figure 2.4: Representation of the energy bands, Fermi function and Fermi
level (µ, dark yellow dash) in a metal (left), and the energy level of the molecular
system that interacts with the metal. The green step function represents the
Fermi function at zero temperature. The black curve is the Fermi function at

nonzero temperature.

With the above differences in mind, the rate for the interfacial ET process is

obtained by integrating the Marcus-like rate constant for an ET process (between

the molecular level and a level in the metal) over the density of states in the

electrode and the distribution of their occupancy: the Fermi distribution f(ε) if

the electron has to be delivered by an occupied level in the metal to the molecule;

the complementary Fermi distribution 1-f(ε) if the electron has to be transferred

from the molecule to an empty metal level. The resulting expressions for the

interfacial ET rate constants are [1, 44, 45].

kmetal→molecule(Vinterface) =
1

2
√
πkBTλ

∞∫
−∞

dεf(ε)Γ(ε)exp

(
− [ε− λ−∆E(Vinterface)]

2

4λkBT

)
(2.4)

and
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kmolecule→metal(Vinterface) =
1

2
√
πkBTλ

∞∫
−∞

dε[1−f(ε)]Γ(ε)exp

(
− [ε+ λ−∆E(Vinterface)]

2

4λkBT

)
(2.5)

In equations 2.4 and 2.5, λ is the reorganization energy associated with the (pos-

sibly solvated) molecular system. f(ε) is the Fermi function describing the occu-

pation probability of the single-electron state with energy ε :

f(ε) =
1

eε−εF /(kBT ) + 1
(2.6)

Γ(ε) is the metal-molecule coupling strength, which is proportional to the density

of metal electronic states of energy ε, ρ(ε), and to the average squared electronic

coupling between such states and the electronic state localized in the molecule,

< |Umetalmol(ε)|2 >:

Γ(ε) =
2π

~
< |Umetalmol(ε)|2 > ρ(ε) (2.7)

∆E(Vinterface)) is the potential difference-dependent reaction (free) energy for the

interfacial ET:

∆E(V ) = Emol−(Qmol−)− [Emol(Qmol) + µ− eVinterface] (2.8)

where µ is the metal chemical potential relative to vacuum (the inverse of the

metal work function), Emol−(Qmol−) is the (free) energy of the reduced molecule

at its equilibrium nuclear coordinates Qmol− , Emol(Qmol) is the analogous quantity

for the oxidized molecule at its equilibrium coordinates Qmol, e is the elementary

charge, and Vinterface is the potential difference between molecule and electrode.

If the (solvated) molecule is inserted between two electrodes, four ET rate con-

stants are involved, as shown in Figure 2.5. For example, this is the case for a
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redox molecule inserted between the substrate and tip of an STM system. Under

sufficiently high bias voltage only the forward ET rate constants (namely, the rate

constants for ET in the preferential direction established by the sign of the voltage)

are effective. Series expansions on analytical functions of the rates in equations

2.4 and 2.5 were recently provided [46–48]. Approximations to these series show

[47] that the threshold interfacial potential differences for getting significant values

of the forward ET rates, and thus for enabling the corresponding ET processes,

are λ + ∆E(0) = λ + Emol−(Qmol−) − Emol(Qmol) − µ for the metal-to-molecule

ET and λ − ∆E(0) for the molecule-to-metal ET. In a molecular junction, the

larger of these two values, that is, λ+ |∆E(0)| determines the minimum interfacial

potential drops to get appreciable current through a molecular junction via charge

hopping (see Section 2.4).

Figure 2.5: Molecular junction in STM setup. For brevity of notation, in the
subscripts of the electron transfer rate constants, the substrate is denoted by S
and the Tip by T. The redox centre of the molecule is represented as a green
circle. The distances of this redox centre from S and T, as well as the pertinent
ET rate constants are indicated. If a sufficiently high potential difference is
applied between S and T, with higher potential at the tip, the forward ET rate
constants (that is, the S-to-molecule and molecule-to-tip ET rates; ET jumps
represented by blue arrows) determine the current in a charge hopping model of
the junction conduction, while the backward ET processes (pink arrows) occur

with negligible rates.
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If the molecule per se is a monovalent cation, in the above expressions mol repre-

sents the cation and mol− stands for the neutral species. The presence of polar

solvent around the molecule stabilizes the molecular cation (and, in general, the

charged molecular species). Therefore, if Emol−(Qmol−) − [Emol(Qmol) + µ] < 0,

the presence of the polar solvent will reduce |∆E(0)| , and hence λ + |∆E(0)|.

In other words, in this case, the solvent will increase the junction current at a

given bias voltage across the molecular bridge or at given voltage set point and

tip-sample distance. Before concluding this section, let us notice that, assuming

that ρ(−ε) = ρ(ε) all around the metal Fermi level and that the states with the

transferring electronic charge spread over the metal are similarly coupled to the

state with charge localization around the molecular redox centre, one can simply

write the interfacial ET rate constants as

kmetal→molecule(Vinterface) = |Umetalmol|2A(Vinterface)exp

[
−∆E(Vinterface)

KBT

]
(2.9)

and

kmoleculel→metal(Vinterface) = |Umetalmol|2A(Vinterface) (2.10)

with

A(Vinterface) =

√
π

~2λKBT
exp

[
∆E(Vinterface)− λ/2

2kBT

]

×
∞∫

−∞

dερ(ε)f(ε)exp

(
− [ε−∆E(Vinterface)]

2

4λkBT
+

ε

2kBT

)
(2.11)

The two ET rate constants satisfy the detailed balance principle and are pro-

portional to the electronic coupling, which causes exponential decays of such rates

with the distance of the molecular redox centre from the surface (see next section).
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2.2 (Direct) Tunnelling and Resonant Tunnelling

(Quantum) Tunnelling occurs when a particle is found outside a confining

potential that could not be surmounted classically. The electronic wave function

does not vanish abruptly at a potential energy barrier higher than the electron

quantum-mechanical average energy. If the met barrier is thin enough, the wave

function, and thus the probability to find the electron on the other side of the

barrier, is non zero. In general, the non-zero probability of tunnelling through

a potential energy barrier can be explained in terms of the non-zero coupling

of electronic states that, in a one- dimensional picture, are mainly localized on

opposite sides of the barrier (for example, see Figure 2.6a). On the one hand,

from analysis of the two-state dynamical problem in the short-time limit (in which

the probability of reverse transitions is still negligible), one can show that the

electron transmission coefficient or tunnelling probability is proportional to the

square electronic coupling between the two electronic states [43, 49]. On the other

hand, the Gamow approach [49] leads to an approximately exponential dependence

of the tunnelling probability on the width of the barrier, with a decay factor of this

probability that is determined by the height of the barrier relative to the energy of

the incident particle. In fact, for a simple rectangular potential energy barrier of

height U0 and width a (Figure 2.6b), the tunnelling probability is approximately

given by [43, 49].

τ ≈ exp

[
−2a

~
√

2me(U0 − E)

]
(2.12)

In general, the transmission coefficient has, approximately, an exponential decay

with the tunnelling distance and one can write

τ ∼ |U12|2 ∼ exp(−βa) (2.13)
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(a) (b)

Figure 2.6: (a) Representation of a double potential energy well in which tun-
nelling can take place. A quantum particle can tunnel from a state localized in
a well (e.g., state 1) to a state localized in the other well (state 2), although
its (average) quantum-mechanical energy is lower than the top of the potential
energy barrier between the two wells. (b) Simplest potential model (rectangu-
lar potential barrier) for calculating the transmission coefficient or tunnelling

probability. U0 is the height of the barrier and a is its width. .

The gap between tip and substrate of an STM setup poses a potential barrier for

the electron flux between the two conductors, even when molecules are in between.

However, the height of this barrier is reduced by inserting a molecular medium.

Applying the above to the STM junction one has to consider that an essentially

continuous manifold of electronic states are available in each metal and that the

application of a bias between tip and substrate will translate the electronic energy

levels of one metal compared to those of the other (see Figure 2.7). At zero

temperature and zero bias, the Fermi functions for the two electrodes are a step

functions with the same Fermi energy, so that no net tunnelling current is observed.

Under a bias voltage, the relative shift of the two Fermi function makes in such

a way that electrons from one electrode can tunnel through the tip-substrate gap

and occupy empty levels of the other electrode. The direction of the tunnelling

current will clearly depend on the sign of the bias voltage difference.
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Figure 2.7: Energy scheme of tip and sample for different bias voltages, the
left figure shows Thermal equilibrium, zero bias, the middle figure, Positive bias,
tunnelling into empty sample states, the right figure, Negative bias, tunnelling

from occupied sample states. Figure reproduced from. [3]

A very important quantum-mechanical phenomenon can take place and support

conduction when a structured medium such as a biomolecule is inserted between

substrate and tip. The inhomogeneous environment of the protein medium be-

tween substrate and tip can create a potential well, and thus a double potential

barrier, for the transferring charge(s), as schematically represented in Figure 2.8

When the energy of the incoming particle is the same as (in resonance with)

a bound energy level in the potential well, the particle can tunnel through the

double-barrier region with unit probability, rather than experiencing the probabil-

ity exponential drop of equation 2.13 [1, 43]. In the case of resonance tunnelling

(or resonant tunnelling), the transmission coefficient for the incoming particle of

energy ε is

τ(ε; z) =
ΓSΓT (z)

(ε− ε0)2 + [ΓS + ΓT (z)]2/4
(2.14)

where ε0 is an effective [1] energy of the level in the well, ΓS and ΓT (z) are the

coupling strengths of the molecule to substrate and tip, respectively. The effect of

changing z on the substrate-molecule coupling strength was neglected in equation

2.14, but the transmission coefficient maintains the same expression when this

approximation is not satisfied. ΓT depends on the distance z of the tip from the
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substrate because z determines the tip-molecule distance. As one can easily see

from equation 2.14, the maximum value of τ(ε) is achieved under the resonance

condition ε = ε0, and this value is unity only if ΓS = ΓT (z) at some z .

Figure 2.8: Schematic representation of resonant tunnelling. The potential
well between the two barriers has some bound levels. When the energy of the
incident particle is in resonance with a bound level in the well, the transmission
coefficient is unity for a symmetric double barrier. The two barriers and the
well can represent the potential profile seen by an electron across a molecule
which is interfaced to two electrodes in a junction. The constant potential
regions grossly represent parts of the molecular bridge with different structural
properties. If metal electrodes are involved, the Fermi function characterizes
the injection energy levels, and is here described similarly to Figure 2.4. Two
discrete levels in the potential well are resonant with electronic levels of the
substrate, and one of them (which is named ε0 in the figure) is resonant with

the substrate Fermi level.

2.3 Charge Transport (Current) Mechanisms.

2.3.1 Charge Transport via Coherent Tunnelling

For relatively small molecules, and especially (but not only [50]) in the absence

of redox centres, resonance tunnelling can be the charge transport mechanism at

play, although some incoherence is present due to thermal motion of the molecular

system. In this regime of conduction, the current at given bias voltage V and

substrate-tip distance z is written, within the Landauer-Büttiker formalism [1, 51],
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as

I(V ; z) =
2e

h

∞∫
−∞

dετtotal(ε; z) [fs(ε;V )− fT (ε;V ] (2.15)

τtotal is the so-called all-to-all transmission coefficient, which counts all the initial

and final electronic states of the transmission process that can be distinguished per-

pendicularly to the transmission process. In equation 2.15, fs(ε;V ) and fT (ε;V )

denote the Fermi functions for the substrate and tip, respectively, when V is the

substrate-tip bias. At zero V, the two Fermi functions are identical and the cur-

rent is zero, as expected. The temperature dependence of the current is limited

to the appearance of T in these functions. This dependence disappears at low

enough biases. In fact, it can be shown [1] that, when the potential drops at the

two molecule-metal interfaces are much smaller than kBT, the current is approxi-

mately

I(V ; z) = G0τtotal(µ; z)V (2.16)

where the transmission coefficient is taken at the Fermi energy and G0 is the

quantum of conductance:

G0 =
2e2

h
= 77.5µS (2.17)

According to equation 2.16, the conductance is given by

G(z)

G0

= τtotal(µ; z) (2.18)

and equals the quantum of conductance when τtotal is unity. Using equations 2.7,

2.13, and 2.14, neglecting constant terms in the right-hand side of equation 2.16,

and taking the logarithm of both sides of the equation, one can write

lnG(z) ∼ lnG0 − βz (2.19)
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β is an average beta factor for the tunnelling barriers in Figure 2.8. Equation 2.19

was correctly used in this thesis to estimate β values. This equation generally leads

to strong underestimation of tip distances from the substrate when β is assumed

and specific z values are calculated from it. Yet, relative values of z estimated

through equation 2.19 for similar systems may be compared.

2.3.2 Charge Transport via Hopping

Resonant tunnelling is a coherent quantum-mechanical process, and molecular

thermal motion generally does not allow for the exclusive occurrence of this pure

mechanism. Indeed, incoherence is, in general, introduced in the charge transport

between the substrate and the tip by thermal motion of the intervening medium.

Another physical mechanism can support conduction when relatively large redox

molecules are adsorbed on the substrate and coherence throughout the extent of

the molecular bridge is unachievable. The redox site in the molecule represents

a potential (free) energy well for the transferring electron. Substrate-molecule

and molecule-tip ET processes can occur through the combined nuclear dynamics-

electron tunnelling mechanism that was described in Section 2.2, with ET rate

constants described by equations 2.9 and 2.10. Let us assume that the junction is

biased with higher electrostatic potential at the tip, so that the electrons flow from

the substrate to the tip, while the reverse flow is negligible. Exploiting equation

2.13, one can rewrite equation 2.9 for the substrate-to-redox site ET and equation

2.10 for the redox site-to-tip ET as follows:

kS→molecule(VS−mol) ∼= |U0|2 exp(−βS−molrS−mol)A(VS−mol)exp

[
−∆E(VS−mol)

KBT

]
(2.20)

kmolecule→T (Vmol−T ) ∼= |U0|2 exp(−βmol−T rmol−T )A(Vmol−T ) (2.21)

or, in compact form and with evident meaning of the symbols,
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kS→molecule(VS−mol) ∼= k0
S(VS−mol)exp(−βS−molrS−mol) (2.22)

kmolecule→T (Vmol−T ) ∼= k0
T (Vmol−T )exp(−βmol−T rmol−T ) (2.23)

where U0 is an extrapolated zero-distance electronic coupling,rmetal−mol is an ef-

fective distance between the molecular redox site and the indicated metal, and

βmetal−mol is an effective decay factor (beta decay factor) for the intervening

medium. Clearly, V = VS−mol + Vmol−T . During I-z measurements, the beta

factors and distances in the above equations, as well as the repartition of the tip-

substrate potential drop between the two sides of the redox centre, are functions of

the tip- substrate distance z, although this dependence is not explicitly indicated

in equations (2.20-2.23) to simplify notation. For example, if the tip is retracted,

rmol−T increases, and also βmol−T becomes larger because an increasing portion of

the gap between redox centre and tip is not occupied by the molecule. There-

fore, at a certain distance, kmolecule→T is surely the rate-limiting step in the charge

transport through the STM system. Moreover, if the molecule also links to the

tip (e.g., with the help of a second thiol) and is pulled, to some extent, during the

retraction, then also rS−mol and βS−mol can be a little changed.

In the charge-hopping mechanism for conduction, there is full incoherence between

the two ET steps, which can be independently described by the above equations.

For example, once the (solvated) molecule receives an electron from the substrate,

its nuclei rearrange to the equilibrium coordinates in the presence of the excess

electron on a time scale that is much faster than the average time required for the

next ET to the tip (that is, 1/kmolecule→T ). Note that in this mechanism, differently

from resonant tunnelling, one can define charging states of the molecule between

the different ET steps. For the STM system in Figure 2.5 under sufficiently high

bias, the current can then be written as [47].

I ∼= e
kS→moleculekmolecule→T

kS→molecule + kmolecule→T

(2.24)
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Over a range of z values for which the protein can bridge substrate and tip, and

the two ET processes are characterized by similar values of r (≈ z/2) and similar

beta decay factor characteristic of the protein medium (β ≈ βS−mol ), it is

I ∼= Iprotein ∼ exp(−βr) (2.25)

When z increases enough that kmolecule→T becomes much smaller than kS→molecule,

it is

I ∼=
kS→moleculekmolecule→T

kS→molecule

= ekmolecule→T ∼ exp(−βmol−T rmol−T ) << Iprotein

(2.26)

The last two equations can essentially explain the step seen in the current during

the tip retraction.

Equations 2.25 and 2.26 characterize the dependence of the current on the length

of the rate-limiting ET step in the presence of a single redox centre in the molecule.

Considering a sequence of polymeric molecular bridges of different lengths, with a

number of hopping sites proportional to the length of the bridge, the current will

approximately scale down as the inverse length of the bridge (namely, with the

inverse of the number of hopping sites) [1] or even more slowly if the bridge can

be populated by multiple charges.

2.4 Proteins and their use in bionanoelectronics

Protein are large biomolecules that consist of a defined sequence of amino acid

residues and perform a large number of functions in living organisms. Proteins are

important constituents of which they define shape, construction, molecular trans-

port and identification properties. Proteins engage in the catalysis of metabolic

reactions and in DNA replication. 20 different amino acids are the building blocks
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of proteins. Different amino acid sequences generally lead to different protein

folding into a three-dimensional structure with specific chemical properties and

biological activity. The information which are needed to form the different types

of proteins are saved in DNA and carried by RNA, which are akin chains of nu-

cleotides [52]. One can define four levels of structure for a protein. The primary

structure is just the sequence of amino acids. The secondary structure is the set

of local structures that are mainly stabilized by hydrogen bonds. The most com-

mon features of secondary structure are α helixes, and β sheets and β-turns, At

the next level of structural organisation, the secondary structure components ar-

range themselves to form a three dimensional folded structure that is the tertiary

structure. At the next higher level of structure organisation, folded polypeptide

chains come together in a specific arrangement that is called the quaternary struc-

ture. Two classes of proteins can generally be distinguished; globular proteins and

fibrous proteins (which have an elongated shape) [52, 53].

Many organic molecules seem to be good candidates for use in nano-scale devices.

Several studies have investigated the possibility of using organic molecules such as

DNAs or proteins in future devices, so as to replace silicon-based nano electronics

and transit to bionanoelectronics [54, 55]. In this area of investigation, the most

ambitious goal is achieving control of single biomolecules as active elements in bio-

nanoelectronics applications. At the nanoscale typical of protein molecules, the

electrical current can be described in terms of individual electron transfer (ET)

processes. Protein functions generally involve charge transfer processes. Thus,

the idea is to exploit the rich charge dynamics involved in the normal operation

of biomolecules for designing nanodevices with novel functions and high-density

integrated circuitry. However, the practical implementation of this idea requires

to preserve and control the biomolecular structure and function in a non-natural

context, at the interface with inorganic components. While several difficulties

have hampered the development of bionanoelectronics according to the lines of

standard electronics, a huge amount of recent research confirms the potential of

the general idea in different ways, with application that range from pure electron-

ics to biomedicine [56–58], from information transfer [59, 60] to chemical sensing
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[15, 17, 61], from enzymatic biofuel cells [14] to organic solar cells [9, 10]. Within

this context, ET proteins such as cytochrome cyt b562 [62] and the green fluores-

cent protein (GFP) have attracted significant attention as promising candidates

in nanobioelectronics applications. Moreover, the fluorescence characteristics of

GFP determine its selective response to irradiation and its potential use in opto-

electronics applications [55, 63]. Among other proteins of use (and of interest to

this thesis work), we mention protein kinase A (PKA) and TEM beta Lactamase

(TEM).

Critical factors in combining molecules with inorganic solids are the stability of

the molecular anchoring and prevalent orientation of molecules. These are critical

factors in order to preserve the biological activity of the molecular component

and to ensure a stable, reproducible and efficient behaviour of the heterogeneous

system (as an example, see Ref. [16], where immobilization strategies to develop

enzymatic biosensors are discussed). Tilting of a redox molecule on the solid

substrate can change the distance between the redox centre and the surface of the

substrate, as well as the local polarization of the surface, and these facts have also

been exploited in implementing sensing strategies at the nanoscale [64].a

So far, gold has been the most used substrate material for protein immobiliza-

tion. This noble metal is chemically inert to biomolecules, and proteins can be

bonded with high stability to gold through thiol groups. Mechanisms to control the

strength of thiol-gold contacts have been studied until recently, showing the pos-

sibility to bind the thiol to the Au surface so strongly that retraction of the STM

tip determines breaking of Au-Au bonds near the thiol binding site and extraction

of thiolate bound to gold atoms. Thiol groups can be inserted in biomolecules,

via introduction of cysteine residues. This can be achieved by genetic engineering

of proteins to get the cysteine residues at the desired positions. In this way, one

can obtain direct self-assembly of proteins on to gold surface [62]. The chemical

modification of proteins at appropriate positions on their surfaces enables cova-

lent bonding to the substrate and help to define a preferential orientations of the

immobilized molecules [65]. One of the proteins that are amenable to this kind of

engineering in the above way is cyt b562. Despite some previous measurements of
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the electrical properties of this molecule absorbed on gold [62], further investiga-

tions are necessary, in order to provide more information on the I-z characteristic

and study the effects of environmental conditions such as temperature and humid-

ity on the structural and electrical properties of the functionalized surfaces.

Chemical functionalization of substrate surfaces can also be achieved by means of

chemical groups other than thiols. One of these functional groups is pyrene, which

is amenable to pi-stacking to the substrates such as graphite and graphene [66].

Graphene and graphite are carbon materials with unique structural and electronic

properties that have, attracted a lot of attention since their discovery, especially

for potential applications in electronics, including the ambitious goal to replace

silicon in some future electronics. Moreover, these are sustainable carbon materials

which can also be employed in novel devices for clean energy production (e.g., see

Ref. [67]).

2.5 Proteins used in this project

2.5.1 Cytochrome b562(Cytb562)

Cytochrome b562 is a small soluble protein (12.3 kDa) that can be produced

by Escherichia coli (E coli). It is a four-helix protein with 106 amino acids which

non-covalently binds a heme (redox) cofactor [68]. Cyt b562 is an ET protein. The

presence of the redox haem cofactor and the natural ET function of this protein

led to consider cyt b562 a good candidate for the realization of functionalized metal

surfaces to be used in hybrid electronic devices. [28, 68].

Site-directed mutagenesis was used to generate different variants of cyt b562. In

all variants, the protein was engineered to introduce a thiol-linking groups ( via

insertion of a cysteine residues) at suitable a positions for proteins anchoring and

assembling on the Au(111). In particular, the single-mutant D5C was engineered

by replacing the aspartate residue at position 5 with cysteine, to produce the D5C
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variant of the protein. Double mutants were also produced to define different ori-

entations of the attached molecules on the surface. To this purpose, two cysteine

residues were substituted on opposite sides of the protein, along two directions

that approximately define the dimensions of the molecule. In the long-axis config-

uration (SH-LA), aspartates at positions 21 and 50 are substituted with cysteines.

In the short axis configuration (SH-SA), the aspartate residue at position 5 and

the lysine residue at position 104 are replaced by cysteine residues [28, 30]. The

LA and SA variants result in different configurations on the substrate (see Figure

2.9), with expected heights of about 5.2 nm and 2.4 nm on the surface, respec-

tively. This accordingly causes different distances between the molecular redox

center and the surface.

Figure 2.9: Double-mutant variants SH-LA and SH-SA of cyt b562 . The red
and grey structures represent α helices. The molecular framework of the redox
center is shown in cyan. The orange spheres represent the thiol groups that are
introduced at the indicated positions and are used to link the biomolecule to

the gold surfaces [4].

2.5.2 Green fluorescent protein(GFP)

The green fluorescent protein (GFP) is a 26 kDa fluorescent protein that was

first isolated from the jellyfish Aequorea Victoria. The molecule is composed of 236

amino acids and has a cylindrical shape, as determined by an 11-strands β-sheet

arranged in a beta barrel and there is an α-helix runs inside the beta barrel. The

chromophore in GFP forms from the covalent rearrangement of 3 contiguous amino
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acids in the heart of the barrel structure. The shape of this protein is illustrated

in Figure 2.10 [69]. GFP is a light-emitting protein whose chromophore is formed

post-translationally from the sequence Ser65-Tyr66-Gly67 by an oxidative reac-

tion. GFP has become an invaluable tool as a tag for monitoring gene expression

and protein dynamics invitro. The fluorescence spectrum has a peak at 509 nm

with a shoulder at 540 nm [63]. The optical properties of GFP offer considerable

scope for its utilization as a non-invasive marker in cells. In this work, we used the

superfolder GFP ( sfGFP) variant (very robustly folded version of GFP), with the

p -azidophenylalanine (azF) introduced into the protein through chemical modi-

fication [70] to be used to link the proteins directly to carbon allotrope materials

or to be linked to pyrene by click chemistry-based strain-promoted azide-alkyne

cycloaddition (SPAAC) approach [5].

Figure 2.10: Engineered sfGFP molecule. The light blue structures represent
helices. The chromophore is shown as the green part in the middle. The posi-
tions where the pyrene is bound (so as to link the protein to the carbon surface)
are indicated in red. Figure donated by Reddington, Hartley from the Jones

group.

2.5.3 Protein Kinase A(PKA)

The protein kinase A (PKA) enzyme belongs to the large family of protein

kinases. The structure of PKA is shown in Figure 2.11. The chemical function
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of this protein consists in phosphorylating other proteins. Protein kinases do not

work only as catalysts, but also as scaffolds, with the function to bind to other

proteins. This function depends on the cell type and it is been studied [71]. Be-

cause of its chemical and mechanical properties, PKA is exploited in regulatory

and signalling mechanisms of cells, thus suggesting its potential use in electronic

devices. Recently, GFP-based biosensors were used to study the activity of protein

kinases such as PKA in living cells, and in particular the function of this family

of enzymes in cancer and drug discovery [72].

Figure 2.11: Structure of Protein Kinase A (PKA). The green structures
represent α helices, while the flat arrows represent the β sheets. The active site
is shown in red. Figure donated by Reddington, Hartley from the Jones group.

2.5.4 TEM beta-lactamases (TEM) Proteins

TEM beta-lactamase is a member of a wide bacterial enzymes family. These

enzymes are produced by bacteria that show multiple resistance to beta-lactamase

antibiotics. The structure of the TEM protein is shown in Figure 2.12. It is con-

sists of a α domain, which contains six α helices, and a beta domain. Function-

alization of TEM beta-lactamase with azF and by using click chemistry, linking

small molecular groups that introduce new properties in the biomolecule can be

achieved. Click chemistry has become a flourishing approach to bioconjugation in

that enhance biomolecular functionalities.
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Figure 2.12: Engineered TEM β-lactamase. The light grey structures repre-
sent α helices. The regions in red represent positions for azF insertion. This
insertion serves to link the protein to pyrene, which is used to bind the protein

to the carbon surface. In this figure the azF is linked to position 165 [5].

In the molecular engineering, the unnatural amino acid p-azido-L-phenylalanine

(azF) was inserted in the proteins. This amino acid was used because its chemical

properties makes it a good candidate for controlling proteins post transnationally.

It is an analogue of phenylalanine, with an azide functional group (N3) at the

para position of the benzene group (a phenyl azide). It is the azide, or more

precisely the phenyl azide group that makes this amino acid particularly useful to

implement new non-native chemistry in proteins.

Phenyl azides are particularly sensitive to UV light. This feature can be used

to modulate the behaviour of the engineered protein in response to irradiation.

During irradiation with light below 310 nm [73], phenyl azide loses the N2 group

and transform into a reactive nitrene species with two lone pairs of electrons. This

nitrene radical can follow various reaction routes depending on its immediate en-

vironment [74]. The reaction pathways include insertion reactions with both N-H

and C-H bonds and addition reactions with C=C double bonds (see Figure 2.13

[6]). The photosensitivity and reactivity of azF have been employed in the past for

studying protein-protein and protein-ligand interactions [75]. Also, the crosslink-

ing feature of azF has been used to help the functional analysis of native proteins,

by immobilizing proteins on surfaces for surface plasmon resonance analysis [76].
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Figure 2.13: Activation of Phenyl-azide. Irradiation using light below 310
nm leads to the formation of the nitrene radical caused by the loss of molecular

nitrogen. This species can then go down several reaction pathways [6].

2.5.4.1 Long-linker Pyrene

The SPAAC was used to covalently attach the azF residue, which was geneti-

cally encoded in TEM proteins, to a dibenzylcyclooctyne-pyrene (DBCO-pyrene)

linker. This strategy enabled π-π binding of TEM proteins to carbon surfaces

such as highly ordered pyrolytic graphite (HOPG) and graphene [5]. This protein

deposition results in single proteins molecules decorating the carbon surface when

appropriate protein concentrations and incubation times are used. The DBCO-

pyrene complex consists of two connected aromatic structures with four rings each,

and because of its size it is called the long linker here.

Two variants of TEM β-lactamase, i.e., TEM105azF and TEM165azF, engineered

with pyrene were used to bind to graphene. Cyt b562, sfGFP204 and PKA proteins

were similarly engineered to exploit pyrene for bonding to carbon surfaces. With

regard to the systems studied in this work, click chemistry was applied to modify

the TEM protein, so as to have pyrene at positions 105 and 165, and also for pyrene

linking to sfGFP and PKA at positions 204 and 31, respectively. Pyrene represents

a good linker for protein anchoring to surfaces such as graphite or graphene. The
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protein samples and the figures of protein structures in this chapter were prepared

by Dafydd Jones and his group in the Bioscience Department.

2.5.4.2 Short-linker Pyrene

Another strategy for attaching the azF residue to pyrene was used, which

consisted in using copper-promoted azide-alkyne cycloaddition (CuAAC) method

to link the pyrene moiety to the azF residue. Thus, there is no need for the DBCO

interface between the protein and the pyrene linker, that is why we use the name

short-linker. This type of linking to pyrene was used for cyt b562 , and also enabled

the study of the single molecule properties on graphene.

In this Type copper-promoted azide-alkyne cycloaddition CuAAC was used to link

the pyrene to the azF residue, this method allows direct coupling to the azido-

group of azF in the protein in which there is no need to the DBCO as interface

between the protein and the pyrene linke but copper in needed for this interaction

to catalyse it, that is why we can call it short-linker.



Chapter 3

Scanning Probe Microscopies and

Environmental Cell

3.1 Introduction

STM is one of the most important tools to gain knowledge and control on the

nanoworld. Recent years have witnessed big changes in scientific research aimed

to get control on the nanoscale and to exploit molecules with refined functions in

non-natural contexts. Nanoscience and nanotechnology have developed tools to

face the difficulties resulting from the small size of the systems investigated, the

limits imposed by quantum mechanics principles, and the daring goal to combine

the properties of molecules and solid-state components. Among such tools, ex-

tremely important are scanning probe microscopies (SPM) such as Atomic Force

Microscopy (AFM) and Scanning Tunnelling Microscopy (STM). These techniques

have played vital roles in investigating the properties of nano-structured materials,

since their invention in the early 1980s. The applicability of STM and AFM to

the nanoscale is strictly related to the tiny dimensions of the scanning component:

the tip. This is the key component to approach and investigate nano-structured

organic and inorganic materials, in both air and aqueous environment, and to en-

able measurements on single molecules. These microscopies are the most widely

39
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used in ambient conditions and require minimum sample preparation. They can

give information on the topography of the surface, providing two-dimensional and

three-dimensional images as well. The data provided by both investigation sys-

tems span a length scale from angstroms to microns, and give information on

physical parameters such as height, shape, roughness, and surface morphology,

as well as distribution and conductance of the molecules adsorbed on a surface

[77]. Consequently, these techniques opened the door to discover the world of bio-

nanostructured materials and understand the essential processes at play in such

materials. To perform the measurements in this project we used STM and AFM

systems. We also used home-built STM, which was designed and constructed in

the School of Physics and Astronomy at Cardiff University and allows for high-

resolution measurements [28].

Environmental conditions can influence STM measurements. In fact, physical

conditions such as humidity have effect on the electron transfer processes through

the molecules and across the molecule-electrode interfaces [78, 79]. Biomolecules

with charge-transfer functions are often used in modern nanoelectronic applica-

tions [54, 80, 81], with the aim to exploit their refined functionalities in future

nanodevices. Even in contexts very different from their natural environment, in-

terstitial and environmental water can influence the structural properties of these

molecules, and therefore their charge-transfer function. For example the effect

of interstitial water on electron self exchange reactions between azurin molecules

was demonstrated [78, 79]. The presence of water can also affect other proper-

ties of the experimental setup. For example, the effect of the relative humidity

on the potential barrier height between a Pt/Ir STM tip and a gold surface was

measured [82]. Pan et al. have designed and developed an STM setup that also

operates at low temperature, in order to study the effect of temperature on the

STM measurements [83].

These studies inspired us to build a system for providing control of both temper-

ature and humidity on the STM setup. Hence, we placed the home-built STM

inside the control system to perform our STM imaging and measurements at dif-

ferent values of temperature and humidity, and thus to study the effects of these
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physical variables on the structural and conductive behaviours of biomolecules and

metal-biomolecule interfaces.

In this chapter, we describe the design and construction of a control environmental

system that enables the operation of STM under different conditions of tempera-

ture and humidity. We will explain the structure of the system and the software

used to control the temperature and humidity in the environmental chamber. In

order to make our description self-contained, we first summarize the working prin-

ciples of scanning probe microscopies (SPMs) such as Atomic force microscopy

(AFM) and scanning tunnelling microscopy (STM).

3.2 Scanning Probe Microscopies

3.2.1 Scanning Tunnelling Microscopy (STM)

Scanning tunnelling microscopy (STM) was invented in the early 1980s by

Gerd Binnig and Heinrich Rohre [77]. STM is based on the tunnelling of electrons

between two solid-state components: the tip and the sample. The tip of the STM

has to be sharp and made of a conductive material. Then, current can flow through

the sample when a bias voltage is applied between the tip and the substrate. A

sketch of the STM setup is shown in Figure 3.1. Electrons from the sample tunnel

into the tip or vice versa (according to the sign of the bias voltage) when the tip

is close enough to or in contact with the sample or directly with the substrate.

A 3D scanner with an electronic feedback loop is used for raster scanning across

the sample, so as to monitor the tunnelling current and to obtain a topographical

image of the surface. The tunnelling current changes with the distance between the

sample and the tip, so this signal is used to perform the STM image of the surface

[84]. An important feature of STM is the possibility to carry out local tunnelling

spectroscopy, by measuring the current between tip and substrate as a function

of the gap voltage, at a fixed position of the tip. This kind of measurements can

give information about the local electronic structure of the sample. The properties
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of the tip play a very important role in producing the STM measurements. Two

factors mainly impact the measurements: the shape and the chemical structure

of the tip. The material of the tip can affect the STM measurements. Mostly,

metallic tips are used. A common tip material is platinum iridium(Pt-Ir), which

can be used under ambient conditions because the platinum is inert to oxidation,

while the iridium is added to increase the stiffness of the tip. A sharp tip can be

obtained by cutting a Pt-Ir wire. This type of tip was used in the present work.

Scanning with the STM system can be performed in two modes:

Figure 3.1: Schematic diagram of an STM.

3.2.1.1 Constant-Height Mode

This mode maintains the height of the STM tip above the surface at a constant

value. The tunnelling current will change according to the topography and the

electronic properties of the surface, thus producing the image of the sample.

3.2.1.2 Constant-Current Mode

The tunnelling current is kept constant in this mode, which is achieved by con-

trolling the height of the scanner at every point measured on the surface until the

established set point current is reached. The vertical position of the tip at each

data point is used to form the topographic image of the surface.
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3.2.2 Atomic Force Microscopy

Atomic force microscopy is one of the techniques commonly used to perform

measurements in nanotechnology, including nanoscale material science, modern

biophysics, etc. This microscopy was invented in 1986 by G. Binnig, C.F Quate

and Ch. Gerber [85]. The main idea behind this technique is that, a sharp tip at

the free end of a cantilever interacts with the surface to be raster-scanned, while

the deflection of the cantilever is monitored by the reflection of a laser beam onto

a position-sensitive detector. Therefore, the surface-dependent deflection of the

cantilever is finally measured by a detector during the scan. Using the deflection

data, a computer software produces an image for the surface topography. AFM

is used to study both insulators and conductors unlike the STM, which can be

used to measure just conducting surfaces. There are three AFM techniques for

imaging; contact, non contact and intermediate contact AFM [85–87].

Figure 3.2: Interatomic force vs. distance for an AFM probe-sample system.
Two regimes are highlighted: the contact regime and the non-contact regime.
In the contact regime, the cantilever is held very close to the sample surface (a
few Angstroms apart) and the interatomic force between the cantilever and the
sample is repulsive. In the non-contact regime, the cantilever is held far from
the surface (that is, tens to hundreds of Angstroms) and the interatomic force

is attractive.

Figure 3.2 shows the potential energy between the AFM probe and the surface.

The layer of contamination on the surface causes the attractive forces. The re-

pulsive forces at short distance cause the cantilever to bend up and they increase

rapidly as the probe begins to contact the surface. Two methods can be used
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for establishing the forces between AFM probe and sample. In contact mode the

deviation of the cantilever is measured, while in tapping mode the changes in

amplitude and frequency are used to measure the force [87].

3.2.2.1 Contact-Mode AFM

In contact-AFM mode or repulsive mode, the tip makes contact with the

surface of the sample. During the scanning, the scanner controls the movement

between the tip and the sample. Therefore, the contact force causes cantilever

bending to suit the change in topography. From the cantilever deflection, the AFM

can produce the topographic data set and then the pertinent image of the scanned

surface. The contact-AFM can operate in constant-height mode or constant-force

mode. In the constant-height mode, the height of the scanner is set and this mode

is used for atomistic scale imaging of substrates. In the constant-force mode, the

cantilever deflection is constant, which means that the force on the surface is a

constant, and the scanner motion produces the image. This mode can be used to

provide real-time images of changing surfaces.

3.2.2.2 Non Contact-Mode AFM

Non-contact AFM is one of many oscillating cantilever techniques. It is prefer-

able to other techniques because it can measure the surface topography without

contact between the sample and the tip, and hence without damaging the sample.

The strength of the interaction force is very low. Therefore, this mode can be

used to measure soft samples. In addition, the sample will not be contaminated

as there is no contact between the tip and the substrate. In non-contact mode,

one makes the cantilever to oscillate near its resonant frequency, and the resonant

frequency or the oscillating amplitude is used as the feedback parameter in the

feedback loop. Changes in the height can be used to produce the image of the

sample topography.
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3.2.2.3 Intermittent Contact-Mode AFM (Tapping Mode)

In the contact mode, the force on the sample is large when imaging biolog-

ical samples, so intermittent contact AFM, also called tapping mode AFM, is

an important methodology for analysing surfaces that contain biological samples

[53, 87]. Similarly to the non-contact AFM, the cantilever oscillates close to its

resonance frequency. However, here the tip is pushed closer to the surface and taps

it. The amplitude of the cantilever vibration changes according to the sample-tip

gap, and thus an image that reflects the surface topography is obtained depending

on this change. The intermittent contact mode and the non contact-mode are de-

sirable approaches to study functionalized surfaces, because they do not damage

the sample since the cantilever does not touch the surface but just the bottom

swing of the cantilever can touch the surface.

3.3 Environmental Cell Design

The system consists of two parts; One is the humidity mixing chamber, which

provides the humid nitrogen gas. This chamber is encased in an aluminium box.

Inside, a smaller box containing deionised water though which nitrogen gas is

bubbled. The outlet humid gas is then mixed with dry nitrogen gas in a mixing

chamber to control the humidity of the mixed gas. The humidity generating

chamber was built in the project including this work but not used. The other

part of the environmental cell, is the STM chamber (see Figure 3.4), which is

connected to the humidity chamber through a plastic pipe. The STM chamber is

also a box made of aluminium, with a baseplate of 200 × 230 mm, and is coated

with two insulating layers, each layer being 25 mm thick. We were able to reduce

the humidity in the STM chamber compared to the ambient conditions (so as to

carry out measurements at different humidities) by pumping dry nitrogen inside.

Future use of the humidity chamber will allow us to increase the humidity in the

STM chamber with respect to the ambient.
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The home-built STM is placed at the centre of the STM chamber. Peltier elements

RS 4901373 are placed on opposite sides of the chamber for heating and cooling

purposes. Peltier elements are very good for controlling the temperature in the

environment of the STM, because these elements are vibration-free. In addition,

they have small size and weight. Heat sinks beside the peltier elements can cool

them down by air convection only, without any fan to exclude extra vibrations.

The chamber has two pairs of peltier elements and heat sinks, placed on oppo-

site sides. The cooling power depends on temperature difference (the difference

between the ambient temperature and the desired temperature), hot plate cool-

ing, and drive current. At 4 K difference, infinite hot plate cooling, and 3 A, a

cooling power of 23.6 Watt was measured. The metal chambers were produced in

the mechanical workshop. The chamber includes two sets of thermometers and

humidity meters placed beside the sample and on the top part of the chamber.

All the wires for the STM and for the controlling sensors are placed underneath

the base. The sensors were controlled by a Python program which was written

by Dr. Martin Elliott. Andriy Moskalenko assembled and tested the system, and

produced Figure 3.3. Andrew Harrison from the electronic workshop provided the

system electronics.

(a) (b)

Figure 3.3: Schematic diagram of STM chamber of the Environmental Sys-
tem.(a) Side view , (b) top view.
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(a) (b)

(c)

Figure 3.4: Picture of STM chamber of the Environmental System.(a) STM
system. (b) STM system box (c) Humidity system.

Several sensors were placed at desired positions in both chambers to control tem-

perature and humidity. The heating and cooling elements are controlled through

a PC software. For the temperature control, the main components are a mi-

crocontroller, a difference amplifier circuit, digital to analog (DAC) circuit. The

microcontroller output signal depends on the set temperature and the tempera-

ture detected by the thermistor. The control signal is suitably amplified to drive

the peltier device to either increase or decrease the bath temperature. Python

was used for the interface with the user. To control the temperature, we need

just to type the desired value which is passed to the microcontroller by serial

communication. We can also check the temperature plot on the monitor.
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We have to mention that both chambers and the connection pipes are very well

shielded with thermal insulators. The system needs to be used so as to avoid con-

densation while the desired temperature and humidity conditions are achieved.

The temperature in both chambers should be exactly the same in order to prevent

the occurrence of condensation. The correct use of this system provides a good

control of the environmental humidity and temperature, and thus allowed us to

study the effect of these physical parameters on the properties of the nanostruc-

tures investigated.

3.4 Conclusions

In this short chapter, we described the design of an environmental system that

was built, in the project including this work, to enable the use of SPM techniques

under controlled conditions of humidity and temperature. The constructed control

chamber has a dual importance in nanoscience studies: (i) to reduce the variability

of environmental conditions that can lead to accordingly variable and difficult-to-

interpret experimental results; (ii) to facilitate closer comparisons with theoretical

studies, and thus faster useful interpretations of the same experimental results in

terms of their chemical-physical underpinnings. In this chapter, we also stressed

the importance of SPM techniques such as AFM and STM in the study of nano-

structured materials, and we briefly described their operation principles.



Chapter 4

Proteins on Graphene

4.1 Introduction

Graphene is a unique 2D material which was first produced by exfoliation from

graphite in 2004 [88]. This 2D structure can be in the form of a mono layer or

a few layers of carbon atoms arranged in six-membered rings. Its extraordinary

thermal, mechanical and electrical properties make it an important candidate for

several applications. This is the reason why graphene has attracted rapidly grow-

ing attention in the past decade, with a consequent increase of experimental and

theoretical studies of its properties and potential applications [89–91]. Graphene

can be exfoliated from three-dimensional graphite crystals using micro-mechanical

cleavage. This approach is allowed by the weak van der Waals forces between

graphite layers. Thus, using tape, one can peel single layers from bulk graphite

and obtain graphene samples of high quality. However, in this procedure the van

der Waals forces between the first two layers must be overcome without perturbing

any subsequent sheets [92]. Graphene is very important in chemical sensing appli-

cations due to its 2D structure and the two-dimensional characteristic is generally

maintained in multilayer graphene; e.g., see [93].

49
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Different molecular species can be linked to a graphene surface and influence the

electron transport through graphene [94]. Graphene can also be used as the sens-

ing component in photo-detectors [95]. This application requires that one is able

to control the wavelength of the device response. The possibility to alter and con-

trol the conductive properties of graphene by its functionalization, inspire research

for the development of methods to combine the functionality of biomolecules (in

particular, proteins) with the properties of graphene in hybrid bioelectronic de-

vices.

Chemical functionalization of graphene is necessary to enable various appli-

cations of graphene. The functionalization can be performed via either covalent

or non covalent strategies [96–99]. Our aim is to immobilise protein molecules on

graphene for its suitable functionalization. For this purpose, we engineer molecules

relevant to bionanoelectronics by insertion of specific functional groups that en-

able them to be anchored to graphene surfaces. After immobilisation we carry out

electrical characterization of the molecule-graphene system.

In this chapter we describe the experiments that were carried out to investigate

the charge conduction through different types of proteins, covalently and non-

covalently immobilised on graphene and graphite substrates. STM and AFM were

used for imaging. The pyrene functional group was used for non-covalent linking of

the proteins to the carbon surface. Azide was used for covalent protein anchoring

to graphene. To this aim, we developed an experimental protocol in which the

necessary activation of the azide group is achieved by UV irradiation.

4.2 Protein Engineering

Click chemistry is a method which can be used for protein modification, where

it is possible to obtain new properties by the insertion of functional groups. This

method was applied to modify PKA (protein kinase A), sfGFP (green fluorescent

protein) and TEM (TEM beta lactamase) with long-linker pyrene, so as to have

pyrene linking at positions 31, 204 and 105 or 165 as described in chapter 2. Pyrene
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was shown to be a good linker for protein to surfaces such as graphite or graphene

[97, 100]. We performed another type of modification on cyt b562 using pyrene,

which can be called a short-linker pyrene variation of the method, so as to enable

linking to the graphene surface.

4.3 Proteins on Graphite

4.3.1 Cyt b562, sfGFP, PKA on Graphite

At the first stage of this research, highly ordered pyrolytic graphite (HOPG)

was used as the substrate for the proteins, β-lactamase, sfGFP204, PKA and cyt

b562 with long and short pyrene linkers effective for anchoring to graphite and

graphene surfaces. These proteins were deposited on HOPG. Different concentra-

tions (5, 0.5, 0.1, 0.25, 0.05, 0.025) µM were tested with same time of incubation

of 5 minutes, to find the optimal concentration for our study. The flakes of HOPG

which are used in this work were mechanically exfoliated from the bulk piece

of graphite by means of an adhesive tape. Placing a piece of tape on the bulk

graphite, the top graphite layer was peeled to obtain a clean surface, from which

the freshly produced flake was removed by means of tweezers. The HOPG flakes

were imaged using AFM and STM in air at room temperature prior to incubation

with proteins. Figure 4.1 shows the raw AFM and STM images of the surface.

The incubation consisted of the immersion of the flakes in the protein solutions for

5 minutes. Then the samples were rinsed with deionised water to remove the excess

protein, and dried with nitrogen to be ready for imaging. Cyt b562 with short and

long linker pyrene, PKA31 and sfGFP204 proteins were imaged by AFM. After

the protein incubation, the graphite surface was covered with islands of proteins

for high protein concentrations, which are 5 µM and 0.5 µM as seen in Figure 4.2.
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(a) (b)

Figure 4.1: Topographic image of HOPG. (a) AFM image; the lines represent
the edges of the graphite. (z-range= 0-4.3 nm). (b) STM image (z-range =

0-7.3 nm).

(a) (b) (c)

Figure 4.2: AFM image of sfGFP engineered with pyrene on HOPG. (a)
Concentration = 5 µM, incubation time = 5 minutes. The white coverage
represent the layer of proteins on the surface. The brown islands represent are
areas of graphite which are not covered with the protein. (z-range = 0-24.6 nm),
(b) concentration = 0.5 µM, incubation time = 5 minutes. The white islands
represent the proteins on the surface and the darker areas between the islands
are bare graphite surface (z-range = 0-11.1 nm), (c) concentration = 0.05 µM,
incubation time = 5 minutes. The light dots represent the protein molecules on

the surface (z-range = 0-8.9 nm).
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The concentrations of 0.1 µM for cyt b562, and 0.05 µM for sfGFP and PKA are

very good for measuring individual proteins, as can be seen from Figures 4.2, 4.3

and 4.4. Cyt b562 SH-LA with short pyrene linker was attached to HOPG as well

as can be seen in Figure 4.5, the used concentration was 0.025 µM which represents

also good concentration to obtain individual proteins on the surface.

(a) (b)

Figure 4.3: Engineered PKA with pyrene-linker on HOPG.(a) AFM image,
concentration = 0.05 µM and an incubation time of 5 minutes. The light dots
represent the protein molecules on the surface (z-range = 0-4.2 nm). (b) STM
image for a concentration of 0.05 µM and an incubation time of 5 minutes

(z-range = 0-2.6 nm).
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(a) (b)

Figure 4.4: AFM image of Cyt b562 with long-linker pyrene on HOPG.(a)
Concentration = 0.25 µM, incubation time = 5 minutes. The figure shows a
high protein coverage on the surface. The round islands are the areas which
are free of protein molecules (z-range = 0-2 nm). (b) Concentration 0.1 µM,
incubation time = 5 minutes. The light dots are the protein molecules which

are bonded to the edges of the HOPG (z-range = 0-3.3 nm).

Figure 4.5: AFM image of Cyt b562 SH-LA with short linker pyrene on HOPG,
concentration = 0.025 µM, incubation time = 5 minutes (z-range = -14.7-9.8

nm).

Successful AFM measurements were performed on all types of proteins, while

STM imaging was not successful except of PKA as in Figure 4.3 but it was not
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reproducible, this can be due to removing the proteins by the STM tip as it is seen

from the STM image for PKA, or the proteins are bound to the surface but there

are small differences in conductance around the molecule which prevent sensing

the molecules there by STM. The lateral dimensions of the protein molecules

which were measured by AFM where slightly larger than the protein dimensions,

due to the size of the tip. The measured molecular height was similar to that

expected, except for some images, probably due to tapping of the AFM tip on the

molecule. A drop-casting approach was also used to deposit the proteins on to the

HOPG surface. This approach did not yield successful attachment of the proteins

to the surface, because of the hydrophobic nature of the graphite surface. Both

the engineered sfGFP204 and Cyt b562 were successfully attached to the graphite

surface using an immersion method, as confirmed by AFM imaging. The average

lateral and vertical molecular sizes from the experiments were about 9 nm and 5

nm respectively, which are on the order of magnitude expected for these proteins.

The real dimensions of these proteins from x ray crystallography are (4.5, 3.5)

nm for sfGFP and (5.2, 2.6) nm for cyt b562. The differences from the measured

values can be ascribed to the scanning conditions, where the AFM tip size affects

the lateral dimensions of the measured molecule. The height of the molecules

can be affected by AFM tip when using tapping mode technique specially if the

molecules are soft biological proteins or presence of a thin contamination layer on

the surface surrounding the molecule [101–103]. STM imaging of these proteins

was not successful at any of concentrations used. The reason for this failure may

be that the proteins are not strongly attached to the surface and thus are removed

by the STM tip while doing the scanning, due to the interaction forces between

tip and molecule, such as van der Waals or chemical forces which can be enough

to move the molecules).

4.3.2 TEM β-lactamase on Graphite

Another protein immobilised on the HOPG surface was TEM β-lactamase. Two

techniques were used for anchoring this protein to the HOPG surface. The first
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method consisted in the deposition of TEM β-lactamase that was previously mod-

ified with DBCO-pyrene. In the second approach, HOPG surface was first func-

tionalised with pyrene, and then TEM105AzF molecules were deposited on the

functionalised surface and linked through the azide phenylalanines to the pyrene

groups. In the first approach, the HOPG flakes were immersed for 5 minutes in 5

nM of pre-modified protein solution. Then the samples were rinsed with deionised

water, dried with nitrogen before imaging. In the second approach, the HOPG

flakes were incubated with 0.2 mM pyrene for 15 minutes, the surface was im-

mersed in 100 % DMSO (Dimethyl sulfoxide), rinsed with deionised water, and

dried with nitrogen. The HOPG functionalised with pyrene was then immersed

for 10 minutes in 100 µL of TEM105AzF of concentration 1 nM, rinsed with water,

and dried with nitrogen. AFM imaging followed.

Both techniques, proteins linked to pyrene and proteins deposited over pyrene,

enabled protein anchoring to the HOPG surface. However, the direct bonding to

the surface through the pyrene linker was more successful than the pre-modified

surface approach in producing well defined individual proteins on the surface. Note

that clicking pyrene with protein method differs from and represents an advance

on all the previous methods for protein bonding to HOPG surfaces. In previous

approaches the proteins were attached to HOPG through gold clusters which were

decorating the HOPG surface at earlier stage [104, 105] and others were using

other linkers to functionlise the HOPG surface and thus enable proteins anchoring

[106]. The AFM images in Figure 4.6 show the topography of the HOPG surface

functionalised with TEM proteins by means of the two incubation methods. Again,

the STM imaging did not show the TEM proteins on the surface, which may be

ascribed to the limited conductivity of a protein on HOPG that contains no metal

core or cofactors to further investigate this hypothesis, we compared the conductive

properties of TEM, sfGFP and PKA on gold. The STM imaging failed again for

the TEM proteins, while good STM images were obtained for sfGFP and PKA.
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(a) (b)

Figure 4.6: (a) AFM image of TEM105 with pyrene on HOPG, the small light
dots represent the protein molecules, the big dots may be agglomerated proteins
(z-range = 0-10.2 nm). (b) AFM image of TEM105 attached through pyrene
to HOPG. The big brown coverage represents the pyrene, while the small light

dots are the protein molecules over the pyrene (z-range = 0-9.8 nm).

4.4 TEM β-lactamase on Graphene

Assemblies of biomolecules on solid surfaces and other substrates are critical

ingredient in bio-nanoelectronics. Because of its unique properties, graphene is

a good candidate as a substrate for molecules in nanoelectronic devices. Due to

its unique electronic structure, especially the high density of the electronic states

which covers wide energy range allows graphene with fast electron transfer, So

graphene is very sensitive to electronic changes in the attached proteins, and thus

it can effectively transfer the effects of these changes to the electrodes [107]. There-

fore, changes in electrostatics, protein-protein and protein-substrate interactions

can be easily detected. Moreover, specific protein attachment to graphene can

provide an ideal setup for measuring single-molecule conduction. In our experi-

ments, the protein attached to graphene was TEM β-lactamase. Investigating the

behaviour of this protein on substrates is important for uses in biomedical nanolec-

tronics, including biosensing applications. Phenyl azide chemistry was encoded at

defined positions in the protein. Using click chemistry (see section 2.6.3), pyrene
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was attached to the phenyl azide inserted in the TEM protein, thus enabling the

protein assembly on the graphene surface.

4.4.1 Sample Preparation and Imaging

Samples of graphene on copper from Exeter University and from Graphene

Supermarket were used. All graphene sheets were deposited on the copper sub-

strates by means of chemical vapor deposition (CVD). Methane was used as the

carbon source. The (4 mm thick) graphene on copper pieces were immersed in PBS

containing protein and incubated at room temperature for 10 minutes. We used

different protein solutions of wild type TEM β-lactamase and TEM β-lactamase

pre-modified with the DBCO-pyrene, with different concentrations: (0.5, 0.010,

0.005 and 0.001) µM, and the incubation was done by drop cast or by immer-

sion, pouring the protein in the incubation tube, and then holding the sample by

tweezers, inside the solution. The samples were then immersed in about 50 ml of

deionised water to remove the excess protein, and dried with nitrogen. AFM imag-

ing was carried out using a Veeco Nanoscope IIa (Bruker) in tapping mode. Each

area of a sample was scanned up to 10 times, with a total of 6 different regions

imaged, to check the stability of the protein molecules on the graphene surface.

Although the images show some drift, it is clear that the proteins are stably bound

to the surface. That is, TEM proteins linked to pyrene were successfully attached

to the graphene surface.

4.4.2 Results and Discussion

4.4.2.1 TEM165 Protein with Pyrene on Graphene Experiments

Before preparing the samples the pristine graphene substrates were imaged

using AFM and STM techniques, in order to visualize the surface before incubation

with the protein solution (see Figure 4.7) and enable a clear comparison with the

functionalized surface. All specimens from Exeter and from graphene supermarket
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showed that the graphene surface is not homogeneous, but it contains different

edges and wrinkles. These defects can affect the homogeneity of the deposited

protein layer. For example, when a high concentration protein solution is used,

we cannot obtain a homogeneous molecular layer on the graphene surface because

proteins tend to attach more on the edges of the surface.

Figure 4.7: AFM images of different areas of pristine graphene from the
Graphene Supermarket. Different areas from different samples show different
features on the surface such as edges (the line-like features) or wrinkles (peaks

and troughs).

Raman spectroscopy images of pristine graphene on Cu foils were taken by the

Exeter group. Raman spectra collected in air at room temperature demonstrated

mono layer graphene. The prominent peaks in the Raman spectrum of graphene

are the G peak at about 1580 cm−1 and the 2D peak at about 2700 cm−1. The G

and 2D peaks, were clearly seen for all of the graphene specimens that we used in

our experiments. Figure 4.8 shows typical Raman spectra for graphene samples

from graphene supermarket and from Exeter, respectively.

The linking of the molecules to the graphene surface is achieved by π stacking of

the pyrene to the graphene surface [108]. We demonstrated that enzymes can be

interfaced with graphene by molecular engineering. To this end, AZF and pyrene
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(a)

(b)

Figure 4.8: (a) Raman spectra for pristine graphene from graphene supermar-
ket. (b) Raman spectra for pristine graphene from Exeter University.

were attached at defined position of the TEM. The coupling of pyrene to the

protein prior to incubation with the graphene samples enabled a specific coupling

to the surface, without the need to functionlise the carbon surface with pyrene as

in previous studies [108, 109]. Intermittent-contact mode AFM (tapping mode)

imaging showed that TEM165AZF modified with pyrene binds stably to graphene

surfaces (see Figure 4.9), the used concentration was 0.005 µM and the incubation

time was 10 minutes. The protein molecules were not significantly disturbed by

multiple scans. The average apparent height was 3 nm, which is close to the

predicted height of the protein bound in the designed orientation (Figure 4.10).

The average apparent lateral dimension was larger than predicted (10 nm versus

5 nm), as a result of tip convolution effects. Conversely, wild type TEM did not

stably bind to the graphene surface, with tip contamination commonly observed
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(a) (b)

Figure 4.9: AFM imaging of pyrene modified TEM165azF on graphene, it
shows that the proteins are stable on the surface over multiple scans. (a) The

sixth scan (z scale 0-10.1 nm). (b) The tenth scan (z scale 0-17.6 nm).

after multiple scans (see Figure 4.11, for the results of AFM imaging of wild-

type TEM -lactamase on graphene. The surfaces were incubated in 1 nM protein

solution for 10 minutes.
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(a) (b)

(c)

Figure 4.10: TEM with pyrene. (a) The structure of the TEM protein. (b)
Modified TEM on graphene. (c) height cross section image to show the dimen-

sions of single molecules.

The surface was imaged after the first and tenth scan. The protein images

are initially poorly defined, presumably due to weak surface binding, and become

even less defined as the proteins are spread across the graphene surface by AFM

scanning. The clarity of the images is also deteriorated after multiple scans due

to tip contamination. This work on TEM adsorbed on graphene was published in

Chemical Science [5].
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(a) (b) (c)

Figure 4.11: AFM imaging of wild type TEM on graphene, it shows that the
proteins are not stable over multiple scans. (a) The selected area (z-range =
-1.8-2.8 nm). (b) The first scan (z-range = -2.1-2.3 nm). (c) The tenth scan

(z-range = -1.3-2 nm).

4.4.2.2 TEM105 Protein with Pyrene-Linker on Graphene Experiments

Similar experiments were carried out on another variant of the TEM protein,

TEM105, where azF was positioned at residue 105 and then the pyrene was linked

to it. Proceeding in this way, we achieved results similar to those obtained for

TEM165. The following images were taken using AFM and STM for different

engineered TEM concentrations, to verify the protein binding to the graphene

surface and to find the most appropriate concentration for studying this type of

protein deposited on the graphene surface. We used many concentrations in the

range 0.5-0.001 µM. The graphene surface was fully covered by proteins at suffi-

ciently high concentrations, but lower concentrations led to protein distributions

more appropriate for the study of single molecule conduction.
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Figure 4.12: AFM image of pre modified TEM105 on graphene. The con-
centration was 0.005 µM and the sample was immersed in the protein solution
for 10 minutes. The light dots represent the protein molecules on the graphene

surface (z-range = -4.3-6.5 nm).

(a) (b)

Figure 4.13: AFM imaging of pre modified TEM105 with pyrene-linker on
graphene. Concentration= 0.001 µM, incubation time = 10 minutes. The im-
ages show that the protein molecules are stable over many scans. The light
dots represent the protein molecules on the graphene surface. (a) The 1st scan

(z-range = 0-11.6 nm). (b) The tenth scan, (z-range = 2.2-9.8 nm).

Figure 4.12 shows the topography of the surface after deposition of TEM105

pre modified with pyrene. The low concentration 0.005 µM produced a sparse

distribution of the proteins on the graphene surface, thus enabling the contact of

the tip with individual molecules.
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For TEM105 pyrene, we used a concentration of 0.001 µM and performed multiple

scans to test the stability of the proteins on the surface. After ten AFM scans

the protein molecules were still stable on the surface, as is shown in Figure 4.13.

In the protein engineering, the position of pyrene on the protein was established

with high accuracy, thus enabling efficient linking of the protein to graphene at the

desired positions. Clearly, our approach can be usefully applied to other systems

and provide functionalized graphene surfaces for a variety of nanotechnological

applications (e.g., in biosensing devices and enzymatic biofuel cells with carbon-

based electrodes).

To investigate the electronic properties of proteins on graphene, we tried imag-

ing them with STM. Figure 4.14 shows the STM images of TEM105 and TEM165

proteins on graphene respectively, TEM165 is the same type of protein which we

used before, but in the present system azide Phenylalanine(AZF) is attached at

the position 165, while AZF was at position 105 in the previous system. The dif-

ference in structure between the two systems is expected not to have any effect on

imaging, but the electrical measurements on these two proteins may differ. Note

that we attached many protein molecules to the graphene surface, but the STM

imaging was not able to visualize the proteins in most of the studied systems.

(a) (b)

Figure 4.14: STM imaging of TEM proteins with pyrene on graphene, con-
centration=0.005 µM, incubation time=10 minutes. (a) TEM105 (z -range=

0-7.9 nm), (b) TEM165, (z -range= 9.1-11.1 nm).
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in summary, the AFM imaging was successful for the pyrene-modified TEM105

proteins on graphene, and a good distribution of single protein molecules on the

substrate was observed at a concentration of 0.01 µM. We observed lateral di-

mensions of about 10 nm, which are higher than the real dimensions. Such an

overestimate, can be due to the size of the tip. The height of the molecules was

between (1.5 and 2.0) nm, which is comparable to TEM dimensions when they are

measured by STM. From the above figures, one can see that many proteins can

be attached to graphene via pyrene for concentrations not lower than 0.001 µM.

4.4.2.3 Experiments on cyt b562 with short-Linker Pyrene on Graphene

In engineering proteins, azF residue was inserted at specific positions: position

50 for the long-axis variant and position 5 for the short-axis variant. Click chem-

istry was used to click the pyrene with azF. Copper-promoted azide-alkyne cyclo-

addition (CPAAC) was used to attach pyrene directly to azF without linkers, thus

obtaining what we call short-linker pyrene. In the experiments, we tested different

concentrations of cyt b562 proteins with short-length pyrene, and we achieved op-

timal functionalized graphene for single-protein study at 0.005 µM concentration

and the time of immersion was 10 minutes. The experiments allowed us to demon-

strate the effects of the pyrene length on proteins anchoring to graphene, as shown

in the following figures. Figure 4.15 shows separate proteins on graphene. The

molecular distribution on the carbon surface enabled our study of the conduction

through single molecules.
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(a) (b)

Figure 4.15: AFM images of cyt b562 with short length pyrene on graphene.
The light dots represent the protein molecules on the graphene surface. (a) The
SH-SA variant, at a concentration of 0.005 µM , was incubated for 5 minutes by
immersion (z-range = 0-5.1 nm). (b) The SH-LA variant, at a concentration 1
µM, was incubated for 10 minutes by drop cast method (z-range = 0-24.9 nm).

We made many attempts to observe the proteins on graphene samples by means

of STM. Proteins were successfully imaged in only a few scans (may be because of

the small differences in conductance from the area around the molecules). AFM

imaging were successfully conducted on cyt b562 with short length pyrene. The

observed lateral dimensions of 5 nm and height of 2.6 nm are comparable with the

expected dimensions for such proteins from x-ray crystallography.

Figure 4.16: STM image of cyt b562 with short length pyrene on graphene,
concentration=0.005µM, incubation time = 5 minutes by immersion, set point

current = 0.05 nA, bias voltage = -0.05 V (z-rang = -5.5-4.3 nm).
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4.5 UV experiments on graphene functionalized

with proteins

We developed a new method to link proteins to the surfaces of carbon al-

lotropes. Since the engineered TEM and GFP proteins carry the azF moiety, re-

active nitrene species are formed (as molecular nitrogen is lost) when this residue

is irradiated with UV radiation with wavelength below 310 nm (see Section 2.5.3).

Several reactions can be photoinduced, including reduction and insertion into

carbon-hydrogen bonds or into carbon-carbon double bonds. This reactivity was

exploited in our systems to covalently linking proteins to graphene surfaces, after

incubating the graphene substrates in protein solutions and irradiating with UV

light to activate the azF residue. Thus, our novel approach enables protein linking

to the carbon surfaces without need for use of additional linkers.

4.5.1 Sample Preparation

Protein samples were deposited on graphene (adsorbed on copper foil sub-

strates) from the graphene supermarket. Bonding to graphene was provided

through covalent linking of the proteins, that was stimulated by UV irradiation.

The foil pieces (4×2 mm) were immersed in PBS containing 10, 5, 2 and 1 nM

TEM protein with azido group, at position 105 and 165 or sfGFP with azido

group at position 204, and incubated at room temperature for 10 minutes in the

dark. After the incubation, the foil pieces were rinsed with high purity deionised

water and dried under nitrogen flow. The same procedure was applied to other

substrates, but with UV irradiation by a UVM-57 handheld UV lamp (302 nm,

6 Watt) during the incubation time. All the experiments were carried out in a

closed chamber under nitrogen flow keeping the relative humidity between 7% to

11%. While preparing the samples, the chamber was shielded from the ambient

UV. AFM imaging was performed using a Veeco Nanoscope IIa (Bruker) in tap-

ping mode. The imaging of different regions on the graphene surface allowed us

to study the distribution of the proteins. Density calculations of molecules from
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many AFM images for each sample were performed. The density was calculated by

means of a python program written by Dr. Martin Elliott, this was used to achieve

the density data for different small areas around 1 µM in size. The experiments

were repeated many times and density histograms were produced for all samples,

since the distribution of the molecules was not homogeneous on the surface. These

histograms were used to compare the densities of molecules adsorbed on graphene

from the UV irradiation experiments and dark experiments. GFP and cyt b562

proteins were similarly engineered and used in similar experiments to test the new

approach for different types of proteins on graphene.

4.5.2 Results and Discussion

4.5.2.1 UV Experiments of TEM and sfGFP on Graphene

Experiments were performed on different types of proteins to anchor them to

graphene surface using the UV irradiation method.

Figure 4.17 shows the AFM results for TEM105-azF in the dark and under UV

irradiation. We observed inhomogeneous protein coverage, which is due to the

graphene as we discussed above. The protein coverage is much greater for the

UV treated samples than for the dark samples. This indicated that the assembly

of proteins using UV irradiation was successful. This is an elegant approach to

immobilize proteins on to substrates such as graphene, without need for decorating

the surface with any linker or gold clusters.
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(a) (b)

Figure 4.17: AFM images of TEM105azF on graphene. Concentrations of
10 nM, incubation time of 10 minutes. (a) The sample prepared under UV
irradiation. The light dots represent protein molecules on graphene surface (z-
range = 0-5.0 nm). (b) The sample prepared in the dark. The image shows
the bare graphene surface without protein molecules attached (z-range = 0-5.0

nm).

The high concentration did not allow to distinguish individual proteins, and the

variation in apparent size probably indicates the presence of molecular clusters.

Statistical analysis on the topology of the immobilised proteins were conducted.

The protein heights turned out to be around 1-2 nm. All the concentrations used

consistently showed efficient protein attachment under UV irradiation. We applied

successfully the same approach to TEM165-azF. The results were similar to those

obtained for TEM105-azF on graphene. The UV method gave a high distribution

of proteins anchored to the graphene surface. However, some samples prepared in

the dark showed a few proteins, which can be due to the affinity of the proteins to

defects on the graphene surface (see Figure 4.18). The measured apparent heights

were around 1-1.5 nm.
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(a) (b)

Figure 4.18: AFM images of TEM165-azF on graphene. Concentration = 5
nM, incubation time= 10 minutes. (a) The sample prepared under UV irradi-
ation. The light dots represent protein molecules on graphene surface (z-range
= 0-6.5 nm). (b) The sample was prepared in the dark. The image shows the
bare graphene surface with few protein molecules attached (light dots) (z-range

= 0-9.0 nm).

On the other hand, sfGFP is readily immobilized on graphene using the UV

approach. The azide was introduced at position 204 in this protein. Images of

the protein immobilization on graphene are reported in Figure 4.19. The pro-

tein concentration used in this experiment was 1 nM. The figure shows a clear

difference between the results from the samples incubated in the dark and with

UV exposure. These results clearly demonstrate that sfGFP204-azF does bind

to the mono-layer graphene under the preparation conditions employed and that

the photochemical insertion process was successful in obtain protein anchoring to

graphene. Individual proteins can easily be imaged for this concentration and are

fairly uniform in apparent size. Typical heights observed are around 2 nm.
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(a) (b)

Figure 4.19: AFM images of sfGFP204-azF on graphene, concentrations of
1 nM, incubation time = 10 minutes. (a) The sample prepared under UV
irradiation (z-range= 0-15 nm). (b) The sample prepared in the dark (z-range

= 0-15 nm).

4.5.2.2 Using UV approach to link Cyt b562 on Graphene

The same approach was used to attach cyt b562 to graphene. Several concen-

trations of the Cyt b562-azF LA protein and rinse times were used. We compare

the samples prepared in the dark and under UV irradiation. UV samples showed

many more proteins attached than the dark samples. However, some proteins

were attached the graphene surface for the dark samples. For these experiments

AFM imaging was performed over many different areas on the surface to take into

account the inhomogeneity of coverage across the graphene, and to get enough

statistics for density measurements analysis. Figure 4.20 shows the AFM results

of the 5 nM concentration. The heights observed are around 2 nm, which is a

little smaller than the smallest 2.5 nm dimension of cyt b562, but considerably

smaller than the maximum dimension of 5 nm. Figure 4.21 shows the STM image

of this type of protein on graphene prepared under UV irradiation and the heights
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observed are around 2 nm as it is seen from the cross section image. Density his-

tograms were plotted to compare the distribution of proteins in both dark and UV

cases (see Figure 4.22). The results were in agreement with the previous results on

other proteins, since the UV samples showed higher density of molecules attached

to the graphene surface than the dark samples.

(a) (b)

Figure 4.20: AFM images of Cyt b562-azF on graphene, concentration = 5 nM,
incubation time = 10 minutes. (a) The sample prepared under UV irradiation
(z-range = 0-15 nm). (b) The sample prepared in the dark (z-range = -5-10

nm).

(a) (b)

Figure 4.21: Cyt b562-azF LA50 on graphene prepared under UV irradiation,
concentration of 5 nM, incubation time = 10 minutes. (a) STM image, bias
voltage = 0.02 V, set point current = 0.05 nA (z-range = 0-8.3 nm), (b) Height

cross section of individual molecules.
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Figure 4.22: Histogram of cyt b562 molecules distribution on graphene for
samples prepared in dark and under UV irradiation.
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The UV-exposed samples were strongly attached to the graphene surface, as

evidenced by multiple imaging (see Figure 4.23). This is consistent with the fact

that UV exposure results in binding of the molecules. On the contrary, in the dark

the protein attachment was weaker and the AFM tip was increasingly contami-

nated during the imaging, which means that the few molecules non-specifically

bound in the dark were disrupted by the tip.

(a) (b)

Figure 4.23: AFM images of cyt b562-azF on graphene, concentrations = 0.005
µM, incubation time = 10 minutes prepared under UV irradiation. AFM images
of 0.59 µM squares show the proteins are robust to multiple scans. (a) The 1st

scan (z-range = 0-15 nm), (b) the 10th scan (z-range = 0-10 nm).

Additional evidence of covalent protein attachment was obtained by taking

Raman spectra of the surfaces, shown in Figure 4.24. Raman measurements were

performed by our collaborators in Exeter university. From the Raman spectra,

we can recognize three prominent features in each sample: the strong G′ (also

denoted 2D) band centred around 2677 cm−1 , the G band around 1585 cm−1 ,

and a rather weak disorder-induced D band at around 1343 cm−1 . The sharp

peak around 2335 cm−1 is due to atmospheric molecular nitrogen [110].
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Figure 4.24: Raman spectrum for cyt b562 azF samples on graphene. Black
curve: pristine graphene. Red: sample prepared in the dark. Blue: sample
prepared under UV irradiation. The three side figures show the small side peak
below the G peak. In each case, the red line represents the fitting. The top
figure is for pristine graphene, the middle one was obtained for the dark sample,

and the bottom one refers to the UV sample.

There is a consistent overall decrease in Raman intensity in the protein-treated

samples, particularly after UV treatment. The 2D/G ratio is strongly reduced for

the UV-treated sample, as expected because of doping of the graphene through

linking to the azide group (see Figure 4.25). In fact, it is known that the decrease

in the 2D/G ratio indicates the occurrence of nitrogen doping of graphene [111–

114]. Consistent with this, the 2D peak is upwards from (2677 ± 0.11) cm−1

for pristine graphene to (2688 ± 0.29) cm−1 for the UV-treated sample, which

indicates the graphene doping [114, 115]. Finally, the appearance of a small sharp

peak below the G band can be due to the covalent bonding of the proteins with

graphene surface [116].
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Figure 4.25: The ratio of 2D peak over G peak for different samples (sample
of cyt b562azF on graphene under UV, the sample of cyt b562azF on graphene

in dark and pristine graphene ).

The D peak around 1350 cm−1, appeared clearly in the UV sample areas but

not for the pristine and dark samples. This peak originates from defects in the

graphene structure. In fact, the protein covalent linking introduced some defects

into the structure, in as much as C=C double bonds are broken [116]. The D peak

indicates structural disorder. It is common for as-prepared graphene not to have

enough structural defects for the D peak to be Raman active, so that it can only be

seen at the edges of the graphene sheet [117]. The D peak appears in the Raman

spectrum of graphene doped with nitrogen due to the consequent disturbance of

the graphene structure [111]. We observed a shift in 2D and G peak positions,

as it is illustrated in Figure 4.26. This effect is common when doping graphene

substrates. There was no change in the peaks width for all samples, instead (see

Figure 4.27).
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(a)

(b)

Figure 4.26: Peak positions for different samples. (a) 2D peak position, (b)
G peak position.

The presence of doping is clear from the considerable change in 2D/G ratio, the

G-band and the 2D-band. And in particular, the side peak near the G peak, which

did not appear only when UV was used. All of these variations reveal clear effects

of nitrogen doping, in agreement with Ref. [118], and contribute to demonstrate

the successful direct linking of proteins to graphene via UV irradiation.
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(a)

(b)

Figure 4.27: Peak width for different samples. (a) 2D peak width. (b) G peak
width.
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Figure 4.28: The ratio of 2D peak over G peak for sfGFP204 on graphene
(UV sample and dark sample) and of pristine graphene sample.

The same Raman experiment was performed on sfGFP204 proteins on graphene

and the results for the 2D/G ratio is shown in Figure 4.28 and Figure 4.29 shows

the peak positions for different samples while 4.30 demonstrates the peaks width

for the pristine graphene, UV and dark samples.

(a) (b)

Figure 4.29: Peak positions for different samples to compare sfGFP204 sam-
ples prepared under UV and in dark with the pristine graphene sample. (a) 2D

peak position, (b) G peak position.
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(a) (b)

Figure 4.30: Peak width for different samples samples to compare sfGFP
samples prepared under UV and in dark with the pristine graphene sample. (a)

2D Peak width. (b) G peak width.

All the results from the Raman measurements for the sfGFP204 are in agreements

with the Raman results of cyt b562 which strongly demonstrates that the UV

approach is working successfully with different protein molecules, this method

of immobilisation results in doping the graphene which is clear from the Raman

analysis.

4.5.2.3 Resistance Experiments

Other evidence of protein covalent attachment to graphene was obtained by

performing resistance measurements. This is another way to investigate the linking

of proteins to the graphene surface by means of the UV approach which was

illustrated in the previous section. Molecular adsorption alters the structural and

electronic properties of the graphene. Moreover, electron transfer to/from the

molecule can change the density of carriers in graphene. In fact, it has been

shown that doping graphene with electron-donor or acceptor molecules affects the

resistance of the graphene sheet [119, 120]. Therefore, the resistance measurements

also contribute to investigate graphene doping. In this thesis work, we developed

a method to attach proteins to graphene by means of UV irradiation. The photo-

response of the graphene after protein deposition was investigated using different

proteins and was compared to that of pristine graphene samples. Four-point probes
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[121, 122] were used in our work for local and non-destructive measurements of

the graphene resistance.

4.5.2.4 Sample Preparation and Experimental Setups

Protein samples were deposited on CVD graphene, which was lying on an in-

sulating SiO2/Si(p-doped) substrate. The samples were purchased from Graphene

Supermarket. Bonding to graphene was obtained through covalent linking of the

proteins, which was stimulated by UV irradiation as in our previous UV experi-

ments (section 4.5). The samples (10 × 10 mm) of specimens were mounted on a

two 6-pin leadless chip carrier and connected by gold wire of diameter 0.25 µm.

The bonded samples were loaded into a pin breakout board, which was connected

to an AC source and to a lock-in amplifier to measure the output voltage. This

set-up allowed us to measure the resistance of the graphene sheet using the Van

der Pauw method: four contacts were made on graphene samples, we produced an

AC current between two contacts of the graphene sample and measured the output

voltage between the other two contacts. The resistance of the graphene sheet was

measured for 10 minutes. Then 1 µM solutions of sfGFP204 or cyt b562 proteins

with azido group, at position 204 for sfGFP and position 50 for cyt b562, were

dropped on the sample and left there for 20 minutes in dark. Next, the sample

was exposed to UV from a UV diode (wavelength 305 nm) for 30 minutes, where-

upon the diode was switched off and the sample was allowed to relax. During all

these steps, the resistance was measured automatically using a Python program.

The same procedure was applied to other substrates with just buffer for compar-

ison. All the experiments were carried out in a closed chamber under nitrogen

flow, keeping the relative humidity between 1% and 2% to prevent oxidation from

happening, which can affect the resistance measurements. While preparing the

samples, the chamber was shielded from the ambient UV. The experiments were

repeated many times. GFP and cyt b562 proteins were similarly engineered and

used in similar experiments to test the new UV-based anchoring approach for

different types of proteins on graphene. A Python script was used to read an
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input file specifying the measurement parameters for a single measurement and to

calculate the sheet resistance using the Van der Pauw formula.

Preliminary experiments were also performed with the same set-up, to measure the

photo-response of the prepared samples after they dried out. In fact, we wanted

to explore the integration of photo-active proteins to create hybrid materials with

photo-responses using desired wavelength. The samples were measured in the dark

and when exposed to light of wavelength 305 nm for alternate time intervals of 10

minutes each. A step shape behaviour is observed for illumination with 305 nm

for sfGFP204 samples but not for the other samples which were pristine graphene,

buffer and cyt b562 samples.

4.5.2.5 Results and Discussion

In Figure 4.31 we show the effect of UV on the sample which was prepared

with sfGFP204 azF proteins and Figure 4.32 shows the sample which was prepared

with buffer, in order to compare the two samples, and to demonstrate the effect of

the UV irradiation in the presence of the proteins. Both figures show the resistance

measured in the dark, when adding the solution, and then when exposed to a UV

light of 305 nm, at an intensity of 8.7 W/m2.
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Figure 4.31: The sheet resistance as a function of time during the incubation
of the graphene sample with sfGFP204-azF protein solution, the used concen-

tration = 1 µM.

Figure 4.32: The sheet resistance as a function of time during the incubation
of the graphene sample with buffer.
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In both cases, a change in resistance was observed when adding the solution drop,

which can be due to the liquid-surface interface experienced by the graphene, which

is offset by the potential drop over the electrical double layer in solution, that is

associated with negative surface charge [123]. A significant change in resistance

was observed when illuminating with UV for the protein sample (as it is shown in

Figure 4.31), while there was no effect of UV irradiation for the buffer sample. This

important result was consistently confirmed by many experiments. After switching

the UV off, for some samples the resistance continued to increase before achieving

a plateau. The amount of further increase and the plateau value of the resistance

changes from a sample to another. In the case of the buffer sample (Figure 4.32)

we can see an increase in resistance during the experiment but the UV irradiation

has no effect there. We noticed that when the samples are dry the sheet resistance

of the buffer sample turns out to be almost the same as that of the pristine sample

(which is around 200-1000 Ω/sq) before starting the experiment, while for the

protein sample the resistance stays at a higher level, around 3000-3500 Ω/sq.

This result gives another confirmation that the UV approach is successful. In fact,

the activation of the azide is stimulated by the UV, the linking of the proteins to the

surface disturbs the graphene structure and thus changes the electronic properties

of the surface, as demonstrated here by the dramatic change in resistance.
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(a)

(b)

(c)

Figure 4.33: Photo response of dry samples illuminated by UV of 305 nm
wavelength. (a) sfGFP-azF sample, (b) Pristine graphene. (c) Buffer sample.
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Another experiment was performed to study the effect of the UV radiation on

the dry samples. A significant (dramatic, indeed) change is observed only for

sfGFP204 azF protein samples irradiated with UV of 305 nm wavelength , which

is the same wavelength that was used to stimulate the protein linking to the sur-

face (see Figure 4.33). We observed minor changes in resistance for the pristine

graphene (Figure 4.33 b) and graphene with buffer (Figure 4.33 c) samples in-

stead (these behaviours agree with the trend observed in Ref. [124], although

visible light was used in that work). The photoinduced conductivity switching in

Figure 4.33 a can be ascribed to effects of UV on the photo-sensitive sfGFP204

protein, including charge redistribution in GFP upon photo-excitation, or GFP-

graphene charge transfer (since GFP is reported to be a light-induced electron

donor [125]) which causes increase in the conductance through graphene. Indeed,

sfGFP shows appreciable absorption at the wavelength used as in Figure 4.34 [126].

Photocurrent was observed by Lu et al. [55] for a different graphene-GFP system

and using different radiation wavelengths. Compared to the system in Ref [55],

even over time intervals of comparable length upon UV irradiation, we observe a

very stable and markedly reversible switching between two well-defined conductive

states of our system. The specific reasons for the clear-cut conductance switching

in Figure 4.33 a are subject of our ongoing and future investigation. Let us stress

that the photo-response effect indicates as well that the proteins are still active

after linking to graphene, which is a vital factor for the implementation of devices

that exploit the molecular functionalities.

The photo-response of the sfGFP protein was checked over many days. We no-

ticed an unchanged response during the first four days, while the response to UV

illumination was decreasing in the fifth day and was non appreciable in the sixth

day. Future studies will aim to determine whether such an evolution results from

long-term instability of the functionalized graphene surface or from other occurring

event involving the protein layer that alters its response to UV.

The same experiments as in Figures 4.31 and 4.33 were performed on cyt b562-

azF. While similar trends are seen in Figure 4.35 a, the photo-responses of the

dry sfGFP and cyt b562 samples differ. In fact, the dry cyt b562 sample shows
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a very modest resistance dependence on UV. However, the resistance value in

Figure 4.35 b is similar to that in the absence of UV in Figure 4.33 a, and both

are much larger than the resistance of pristine. This means that, similarly to

sfGFP, cyt b562 was successfully attached to graphene, but its conductivity is not

sensitive to the presence of UV.

Figure 4.34: UV-visible absorption spectra of azF-sfGFP variants.

(a) (b)

Figure 4.35: (a) The sheet resistance as a function of time during the in-
cubation of the graphene sample with cyt b562-azF protein solution, the used

concentration was 1 µM. (b) Photo response of dry cyt b562 sample.
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4.6 Conclusions

In summary, we developed an efficient method to functionalize graphene by

means of UV irradiation and we widely investigated the success of the function-

alization and the modified conductive properties of the resulting hybrid mate-

rials. Two techniques for attaching proteins to the graphene surface were suc-

cessfully employed in this work, as was suggested by SPM imaging and Raman

spectroscopy analysis and resistance measurements. The two methods were di-

rect covalent bonding through UV irradiation and non-covalent bonding through

pyrene group. These methods provide new feasible ways to investigate and use

biological molecules on graphene, with potential for future nanoelectronic appli-

cations. Sample imaging with AFM was successful for all types of proteins which

were engineered with pyrene on HOPG, although proteins were mostly not visible

by STM (STM imaging was achieved for some proteins on graphene, but it was

not reproducible in all cases). The AFM images showed that all of the engineered

TEM, TEM-azF, sfGFP-azF and wild type TEM attached to the graphene surface,

but with different distribution properties. The measured average lateral and height

values for the molecular layer were approximately corresponding to the dimensions

of the TEM protein. 0.005 µM turned out to be the best protein concentration

to obtain separated (single) proteins on the graphene surface. The UV approach

for anchoring the proteins to graphene was also validated by histogram analysis

of the AFM images, as well as by Raman spectra collected for the sfGFP-azF and

cyt b562-azF samples and by resistance measurements on such systems.

The imaging by AFM and by STM were both successful for cyt b562-azF and

cyt b562 with short-length pyrene on graphene. Also for the cyt b562 proteins

on graphene, 0.005 µM was the best concentration to observe single molecules.

We have showed that the four-point probes can be used to perform resistance

measurements on graphene and thus to provide extra evidence that our UV ap-

proach is successfully linking the proteins to graphene. We also showed for sfGFP

samples that, after protein deposition on graphene, the electronic properties of

the hybrid material can be manipulated by UV irradiation. This can have a
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big impact on future applications, such as photo detectors, because this type of

protein is light sensitive and graphene has unique structural and functional prop-

erties. The observed consistent, dramatic and reversible decrease in resistance

under UV (see Figure 4.33 a) for sfGFP samples demonstrates the possibility to

implement photoinduced molecular electric switches using our approach to func-

tionalize graphene. Future experiments related to this work will aim to study the

photoswitching conductivity observed in Figure 4.33 at the radiation wavelengths

of maximum absorption for sfGFP204.



Chapter 5

Holo and Apo Cyt b562 Proteins

on Gold

5.1 Introduction

In this chapter, we describe our study of conduction through single SH-SA and

SH-LA cyt b562 holo and apo-proteins adsorbed on Au(111) surface. This study

was made possible by the ability developed in our group to target and measure

individual protein molecules using the STM I-z technique. This ability is mainly

the result of two main achievements: the construction of a low drift instrumenta-

tion and the development of protein engineering to anchor stably the molecules to

the substrate [28]. This setup was used for some conductance measurements on

holo-cyt b562 in the tip retraction mode [28]. In this study, we performed extensive

measurements using the home-built STM setup, including both holo and apo-cyt

b562 proteins, and using an environmental cell more recently built in our labora-

tory to enable conductance measurements under different conditions of humidity

and temperature. Before passing to the description of the experiments, we wish

to clarify the general context for the study in this chapter.

Conductance through single molecules can be measured by using scanning tun-

nelling microscopy (STM). This microscopy can also be used to study charge

91
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transport through small organic molecules [4, 127, 128]. The insertion of the an-

choring groups at appropriate positions and the interactions among proteins enable

their efficient self-assembling on gold (or other metal) surfaces. Electron transfer

(ET) is an ubiquitous process of critical importance in many systems of relevance

to biology, biochemistry and physics. The development of molecular electronics

requires to understand and control the structural stability and the ET efficiency

at molecule-electrode interfaces, as well as the effect of the solid state component

on the functional charge dynamics inside the molecular system.

ET between biomolecular centres often occurs in the weak-coupling limit (Marcus

non-adiabatic regime), because of the involved ET distances and the consequently

small overlap between electronic states that are localized on the donor and accep-

tor molecular groups. Yet, the small intra or inter-molecular coupling allows for

long-range communication via ET. At a redox biomolecule-electrode interface, the

charge can be either localized in the biomolecule or transferred to the electrode,

where it soon delocalizes (and it is swept away when a bias potential difference is

applied). Tunnelling or resonant tunnelling can also take place through relatively

small molecules between electrodes; and an average occupation of the molecular

system can only be defined in such cases [1, 50].

Cyt b562 is an ET protein that shuttles electrons between neighbouring membrane

cofactors. The presence of the heme cofactor and the related ability of this protein

to transfer electrons by switching between different redox states, as well the possi-

bility to immobilise the protein on electrodes, makes this protein a good candidate

for molecular electronic studies and future applications [4]. Cyt b562 can be in the

holo form, which contains the heme cofactor, or in the apo form, that is, without

heme. Apo-proteins can also have a role in biological processes and can be used to

conduct current in molecular junctions [129]. In fact, in a matrix of apoproteins

sandwiched between electrodes, the protein cavities or clefts that correspond to

the absence of the prosthetic groups may induce charge localization and polariza-

tion in the surrounding protein regions that facilitate the electron hopping from

one electrode to the other.
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Many studies have been carried out to investigate the conductance of holo proteins

[4, 130, 131]. However, little is still known about the conductive properties of

apoproteins. Recently, a group in Japan has successfully reported imaging of

apoproteins with STM, studying the effect of the bias voltage on the apparent

height, shape and intermolecular distance for apoproteins adsorbed on Au(111)

[127, 132].

Single-molecule measurements have a crucial role in gaining the understanding

that is required for developing molecular electronics. Current-distance (I-z) mea-

surements can provide important information on the mechanism of charge transfer

through protein-electrode interfaces, and thus on the optimal conditions for struc-

tural stability and electrical conduction in a molecular device. For this reason,

we have produced big sets of current measurements at different tip-substrate dis-

tances, also changing the humidity conditions and the rate of data acquisition.

All experiments were carried out first for the bare gold surface and then after the

protein deposition. In this way, we were able to compare the conductivity of the

system before and after the protein deposition. Moreover, using suitable amounts

of proteins, we obtained protein densities on the metal substrate that enabled

single-molecule conductance measurements, as validated by AFM and STM topo-

graphic imaging of the functionalised metal surface. Thanks to Andriy Moskalenko

for helping in taking some of the STM images and I-z measurements.

5.2 Experimental work

5.2.1 Sample Preparation

A gold bead was used as the substrate where the proteins were immobilised.

To get a single crystal, the bead was etched electrochemically in a 0.1 M H2SO4

solution. One electrode terminal was applied to the gold bead and the other to

the platinum-iridium wire which was used for the etching. A voltage of +15 V

was applied for 30 seconds; afterwards, the bead was immersed in 1 M HCL for 10
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seconds and then in deionised water for 10 seconds. This procedure was repeated

two times to improve the quality of the bead surface. Finally, the bead was baked

for 8 hours in an oven at 860 ◦C. The cleaned gold bead was first imaged by

STM in the absence of the protein sample and then was incubated for 5 minutes

at 4 ◦C in the protein solution. We tested different concentrations of double-

mutant holo cytb562 on Au(111), so as to obtain concentrations that enabled the

experimental study of individual protein molecules. After the incubation, the

system was immersed in deionised water to remove excess protein, and then dried

with nitrogen gas. All the measurements and imaging were performed with a

home-built STM and a commercial AFM, using a multi-mode microscope with a

Nanoscope III controller (DI Veeco, Santa Barbara, USA) with poly-silicon probes.

Triangular cantilevers were purchased from NT-MDT (Moscow, Russia) with a

nominal spring constant k = 5.8 N/m and a resonant frequency f = 120 kHz. The

Platinum Iridium (Pt-Ir) tip of STM was used, and was prepared by mechanical

cutting from Pt-Ir wire.

Also in some experiments the Au samples were obtained from Phasis, they

were cut from the bulk piece with scissors, and cleaned by immersion in acetone

for about 2 minutes, followed by immersion in isopropyl alcohol for 1 minute, and

then blow drying with nitrogen gas. The cleaned Au(111) substrate was then

incubated for 5 minutes in 0.5 µM and 10 minutes in 1.5 µM D5C and SH-LA

apoprotein solutions, respectively. After this procedure, the sample was immersed

in deionised water to remove excess protein and dried with nitrogen gas.

5.2.2 I-z Measurements

The current-distance (I-z) measurements were performed in air at room tem-

perature and under different conditions of humidity that were achieved using the

STM in combination with the home-built environmental system. The measure-

ments were taken once the system was stabilised thermally and mechanically.

Regarding the I-z method [133], the STM tip was approached to selected small

scan areas with a linear size of about 10 nm, around the molecules. Once the tip
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was placed above the molecule, the feedback was disabled, the tip was held above

the surface at set point current of 0.05 nA and bias voltage of 0.05 V. The tip

was then withdrawn a fixed distance (z-start) from the set-point position. The

tip then approached the surface with constant velocity recording the current as a

function of z. At a distance z-end relative to the set point, the tip motion was

reversed along the same path again measuring I(z). Typical values of z-start and

z-end were +7 Å (retraction) and -4 Å (approach), respectively, but other values of

these parameters were sometimes used. If the gap between the tip and the surface

is occupied by a molecule, some characteristic features are observed in the I(z)

curves. For example, in the retraction mode, the current decreases with distance

starting from z-end; then a flat region of the I(z) curve that looks almost like a

plateau is observed while the tip is in contact with the molecule and the latter is

neither particularly compressed nor elongated (over this z range, relatively small

beta factors typical of proteins are at play); finally, the current drops rapidly to

zero after that the junction is broken, due to the beta decay factor associated with

the air gap. Therefore, a step-like feature may be observed in the I-z curve. To

produce systematic data, the measurements were repeated on several molecules

and around 50-700 curves were obtained on each molecule.

5.3 Cyt b562 on Au(111): Results and Discussion

5.3.1 I-z of Holoproteins on Au(111) in Air

In this section we describe our experimental results on cyt b562 in the holo

form, where a heme cofactor is attached to the (apo) protein and thus participates

in the ET processes through the protein. In these experiments, the protein was

immobilised on the surface of a gold bead through thiol binding groups. The

measurements were performed in ambient conditions, using AFM and homebuilt

STM with low drift. The low drift was checked by imaging the single molecules

under study before and after performing the conduction measurements. AFM

and STM were used to image the gold surface before the protein incubation, so
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as to ascertain that the Au(111) surface was clean and, in particular, free of

gold nanoparticles. In fact, we noticed that such nanoparticles grow on Au(111)

substrates over time as it is shown in Figure 5.1 or they can be produced when

the STM tip crashes with the surface.

Figure 5.1: This AFM image of Au(111), shows that gold nanoparticles appear
on the surface over time (z-range = 0-6.1 nm).

After protein immobilisation, AFM and STM images proved that the engineered

SH-SA and SH-LA variants of the protein were adsorbed on the Au(111) surface

in specific overall orientations. Tests prior to the conduction experiments allowed

us to select protein concentrations that produced distributions of well-separated

molecules on the gold surface and thus enabled single-molecule measurements.

More specifically, we found that concentrations between 0.025 and 0.5 µM give

well-separated protein molecules on Au(111). Figure 5.2 shows the AFM imaging

of single proteins, while Figures 5.3 and 5.4 show the STM imaging of both SH-

SA and SH-LA variants. The molecular heights from AFM are about 2-2.5 nm

for SH-SA and in the range 4-5 nm for the SH-LA variant, in agreement with

the dimensions of these proteins (2.4 nm and 5.2 nm for SH-SA and SH-LA,

respectively, as in illustrated in Figure 2.9). The difference in average AFM height

between the two species confirms the success of molecular engineering in defining

preferential orientations of the biomolecules on the substrate surface. The single-

molecules heights measured by STM are an order of magnitude lower than the real

ones (as inferred from the molecular structure of cyt b562 proteins), namely, they

appear to be between 0.2 nm to 0.5 nm in air. This considerable underestimation
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of the height of biomolecules on metal surfaces (compared the predicted size and

AFM data) is characteristic of STM imaging and was reported previously [134].

In Ref. [134], it is explained that the false molecular height resulting from STM is

the result of a convolution of electronic and structural (topographic) contributions

to the observed image. However, relative height values may still be informative

for adsorbates with similar electronic properties (such as electron affinity). The

lateral dimensions from AFM are affected by the size of the tip, which leads to

an apparent lateral size between 15 and 25 nm. The lateral dimensions from

STM were instead comparable to the real dimensions of this protein. The lateral

and height dimensions found in this work agree with the respective dimensions

previously reported for both variants of cyt b562 [28].

(a) (b)

Figure 5.2: AFM images of holo cyt b562 on Au(111) at ambient RH, the pro-
tein concentration used in preparing the sample was 0.025 µM. The incubation
time was 5 minutes. (a) SH-SA (z-range = 0-13 nm). (b) SH-LA (z-range =

0-20.7 nm).
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(a) (b)

Figure 5.3: STM images of cyt b562 holo SH-SA on Au(111) at ambient RH
and temperature. The concentration used to prepare the sample was 0.05 µM.
The incubation time was 5 minutes. Current set point = 0.05 nA, bias voltage =
0.05 V. (a) Many molecules (z-range = 0-0.72 nm). (b) Single molecule (z-range

= 0-0.52 nm).

(a) (b)

Figure 5.4: STM images of cyt b562 holo SH-LA on Au(111) at ambient RH
and temperature (23.57 ◦C). Sample preparation: protein concentration = 0.05
µM, substrate incubation time = 5 minutes. Measurement conditions: current
set point = 0.05 nA, bias voltage = 0.05 V. (a) Many molecules (RH = 39.33%;
(z-range = 0-2.2 nm). (b) Single molecule (RH = 39.06%; z-range = 0-0.6 nm).

Before studying the functionalized surface, we measured the conductance as a

function of the tip-substrate distance in the absence of protein. Most conductance
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curves did not show any step-like feature (see Figure 5.5) and, accordingly, the

conductance histograms did not show peaks (Figure 5.6), differently from what

was observed for the samples with biomolecules (see below). To investigate the

electrical properties of the two cyt b562 variants, we first imaged the proteins on

Au(111) with STM at a constant current of 0.05 nA and a bias voltage of 0.05

V, thus visualizing the morphology of the functionalized surface and ascertaining

that we could see well-separated single protein molecules. Afterwards, several I-z

measurements were taken on many different molecules. Figures 5.7 and 5.8 show

the conductance curves for single holo-SH-SA cyt b562 proteins. After that the

system was equilibrated under a current set point of 0.05 nA and a bias voltage of

-0.05 V, the distance dependence of the current was measured retracting the tip

away from the functionalized surface by 4 Å (z-start = 4 Å) and then approaching

the surface by 4 Å (z-end = -4 Å). Similar conductance measurements on the

holo SH-LA cyt b562 are reported in Figure 5.11 (for this system the retraction

distance was 7 Å while the other physical parameters were set as in Figures 5.7

and 5.8).
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Figure 5.5: Conductance curves on Au(111), Current set point = 0.05 nA,
bias voltage = 0.05 V, z-start = 7 Å, z-end = -5 Å, tip sweep rate = 1 nm s−1.

(a) (b)

Figure 5.6: Conductance histograms of Au(111) at ambient conditions (100
curves were used to produce this histogram), z-start = 7 Å, z-end = -5 Å,
included data shown in Figures 5.5. Conductance was calculated as the ratio
between the measured current and the applied voltage. (a) From approaching

curves. (b) From retracting curves.
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Figure 5.7: Set of conductance curves for cyt b562 SH-SA on Au(111). The
conductance was recorded as a function of the tip-substrate distance z, which
was measured relative to the set point. z-start = 4 Å, z-end = -4 Å, current set
point = 0.05 nA, bias voltage = -0.05 V, rate = 1-10 nm s−1. Approach and

retraction curves are drawn in blue and red, respectively.
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Figure 5.8: Other set of conductance vs distance curves on single cyt b562

SH-SA molecules on Au(111), z-start = 4 Å, z-end = -4 Å, current set point =
0.05 nA, bias voltage = -0.05 V, rate = 1-10 nm s−1. Approach and retraction

curves are drawn in blue and red, respectively.
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The I-z curves do not show a smooth single-exponential decay of the current with

distance, as it would be expected in the absence of sample molecules [135, 136].

In this case, only the beta decay factor (see section 2) of the essentially homo-

geneous air medium would be observed. Features such as conductance steps are

instead observed. For example, in Figure 5.7, first graph of the third line, in the

approaching mode (blue line) the current increases with a beta factor on the order

of 2 Å−1 which can be ascribed [137] to the contribution to the conduction by an

air gap. Contact with a molecule introduces a much smaller beta factor (the one

for the protein medium), with the appearance of a step-like feature in the I-z curve

which is a signature of the formation of a molecular junction [135, 138, 139]. Fur-

ther approach can change the conduction mechanism and the number of available

charge-transport channels, thus determining a new large increase in the current.

In the retraction mode (red curve), we can see a significantly wider regime of

through-protein conduction. We might infer that, after the approach of the tip,

the molecule takes, on the average, different conformations and has a wider contact

area with the tip (compared to before the approach), thus determining a lingering

of the tip-molecule contact and a persistence of the through-protein conductive

mode over a longer distance range. Multiple steps are observed in some I-z curves.

The presence of multiple steps could lead us to think to subsequent contact of the

tip with different numbers of molecules. However, similar steps would appear if

the tip gets closer to the protein, increasing the number of contact points with

the protein and the routes for charge transfer to the substrate. This interpreta-

tion can be appropriate when the molecules are separated enough on the surface.

Hysteresis between approach and retraction was observed for all I-z curves. This

hysteresis might be at least partly attributed to the fact that, for fast enough z scan

rates, the molecule is unable to achieve an equilibrium configuration at each tip

position. Thus, at the same z during the two runs of the tip, the molecule takes

different average configurations between the electrodes, which produce different

conductance values. This interpretation is further supported in those I-z cycles

where the approach and retraction conductance curves show similar features, since

such features suggest the stable presence of a protein molecule between tip and
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substrate during the two tip runs.

The current increase before the contact with molecules (as interpreted from step-

like features in the I-z curves) is rather smooth, and probably indicates a combined

contribution of the air gap and the protein to the conduction prior to achieving

the contact with a molecule. In fact, if the redox biomolecule is under the tip,

(a) changing z amounts to changing the fraction of substrate-tip gap occupied

by the molecule and thus the potential difference across the molecule; (b) it has

been shown that the molecular reorganization determines a smoother evolution of

the current as a function of the voltage compared to the case of molecules with

negligible reorganization energy or to the absence of redox molecular bridges [47,

50]. Considering that the change in tip-substrate distance also changes the profile

of the potential drop in between, it would be interesting and useful to see future

theoretical studies that explain the non- linear conduction phenomena described

above by using models similar to those developed to describe such phenomena

in I-V curves [50]. The presence of non-linear conduction and low-conductance

features are clearly shown by the departures from linearity in the logarithmic

conductance plots for SH-SA (Figure 5.9). The fact that conduction through

the air gap and through the protein both approximately obey exponential decays

with distance (although with different decay factors) and the fact that the protein

extends through a significant fraction of the tip-substrate gap lead to curves that

could be considered linear to a gross level of approximation, but changes in slopes

and other complecities are clearly visible in the curves of Figure 5.9.
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Figure 5.9: Logarithmic conductance as a function of the tip distance from
the substrate for single b562 SH-SA on Au(111). z-start = 4 Å, z-end = -4 Å,
current set point = 0.05 nA, bias voltage = -0.05 V. Approach and retraction
curves are drawn in blue and red, respectively. The tip sweep rate ranged from
1 to 10 nm s−1 for the different curves. This figure shows the step-like features

that appear at low conductance values.
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Statistical analysis was performed to produce conductance histograms, where we

counted the number of data points, over many I-z curves, with conductances in

given ranges. The conductance was readily obtained as the ratio between the

measured current at a given z and the applied bias voltage

(a)

(b)

Figure 5.10: Conductance histograms of cyt b562 SH-SA at ambient conditions
(selected data: 143 curves out of 741; the selection was performed manually).
z-start = 4 Å, z-end = -4 Å, included data shown in Figures 5.7 and 5.8.
Conductance was calculated as the ratio between the measured current and
the applied constant voltage. The two histograms were obtained from the (a)

approaching curves and (b) retraction curves.

Figure 5.10 shows the conductance histogram for SH-SA . The weak peaks arise
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from the fact that more data points (taken at different z values) have similar

conductances. Therefore, these peaks correspond to relatively flat regions along

the I-z curves, namely, to z ranges where the beta factor is smaller, likely because

of the presence of a molecule or a part of it that fits into the gap between tip

location and substrate. I-z curves which showed these short plateaus were selected

for inclusion in producing the histograms shown in Figure 5.10 for the SH-SA

variant and in Figure 5.12 for the SH-LA variant. No clear peaks are observed

if all the I-z curves are included in the analysis. In fact, although the protein

engineering produces a preferential average orientation of the adsorbed molecule

between tip and substrate, molecules are subject to conformational changes and

the reciprocal orientation of tip and molecule, as well as the distortion of molecule

as the tip approaches it, generally differ in different runs and even along a single

run of the tip. These factors generate a distribution of small beta z regions over

different curves, thus smoothing the peaks in conductance histograms, until when

they are not visible for sufficiently large sets of I-z curves employed. Another

reason why the histogram peaks would tend to vanish if all I-z data were included

in the statistical analysis is that the conductance steps are not seen in about

80-85% of the I-z curves. In Figure 5.12, we can see the conductance histogram

for the SH-LA variant, which showed similar behaviour to that of SH-SA, where

no clear peaks are observed but some weak peaks are discernible. Even though

many short plateaus are seen in Figures 5.7, 5.8 and 5.9, these occur at a range

of different current values (which can be explained in terms of different paths for

charge transfer through proteins [140]), leading to a shortage of clear peaks in

the histograms. Xiao, et al. have found similar sequences of steps at different

conductance for Single Peptide Molecules as well [141].



Chapter 5. Holo and Apo Cyt b562 Proteins on Gold 108

Figure 5.11: Conductance as a function of the tip distance from the substrate
for single cyt b562 SH-LA molecules on Au(111), z-start = 7 Å, z-end = -4 Å,
current set point = 0.05 nA, bias voltage = -0.05 V, rate = 1 nm s−1. Approach

and retraction curves are drawn in blue and red, respectively.
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The features in Figures 5.7, 5.8 and 5.9, as well as in Figures 5.10, 5.11 and 5.12

for the SH-LA molecule, can also partly arise from local regions of different beta

factor that prevalently fit into the gap between tip and substrate at different z val-

ues along a tip run and in different runs. For example, β-sheets and α-helices have

different beta decay factors for electronic couplings [138] and hence (see chapter

2) for the current. In this regard, a combined experimental-theoretical work re-

cently showed how amino acid side chains, peptide length, and peptide secondary

structure strongly influence electron transport [140]. In addition, as said above,

the conduction mechanism will generally depend on the tip-substrate distance and,

while a beta decay factor can be approximately defined in both single-site hopping

(as arising from the expressions for the ET rate constants) and coherent transport

mechanisms (see Chapter 2), free energy parameters significantly affect the current

(in addition to the shift between molecular and metal energy levels) in the case of

charge hopping through the protein redox center.

(a) (b)

Figure 5.12: Conductance histograms of cyt b562 SH-LA on Au(111) at am-
bient conditions (selected data: 50 curves out of 352), z-start = 7 Å, z-end = -4
Å. All of the data shown in Figure 5.11 were included in the statistical analysis.

(a) From approaching curves. (b) From retracting curves.

The above discussion also implies that one has to be careful in testing different

distances of minimum approach to a molecule. Long tip runs can cause molecule

compression and denaturation or breaking. In Figure 5.13, the tip was moved by

20 Å towards the surface, using a speed of data acquisition of 200 Ås−1. This

approach damaged the molecule, as shown by the images before and after the
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I-z measurements in Figure 5.13. A calculation of the distance between tip and

substrate at the set point using equation 2.19 in chapter 2 (with I = 0.05 nA and

V = 0.05 V) gives a value of 12 Å, which is clearly an underestimation of the

real distance (as said in chapter 2), although equation 2.19 can be used to assess

relative distance values regarding similar systems. β factors were calculated by

fitting the approximately linear parts of the experimental ln(I) versus z curves to

equation 2.19. Therefore, the β factor values were obtained from the slopes of the

fits.

(a) (b)

Figure 5.13: STM images of cyt b562 SH-LA on Au(111), current set point=
0.05 nA, bias voltage = 0.05 V, z-start = 0 Å, z-end = 20 Å. (a) Before I-z
measurements (z-range = 0-0.41 nm). (b) After I-z measurements (z-range =

0-0.41 nm).

The above data demonstrate that the closest approach distance is an important

consideration for studying protein conductance via STM: too close an approach

can lead to damage to the protein molecules.

Now, we consider whether the approach and retraction rates can significantly af-

fect the observed I-z curves. Figure 5.14 illustrates the β factor values for SH-SA

single molecules, which were calculated from the experimental approaching and

retracting I-z curves for different rates of data acquisition (that is, for different

speeds of the tip). The β factor was found to be in the range 1.2 ± 0.6 Å−1 for cyt
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b562 under ambient conditions of temperature and humidity. This range of values

is comparable to what was previously observed for cyt b562 [28]. Moreover, Fig-

ure 5.14 shows that the ranges of beta factor values at different tip speeds largely

overlap, which means that the range of explored electron tunnelling pathways is

similar for different tip sweep rates.
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Figure 5.14: β factor of approaching and retracting I-z curves for different tip
sweep rates on cyt b562 SH-SA under ambient RH. (a) For approaching curves.

(b) For retracting curves.
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5.3.2 I-z of Holoproteins on Au(111) in Environmental

Cell

In these experiments, cyt b562 SH-LA proteins in the holo form were immo-

bilised on the surface of a gold bead through their thiol groups and studied under

low humidity conditions and also at low temperature, as allowed by the use of

the environmental cell. Therefore, these measurements, together with the ones

described in the previous section, provide information on the influence of the hu-

midity and temperature on the conductance through the functionalized surface.

To investigate the effect of water moisture on the electrical measurements of pro-

tein molecules, the environmental system was used to obtain low relative humidity

(RH) levels, between 0.5-3.8%. Under these conditions, the proteins were first im-

aged with STM and then I-z curves were taken for single molecules similarly to

those discussed in the previous section. Figure 5.15 shows the molecules on the

A(111) surface imaged by STM under low humidity levels (RH = 2.06-2.66%).

Note that the contrast of the images is different from that obtained under am-

bient conditions. Note also that the large inter-molecular distances observed in

Figure 5.15 enabled measurements of single-molecule electrical properties.

(a) (b)

Figure 5.15: STM images of cyt b562 SH-LA under low RH and temperature
(23.58 ◦C). Protein concentration in the sample preparation = 0.05 µM, incu-
bation time = 5 minutes, current set point = 0.05 nA, bias voltage = 0.05 V.
(a) Many molecules (RH = 2.06%), (z-scale = 0-2.4 nm ). (b) Single molecule

(RH = 2.66%), (z-scale = 0-0.8 nm).
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Figure 5.16: Conductance as a function of distance of the tip position above
the substrate for cyt b562 SH-LA onAu(111) under low humidity. RH = 2.25%-
3.70 %. z-start 7 A, z-end -4 A. Current set point = 0.05 nA, bias voltage =

-0.05 V.
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The conductance curves for SH-LA were taken for levels of RH between 2.25 %

and 3.70 %. The z- start value was 7 Å and the z-end was -4 Å, with set point

current and bias voltage of 0.05 nA and 0.05 V, respectively. The I-z curves are

shown in Figure 5.16. Steps in the conductance appear similarly to what observed

under ambient conditions. Figure 5.16 shows a wide range of possible currents

and, on the average, lower currents than under ambient RH conditions.

(a)

(b)

Figure 5.17: Conductance histograms of cyt b562 SH-LA under low humidity.
Selected data: 29 out of 163. RH = 2.25%-3.70%, z-start 7 Å, z-end -4 Å). (a)

From approaching curves. (b) From retracting curves.



Chapter 5. Holo and Apo Cyt b562 Proteins on Gold 115

The conductance histograms for the data taken under low humidity are reported in

Figure 5.17 and show some weak peaks for both the approach and retraction curves.

The β factors under ambient conditions (RH around 40%; a single measurement

gave the value RH = 38.87%) and under low RH (3.65%) for SH-LA variant for

different tip sweep rates are reported in Figure 5.18. On the average, the β decay

factors at low RH are a little lower than those found under ambient conditions (for

example, compare the ranges of values at ambient and low RH for the tip sweep

speed of about 1 nm/s).
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Figure 5.18: β decay factor as a function of tip sweep rate for cyt b562 SH-LA.
(a) Under ambient (RH around 40%; a single measurement gave 38.87% ). (b)

Under low RH (3.65%).
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Figure 5.19: Conductance curves for cyt b562 SH-LA on Au(111) under low
RH of 0.82% - 1.01% and low temperature of 13.85 ◦C; z-start = 7 Å, z-end =

-4, -5, -6, -7 Å; current set point = 0.05 nA, bias voltage = -0.05 V.
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The conductance is further decreased at low humidity and relatively low temper-

ature (cf. Figure 5.16 with Figures 5.17, 5.19 and 5.20), and clear count peaks are

observed in the conductance histograms of Figure 5.20, which denote the presence

of molecular features over a significant fraction of the tip-substrate gap at each

tip position. Moreover, the values of the beta decay factor (see Figure 5.21) are

further decreased compared to those in Figure 5.18.

(a)

(b)

Figure 5.20: Conductance histograms of cyt b562 SH-LA under low RH of
0.82%- 1.01% and low temperature of 13.85 ◦C. We analysed 10 curves for each
of the chosen z-start and z-end values. z-start = 7 Å, z-end = -4, -5, -6, -7 Å.

(a) From approaching curves. (b) From retracting curves.

The low humidity values are very far from the natural environment of a protein

(even farther than typical ambient RH in our lab is), where the aqueous solvent

is a determinant of its folding, which tends to move hydrophobic patches towards

the inner part and hydrophilic patches towards the external, solvent-exposed part
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of the protein. Very low humidity conditions may determine a partial loss of

structural compactness of the molecule, or changes in structure features relevant to

ET, also related to loss of structured water, with accordingly reduced conductance.

The larger extent of the molecule between tip and substrate (so that the molecule

occupies a larger fraction of the tip-substrate gap at each tip position), together

with the deterioration of specific water-assisted channels for the through-protein

ET, would consistently explain why the tip displacement affects a little less the

conduction under low humidity than other ambient (much higher) humidity, thus

leading to an overall lower β decay factor for the junction bridging medium. This

hypothesis relies upon the fact that working folded proteins are generally exposed

to some aqueous solvent in their natural environment. However, currently, we

do not have enough direct evidence supporting our hypothesis on the effect of

humidity on protein structure and hence on conductance in the STM setup (but

also see Figure 5.35). Future experimental and theoretical investigation to test

this hypothesis would be desirable.

Figure 5.21: β factor of approach and retraction curves for cyt b562 SH-LA
under low RH (0.82%) and low T(13.85 ◦C). Tip sweep rate = 0.19 nm s−1.

5.3.3 I-z of Apoproteins on Au(111) in Air

In this work, we directly anchored apoproteins to an Au(111) surface through

sulfur bonding. After introducing cysteine at specific position in the protein.
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Scanning with AFM and STM, we were able to show the topography of the gold

surface with adsorbed apoproteins, and to measure the conductance through these

proteins. Two different variants of mutated apoprotein were used to show the

dependence of the conductance on the molecular orientation. The first one, the

single-mutant variant D5C, has the cysteine residue at position 5; the second one,

the double-mutant variant SH-LA, has two cysteine residues at positions 50 and

21 that should favour molecular alignment along its long axis between tip and

substrate. These measurements, together with the ones discussed above, allow

us to compare the conductivities of the holo and apo forms of the protein, hence

to quantify the effect of the redox cofactor on the electrical properties of the

individual protein molecules.

Tapping mode AFM was used to image the substrates with the protein molecules

immobilised on them. STM was used to measure electrical properties such as the

molecular conductivity. The samples were deposited on Au(111) on mica. We

used the same preparation protocol as in section 5.2.1. We successfully imaged

the apoproteins on Au(111) by both AFM and STM. As it is shown in Figures 5.22

and 5.23, individual protein molecules were clearly identified. The average molec-

ular lateral sizes from STM were in the range 5 to 6 nm, as expected for these

proteins. The height of the cyt b562 apo-D5C was found to be in the range 0.2 to

0.4 nm from STM and mostly in the range 2 to 2.5 nm using AFM, although a

large height was measured for some molecules, up to 4 nm.

Figure 5.24 and Figure 5.26 show conductance curves in ambient conditions for

the D5C and SH-LA proteins, respectively. In Figure 5.24, the current set point

is 0.03 nA and the bias voltage is -0.05 V; the value of z-start is 4 Å and z-end

takes the values -9, -10 and -14 Å. The measurements in Figure 5.26 were also

taken at ambient conditions and the bias voltage was - 0.05 V for all curves, while

the current set point was 0.05 nA or 0.5 A. The value of z-start was 7 Å and z-end

was -4 Å.
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(a) (b)

Figure 5.22: Cyt b562 D5C apo proteins images with veeco system, 0.5 µM, 5
minutes incubation time. (a) AFM image (z-range = 0-18 nm). (b) STM image.

Current set point = 0.05 nA, bias voltage = 0.05 V (z-range = 0-2.2 nm).

(a) (b)

Figure 5.23: Images taken with the home-built STM. Current set point =
0.05 nA, bias voltage = 0.05. (a) Cyt b562 D5C apoproteins, 0.5 µM, 5 minutes
incubation time (z-range = 0-2.6 nm). (b) Cyt b562 SH-LA, 1.5 µM, 10 minutes

incubation time (z-range = 0-1 nm).
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Figure 5.24: Conductance curves as a function of tip distance from the sub-
strate for single cyt b562 apo D5C molecules on Au(111) under ambient condi-
tions. z-start = 4 Å, z-end -9, -10, -14 Å; current set point = 0.03 nA, bias

voltage = -0.05 V.
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(a)

(b)

Figure 5.25: Conductance histograms of apo D5C on Au(111). Current set
point = 0.03 nA, bias voltage = -0.05 V. (a) Retracting curves; z-start = 4 Å,
z-end = -14Å. 156 curves were used to produce this histogram. (b) Retracting
curves; z-start = 4 Å, z-end -9 -10 Å. 98 curves were used to produce this

histogram.

The comparison of Figure 5.24 with Figure 5.26 suggests that some of the SH-LA

proteins may use both thiol groups to bind to gold. In this case, the molecule would

lie with the long axis parallel to the substrate (thus leading to a low conductance)

and the tip would touch the molecule on some other area that does not involve

any thiol group. This would explain the wide range of conductance values in the
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I-z curves of Figure 5.26, some of which are well within the range of conductances

for the D5C species. The range of conductance values for D5C suggests that the

molecule with one thiol, being fixed only one side to the gold substrate, can take

different orientations, sometimes lying and other times tilting with respect to the

gold surface. The anchoring to the substrate via only one thiol leaves the D5C

molecule with high conformational freedom, which may be the reason for the large

hysteresis, contrary to the SH-LA variant, whose orientation can be constrained

around the axis defined by the two thiol anchoring points, in configurations of

different efficiency in order to support the charge transport between substrate and

tip. The possibility that, in some cases, both thiols of the SH-LA apoprotein

bind to the substrate needs further investigation to be validated. Theoretical-

computational investigation (including molecular dynamics simulations) could also

help to shed light on this possibility and on the hypotheses here formulated to

interpret the conductance curves in Figure 5.24 and 5.26 .

A comparison of the I-z curves with low conductance in Figures 5.16 (SH-LA

holoprotein for RH in the range 2.25 to 3.70%) and 5.19 (SH-LA holoprotein for

RH in the range 0.82 to 1.01% and temperature around 14 ◦C) with those in

Figures 5.24 (D5C, ambient conditions) and 5.26 (SH-LA apoprotein, ambient

conditions), suggests that dry conditions might determine arrangements of the

holoproteins on the gold surface similar to those of the apoproteins (and especially

D5C), without involvement of the heme cofactor in the charge transport between

tip and substrate.

Figure 5.25 represents the conductance histograms which were obtain from I-z

curves on cyt b562 D5C. Figure 5.25a shows the conductance histogram for the

tip retracting mode, with a tip run toward the substrate of 14 Å. Approaching

distances of 9 and 10 Å were considered in Figure 5.25b. A peak was observed

around 5 nS for the long tip run of Figure 5.25a. However, no clear peak was

observed for the shorter approach distances in Figure 5.25b.
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Figure 5.26: Conductance curves for single cyt b562 apo SH-LA molecules on
Au(111) under ambient conditions. z-start = 7 Å, z-end = -4 Å, current set

point = 0.05, 0.5 nA, bias voltage = -0.05 V.
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(a)

(b)

Figure 5.27: Conductance histograms of apo SH-LA molecules on Au(111)
under ambient conditions. z-start = 7 Å, z-end = -4 Å, current set point = 0.05
nA, bias voltage = -0.05 V on Au(111). 49 curves were used to produce this

histogram. (a) From approaching curves. (b) From retracting curves.

Figure 5.27 shows the conductance histograms for cyt b562 apo-H-LA on gold

surface, which were obtained from I-z curves with a maximum tip displacement of

4 Å relative to the set point position in the approaching mode. No clear peak is

observed in the conductance histogram. From analysis of the I-z curves, we find

that the decay factor β is 1.1 ± 0.5 Å−1 for cyt b562 apoproteins.
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Different apoproteins have been studied [102, 132, 142], but, to the best of our

knowledge, our work provides the first investigation on the conductive properties

of cyt b562 apoproteins. In Ref [132], Contera et al. were able to image pseu-

doazurin in both holo and apo forms with STM. and they studied the effect of

the bias voltage on the proteins and on the contrast of the images. The same

group studied dimeric arthrobacter globiformis amine oxidase in the holo and apo

forms adsorbed onto Au (111) with STM, investigating how the voltage affects the

distance between the two biomolecular units [142]. In this work, we show STM

images of cyt b562 apoproteins and demonstrate through-protein conduction in

the absence of the heme cofactor. The protein residues provide electron tunnelling

pathways more favourable than electron tunnelling through the air gap, although

the absence of a heme cofactor that can support charge transport through the

protein leads to conductance values that are, in general, significantly smaller than

those obtained for the holoprotein. This conclusion agrees with the importance of

the iron oxide core in the conductance of ferritin that emerged from the study in

Ref [143].

Studies on solid-state electron transport (ETp), namely, electron transport through

essentially dry proteins (retaining only the tightly bound water needed to preserve

the natural conformation) in a solid-state matrix [102, 129] showed that the por-

phyrin macrocyle itself, rather than the iron center, plays the key role in the

transport. In fact, the order of magnitude of the current was not altered by the

presence/absence of the iron centre, while the removal of the full prosthetic group

reduced significantly the ETp efficiency. More than an order of magnitude increase

in the current density was measured in Ref [129] after binding the hemin complex

to human serum albumin. According to our measurements, the single-molecule

conductance of cyt b562 proteins is definitely reduced in the absence of the cofac-

tor, but the current through the apoprotein can still be more than appreciable.

Indeed, for some I-z curves, the conductance through the long-axis apoprotein

turned out to be of the same order of magnitude as the conductance through the

corresponding holoprotein (cf. Figures 5.11 and 5.26). This fact also stresses the
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role of the molecular orientation in determining the efficiency of the conduction be-

tween tip and substrate, and thus the importance of molecular engineering for the

implementation of efficient electronic components based on conduction through

biomolecules.

5.3.4 I-z Hysteresis

The conductance curves which were obtained from our experimental I-z data

and were presented in sections 5.3.1, 2, 3 all show hysteresis between the approach-

ing and retracting curves. For comparison, the conductance measurements were

also performed on the Au (111) surface in the absence of protein molecules.
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Figure 5.28: Hysteresis for different tip sweep rates on Au(111) surface. The
hysteresis was quantified as the maximum distance between the approaching

and retracting curves. (a) Ambient RH. (b) Low RH.
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Figure 5.29: Hysteresis at different tip sweep rates for cyt b562 on Au(111).
(a) SH-SA (b) SH-LA under low RH. (c) SH-LA under high RH
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Through most of the hysteresis cycle, hysteresis appears as a shift between the re-

tracting curve, which was measured while the tip was retracted from the surface,

and the approaching curve, which was measured while the tip was approached to

the surface. The maximum distance of the I-z curves (which is achieved approx-

imately in the middle of the hysteresis cycle) can be considered as a measure of

the hysteresis. We investigated the occurrence of hysteresis in the presence and in

the absence of proteins, under high and low humidity levels. Moreover, we stud-

ied the dependence of the hysteresis on the rate of data acquisition. Figure 5.28

shows that the hysteresis increases with increasing tip sweep rate. This trend is

observed at both ambient conditions and low RH, below 2%. Figure 5.29 illus-

trates the hysteresis as a function of the tip sweep rate for different variants of cyt

b562 and under different conditions of humidity. Figure 5.30 shows the hysteresis

for different apoproteins and holoproteins and on Au(111). The effect of humid-

ity and temperature on hysteresis is shown in Figure 5.31. We again observe an

increase in hysteresis with increasing sweep rate. This fact may be ascribed to

the reduced capability of the molecular system to equilibrate (achieving a given

average conformation) at each z during the tip sweep for increasing sweep rate

(see also discussion in section 5.3.1). In support of this explanation. Figure 5.30

shows less hysteresis for the long-axis molecules, which could be explained by a

reduced conformational freedom in the presence of two thiol groups that can an-

chor the molecule. However, the occurrence of hysteresis in the absence of proteins

lead us to think that other mechanisms can contribute to produce hysteresis: for

example, an intrinsic asymmetry of the STM system in the approaching and re-

tracting modes. However, the hysteresis observed on bare gold samples mostly

lack of features frequently observed in the hysteresis cycles of molecules on gold .
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Figure 5.30: Hysteresis in sets of I-z curves of different apo and holo cyt b562

molecules on Au(111) at high RH. N identifies the selected curves.

Figure 5.31: (a) Hysteresis at different sweep rates for N I-z curves on cyt
b562 SH-LA under high, low RH (high RH = 38.89%, low RH = 3.66% ), high

T = ambient (not measured), low T = 13.85 ◦C.
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5.4 STM Imaging of cytb562 Proteins Using the

Environmental Cell

In these experiments, the imaging of cytb562 proteins on Au(111) was per-

formed using the home-built STM in combination with the environmental system,

to perform the imaging both under ambient and other conditions of humidity and

temperature, and thus to study the effect of these environmental conditions on

the height of protein molecules from STM images.

5.4.1 Sample Preparation

The gold bead was annealed following the same method which is described in

section 5.2.1, then the bead was imaged using STM in the absence of the protein

sample, then incubated by immersion for 5 minutes in a protein solution of cyt

b562AZF or cyt b562 SH-LA of concentration 10 nM and 0.05 µM, respectively.

After that, the sample was immersed in deionised water to remove excess protein,

and finally dried with nitrogen gas. All the measurements and imaging were

performed with the home-built STM system. The imaging and measurements were

obtained in ambient conditions as well as under different conditions of humidity

and temperature.

5.4.2 Results and Discussion

5.4.2.1 Cyt b562 SH-LA, double thiol

Cyt b562 SH-LA with two thiols on gold bead was imaged by the Home-built

STM to study the effect of humidity and temperature on the height measurements.

During all these experiments the STM was placed inside the environmental cham-

ber to control the environmental conditions while taking the data. The employed

concentration was 0.05 µM, and the incubation time was 5 minutes. Figure 5.32
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shows STM images that were taken under different humidity levels and tempera-

tures. Then, we performed a statistical analysis using many molecules from differ-

ent STM images, taken under different humidity and temperature conditions. By

means of this analysis, we obtained the plots for the heights of individual molecules

in Figures 5.33 and 5.34.

(a) (b) (c)

Figure 5.32: STM imaging of cyt b562 cysteine,cysteine SH-LA on Au(111).
Current set point = 0.05 nA, bias voltage = -0.05 V. (a) T = 23.55 ◦C, RH =
46.52%, z-range = -69.5-67.5 nm. (b) T = 23.56 ◦C, RH = 1.16%,z-range =

0-2.9 nm. (c) T = 13.88 ◦C, RH = 0.95%, z-range = 0-7.4 nm.

According to the data shown in Figure 5.33, on the average the height is bigger at

lower RH, which again points to the occurrence of a little less compact molecular

conformations at low humidity. However, previous works show that water plays an

important role in forming STM images of proteins under ambient conditions [144]

[145] Figure 5.34 shows the height of molecules as a function of temperature for

individual cyt b562 SH-LA molecules on gold bead. The average height is smaller

at higher temperature. Thermal orientation motion might be responsible for this

behaviour. At higher temperatures the amplitude of the molecular thermal motion

increases. This means that the molecule can more easily take conformations that

deviate from the vertical to the substrate despite the constrains imposed by the

two thiols. In other words, at higher temperatures, the two constrains are expected

to be less effective and there is higher probability that the tip touches the molecule

while it is at more tilted conformations on the surface. This will explain the smaller

height at higher temperature.
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Figure 5.33: Apparent height of molecules as a function of relative humidity,
from STM imaging of cyt b562 SH-LA on Au(111), at T (range = 23.54- 23.59)

◦C, high RH (range = 36.94-53.18)%, low RH (range = 0.39 to 2.24)%.

Figure 5.34: Apparent height of molecules as a function of temperature, from
STM imaging of cyt b562 SH-LA molecules on Au(111). Current set point =
0.05 nA, bias voltage = -0.05 V, low T = 13.83 ◦C and 13.88 ◦C, high T range

= 23.56-23.59 ◦C, RH = 0.39% to 2.24%.
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5.4.2.2 Cyt b562 p-azidophenylalanine (azF), thiol

In these experiments, we investigated cyt b562 SH-LA with thiol at one end

and azF at the other end. A gold bead was the substrate. Imaging was performed

using the home-built STM system. Figure 5.35 shows the STM images produced

under different conditions of relative humidity and temperature. There are clear

differences among the images, especially for the image which was performed under

low humidity and low temperature (Figure 5.35c).

(a) (b) (c)

Figure 5.35: STM imaging of Cyt b562 AZF,cysteine SH-LA on Au(111).
Current set point = 0.05 nA, bias voltage = -0.05 V. (a) High T (20.46 C◦),
high RH (45.56%), (b) high T (20.46 ◦C), low RH (0.98%), (c) Low T (10.26

◦C), low RH (1.99%).

Figures 5.36 and 5.37 show the height of molecules versus the bias voltage for

different values of relative humidity and temperature. We do not see effects of the

bias voltage on the heights of the proteins over the explored voltage range. At low

humidity the protein molecules look a little higher than at ambient humidity, again

in agreement with the other experimental data examined above. In Figure 5.37 we

observe a significantly larger height at lower temperature, for which the long-axis

molecules appear to be more prevalently oriented vertically to the surface (less

orientation variability at lower temperature), similarly to what we observed for

the proteins with two thiols.
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(a) (b)

Figure 5.36: Apparent height of molecules versus bias for STM imaging of
Cyt b562 cysteine,cysteine SH-LA on Au(111). Current set point = 0.05 nA,
bias voltage = -0.3, -0.05, 0.05, 0.3 V. (a) High T (about 20.5 ◦C), high RH

(about 45%), (b) high T (about 20.4 ◦C), low RH (about 1%).

Figure 5.37: Apparent height of molecules as a function of bias for different
temperatures and humidities, from STM imaging of cyt b562 azF, cystein SH-LA
molecules on Au(111), Current set point = 0.05 nA, bias voltage = -0.3, -0.05,
0.05, 0.3 V. High T(about 20.5 ◦C), high RH (about 45%). High T (about 20.4

◦C), low RH (about 1%). Low T (about 10.3 ◦C), low RH (about 2%).
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5.5 Conclusions

In this chapter, we studied the charge conduction through differently engi-

neered cyt b562 proteins in holo and apo forms attached to Au(111), at different

humidity and temperature. Non-ambient conditions were accessible thanks to the

use of an environmental cell. The use of different proteins, as well as of different

environmental conditions, improved our understanding of the conductive prop-

erties that depend on the protein and their distinction from the properties that

depend on the environmental influence. A common and important motif of our

experimental procedure was that we conducted sample preparation tests prior to

conductance measurements, with the aim to select protein concentrations lead-

ing to distributions of well-separated molecules on the gold surface. This testing

can enable single-molecule measurements, despite the size of the tip. Compared

to previous studies, in this work the I-z data were collected during both the tip

retraction and approach to the functionalized substrate. The resulting I-z cycles

highlighted the occurrence of hysteresis and enabled our study of this nonlinear

response of the samples to the changing of tip position. Hysteresis was observed

in almost all I-z cycles, as widely reported in this chapter.

The conductance curves show short plateaus which may be related to z ranges of

through-molecule conduction, where the biomolecules remain in contact with both

electrodes, being only moderately compressed or elongated. In fact, the beta factor

values over these z ranges turned out to be compatible with typical values [138] in

proteins, thus determining weak dependence of the conductance on z compared to

the rapid increase at shorter tip approaches (where the conduction mechanism can

also change; see Section 2.4.1) and to the rapid decrease at larger tip distances

(where the junction is broken and the beta decay factor increases significantly

because of the contribution of the air gap). Some I-z cycles show similar features

in the approach and retraction, but generally these features appear over different

z ranges and can be different because of the hysteretic behavior. The fraction of

I-z cycles with step-like features was about in the range 15 to 20% for the different

variants of holoproteins and apoproteins studied, while this fraction was between
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0 and 5% for bare gold, which supports our actual measurement of molecular

conduction.

The step-like features in the curves of the conductance versus the tip-substrate

distance are expected to appear as peaks in the conductance histograms. Plotting

these histograms from selected I-z sets of data, we found weak peaks for some

samples but no peak for some other molecular species. The smearing of these

peaks is a consequence of the fact that the plateaus in the I-z (or conductance-z)

curves occurred around different conductance values. This is the case even for

different sets of I-z data on the same molecule, due to the fluctuating character of

the molecular bridge.

We saw signatures of orientational constraints imposed by the presence of anchor-

ing groups on opposite sides of the LA molecules. For example, the average AFM

heights of the SH-SA and SH-LA variants HOLO cyt b562 on Au(111) were in

the ranges 2-2.5 nm and 4-5 nm, respectively, (see Section 5.3.1) thus confirming

the success of the protein engineering in orienting the biomolecules with either the

short or long axis prevalently perpendicular to the substrate. According to our

current data and interpretation, protein engineering seems to play an important

role in determining the hysteretic response of the molecular system, by limiting the

orientation freedom and producing preferential molecular configurations between

substrate and tip.

We provided the first investigation of cyt b562 apoproteins, showing that these

proteins can still assist conduction between the tip and the substrate, despite the

absence of the redox cofactor which plays a very important role in charge transfer

processes and, in particular, in those at the molecule-substrate interface. The con-

duction measured between tip and substrate is clearly larger in the presence of the

cofactor. Yet, the fact that the cyt b562 SH-LA apoprotein can achieve conduc-

tance values similar to those of the corresponding holoprotein supports the role

of molecular engineering in determining preferential molecular orientations and

efficient conduction in molecular junctions. Further experimental and theoretical-

computational investigations will hopefully help us to clarify this picture. Our
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study of the current as a function of the tip-substrate distance in correspondence

to individual molecules, under different conditions of humidity and temperature,

allowed us to gain deeper understanding on how the effects of these environmental

parameters on the structural properties of the biomolecules cause changes in the

current.

The comparison of the conductance curves for the cyt b562 SH-LA holoprotein

under different humidity conditions show that at low humidity the conductance

can vary over a wider range and generally takes lower values than in ambient

humidity conditions. The conductance turned out to be consistently reduced at

very low humidity (RH around 1%) and relatively low temperature (about 14

◦C). The beta decay factors are also a little smaller at low humidity than in

ambient conditions. The hysteresis shown by the conductance as a function of the

substrate-tip distance in the tip approaching and retracting modes increases with

low humidity.

The low conductance at very low humidity seems to agree with the fact that

biomolecules require some solvent for their normal biological activity. In fact, this

activity involves charge transfer processes, in particular in biomolecules with redox

centres, and these processes are less efficient in the absence of water, and especially

in the absence of structured water in the protein . This needs to be considered in

order to implement and optimize the performance of biomolecular materials and

devices for electronic applications. Importantly, performing measurements, on

single molecules, of the conductance as a function of the tip position along both

the approach and retraction runs, we were able to observe hysteresis and other

non-linear charge transport effects, some of which can be ascribed to molecular

properties and their sensitivity to the environmental conditions of humidity and

temperature.
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Oligothiophenes

6.1 Introduction

In this chapter, we present some initial studies of electrical conductance

through a type of oligothiophenes molecules, T3-SAc, under ambient conditions

and other conditions of humidity and temperature. Oligothiophene molecules are

good candidates for molecular electronics applications. Observed effects of en-

vironmental humidity and temperature on their electronic properties [146–148],

and thus on their conductance, may be exploited for sensing applications. Our

work aims to contribute extra knowledge of how the electronic transport through

these molecules is affected by humidity and temperature, with relevance to future

nanoelectronic applications.

6.2 Oligothiophenes

Oligothiophenes are used in high- technology applications. Their electronic

properties can be tuned by functionalizing the oligothiphene backbone [149]. Dif-

ferent molecular wires have been studied to gain knowledge about their behaviour

when they are deposited on substrates such as Au(111), and also to understand

139
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how environmental conditions can affect their electronic properties [133, 146–

148, 150].

The oligothiophene which is studied in this work includes three thiophene units

terminated on either side by alkylthiol. Morover, there is one methylene unit

between the sulfur contact and the conjugated thiophene rings as can be seen in the

structural diagram of Figure 6.1. Molecular wires including different numbers of

thiophenes were studied, and it was found that the length of the side-chain can only

affect slightly the molecular conduction, while the humidity in the surrounding

environment results in increasing the conductance and changing the ET behaviour

from activationless to thermally activated [151].

Conductance measurements of molecular wires under different temperatures are

vital to obtain information about the mechanism of charge transfer [152]. Also, the

conductance of oligothiphene molecular wires is sensitive to the humidity. It was

demonstrated that the conductance of oligothiophene decreases when the moisture

from the surrounding environment around the molecules is removed. Therefore,

it is important to study different oligothiophene molecular wires under different

humidity and temperature conditions and provide comparison with conductance

measurements at ambient conditions. In this work T3-SAc was studied.

Figure 6.1: Structural diagram of the oligothiophenes (T3-SAc) which is stud-
ied in this work .

6.3 Oligothiophenes Monolayers Preparation

The preparation procedure consisted of two stages: the first stage involved the

annealing of 5×5 mm gold on glass samples from Arrandee. The rough gold surface

required to be annealed in order to be used as a substrate for the oligothiophene
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molecules. Butane flame annealing was used to obtain Au(111) terraces with of

about 300 nm. In the flame annealing process, the sample was heated until it

glowed dark red and was kept glowing for 10 s, moving it in and out of the flame.

The annealing was performed in a dark room to be able to observe the sample

glowing. This is important because annealing the sample for longer or shorter

time than necessary would result in producing a bent sample or a rough surface.

After the heating, the sample was allowed to cool down for 30 s. The whole

procedure was repeated three times to get the desired Au(111) surface. Imaging

the sample with AFM and STM showed Au(111) terraces of about 300 nm in

diameter separated by rough boundaries. The sample was hence ready for the

deposition of the molecular wires.

The second stage of the sample preparation was the adsorption of the molecular

wires onto the gold samples. We began with the preparation of the oligothio-

phene solution of concentration 0.1 mM from the oligothiophene powder which we

received from University of Liverpool. The T3-SAc powder was dissolved using

ethanol until the desired 0.1 mM concentration was achieved. Then, the prepared

gold slices on glass samples were immersed in the solution for 90 s. The immer-

sion was followed by rinsing with ethanol. Finally, the samples were dried with

nitrogen ready for STM measurements. For the I-z measurements, the home-built

STM system was used, adopting the same kind of procedure as for similar mea-

surements on other molecules described in section 5.2.3. The set point current was

6 nA and the bias voltage 0.3 V and the data were obtained at constant speed (40

nm s−1). The measurements were carried out under three different sets of environ-

mental conditions: ambient conditions; low humidity and room temperature; low

humidity (purging nitrogen gas for 24 hours) and temperature. The environmental

conditions other than ambient ones were achieved by using the home-built STM

in combination with the home-built environmental system.
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6.4 Results and Discussion

6.4.1 I-z Measurements of conductance through the T3-

SAc molecule

The T3-SAc molecular wire on Au(111) was studied. The conductance ver-

sus tip-substrate distance (z) curves taken in ambient conditions are shown in

Figure 6.2 (RH around 30%, T = 20.5 ◦C). Figure 6.4 shows the results of the

measurements at low RH and ambient temperature (RH of 1-1.6% , T = 20.5 ◦C),

and Figure 6.6 the results for both low humidity (RH = 1.8%) and temperature (T

= 6.7 ◦C). We were able to obtain around 3000 conductance curves in each case.

The data were used to produce the conductance histograms in Figures 6.3, 6.5

and 6.7, respectively. According to our data, the current decays exponentially

with z, but reaches a plateau at sufficiently large values of z. For thiophenes,

similarly to DNA [1, 153], a transition from coherent tunnelling to charge hopping

was found for sufficiently long molecules [154]. When charge hopping is the charge

transport mechanism at play, the conductance decreases as the inverse molecular

length [1], which appears as a small dependence on the molecular length on a log-

arithm scale (or even independence on the length, if a relatively wide conductance

range is showed). However, a single molecular species with given length was used

in our experiments, which does not allow us to explain the conductance plateaus

in Figure 6.2 (as well as those in Figures 6.4 and 6.6) in terms of a change in

charge transport mechanism.
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(a) (b)

Figure 6.2: Conductance curves of T3-SAc on Au(111) under ambient condi-
tions (T = 20.5 ◦C, RH around 30%), current set point = 6 nA, bias voltage =

0.3 V. (a) Retracting curves. (b) Approaching curves.

Figure 6.3 shows the conductance histograms for the approaching and retracting

modes curves in Figure 6.2. All 3060 curves were used to produce the histograms.

Sharp peaks are observed around 0.5 nS for both retracting and approaching

curves, while modest (and yet appreciable) peaks were observed at about 3-4 nS.

The first peak can easily be attributed to the observed conductance plateaus, and

we do not attribute a specific physical meaning to this peak based on our current

level of understanding. The other peak may instead be related to tip-to-substrate

conduction that involves the thiophene molecules for a significant fraction of the

tip-substrate gap.
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(a)

(b)

Figure 6.3: Conductance histograms of T3-SAc on Au(111) in ambient condi-
tions (T = 20.5 ◦C, RH around 30%), current set point = 6 nA, bias voltage =
0.3 V, (3060 curves without selection). (a) Retracting curves. (b) Approaching

curves
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(a) (b)

Figure 6.4: Conductance curves of T3-SAc on A(111) under low RH conditions
(T = 20.5 ◦C, RH around 1-1.6%), current set point = 6 nA, bias voltage = 0.3

V. (a) Retracting curves. (b) Approaching curves.

In Figure 6.4 (low humidity), the retraction and approach conductance curves

appear to be a little more symmetric, with respect to each other, compared to

those in Figure 6.2. The pertinent conductance histograms in Figure 6.5 show

only the conductance peak at 0.5 nS. On the whole, the comparison of Figures 6.3

and 6.5 shows reduced conductance at lower humidity, in agreement with previous

findings [146, 151].

(a) (b)

Figure 6.5: Conductance histograms of T3-SAc on Au(111) under low humid-
ity conditions (T = 20.5 ◦C, RH around 1-1.6%), current set point = 6 nA, bias
voltage = 0.3 V, (2964 curves without selection). (a) Retracting curves. (b)

Approaching curves.
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The conductance histograms in Figure 6.7 (low humidity and low temperature),

in addition to the peak at small conductance,show weak peaks between 2 and 3 nS

and around 4 nS. Perhaps, the low temperature (which amounts to less thermal

motion) contributes to restore some structural features of the molecular layer that

would otherwise be lost because of the low humidity.

(a) (b)

Figure 6.6: Conductance curves of T3-SAc on A(111) under low RH and low
temperature conditions (T = 6.7 ◦C, RH around 1.8%), current set point = 6

nA, bias voltage = 0.3 V. (a) Retracting curves. (b) Approaching curves.

The employed oligothiophene molecule, the relatively small temperature range ex-

plored and the use of two temperatures only do not allow us to explore connections

with the work by Lee et al.[155] on the temperature crossover behaviour of con-

ductance in a single oligothiophene molecule. Further investigation is desirable,

also with regard to the concomitant effects of relative humidity and temperature

changes on the conductance of thiophene molecules.
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(a)

(b)

Figure 6.7: Conductance histograms of T3-SAC on Au(111) under low hu-
midity and low temperature conditions (T = 6.7 ◦C, RH around 1.8%), current
set point = 6 nA, bias voltage = 0.3 V, (3272 curves without selection). (a)

Retracting curves. (b) Approaching curves.
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6.5 Conclusions

In this chapter the conduction of one type of oligothiophene with three thio-

phene rings (T3-SAc) was investigated in ambient conditions, under low humidity,

and under low humidity and temperature. High humidity/low temperature con-

ditions were not explored because we cannot achieve low temperature without

driving the system to low humidity first to avoid condensation. The higher thio-

phene conductance at higher humidity agrees with the previous report that water

molecules can interact with the thiophene rings, shifting the electron transport res-

onances and considerably increasing the conductance [146]. Our measurements for

simultaneously decreased humidity and temperature suggest some interplay of the

humidity and temperature conditions in determining the molecular conductance,

with the possibility that, for low relative humidity, through- thiophene conduction

is partly improved at low temperatures. However, this possibility is here proposed

on the basis of slight differences between the conductance histograms of Figures 6.5

and 6.7, and thus needs further investigation to be validated or dismissed.
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Conclusions

In the past decade, molecular electronics has evolved towards research areas

of interest to Environmental Science, as well as Medicine, which are even more

demanding than standard electronics in some regards. For example, this is the case

for environmental sensors [15] and biosensors [156], where the molecule is in contact

with an unnatural substrate partner and may also be exposed to environmental

variables such as humidity and temperature. This study aims to contribute to

(a) understand the current difficulties and limitations in preparing and controlling

the electrical properties of heterogeneous interfaces between proteins and conduc-

tive materials such as gold and graphene. (b) advance our current knowledge on

the structural and electrical properties of biomolecules adsorbed on conductive

substrates and exposed to changing humidity and temperature.

The first critical step in point (a) is finding an efficient method to functionalize

substrates. We developed two efficient approaches to link protein molecules to

graphene. One method consisted in non-covalent bonding through pyrene and was

successfully applied to TEM proteins [5]. The other approach consisted in exposing

to UV irradiation biomolecules that were engineered by insertion of phenyl azide

compound, thus transforming this compound in the reactive nitrene radical (by

loss of a N2 group) to be used for anchoring to graphene. The efficiency and

robustness of the approach were tested on three molecular species: cyt b562 ,

149
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TEM beta-lactamases and sfGFP. Samples obtained using pyrene were imaged by

AFM, although they were mostly invisible by STM (but both imaging techniques

showed the anchoring of cyt b562 species). The UV-based method was validated

by AFM imaging, as well as by Raman spectroscopy and resistance measurements.

Measuring the sheet resistance of samples with sfGFP on graphene, we noticed a

dramatic and reversible decrease in resistance under UV irradiation, which paves

the way to using the sfGFP anchored to graphene by our method as a photoinduced

molecular electric switch.

Differently engineered cyt b562 protein molecules on Au(111) were studied for

in-depth examination of molecular conduction under different anchoring and en-

vironmental conditions. By repeated sample preparation (by immersion) using

different protein concentrations and imaging of the samples, we established a suit-

able range of protein concentrations (0.025 to 0.5 µM) for obtaining functionalized

surfaces with sufficiently low protein density to enable single-molecule conductance

measurements.

In contrast with most of the available literature, the I-z data for each sample

were collected during both tip approach and retraction from the functionalized

substrate. Thanks to this choice, we found out that hysteresis is a general feature of

the I-z cycles at high enough tip speeds. Plateaus in the I-z curves that are peculiar

of conduction through macromolecules, and the similarity of these features in the

approach and retraction curves, suggest that the origin of hysteresis may lie in the

fact that, for fast tip sweeps, the molecular bridge may sample different regions

of its conformational space during the tip approach and retraction. However, the

observation of hysteresis by moving the tip on bare gold suggests that intrinsic

asymmetry of the STM setup may also contribute to the observed hysteresis.

The step-like features in the I-z curves can be interpreted as the achievement of

through-protein conduction after closing the gap between the approaching tip and

the molecule. The fraction of I-z curves with such features was approximately in

the range 15 to 20% for the different variants of cyt b562 holo- and apo-proteins
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studied, while this fraction was at most 5% for bare Au(111). The significant differ-

ence between these two ranges supports the fact that we were actually measuring

molecular conduction.

The plateaus in the I-z curves are expected to appear as peaks in conductance

histograms. However, when gathering together data from a number of I-z curves,

we obtained weak peaks for some samples and no peak for some other molecular

species. In fact, the plateaus in different I-z curves occur at a range of different

currents, thus leading to smearing of the peaks in the histograms.

Deeper understanding of the connection between SPM images, I-z data and struc-

tural properties of the protein bridge can be gained by studying differently en-

gineered proteins of the same kind and apoproteins. Our data seem to point

to reduced conformational freedom of LA cyt b562, due to its anchoring through

both thiols to substrate and tip. The fact that the LA apoprotein can sometimes

achieve conductance values typical of the corresponding holoprotein suggests a

major role of the protein configuration in the STM setup in determining such con-

ductance values and stresses the importance of molecular engineering to achieve

better control of the functionalized surface properties in the future. In general, our

investigation of cyt b562 apoproteins shows that these proteins can still support

current, although the conductance is, on the average, significantly less than in the

presence of the redox cofactor.

A home-built environmental cell in combination with STM was here used to study

the conductance of differently engineered cyt b562 proteins on Au(111), under

different humidity and temperature conditions. We found that the conductance

of cyt b562 is smaller at lower relative humidity and further decreased when also

temperature is reduced. Measuring the conductance as a function of the tip-

substrate distance in both tip approaching and retracting modes revealed the

occurrence of hysteresis. The engineered cyt b562 with two thiols in the long

axis led to less hysteresis in the conductance and larger protein height on gold

(from AFM) compared to the protein with thiols in the short axis. Our results
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stress the importance of protein engineering to control the electrical properties of

functionalized surfaces.

The use of a home-built environmental cell enabled our measurements of molecular

conduction at low humidity/ambient temperature and low humidity/low temper-

ature (compared to ambient conditions), while measurements at ambient humid-

ity/low temperature were hindered by condensation of the humidity in the envi-

ronment. We observed that the conductance of cyt b562 is reduced by lowering the

relative humidity and further decreased by also lowering the temperature. In the

present research project, the investigation of humidity and temperature effects on

the conduction through oligothiophene molecules was also started.

7.1 Future Directions

In the future, it would be desirable to use the environmental cell for systematic

imaging and conductance study of holoprotein and apoprotein molecules under

suitable ranges of humidity and temperature. The study of molecular conduction

at temperatures higher than common ambient conditions would also be desirable,

because temperature may increase above ambient conditions depending on the

operating electronic device [157], and the conductive behaviour of the biomolecules

at relatively high temperatures should thus be investigated.

An important direction for continuing and extending the present work would be

the study of molecular conduction on graphene (and of the effect of functional-

ization on the conductance through the graphene sheet). In particular, the here

observed UV-induced conductance switching should be investigated and related to

the electronic properties of sfGFP by means of combined experimental and theo-

retical work. For example, experimentally, the first step would be the study of the

conductance switching at the wavelengths of maximum absorption for sfGFP204.

As discussed above, this study shows that the conductance in the STM setup

decreases by lowering humidity. This might be correlated with the fact that the
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functional charge-transfer activity of redox proteins generally takes place in the

presence of some aqueous environment. Future experimental and computational

studies addressing this point would be desirable. Ultimately, the first working

transistors based on Shockley’s idea used electrolytes, and the idea of using aque-

ous solutions as the gate medium is back in very recent research on water-gated

organic transistors [158]. Thus, the work presented in this dissertation and its

possible future extensions seem to be timely and of broad scientific interest.
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and Jan Paleček. Electrochemistry of Nonconjugated Proteins and Glyco-

proteins. Toward Sensors for Biomedicine and Glycomics. Chemical Reviews,

115(5):2045–2108, 2015.

[59] Mohan Sarovar, Akihito Ishizaki, Graham R. Fleming, and K. Birgitta Wha-

ley. Quantum entanglement in photosynthetic light-harvesting complexes.

Nature Physics, 6(6):462–467, 2010.

[60] A. Ishizaki and G. R. Fleming. Quantum Coherence in Photosynthetic Light

Harvesting. Annu. Rev. Cond. Mat., 3(1):333–361, 2012.

[61] Timothy M Swager. Conjugated Amplifying Polymers for Optical Sensing

Applications. 2013.



Bibliography 161

[62] Eduardo Antonio Delia Pia, Qijin Chi, D. Dafydd Jones, J. Emyr MacDon-

ald, Jens Ulstrup, and Martin Elliott. Single-molecule mapping of long-range

electron transport for a cytochrome b562 variant. Nano Letters, 11:176–182,

2011.

[63] Umberto Prisco, Carl Leung, Chrisa Xirouchaki, Celine H Jones, John K

Heath, and Richard E Palmer. Residue-specific immobilization of protein

molecules by size-selected clusters. Journal of the Royal Society, Interface /

the Royal Society, 2(3):169–75, 2005.
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phenes: Molecular design for multidimensional nanoarchitectures and their

applications. Chemical Reviews, 109(3):1141–1176, 2009.

[150] Wolfgang Haiss, Richard J Nichols, Harm Van Zalinge, Simon J Higgins,

Donald Bethell, and David J Schiffrin. Formation of Molecular Wires. 2004.

[151] Andrea Vezzoli. Environmental Effects in Molecular Electronics. University

of Liverpool, 2015.

[152] Elke Scheer. Molecular electronics: an introduction to theory and experiment,

volume 1. World Scientific, 2010.
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