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Abstract—Recent advances in sensor technologies and instrumentation have led to an extraordinary growth of data sources and
streaming applications. A wide variety of devices, from smart phones to dedicated sensors, have the capability of collecting and
streaming large amounts of data at unprecedented rates. A number of distinct streaming data models have been proposed. Typical
applications for this include smart cites & built environments for instance, where sensor-based infrastructures continue to increase in
scale and variety. Understanding how such streaming content can be processed within some time threshold remains a non-trivial and
important research topic. We investigate how a cloud-based computational infrastructure can autonomically respond to such streaming
content, offering Quality of Service guarantees. We propose an autonomic controller (based on feedback control and queueing theory)
to elastically provision virtual machines to meet performance targets associated with a particular data stream. Evaluation is carried out
using a federated Cloud-based infrastructure (implemented using CometCloud) — where the allocation of new resources can be based
on: (i) differences between sites, i.e. types of resources supported (e.g. GPU vs. CPU only), (ii) cost of execution; (iii) failure rate and
likely resilience, etc. In particular, we demonstrate how Little’s Law —a widely used result in queuing theory— can be adapted to support

dynamic control in the context of such resource provisioning.

Index Terms—Elastic resource provisioning, autonomic systems, feedback control.

1 INTRODUCTION

Over the last years, the proliferation of geographically
distributed sensors has generated large volumes of data
becoming available. This has led to a proliferation of ap-
plications that receive raw data continuously, constituting
streams of data, which are transmitted over long periods
of time from different data source (sensor) nodes with
different complexities, ranging from smart phones to spe-
cialist instruments. Oftentimes, these applications require
data to be timely processed and delivered in order to take
operational actions. Data rates and generation timelines can
also vary significantly across these different types of infras-
tructures — depending on the complexity of the sensors or
instruments involved. Based on their latency requirements,
streaming applications can be classified in two main types,
namely low latency and medium to high latency: a) Low
latency applications require response times in the order of
milliseconds and typically handle hundreds or thousands
of events per second, where each element involves small
amount of computation — e.g., financial streams, intrusion
detection, fraud detection; in contrast, b) medium to high
latency applications have response times in the order of
seconds, minutes, or even hours, their workloads are typ-
ically coarse-grained and more complex, hence involving
more computational resources. We can find examples of
these in areas such as surveillance and monitoring [1], smart-
traffic management, data analysis of electricity meter data to
support “Smart (Power) Grids” [2], energy management in

smart building [3], and geo-spatial imaging processing [4].

In this paper, we focus on streaming applications with
medium to high latency. Typically, these applications require
data elements, arriving into the system, to be processed
within a time threshold (deadline). Moreover, the processing
may involve the execution of complex simulations or control
algorithms that are typically computationally intensive and
that are often executed as batch processes. For instance, a
smart electric grid application for charging of electric vehicle
batteries of an electric area requires to gather charging
requests in order to subsequently compute an optimized
scheduling algorithm that preserves a number of constraints
and satisfies users’ preferences. Such a scheduling has to be
done within a time threshold, typically around 15 minutes.

When a provider manages a number of such applications
with a shared, elastic computing infrastructure, understand-
ing how such streaming content can be processed within
some time threshold, so that the number of computational
resources can be minimised remains an important challenge.
More specifically, a time slack appears when the time re-
quired for processing is less than the overall period time.
Therefore, it can be defined as the remaining difference
between the deadline (established in the SLA) and the actual
processing time. Data elements from different applications
can be buffered by the provider for the given time slack,
before starting the processing.

The cloud computing paradigm and its technologies can
be exploited for processing such applications. According to



NIST, the cloud computing model [5] enables on-demand
access to a shared pool of configurable computing resources,
which can be elastically provisioned and released to scale
rapidly with workload. In consequence, cloud computing
leads to a remarkable change of paradigm: While in the past,
the policy of evenly sharing the workload of applications
among the distributed resources was typically dominant,
in the cloud, one can automatically provision (release) the
required computational resources on-demand, according to
variations in the workload. On the other hand, the cloud
paradigm in real practice has to face a number of challenges
due to current maturity of technologies. For instance, such
challenges include the fact that computational resources
may not perform as expected [6]-[8], making any perfor-
mance prediction difficult. Also, a rapid scale triggered by
workload may also be compromised, as there is currently a
significant overhead in the provisioning and in the release
of virtual machines (VMs), and such overhead is often
asymmetric (i.e. slightly smaller for the release). Another
challenge is that cloud providers cannot offer unlimited
resources and applications need to operate with multiple
cloud providers, triggering new inter-cloud challenges [9].

The problem of cloud resource management has been
studied for stateless Web requests [10]-[14], but in such
a context, requests need to be processed on-line and as
soon as the request is received. Such efforts make use of
autonomic principles in conjunction with elasticity in cloud
environments, enabling a system to dynamically provision
computational resources depending on changes in the work-
load. Nonetheless, the introduction of the time slack for the
data elements, before processing, produces variations to that
problem, which require a different approach.

In this paper, we propose a resource management strat-
egy for the aforementioned streaming applications that re-
quire continuous processing of data elements within a time
threshold (deadline) and that are computationally inten-
sive, — typically involving the execution of batch jobs. The
strategy is achieved by means of an autonomic controller,
which is based on feedback control and makes use of system
properties derived from queueing theory. Its objective is
to optimize the number of cloud computational resources
(generally VMs) allocated to a particular data stream, so that
data elements are processed within an established time
threshold on average, while the number of VMs is minimal.
For such an objective, the data elements of a given data stream
are buffered on a queue for the maximum time (time slack)
that, together with the processing time, does not violate the
time threshold on average: There will be some jobs over the
objective and some others under the objective, we assume
scenarios where such postulate is acceptable.

Our controller manages the processing rate of data el-
ements by (de-)allocating VMs to meet its objective. It is
worth highlighting that such a processing rate is adaptive
to changing conditions —depending on unpredictable varia-
tions of the incoming rate of data elements and unexpected
performance fluctuations of computational resources. Our
controller has two options to control the time slack: (i)
to control the waiting time of data elements directly, or
(ii) as, in real practice, information about waiting time of
data elements may not always be available or may be very
difficult to obtain, we decided to make use of Little’s law
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(LL) for deriving waiting time from arrival rate and queue
(buffer) size. In other words, the controller reacts by (de)-
allocating resources on changes of the queue size, leading to
an indirect control of the time slack. It should also be noted
that although LL has been widely studied for infinite times
and stationary conditions, recent studies show that it also
holds under finite times and non-stationary conditions [15].

2 BACKGROUND: LITTLE’S LAW

A queuing system comprises [15] a number of discrete
objects often called items, arriving at some rate within a
system. The stream of arrivals enters the system, joins one
or more queues, eventually receives a service, and exits in
a departure stream. In general terms, services perform op-
erations over items, which involve an amount of time (e.g.,
in computing, we often call such an action, processing, and
to the amount of time it involves, processing or execution
time). Typically, a queue appears as a result of differences
between arrival and service rates —when arrival rates are
higher than actual service rates (e.g. in terms of computing,
when items arrive into the systems faster than actually
being processed). The queue prevents items from being lost,
as they are buffered on the queue. LL is a mathematical
relationship between three variables: The average number
of items in a queuing system, denoted by L, equals the
average arrival rate of items, A\, multiplied by the average
waiting time of an item, W. Thus, L = X x W. At the time
Little first proposed his theorem, he was focused on infinite
intervals of time and stationary conditions.

LL in Practice. However, after more than fifty years of
research and practice, LL has also shown that it holds under
a great number of conditions, including finite intervals
of time, which provides significant value for engineering
design and operational problem solving [15]. The following
theorems, as formulated in the 50-year LL retrospective
paper [15], incorporate these conditions implicitly, which are
of extremely importance for practical purposes.

Theorem 1. (from [15]) LL Over [0,T]. LL.1. For a queuing
system observed over [0, 7] that is empty at 0 and at T
and has 0 < T < oo, L = A« W holds.

A number of important remarks for practical consideration
can be obtained from the previous theorem. First, not only
does LL hold in finite intervals of time, but also under non-
stationary conditions. A stationary process is one whose joint
probability distribution does not change over time, which is
not the case in common practice. Actually, in real practice,
the probability distribution of arrival items may be non-
stationary. In a computing system, for instance, the arrival
of data elements to a computing system for processing can
be subject to sudden data bursts or spikes. Analogously,
performance of computational resources can also be subject
to sudden variations. The importance of LL.1 is that it states
that LL continues to be true under both stationary and non-
stationary conditions during finite intervals of time. Second,
LL also holds independent of the queue discipline, such as
FIFO (first in, first out), LIFO (last in, first out), random,
etc. Furthermore, a generalization of LL.1 is also proposed
in [15] by eliminating the restriction of zero starting and
ending queues in the interval [0, T'].



Theorem 2. (from [15]) LL over [0,T]. LL.2. For a queuing
system observed over [0,T] that has 0 < T < oo, L =
A« W holds.

In addition to the remarks derived from LL.1, LL.2 also
ensures that LL holds when the queuing system is not
empty at the beginning or at the end of the interval of
time. Nevertheless, the conservation of items still needs to
be guaranteed for LL to be held — there are no lost items. In a
computing system, for instance, at the beginning or the end
of the interval of time, data elements to be processed can
be present on the queue, but no data element disappears
during the computation —e.g. due to a failure.

Using LL, it is possible for average waiting times to be
estimated by dividing the average number of elements on
the queue by the average arrival rate. Nevertheless, as it is
pointed out in [16], this simple indirect estimator tends to
be significantly biased, when arrival rates are time varying
and service processing times are relatively long. Surrogate
estimators are also proposed in [16] for such cases.

Traffic Intensity and Queuing Time. An important concept
in Queueing Theory is that of traffic intensity, which is the
ratio of the incoming and outcoming rates of a queueing
system.

Definition 1. Given a multi-server queueing system, its
traffic intensity, denoted as g, is: p = ﬁ, where A is
the average arrival rate of items into the system, c is
the number of server instances, and p is the average
throughput per server. In order for a system with a finite
number of servers to be stable, its traffic intensity must
be 0 < o < 1. Nevertheless, this is not the case when
considering an infinite number of servers. In that case,
the system always has enough servers, and we are then
more interested in the number of busy servers and their
expectation [17].

Our approach assumes that we always have enough
resources, which is analogous to having infinite number
of resources. We are just interested in the number of re-
sources active and in operation and in switching them on
and off depending on the circumstances and the SLA. We
make use of the traffic intensity for deriving the number of
computational resources (server instances in the definition)
required during the execution. More details can be found in
Section 4.2. Additionally, we also characterize the average
time that each data element of a data stream spends on the
queue.

Definition 2. The average time, T, items spend within a
queueing system can be characterized by ' = W + S,
where W is the average time a data element spends
waiting for a resource in the queue, and S the average
time required to process a data element.

3 DATA STREAM MODEL OF COMPUTATION

A data stream D of length k£ is a sequence D =
{d1,ds,...dy} with k € N of digitally encoded data coming
from a finite universe O that depends on the application
—it can be letters, numbers, XML tags or any other finite
set of elements. In general terms, specific characteristics
differentiate these data streams from traditional databases:
(i) input data elements may only be available during an
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interval of time, after which random access may be difficult
or impossible; (ii) data elements arrive in real time and
continuously; and (iii) the arrival rate of data elements can
be bursty in nature and unpredictable, and data elements
may arrive in the system out-of-order.

3.1 Driving Use Cases

As discussed above, with the proliferation of geographically
distributed sensors, a variety of applications have emerged
in different areas such as surveillance and monitoring,
smart- traffic management, etc. For instance, a smart electric
grid application for charging of electric vehicle batteries of
an electric area requires to gather charging requests every
control period (e.g. every 15 minutes) and subsequently
to compute an optimized scheduling algorithm (i.e. one
schedule per area), so that a number of constraints are
preserved and users’ preferences met. Such a scheduling
has to be done before the next requests arrive in the next
control period (consider, for example [18], where a breadth-
first search algorithm is executed for each geographic area
to prioritize on who should be selected for charging, given
that demand exceeds supply). Another similar application
scenario is that of the smart building management [19],
which collects measurements of temperature, humidity and
people density within a building every established period
of time (e.g. every 5 minutes), and automates and optimizes
a number of controlled parameters by means of the Energy-
Plus model.

On the other hand, the study of marine ecosystems is
vital for understanding environmental effects and though
undersea video data is available, it is tedious to analyse.
The EU-funded Fish4Knowledge project [20] developed al-
gorithms and a distributed infrastructure in order to support
automated video analysis of undersea video data. The idea
is that videos are recorded and transmitted continuously
and periodically for subsequently processing. The process-
ing of each video is computationally intensive analysis and
independent of the others.

Hence, we can conclude that there are a number of
applications arising with the proliferation of distributed
sensors. Many of them share common characteristics: they
are typically computationally intensive, but they do not
require an immediate response, as data elements arriving
into the system need to be processed within a time threshold
(deadline). Such a deadline is in the order of seconds,
minutes, hours, or even days, rather than in the order of
milliseconds, and this deadline is one of the key metrics in
the SLA. Moreover, the processing may involve the execu-
tion of complex simulations or control algorithms that are
often executed as batch processes, independent of the rest
(stateless).

3.2 Functional and Non-Functional Requirements

For the specification of the operations to be applied to each
data stream, we consider the workflow streaming model
of computation [21]. This model of computation consists
of a sequence of one or more tasks applied sequentially
to a vector of input data elements as they are received
from sensors. We assume that a data element can pass
through a workflow pipeline task as it is produced by its
predecessor (avoiding blocking semantics). In consequence,
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Fig. 1: a) Linda-based Streaming Workflow Task Pattern; b)
Streaming Workflow Example

unlike other pipeline models of computation, multiple data
elements could be executing the same task at a time, or even
data elements can finalize their execution in an out-of-order
manner.

In our proposal, a streaming workflow is specified as
depicted by Fig. 1, in terms of Petri nets (i.e. actually in
terms of a high-level Petri net class called Reference nets).
Each of our workflow tasks are specified in an abstract way
— without binding to any computational resource. A task
(see Fig. 1 a)) is expressed in terms of two Linda operations:
(i) an out operation that writes the operation name and its
arguments into a tuple space, and (ii) an in operation re-
trieving the results from a tuple space upon completion. The
Linda communication & coordination paradigm is based on
communication orthogonality in the interactions, whereby
interacting peers do not have any prior knowledge about
each other. Hence, our workflow tasks are uncoupled in
time and space from the execution environment that will
execute it, and this provides greater degrees of flexibility
in the execution. More detailed information regarding this
usage of Linda, workflow tasks and Reference nets can be
found in [22]. As the Reference nets are actually interpreted,
these specifications are also utilized for the actual execution
of the coordination mechanism. Another important aspect is
that, depending on the application semantics and functional
requirements, a task will generate one or multiple compu-
tational jobs for the processing. In this paper, for simplicity,
we are considering that a task generates one single job.

Fig. 1 b) shows a streaming workflow example. Data
elements are introduced at the initial transition (Channel
begin), and once a data element is fully processed, it is
retrieved from Channel end. That workflow is a sequential
composition of two tasks, named “task A” and “task B”,
respectively. In particular, tasks are expected to be connected
by means of a data dependency; the output dout of a tasks
becomes the input din of the following task in the sequence.
It is important to note that the model is following streaming
semantics, whereby multiple data elements can be executing
a task simultaneously, and even the processing for a data
element can finalise out of order for previously arrived data
elements. More details of the specification and the execution
semantics can be found in [22].

As for the non-functional requirements, SLA consists of
a threshold deadline (). The primary evaluation metric
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considered in this work is the number of data elements
computed within the threshold deadline (d). The default
number of data elements that are required to meet the
threshold deadline is 50% (i.e.: at least 50% of the data ele-
ments must have a response time (7') lesser or equals . The
remaining jobs are not guaranteed to be completed within
0 as they are computed in a best effort manner, but they
cannot be discarded. Moreover, higher success percentages
(e.g. 75% or 90%) can also be achieved as discussed later in
Section 5.2.2.

Moreover, resource allocation to support this streaming
model is undertaken on a per-second basis (adopted from
similar concept in Amazon Lambda, where resource allo-
cation and pricing is based on a 100ms period !). Longer
resource allocation periods (of 1 hour) are inefficient and
unsuited for fine grain streaming processing approaches.
This work focuses on a much higher frequency allocation
strategy (as observed in Amazon Lambda) to account for
fluctuations in the associated data stream.

3.3 Time Series Model

There are a number of data stream models of computation
reported in literature and they can be analyzed and better
understood by formalizing the semantics and relationship
between the data elements forming a stream. An attempt to
formalize these semantics was accomplished in [23]. In this
paper, we make use of the time series model, in which the
result of the processing of any data element of the stream
is independent of the rest and computations are completely
independent. It is suitable for monitoring and for observa-
tions in time that do not need to establish relationships with
past measurements.

Along with the time series model, we also considered
one-pass processing [23], thereby each data element arriving
into the system is processed only once and it cannot be
retrieved later again. In accordance with the characteristics
of the applications we are based on (see Section 3.1), data
elements arrive into the system and have to be processed
within a period of time, after which access to arbitrary past
items for processing is not useful.

3.4 Computational Capacity Requirements

Given all the previous characteristics of the data stream
model of computation, we have identified the following
key requirements for an autonomic elastic resource man-
agement:

Support for Data Intensive Workloads: The type of
processing required for such type of data streams is com-
putationally intensive and it can require a large amount of
computational resources, involving parallel or distributed
complex simulations, optimization algorithms, or the exe-
cution of forecasting models.

Enforce Quality of Service (QoS): The computation of
each data element is a critical process in time that must be
computed within established time slots between controlled
requests. Typically, the processing time (S) is less than the
overall due time for the control period (deadline), allowing
data elements to be buffered prior to their processing. More-
over, in some scenarios, exceeding the overall amount of

1. https:/ /aws.amazon.com/lambda/ pricing/



time for performing the computation may be allowed by
the SLA of the application. The resource management policy
should provide mechanisms for enforcing QoS.

Elastic/On-demand Provisioning: The computational
capacity must be adjusted to the overall requests. There-
fore, a resource management strategy needs to allocate the
appropriated number of computational resources to process
unpredictable and variable workloads while satisfying QoS
constraints, as described above. The underlying infrastruc-
ture must be able to support admission control and enable
a variable processing rate per stream. The adopted mecha-
nisms should be based on autonomic principles, so that they
are resilient and self-adaptive to variations in the historical
traces without requiring human intervention.

All the above requirements are used to design the system
architecture and resource management policy described and
subsequently evaluated in the following sections.

4 QUEUING-THEORY-BASED APPROACH
DATA STREAM PROCESSING IN CLOUDS

We propose a data stream processing strategy that is
modeled using feedback control principles for the self-
management of computational resources and that makes use
of queuing theory. Next, we describe the conceptual archi-
tectural of our system and the autonomic loop operations.

FOR

4.1 Generic Architecture

Our proposed architecture can process a number of inde-
pendent data streams simultaneously as depicted in Fig. 2.
Each data stream is assigned to a queue (buffer) in the
system, so that when a data element arrives, it is redirected
to its corresponding queue and waits until there are compu-
tational resources available, and after the processing stage,
the results are transmitted to the destination. In this activity,
a data stream follows three main stages: (i) data admission
and control, (ii) processing, and (iii) data transfer to the des-
tination. The explicit goal of an admission control policy is
to prevent the system from accepting workloads in violation
of high-level system policies: for example, the admission
control policy may only accept a maximum income rate
(M) of X data elements per stream. The admission control
component can decide on buffering the arriving elements or
even discarding them, in case the processing supports such a
policy (i.e. by losing some precision). In our case, we assume
that, we have enough resources to satisfy the computational
needs of the applications and that our buffer is always suffi-
cient so that all data elements are accepted. We also assume
that a data stream has its own functional requirements and
previously negotiated Service Level Agreements (SLAs) that
are translated into QoS requirements.

In order to achieve this, there is a controller per data
stream, whose main objective is to reduce the number of
computational resources (VMs) whilst still enforcing QoS
targets. Two main scaling mechanisms can be found in lit-
erature: vertical scaling and horizontal scaling. Vertical scaling
keeps the number of VMs of an application constant, but
increases the amount of resources allocated to each one of
them. This can be done by either migrating the VMs to
more powerful servers or by keeping the VMs on the same
servers but increasing their share of the CPU time. The first
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Fig. 2: Generic Queueing-Theory-based System Architecture
for Cloud Resource Provisioning for Streaming Applications

alternative involves additional overhead; the VM is stopped,
a snapshot of it is taken, the file is transported to a more
powerful server, and, finally, the VM is restated at the new
site. Horizontal scaling is the most common mode of scaling
on a cloud; it is achieved by increasing the number of VMs
as the load increases and reducing the number of VMs when
the load decreases. This strategy typically takes advantage
of a set of physical machines and limits the number of VMs
that can concurrently live within a single physical machine.

Currently, our controller considers horizontal scaling
and it ideally targets fine grain billing models, i.e. in a per
second basis, inspired by Amazon Lambda, as mentioned
before. However, we also wanted to ensure efficient usage
of resources for cases where cloud providers offer business
models billing in a per hour basis. In a per hour billing
model, your usage is rounded to the next hour even if
you release the resource back to the provider. For this
reason, in our model we decided to use a shared pool of
resources where resources are made available to satisfy the
computational demands of our streams. We assume that the
medium- and long-term policies for resource provisioning
are capable of estimating the number of resources during the
peak workload periods. Nevertheless, only when this pool
is exhausted, we require a new on-demand resource from
other cloud providers. Since the overheads of provisioning
and de-provisioning can severely affect the performance of
our controller when those overheads are in a similar order
of magnitude to processing times, we propose the following
strategy: Resources that are in the shared pool and reach the
end of their allocation/usage period are released back to the
resource provider. Thus, when a data stream de-allocates
a VM, instead of switching it off, it remains operative in
the shared pool for a period of time, aiming at satisfying
the provisioning needs for any other data stream. Resources
that are part of the shared pool do not introduce additional
monetary costs, and the overheads are alleviated. In the
following subsections, the operations carried out by the
controller are explained further.

4.2 Autonomic Elasticity for Streaming Applications

We consider that the QoS objective of our streams is to
guarantee certain response time or deadline. As a resource
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Fig. 3: Mealy State Machine Modeling the Controller’s Be-
haviour

provider, we need to guarantee such a QoS objective, while
minimizing the amount of resources used. For such a pur-
pose, we either directly monitor the maximum time that a
job (i.e. data element) can stay on the queue waiting to be
processed, on average, without violating its QoS guarantee;
or alternately, we take advantage of LL, in order to calculate
the waiting time from the queue size. Thus, the objective
of the proposed controller is that the average waiting time
W on the queue for a data element equals the maximum
allowed, defined as time slack. As depicted in Fig. 3, a
Mealy state machine that consists of 3 states can model the
controller: (i) initial state, (ii) decreasing size of L state, and
(iif) increasing size of L state. It can take 3 different actions:
(i) to allocate VMs, if L > L*; (ii) to de-allocate VMs, if L
< L* and (iii) not to take an action, in any other case. In
our approach, the controller follows a MAPE (monitoring,
analysis, planning and execution) loop. We assume that the
arrival rate of each stream and their processing times cannot
be estimated in advance. Presently, we do not have control
over the size of the shared pool of resources and it is used
in a best effort manner, i.e. resources with time left in their
current allocation period are made available to others. If a
resource reaches the end of that period, it is released for use
by other operations.

Monitoring. During this stage, the following system vari-
ables are monitored: (i) queue size L, which is the control
output; (ii) the arrival rate for a data stream \; and (iii)
the processing time of each data element, which allows us
to calculate S. These variables are recorded and computed
every time a job enters or leaves the system. On the other
hand, we have variables that are calculated periodically at
intervals, which allow our controller to take operational
decisions. This includes the process of applying LL, which
requires average values in order to hold, and allows the
controller to act on L (average number of jobs on the
queue) rather than on W (average wait time of a job in the
queue). Average values may increase the response time of
our controller to changes in the environment. In order to
mitigate the effects of long running averages and allow the
system to rapidly react upon changes (i.e. bursty conditions
of A and unexpected performance of VMs), we could limit
the amount of data used to take operational decisions.
Specifically, we propose two alternatives:

o Average Reset: The first approach consists of discarding
previously monitored data, when a change in the input
pattern is detected. This resets the average values and helps
to mitigate the effects of long running averages, which
allows the system to quickly react upon changes in the
demand. Therefore, the overall execution time is divided
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in sub-periods of execution: a sub-period starts when a reset
in the average values is accomplished. Firstly, according to
LL.2 (see Theorem 2), LL holds for finite periods of time
even if the system is not empty at the beginning or at the
end of any sub-period (otherwise, W could not be derived
by L). The challenge of such an approach, however, is to
efficiently and effectively detect variations in monitoring
that require a change of sub-period. From the two variables
considered, arrival rate A and average execution time S,
there are a number of studies proposing different data burst
detectors [24]. In the case of average execution time, we
can also consider thresholds to identify variations in VM
performance.

e Moving Average: The second strategy is to compute
moving averages. In a moving average only a subsequence,
a window, of a time series is considered for computing the
average: older values of the series are being discarded with
the arrival of new values. Thereby, the effect of long running
averages is limited. Nevertheless, it may be challenging to
determine the window size: if the window is too small, the
derived values for W may tend to be biased, especially in
cases where the processing time is too long (see Section 2).
In contrast, if the window is too big, then the same problem
of arithmetic averages appears.

It is also worth highlighting that the performance vari-

ation of computational resources is considered implicitly in
our model by assuming the application can take an arbitrary
time to process a data element.
Analysis. In this phase, there are two main steps: The
setpoint (that is, the objective queue size Lx) is computed
and then the monitored average value of L for the period of
time 71" is compared to L*. According to the difference (the
error) found, an action is decided: (i) to remain idle, (ii) to
increase computational power, or (iii) to reduce computa-
tional power.

4.2.1 Establishing the Reference Setpoint (Lx)

In accordance with Definition 2, the average time for data
elements of a data stream in the system is given by: T =
W + S, where W is the average queuing time, and S is the
average processing time. We assume that the QoS for a data
stream involves the processing of data elements within a
deadline, d, on average. Therefore, in order to enforce QoS,
the following must be fulfilled:

T=W+8<$ (1)

As we are utilizing an elastic pay-as-you-go infrastruc-
ture, as a load balancing policy, we want to meet QoS while
minimizing the number of computational resources. This
policy is fully satisfied when Ty = Winas +5 = 6.
Therefore, when W,,,,. = 6 — S, we obtain the maximum
time slack, i.e. the maximum time a data element can spend
on the queue without violating the QoS, which minimises
the number of computational resources. Alternatively, with
Winae and by applying LL, we can change the variable and
obtain the reference setpoint, the maximum average number
of data elements on the queue, Lx:

Lk = A\Winaw = A(6 — S) )

It can be seen that L* depends on A, the arrival rate, and
S, the average processing time in the system. Under variable



and unpredictable workload and performance times, Lx is
likely to vary over time unpredictably. Thus, the challenge
for the controller is to make use of IaaS elastic actions, in
order to maintain Lx in its objective value.

4.2.2 Determining an Action

After the reference point is set up, the controller establishes
upper and lower thresholds around it, incorporating hys-
teresis in the reference setpoint to avoid oscillations. Then,
the current queue size (which directly affects the waiting
time of data elements) is compared to the thresholds: if
it is less that the lower one, the computational power is
decreased (as there are more resources than required), and
the computational power is increased, when the queue size
is higher than the upper threshold (it should be noticed that
being above the objective queue size means that the waiting
time will be violated). At this point, the controller decides
an action: (i) to remain idle, (ii) to increase computational
power, or (iii) to decrease computational power.
Capacity Planning. Currently, we are only considering
horizontal scaling for our controller’s actions. Therefore,
the controller can provision and de-provision a discrete
number of computational resources (VMs). We assume that
the infrastructure has limits in terms of the amount of VMs
that can be provisioned as a whole — this number is set by
the infrastructure provider and it considers both the number
of physical machines and the number of VMs per physical
machine. However, as discussed above, in this work, we
assume that we always have enough resources. We also
assume homogeneity in the computational resources and
leave considering multiple types of resources to achieve
finer grain actions for future work. In our approach, we
adaptively regulate the number of provisioned VMs, ¢, such
that the QoS of the data stream is enforced. In order to find
the number of active VMs (c), we make use of the traffic
intensity, o, (which defines the relationship between input
and output, as defined in Section 2). Thus, by equating
Eq. 1 to 1, and solving for ¢, we obtain the number of
computational resources that are able to output elements
at the same rate as the are entering the system: [¢] = %,
with ¢ € N. It should be noticed that as we have a discrete
number of resources, we round up to the nearest integer.
Therefore, the actions for decreasing and increasing the
waiting time corresponds to ¢ + Ac and ¢ — Ac, respec-
tively, where Ac represents the increment of computational
elements. The lower Ac is, the slower the reaction of the
controller. Ideally, the quickest reaction is desired, but if the
control action is too large, it may lead to controller oscil-
lations, instability provoked by switching rapidly and vio-
lently between different configurations (namely in this case,
over-provisioning and under-provisioning states). Typically,
this Ac number of resources is experimentally determined.
Execution. The execution stage provides mechanisms to
perform the necessary changes to the system. The proposed
plan has to be implemented by performing a series of
actions that will elastically provisioning or de-provisioning
appropriated resources. Hence, in order for the controller to
implement the plan, it has to interact with the middleware
to execute those actions and make sure the resulting status
of the systems is as planned. Launching a VM may often
lead to a considerable delay, which in turn may provoke
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instability in the controller. In this paper, the architecture
described above incorporates a shared pool of VMs that are
shared across all the data streams and which removes such a
launch delay. As commented before, we assume no shortage
of resources for testing our controller. Once an action is
taken, the amount of time ¢ required for the controller to
achieve the desired state can be characterised as follows:
t = tq + L2=Lo where t, is the associated time delay for
the action, Z * — L is the variation of the queue size that the
action aims to achieve (i.e., Lx is the target queue size), and
it — A is the variation of data elements in the queue. Since
the action modifies the computational power (as discussed
in the capacity planning, by making use of Eq. 1), it affects
the output rate p. Therefore, there is a trade-off between the
number of computational resources involved for the action
and the time to reach the target queue size. Moreover, as
discussed previously, the quickest reaction is desired, but
without generating instabilities in the controller.

4.3

We validated our controller within the CometCloud sys-
tem [9], [25]. In order to specify the batch operations to be
applied to the data streams and enable this functionality
within CometCloud, we make use of streaming workflow
technologies, as specified in [22]. We, therefore, designed
and implemented a workflow interpreter that can process
multiple data streams simultaneously coming from different
distributed sources for processing. The workflow interpreter
coordinates the processing of the data elements (based on
dependency constraints identified in the workflow specifi-
cations). The controller from Section 4.2 is integrated with
the interpreter so that the system also dynamically scales
the required resources on demand, while enforcing the
particular QoS requirements for each data stream. For both
purposes, the interpreter interacts with CometCloud in two
different ways: (i) To dispatch processing data elements to
distributed computational resources in CometCloud’s feder-
ation (by inserting tuples into the CometCloud’s tuplespace
and by retrieving the results back), and (ii) to monitor
and control the computational resources around the tuple
space for dynamically scaling them on demand. The role
of the queues (buffers) described in Fig. 2 is provided by
CometCloud’s tuplespace, which is a peer-to-peer overlay
that can scale across machines [25]. In this section, we briefly
describe these components. However, more details and a
Petri net-based specification of the workflow interpreter can
be found in our previous work in [22].

Streaming Workflow Interpreter. The streaming workflow
interpreter works as follows. It is responsible for creating
and enacting the workflow instances and for receiving the
data elements of the streams. When a data element arrives in
the interpreter, it is injected into the corresponding stream-
ing workflow pipeline instance for processing. Then, as a
data element advances through its corresponding work-
flow pipeline, tuples are written to and retrieved from the
CometCloud’s tuplespace. Initially, the interpreter allocates
a number of worker nodes to each data stream, based on
historical executions. These nodes will withdraw workflow
tuples, perform the required computations over the data
element, and finally they will write the result tuple back into
the tuplespace. The result tuple will be taken by the stream-

Implementation of the Approach in CometCloud



ing interpreter, which will re-direct it to the corresponding
workflow instance.

Hence, the CometCloud’s tuplespace acts as a queue
for a data stream, where data elements are waiting to be
retrieved and processed by worker nodes. CometCloud’s
middleware components can be configured so that work-
flow jobs from the same data stream are stored within the
same location.

5 EXPERIMENTAL VALIDATION
5.1 Experiment Methodology

We have performed a set of experiments to validate our
theoretical formulation. We have considered two scenarios,
one using synthetic data and other using real data from
electrical vehicle (EV) charging stations [26]. Using this
streaming workflow, we want to observe the behaviour of
our autonomic strategy under significant changes in the in-
put rate. We consider that the SLA of an streaming workflow
is to guarantee the deadline of its data elements on average,
while minimizing the number of resources allocated to such
streaming workflow. As such, we consider two metrics:
(i) The number of data elements that meet the deadline
and (ii) the amount of resources used. In order to validate
our metrics, we have computed a baseline case where the
number of VMs required to maintain the queue size (L)
to zero are provisioned. In such a baseline, all of the jobs
meet the deadline (except at the initial time as the system
is empty), but the number of VM hours is over-provisioned.
We compared such a baseline to the performance of our
proposal, and we also measured the number of jobs in
our proposal that are not meeting the deadline. Further
details for our evaluation success criteria can be found in
Section 5.4.

Synthetic scenario: In these experiments, we consider a
dynamic streaming workflow that changes its incoming
data rate () over time, as shown in Fig. 4a. The incoming
data rate is based on the number of tweets per second dur-
ing the 2014 WorldCup Semi-final between Brazil-Germany,
obtained from Twitter Data 2. The streaming workflow starts
with a rate of 0.5 jobs (data elements) per second (i.e. one
job each 2 seconds), then it increases its incoming rate up
to 0.625 jobs per second (i.e. one job each 1.6 seconds) in
period 60-72, and keeps varying over time as shown in
Fig. 4a. The idea of this set of experiments is twofold: (i)
observe the behaviour of our controller when receiving large
number of data elements per minute for processing, and (ii)
observe how quickly our controller is able to adapt to abrupt
changes in the input rate, while minimizing the number of
resources used. In these experiments, the execution time for
the jobs are generated randomly between 4 and 10 seconds.
The duration of the jobs was adjusted considering the lim-
itations of our computational resources and the maximum
data incoming rate.

Real scenario: In these experiments, we consider a real
workload from EV charging stations. Fig. 4b shows aggre-
gated data of the usage of the charging stations over the day.
We used this information to model our workload, which is
scaled down to reduce the time needed to execute the ex-
periments. In this scenario, the input rate of the workload is

2. https:/ /twitter.com/TwitterData
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fixed to one data element every 10 seconds, and the deadline
for each job is always 300 seconds. The execution time of the
incoming jobs varies with the usage of the charging stations.
The higher the usage is, the higher the execution time. Thus,
the execution time of the data elements received in the rage
0 to 3000 seconds of the experiment is 100 seconds (from
0:00 to 7:00 hours in Fig. 4b); from 3000 to 6000 seconds
(from 7:00 to 15:00 hours in Fig. 4b), the execution time is
60 seconds; from 6000 to 6700 is 40 seconds (from 15:00 to
16:30 hours in Fig. 4b); and from 6700 to 9000 seconds is 100
seconds (from 16:30 to 23:00 hours in Fig. 4b).
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We have deployed an actual testbed between the Uni-
versidad de Zaragoza, Spain and Rutgers University, USA.
In this testbed, we have the autonomic control layer at
Zaragoza and the resource management layer (Comet-
Cloud) at Rutgers. Jobs are generated at Zaragoza and sent
to Rutgers for computation, which, in turn, sends results
and monitoring data back to Zaragoza. Thus, while the
actual infrastructure is deployed and operationally ready
for real applications, in our experiments, the execution of
individual jobs are emulated using the sleep function once
they reach their corresponding processing machine. This
ensures the reproducibility of the experiments. The compu-
tational resources located at Rutgers are part of a cluster-
based infrastructure with 32 dedicated cluster machines.
Each node has 8 cores, 6 GB memory, 146 GB storage, and
a Gigabit Ethernet connection. The measured latency on
the network is 0.227ms on average. Two configurations of
these infrastructures are used: (i) For the Synthetic scenario,
we consider an HPC-Cloud infrastructure, where the re-
sources of our cluster are offered using a cloud abstraction
and therefore, we can provision and de-provision them
elastically and on-demand. Since we are using an HPC-
Cloud, where resources are allocated by simply starting
workers (e.g., Docker container) on different machines, the
overhead of provisioning machines in this infrastructure is
not significant and therefore not considered at the moment.
(ii) For the Real scenario, we consider a Cloud infrastructure,
where the resources of our cluster are offered using a cloud
abstraction and they incur in provisioning overheads when
allocating resources, as in a virtualized cloud. Specifically,
we use a provisioning overhead between 60 and 80 seconds,
which corresponds to Amazon Web Services cloud [27]. The
interconnection network overhead between Zaragoza and
Rutgers is 130 ms on average.

5.2 Synthetic Scenario Experiments

In addition to validating the performance of our controller,
we also want to validate LL.1 and LL.2 theorems in practice.
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We have performed a set of experiments using variable
execution time for each data element. Since we are working
with average results, we recognize that this may hinder the
responsiveness of the system under significant changes in
the steaming input rate (A). For this reason, we study two
different strategies: (i) Reset: perform a reset of the average
values when a burst is identified; and (ii) Moving average:
use sliding windows to calculate moving averages. Addi-
tionally, we use a baseline strategy that, unlike previous
strategies, does not make use of the slack. We call this
strategy no slack.

5.2.1 Variable Lambda and Variable Execution Time

We have performed a set of experiments using a variable
execution time of the data elements (S). According to LL,
the autonomic controller should be able to adjust to these
changes by looking at S. As we mentioned in the previous
section, we consider that processing a job takes between 4
and 10 seconds (i.e. 1/u € [4,10] seconds). Nevertheless,
the controller does not know this information a priori. The
controller records the observed execution time to calculate
the average value to use in the planning. The deadline
established by the user is 33 seconds, which means that the
maximum time that a job can stay waiting in the queue is
between 23 and 29 seconds (this is our slack, W), depending
on its execution time. Since measuring the queue time for
each data element in our system is not trivial, we use the
number of elements in the queue and the incoming rate
to estimate the queue waiting time W (see Equation 2 in
Section 4.2.1). Using this information, we determine the
number of machines we need to allocate or release, see
Section 4.2.2. In these experiments, we allocate or release
two machines over or under the suboptimal value (Ac) to
increase or reduce the queue size. This offset value was
obtained empirically for the conditions of our experiments
and we leave for future work deducting from monitored

data such value. Moreover, we consider that the system is
empty at the beginning and has only one machine allocated
for this workflow. Fig. 5 collects the experimental results,
when using a fixed execution time.

Figs. 5a and 5e present the results of our baseline exper-
iment. In this experiment, our controller tries to satisfy the
computational demands by provisioning or deprovisioning
resources without considering the use of the slack. We can
observe that after the system is initialized, the number
of elements in the queue tends to zero — given enough
resources in the system. As a consequence, the amount of
provisioned resources is maximized.

Figs. 5b and 5f present the results of the experiments us-
ing the reset strategy. Fig. 5b depicts how the queue waiting
time of the system evolves over time. We can observe how
the “W=L/\” (W calculated using LL) and the “Monitored
W?” (the actual measured W) oscillate around the objective
waiting time, as expected. This shows that LL holds valid
even with a variable execution time and that the system is
able to adapt itself by autonomously finding the right con-
figuration parameters. At the beginning of the experiment,
the system shows a spike in the waiting time due to the low
number of resources, but this is quickly acknowledged by
our autonomic controller and new resources are provisioned
to reduce the waiting time of the data elements. This can be
clearly observed in Fig. 5f, where we show the actual size of
the queue L and the objective size of the queue Lx, as well
as the number of allocated machines.

After this initial spike, the system allocates new re-
sources, which reduce the size of the queue. When the queue
size is under the target, the waiting time is reduced as
well, hence complying with the QoS. In this current status
(around period 10), we continue reducing the queue size
and processing elements faster than required. Therefore, the
resource provider is using more resources than needed. This
situation is corrected by releasing some resources, which



in turn increases the size of the queue and the waiting
time. For this reason, the system is continuously oscillating
around the objective, but, as we can observe in Fig. 5b, these
oscillations are close to the objective. On the control period
number 60, the streaming’s input rate increases (see Fig. 4a).
We assume that our system is able to detect this situation
and performs a reset of the average values, recorded until
now, to allow for faster adaptability (in Section 6, we discuss
about techniques to do this). Similarly, more resets were
performed when sudden changes of the input rate were
detected. This is represented in Figs. 5b and 5f.

Additionally, we have performed experiments using the
moving average strategy. First, we have used a 15 period-
sized moving average. Results are shown in Figs. 5c and 5g.
Using a small period-sized, moving average has the advan-
tage of quickly realizing of changes in the input rate (1)),
but at the same time this ability can be counter-productive
if the system becomes unstable due to “short memory”. In
this case, we can observe that the system regulates itself
and it is always oscillating around the optimum. However,
as opposed to the reset strategy, we can see that in this case
the oscillations are considerably larger, even in stationary
conditions (e.g., before period 60). For example, Fig. 5c
shows waiting times that goes from around 60 seconds to
as low as 10 seconds. Moreover, we can observe that, even
with a small window, it takes several periods to realize that
a change in the input rate happened, which translates into
large number of elements in the queue (L) and hence large
waiting times (W). The main reason is that the moving
average “softens” the changes in the input rate, as it is
clearly shown by the objective queue size (L) in Fig. 5g.

Figs. 5d and 5h show results using a 45 period-sized
moving average. In this case, we can observe that the
behaviour of the system in stationary conditions is very
good and it keeps the size of the queue (L) and therefore
the waiting time (W) oscillating closely to the objective.
However, since it keeps a large window of values, we can
see that after the period 60, the system does not behave well
and all values are above the objectives for a long time until
the window leaves behind those small values and realizes
that has to correct the situation by allocating more resources.
In Fig. 5h, we can see that the target queue size (L*) changes
very slowly due to the large window size and therefore a
large number of elements remain over Lsx.

5.2.2 Adjusting QoS

As we mentioned in Section 3.1, the default behaviour of
our controller is to achieve that at least a 50 % of the jobs
that enter the system are completed within a given deadline.
The reason is that LL holds for average values and we use
LL to calculate the maximum waiting time (slack) that jobs
can be on the queue. Additionally, we can consider that
using no slack allows the system to meet the deadline for all
jobs. Therefore, we could approximate the amount of slack
we want to use to achieve different QoS. For example, one
way of doing this is by linear regression: Assuming a linear
relationship between the amount of slack and the percentage
of jobs that are going to meet the deadline. In this way, using
the equation of the line we can set the percentage of jobs
that we want to meet the deadline and obtain the adjusted
maximum waiting time (or adjusted slack). The equation of
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the line is typically defined as y = mx + b, where m is the
slope and b is the y-intercept. Considering our two known
points to be (100,0) and (50, 1) for the cases with 0 slack
and 100 % jobs completed within the deadline, and 100 % of
the slack and 50 % jobs completed within the deadline. This
results inm = —0.02 and b = 2.

Next, we performed two experiments where the QoS
is guaranteeing that at least a 75 % and 90 % of the jobs
are completed within the deadline, respectively. For this
experiments, we used a 15 Period-sized moving average
and scenario described in Fig. 4a. By applying the linear
regression discussed, we obtain that to achieve a 75 % of
jobs completed, we need to use a 50 % of the slack calculated
using LL, while to achieve a 90 % of jobs, we need to limit
the use of the slack to just a 20 %. In our experiments this
translates into adjusting our objective waiting time (W) and
queue size (Lx). Figs. 6 collects the results. We can observe
in Fig. 6b that for the 75 % case, the average waiting time
fluctuates around the adjusted objective and only around
a 13 % ob jobs missed the deadline. On the other hand,
Fig. 6¢ shows that for the 90 % case, all averages are within
the deadline (only one job finished beyond the deadline).
Figs. 6d and 6e show that when reducing the amount
of slack, the amount of resources allocated increases and
progressively approaches our baseline (No Slack). Although
the linear assumption resulted to be overly conservative for
our tested use case, we conclude that adjusting the slack
allows us to adjust the offered QoS.
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Execution Time and 15 Period-sized Moving Average. Ac-
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senting the number of provisioned machines use the right Y
axis, while all line plots use the left Y axis.

5.3 Real Scenario Experiments

In these experiments, we want to observe the behaviour
of our controller in both infrastructures: An HPC-cloud
(no provisioning overhead) and a virtualized cloud (with
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Fig. 7: Summary of experiment - Electrical Vehicle Charging Stations. Bar plots representing the number of provisioned
machines use the right Y axis, while all line plots use the left Y axis.

provisioning overhead). In these experiments, the execution
time of the jobs varies between 40 and 100 seconds, as we
described in Section 5.1. We assume that the controller does
not know this information a priori and it reacts to these
changes using the observed data. For these experiments, we
use a 200 period-size moving average. Fig. 7 collects the
results of the experiments.

First, Figs. 7d and 7d show the baseline experiment.
Again, this experiment shows the maximum number of
resources required to process data elements as soon as
possible (i.e. minimum time of completion).

Figs. 7c and 7e show the results when using the HPC-
cloud infrastructure (no provisioning overhead). As in pre-
vious cases, we observe that LL also holds valid during
the duration of the experiment. Both figures show how the
controller recognizes the changes in the execution time of
the workload and changes the objectives, i.e., objective in
Fig. 7c and L* in Fig. 7e. This translates into increasing or
decreasing the number of provisioned resources to adjust
the size of the queue.

Similarly, in Figs. 7c and 7f, we can observe the re-
sults when using a virtualized cloud infrastructure (with
provisioning overhead). As in the previous case, we see
that LL holds valid. However, we observe certain delay
caused by the overheads when provisioning resources. At
the beginning of the experiment, a larger number of jobs
get accumulated in the queue and it takes longer time to
correct the situation, which is caused by the provisioning
overheads. We also observe how around control period
70, one of the worst-case scenarios for a reactive resource
manager. We have very few allocated resources when all of
a sudden the execution time of the jobs increases from 40
seconds to 100 seconds. This causes a spike in the number
of elements accumulated in the queue. Once again, a large
number of resources are provisioned but the overheads
delay the effectiveness of our control actions.
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Fig. 8: Data Element Completion Time (waiting time plus
execution time). Y axis is in logarithmic scale. Labels
a),b),c),and d) identify the experiment by looking at the first
row of plots contained in Figs. 5, 6, and 7.

5.4 Completion Time Analysis

In this Section, we analyze the completion time of the data
elements processed in each one of the experiments executed
before. In this paper, we proposed an approach to leverage
the slack of jobs (i.e. remaining of deadline minus execution
time and overheads), aiming at minimizing the amount
of resources provisioned to satisfy the workload given a
specific SLA. In our case, we chose that our SLA was to meet
the data elements’ deadline on average. Next, we evaluate
two specific metrics: (i) The amount of resources used, and
(ii) the SLA assurance. Fig. 8 collects these results.

In previous experiments, we observed oscillations
around the target value. We can observe now how the
median completion time for the baseline approaches is
typically very far from the deadline. However, in the rest
of the cases — b), ¢), and d) — all our strategies show how
the median completion time is very close to the deadline.
This means that when the slack is not used, we are wast-
ing a significant amount of resources. Specifically, in our
experiments, in comparison with the baseline, the proposed
approach saved between a 32% and a 54 % machine-hours
in the experiments of Fig. 5, between 35% and 17% in the
experiments of Fig. 6, and between a 47% and a 51% in the



experiments of Fig 7. Additionally, the median of the data
elements’ completion time also tells us that the proposed
SLA is satisfied. Although, the dispersion of the completion
times is large, at times, our approach managed to complete
around 50% of the jobs within the deadline. Furthermore, it
is also worth highlighting that there is a trade-off between
the interquartile range and the oscillation frequency intro-
duced in the controller: The smaller the interquartile range,
the smaller the hysteresis required, and then the higher the
oscillation frequency.

6 RELATED WORK

The two biggest fields in which LL has been applied are
operations management (OM), and computer science and
engineering (CSI) [15]. On the other hand, with the extraor-
dinary development of computer technologies, there is a
significant amount of case studies ranging from computer
architecture to computer networks and distributed systems.
The most significant case studies from OM and CSI are
described in [15].

There is a significant amount of work in deadline based
scheduling algorithms for multimedia applications in com-
munication networks. In general terms, the function of these
scheduling algorithms is to select the session whose head-
of-line (HOL) packet is to be transmitted next through the
network. This process is based on the QoS requirements.
A survey that provides an overview can be found in [28],
[29]. In other words, these proposals aim to evenly share the
workload (packets) onto a shared resource (the network).
In contrast, in our approach, based on the cloud paradigm
principles, we adapt the computational power (resources)
to the workload: We adaptively provision the number of
computational resources to a data stream in accordance to
workload variations and resource performance.

A number of studies developed autonomic policies and
mechanisms for elasticity in clouds. In [10], the AGILE sys-
tem provides medium-term resource demand predictions
for achieving enough time to scale up the computational
resources in advance, minimizing VM launching overheads.
In comparison to our approach, AGILE is application ag-
nostic and does not consider the characteristics of streaming
applications. For the NoSQL cluster scenario, TIRAMOLA
was presented in [11]. It can self-resize a NoSQL clus-
ter according to user-defined policies. Decisions on (de-
)allocating VMs from a cluster are modelled as a Markov
Decision Process and taken in real-time. Autoflex [12] is
a service agnostic system for autonomic scaling of VMs
that combines both reactive and proactive approaches. A
purely reactive resource provisioning approach was pro-
posed in [13] under the YinzCam system, which provides
cloud-hosted service for real-time Web scores, news, etc. The
workload considered exhibits significant spikes. Hence, the
controller is designed so that the scaling up action is done
much faster than the scaling down. Again, this approach
is designed to enable service operations to be on-line and
responding without any time-slack. More recently, vertical
scalability was also studied in [14] by means of different
performance models that enable to map performance to
capacity. Autonomic computing was studied to provide
opportunistic in-transit processing by taking advantage of
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the estimated “slack” that is available at different stages of
a data-intensive workflow [30].

The increasing deployment of sensor network infrastruc-
tures has led to large volumes of data becoming available,
leading to new challenges in storing, processing and trans-
mitting such data [31]. For that reason, stream processing
frameworks such as Yahoo's S4 [32], or IBM InfoSphere
Streams [33] provide streaming programming abstractions
to build and deploy jobs as distributed applications at scale
for commodity clusters and clouds. Nevertheless, even that
these systems support high input data rates; they do not
consider variable input rates, which is our focus in this
paper. In some other approaches, the parallelism is extracted
from the data stream query operators they provide, Au-
rora [34], Borealis [35] and Stream Cloud [36], which differs
that in our case, we explicitly exploit the parallelism by hav-
ing multiple data elements in multiple workflow pipelines.
In this area, Spark has popularized the idea of discretized
streams to process streams as a sequence of discrete micro-
batches, which improves fault recovery [37]. These micro-
batches are dynamically allocated across workers based
on data locality and availability. While Spark assumes a
ready-to-use cluster of workers, our autonomic approach
intends to elastically provision and de-provision machines
to minimise the operational costs of processing the streams.

Our work is closely related to three approaches. In [38],
the goal is to allocate resources dynamically from a cloud,
so that the processing rate can match the rate of data
arrival. They also consider variable transient input rates.
Our approach is more general; as such a case corresponds
in our approach to a scenario where the time slack is zero.
Moreover, we make use of a federation of heterogeneous
resources and we propose autonomic based mechanisms
and policies for the selection of resources. In [39], the
authors propose a workflow specification where each job
consists of one or more alternate implementations with
different non-functional properties, so that the system can
choose any of them dynamically at runtime. In this paper,
we have not considered dynamism at workflow-level, but
our dynamic provisioning of resources is accomplished in
a federation of heterogeneous resources. Finally, the work
in [40]-[42] consists of a sequence of nodes, where each
node has multiple data buffers and computational resources
— whose numbers can be adjusted in an elastic way. They
utilize the token bucket model for regulating data injection
rates into such nodes. As before, they do not consider time
slacks. Another important difference to our approach is that
instead of utilizing multiple nodes, we assume CometCloud
system as a coordination mechanism that can outsource the
computation when required.

Finally, the problem of detecting spikes in cloud work-
loads can be beneficial not only for the purpose in this
paper of resetting monitoring average values and start-
ing a new monitored period, but also for making proac-
tive resource management decisions. Indeed, unanticipated
changes in workload characteristics can potentially lead to
service slowdown and might end in service-failure due to
insufficient resource allocation. In [24], the authors investi-
gate methods for detecting spikes in cloud workloads. In
particular, they developed methods that make use of signal
processing techniques. Previous efforts have also been made



on modeling and characterizing workloads and spikes. The
work in [43] presents a detailed workload characterization
study of the 1998 World Cup Web site. In [44], the authors
analyse a number of real workload and data spikes and
from the results they propose and validate a model of
stateful spikes that allow them to synthesize volume and
data spikes, and that can be used for cloud providers.

7 DISCUSSION

The results presented in this paper show the feasibility of
using LL for capacity planning of cloud-like resources for
finite periods of time under non-stationary conditions. We
observed how our controller is able to react upon changes
in the data element input rate of a stream. By making use
of the time slack of each data element (the time that a data
element can spend on a queue before processing), we are
able to guarantee the QoS of a stream, while minimizing the
amount of resources used and hence the operational costs.

We have observed that our controller also has to deal
with certain “inertia” that delays the effect of our control
actions. Such an “inertia” is influenced by two factors: (i)
the effect that average values can have upon variabilities in
the environment (i.e. bursty conditions of A and unexpected
performance of VMs), and (ii) the actual processing time
that, once an action is taken, it delays the effect of the action
on the queue size. In order to mitigate the effects of long run-
ning averages and allow the system to rapidly react upon
changes, we propose to limit the amount of data used to
take operational decisions. Two alternative approaches can
be taken, i.e. either to reset average values upon detecting
variability, hence, the overall execution time is divided in
sub-periods of execution (a sub-period starts when a reset is
the average values is accomplished), or to compute moving
averages. The effect caused by the processing time cannot
be avoided, but if the control period of the controller is
not long enough, it could even lead to an unstable system
that is constantly oscillating, by drastically allocating and
deallocating resources.

From our experiments, we have also observed that the
discretization of our control action (i.e., translating an opti-
mal number of resources to provision or de-provision into
the closest natural numbers space) can lead to suboptimal
solutions. This issue can be addressed by considering het-
erogeneous resources that can be categorized — similar to the
flavours or type of instances we find in cloud infrastructure,
to allow finer grained decisions that lead to a more efficient
use of our resources. Finally, we introduced overheads when
provisioning resources, like the ones typically found in
virtualized clouds. As expected, these overheads caused a
delay between a control action and its observable effect
in the workload of the system. Naturally, the larger the
overheads the larger the amount of time needed for our
control actions to take effect. This is a well-known issue
in resource management and can only be solved by using
predictive techniques that allow us to provision resources
ahead of time.

8 CONCLUSIONS AND FUTURE WORK

The proliferation of geographically distributed sensors has
led to large volumes of data becoming available and to a
great number of applications that need to process such data
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volumes with a number of purposes such as surveillance
and monitoring, smart- traffic management, cities, and en-
ergy management in buildings. Typically, these applications
require that when data elements arrive, they are processed
within a time threshold (deadline specified in their Ser-
vice Level Agreement, SLA). Moreover, the processing may
involve the execution of complex simulations or control
algorithms that are typically computationally intensive and
that are often executed as batch processes.

In this paper, we propose an autonomic queueing
theory-based controller for provisioning computational re-
sources (generally VMs from a cloud laaS) to a number
of such data stream applications. The controller elastically
provisions VMs to meet performance targets associated with
a particular data stream. In particular, when data elements
arrive, they are buffered until there are VMs available. The
controller controls the time data elements are buffered by
(de-)allocating VMs to a data stream. With such actions, it
achieves that data elements spend the maximum time on
the queue, so that, together with the processing time, the
time threshold (deadline) is not violated and the VMs are
minimised. Besides, rather than monitoring waiting times,
as information about waiting time of data elements may
not always be available or may be very difficult to obtain,
the controller makes use of LL to derive waiting times (W)
from queue size (L) and arrival rate (A\). The waiting time
on the queue, however, can vary depending on data bursts
or performance variations during processing. The controller
monitors the input rates and the execution times, peri-
odically computes the target waiting times (queue sizes),
and regulates allocated VMs accordingly to meet SLAs.
We implemented our controller on top of the CometCloud
system in a real federated cloud scenario and validated it
through real executions.

As future work, we expect to consider different types
of resources (e.g., VMs with different performance capabili-
ties), so that the efficiency of the controller is improved. We
are also planning to use some of the strategies mentioned in
the related work to detect changes in the workload.
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