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Abstract 

Within the last years the multiple-input multiple-output 
(MIMO) technology has revolutionized the optical fiber 
community. Theoretically, the concept of MIMO is well 
understood and shows some similarities to wireless MIMO 
systems. The interference in broadband MIMO systems can 
be removed by applying a spatio-temporal vector coding 
(STVC) channel description and using singular value 
decomposition (SVD) in combination with signal pre- and 
post-processing. In this contribution a newly developed SVD 
algorithm for polynomial matrices (PMSVD) is analyzed and 
compared to the commonly used SVD-based STVC. The 
PMSVD is implemented by an iterative polynomial matrix 
eigenvalue decomposition (PEVD) algorithm, namely the 
second order sequential best rotation algorithm (SBR2). The 
bit-error rate (BER) performance is evaluated and optimized 
by applying bit and power allocation schemes. For our 
simulations, the specific impulse responses of the (2 × 2) 
MIMO channel, including a 1.4 km multi-mode fiber and 
optical couplers at both ends, are measured for the operating 
wavelength of 1576 nm. The computer simulation results 
show that the PMSVD could be an alternative signal 
processing approach compared to conventional SVD-based 
MIMO approaches in frequency-selective MIMO channels. 

1 Introduction 

Aiming at further increasing the fiber capacity in optical 
transmission systems, the concept of MIMO, well studied and 
wide-spread in radio transmission systems, has led to 
increased research activities [1,2]. Theoretical investigations 
have shown that similar capacity increases are possible 
compared to wireless systems. The basis for this approach is 
the exploitation of different optical mode groups. MIMO 
systems have become the subject of extensive research as 
MIMO is able to support higher data rates and shows a higher 
reliability than single-input single-output (SISO) systems 
known from wireless MIMO systems. Singular-value 
decomposition (SVD) is well-established in MIMO signal 

processing where the whole MIMO channel is transferred into 
a number of weighted SISO channels. The unequal weighting 
of the SISO channels has led to intensive research on bit- and 
power allocation techniques [3]. The PMSVD is a signal 
processing technique, decomposing the MIMO channel into a 
number of independent frequency-selective SISO channels so 
called layers [4]. The remaining layer-specific interferences 
as a result of the PMSVD-based signal processing can be 
easily removed by further signal processing such as zero-
forcing equalization or maximum likelihood sequence 
estimation. The novelty of our contribution is that we 
demonstrate the benefits of amalgamating a suitable choice of 
MIMO layers activation and number of bits per layer along 
with the appropriate allocation of the transmit power under 
the constraint of a given fixed data throughput.  

The remaining parts of this paper are structured as follows: 
Section 2 introduces the state of the art SVD-based MIMO 
system model. The PMSVD is analyzed in section 3. In 
section 4 the quality criteria and the proposed power 
allocation solutions are discussed. The associated 
performance results are presented and interpreted in section 5. 
Finally, section 6 provides some concluding remarks. 

2 State of the Art 

A frequency-selective MIMO link, composed of 𝑛𝑛! optical 
inputs and 𝑛𝑛! optical outputs is given by  
 

 𝒖𝒖 = 𝑯𝑯 ⋅ 𝒄𝒄 + 𝒏𝒏. (1) 
 

In equation (1), 𝒄𝒄 is the (𝑁𝑁!×1) transmitted data signal vector 
containing the complex input symbols transmitted over 𝑛𝑛! 
optical inputs in 𝐾𝐾 consecutive time slots, i. e., 𝑁𝑁! = 𝐾𝐾 𝑛𝑛!. 
The vector 𝒖𝒖 describes the (𝑁𝑁!×1) received signal vector, of 
the length 𝑁𝑁! = (𝐾𝐾 + 𝐿𝐿!) 𝑛𝑛!, which is extended if compared 
to the transmitted signal vector based on the (𝐿𝐿! + 1) non-
zero elements of the resulting symbol rate sampled overall 
channel impulse response between the 𝜇𝜇th optical input and 
𝜈𝜈th optical output. The (𝑁𝑁!×1) vector 𝒏𝒏 in (1) describes the 
noise term [3] and the (𝑁𝑁!×𝑁𝑁!) system matrix 𝑯𝑯 of the 
block-oriented system model results in  
 

 𝑯𝑯 =
𝑯𝑯! ! … 𝑯𝑯! !!
⋮ ⋱ ⋮

𝑯𝑯!! ! ⋯ 𝑯𝑯!! !!

 (2) 
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and consists of 𝑛𝑛!𝑛𝑛! SISO channel matrices 𝑯𝑯! ! (with 
𝜈𝜈 = 1,… , 𝑛𝑛! and 𝜇𝜇 = 1,… , 𝑛𝑛!) [5]. Each of these matrices 
𝑯𝑯! ! with the dimension ((𝐾𝐾 + 𝐿𝐿!)×𝐾𝐾) describes the 
influence of the channel from the 𝜇𝜇th transmitter to the 𝜈𝜈th 
receiver including transmit and receive filtering. 
 
By using SVD, the system matrix 𝑯𝑯 can be written as 
𝑯𝑯 = 𝑺𝑺 ⋅ 𝑽𝑽 ⋅ 𝑫𝑫!, where 𝑺𝑺 and 𝑫𝑫! are unitary matrices and 𝑽𝑽 is 
a real-valued diagonal matrix of the positive square roots of 
the eigenvalues of the matrix 𝑯𝑯! 𝑯𝑯 sorted in descending 
order. The conjugate transpose (Hermitian) of 𝑫𝑫 is denoted 
by 𝑫𝑫!. In order to remove the interferences, the MIMO data 
vector 𝒄𝒄 is now multiplied by the matrix 𝑫𝑫 before 
transmission. In turn, the receiver multiplies the received 
vector 𝒖𝒖 by the matrix 𝑺𝑺!. Thereby neither the transmit 
power nor the noise power is enhanced given 𝑺𝑺 and 𝑫𝑫 are 
unitary. The overall transmission relationship is defined as  
 

 𝒚𝒚 = 𝑺𝑺! 𝑯𝑯 ⋅ 𝑫𝑫 ⋅ 𝒄𝒄 + 𝒏𝒏 = 𝑽𝑽 ⋅ 𝒄𝒄 + 𝒘𝒘 . (3) 
 

As a consequence of the processing in (3), the channel matrix 
𝑯𝑯 is transformed into independent, non-interfering layers 
having unequal gains. 
 
With the proposed system structures, the SVD-based 
equalization leads to a different number of MIMO layers ℓ𝓁𝓁 
(with ℓ𝓁𝓁 = 1,2,… , 𝐿𝐿) at the time 𝑘𝑘 (with 𝑘𝑘 = 1,2,… ,𝐾𝐾) as 
shown in Figure 1. 
 

 
 

Figure 1. Resulting layer-specific SVD-based broadband 
MIMO system model 

Here it is worth noting that the number of parallel 
transmission layers 𝐿𝐿 at the time-slot 𝑘𝑘 is limited by 
min  ( 𝑛𝑛!, 𝑛𝑛!). The complex-value data symbol 𝑐𝑐ℓ𝓁𝓁,! to be 
transmitted over the layer ℓ𝓁𝓁 at the time 𝑘𝑘 is now weighted by 
the corresponding positive real-valued singular-value 𝜉𝜉ℓ𝓁𝓁,! 
and further disturbed by the additive white Gaussian noise 
term 𝑤𝑤ℓ𝓁𝓁,!. 

3 Polynomial Matrix Factorization 

In contrast to the STVC, the polynomial matrix factorization 
exploits the description of the channel impulse responses in 
the z-domain. Thus, each frequency selective channel impulse 
response ℎ! !(𝑘𝑘) between the 𝜇𝜇th optical input and the 𝜈𝜈th 
optical output of a (𝑛𝑛!×𝑛𝑛!) MIMO system is given by  
 

 ℎ! !(𝑧𝑧) = ℎ! !

!!

!!!

[𝑘𝑘] 𝑧𝑧!! , (4) 

 

where the underscore denotes a polynomial. Grouping these 
impulse responses into the polynomial channel matrix forms 

the broadband MIMO channel and thus it can be described as 
multiple non-polynomial matrices 𝑯𝑯! multiplied with their 
respective delay 𝑧𝑧!! as follows 
 

𝑯𝑯 𝑧𝑧 = 𝑯𝑯!

!!

!!!

 𝑧𝑧!! =
ℎ! ! 𝑧𝑧 ⋯ ℎ! !! 𝑧𝑧
⋮ ⋱ ⋮

ℎ!!  ! 𝑧𝑧 ⋯ ℎ!!  !! 𝑧𝑧
, (5) 

 

where 𝑯𝑯(𝑧𝑧) ∈ ℂ!!×!!. Using this polynomial description in 
the z-domain, a MIMO system is described in analogy to (1) 
by  
 

 𝒖𝒖(𝑧𝑧) = 𝑯𝑯(𝑧𝑧) 𝒄𝒄(𝑧𝑧) + 𝒏𝒏(𝑧𝑧), (6) 
 

where 𝒄𝒄(𝑧𝑧) is the transmit signal vector, 𝒖𝒖(𝑧𝑧) is the receive 
signal vector and 𝒏𝒏(𝑧𝑧) describes the additive white Gaussian 
noise (AWGN) component in polynomial notation.  
 
By calculating the PMSVD the polynomial channel matrix 
𝑯𝑯(𝑧𝑧) can be orthogonalized. Here, an iterative polynomial 
matrix eigenvalue decomposition algorithm is used, namely 
the second-order sequential best rotation (SBR2) algorithm 
[4]. The decomposition of the polynomial channel matrix 
results in 𝑯𝑯(𝑧𝑧) = 𝑺𝑺(𝑧𝑧) 𝑽𝑽(𝑧𝑧) 𝑫𝑫(𝑧𝑧), where (  ⋅  ) denotes the 
para-conjugate operator. The matrices 𝑺𝑺 𝑧𝑧    ∈   ℂ!!×!! and 
𝑫𝑫(𝑧𝑧) ∈ ℂ!!×!!  are para-unitary matrices and 𝑽𝑽(𝑧𝑧) ∈ ℂ!!×!! 
is ideally a diagonal matrix of the form (for 𝑛𝑛! = 𝑛𝑛!) 

 𝑽𝑽(𝑧𝑧) =

𝑣𝑣!(𝑧𝑧) 0 ⋯ 0
0 𝑣𝑣!(𝑧𝑧) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑣𝑣!(𝑧𝑧)

, (7) 

 

where the diagonal polynomial elements at the layer ℓ𝓁𝓁 are 
described by 𝑣𝑣ℓ𝓁𝓁(𝑧𝑧) = 𝑣𝑣ℓ𝓁𝓁,!

!!
!!!  𝑧𝑧!!. In contrast to the 

singular values 𝜉𝜉ℓ𝓁𝓁,! using SVD, the polynomial coefficients 
of 𝑣𝑣ℓ𝓁𝓁(𝑧𝑧) are complex. In analogy to the SVD model, the 
maximal number of activated layers 𝐿𝐿 using PMSVD is given 
by min  { 𝑛𝑛!, 𝑛𝑛!}. To eliminate the interferences, signal pre-
processing at the transmitter and post-processing at the 
receiver has to be applied in analogy to the classical SVD. 
Consequently, the transmit data vector 𝒄𝒄(𝑧𝑧) is multiplied by 
𝑫𝑫(𝑧𝑧) and the receive vector 𝒖𝒖(𝑧𝑧) is multiplied by 𝑺𝑺(𝑧𝑧) such 
that 
 

𝒚𝒚 𝑧𝑧 = 𝑺𝑺 𝑧𝑧   𝑯𝑯 𝑧𝑧  𝑫𝑫 𝑧𝑧  𝒄𝒄 𝑧𝑧 + 𝒏𝒏 𝑧𝑧 . (8) 
 

Analog to (3), the orthogonalized system results in [6] 
 

 𝒚𝒚(𝑧𝑧) = 𝑽𝑽(𝑧𝑧) 𝒄𝒄(𝑧𝑧) + 𝒘𝒘(𝑧𝑧). (9) 
 

The resulting system is described by multiple SISO channels. 
The layer based discrete-time description is expressed as  
 

 𝑦𝑦ℓ𝓁𝓁 𝑘𝑘 = 𝑣𝑣ℓ𝓁𝓁 𝑘𝑘 ∗ 𝑐𝑐ℓ𝓁𝓁 𝑘𝑘 + 𝑤𝑤ℓ𝓁𝓁 𝑘𝑘 . (10) 
 
The parameter 𝐿𝐿! + 1 describes the number of non-zero 
coefficients of the layer-specific impulse responses. The 
layer-specific model is depicted in Figure 2. 
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Figure 2. Resulting layer-specific PMSVD-based broadband 
MIMO system model 
 
Here in each layer the input symbols 𝑐𝑐ℓ𝓁𝓁(𝑘𝑘) are influenced by 
a finite impulse response filter 𝑣𝑣ℓ𝓁𝓁(𝑘𝑘) = (𝑣𝑣ℓ𝓁𝓁,! , 𝑣𝑣ℓ𝓁𝓁,! ,…   , 𝑣𝑣ℓ𝓁𝓁,!!) 
and hence inter symbol interference (ISI) occurs on each 
layer. In order to remove the ISI a corresponding T-spaced 
zero forcing equalizer 𝑓𝑓ℓ𝓁𝓁(𝑘𝑘) is applied to the received signal 
as follows 
 

 𝑧𝑧ℓ𝓁𝓁(𝑘𝑘) = 𝑦𝑦ℓ𝓁𝓁(𝑘𝑘) ∗ 𝑓𝑓ℓ𝓁𝓁(𝑘𝑘). (11) 
 

Accordingly, the equalized receive signal results in  
 

 𝑧𝑧ℓ𝓁𝓁(𝑘𝑘) = 𝑐𝑐ℓ𝓁𝓁(𝑘𝑘) + 𝑤𝑤ℓ𝓁𝓁(𝑘𝑘) ∗ 𝑓𝑓ℓ𝓁𝓁(𝑘𝑘). (12) 
 

The corresponding layer-specific ISI free system model is 
shown in Figure 3. The transmitted symbols are received 
unchanged and the noise 𝑤𝑤ℓ𝓁𝓁(𝑘𝑘) is weighted by the equalizer 
coefficients 𝑓𝑓ℓ𝓁𝓁(𝑘𝑘). The PMSVD-based broadband MIMO 
system model with layer-specific T-spaced equalization is 
entitled as T-PMSVD system model [6]. 
 

 
 

Figure 3. ISI free layer-specific T-PMSVD-based broadband 
MIMO system model 

4 Resource Allocation 

In general the quality criterion for transmission systems can 
be expressed with using the signal to noise ratio (SNR) at the 
detector input as follows  
 

𝜌𝜌 =
(half vertical eye opening)!

Noise Power =
(𝑈𝑈!)!

𝑃𝑃!
, (13) 

 

where 𝑈𝑈! and 𝑃𝑃! correspond to one quadrature component. 
Considering a layer based MIMO system with a given SNR 
𝜌𝜌(ℓ𝓁𝓁,!) for each layer ℓ𝓁𝓁 and time 𝑘𝑘 the bit-error rate (BER) 
probability is given by  

𝑃𝑃!"#
ℓ𝓁𝓁,! =

2
log!𝑀𝑀ℓ𝓁𝓁

  1 −
1
𝑀𝑀ℓ𝓁𝓁

erfc
𝜌𝜌 ℓ𝓁𝓁,!

2
. (14) 

This BER is averaged over all time slots and activated layers 
taking different modulation sizes at each layer into account. 
When considering time-variant channel conditions, rather 
than an additive white Gaussian noise (AWGN) channel, the 
BER can be derived by considering the different transmission 
block SNRs. For quadrature amplitude modulated signals 
(QAM) the average transmit power per layer can be expressed 
as 𝑃𝑃!,ℓ𝓁𝓁 = 2/3  𝑈𝑈!,ℓ𝓁𝓁!  (𝑀𝑀ℓ𝓁𝓁 − 1). Intuitively the total available 
transmit power 𝑃𝑃! is equally split between the 𝐿𝐿 activated 
layers, and hence the layer-specific transmit power is given 
by 𝑃𝑃!,ℓ𝓁𝓁 = 𝑃𝑃!/𝐿𝐿, influencing the half-level transmit amplitude 
𝑈𝑈!,ℓ𝓁𝓁 for each MIMO. 

4.1 SVD-based Resource Allocation 

Considering the SVD layer model, the noise power is 
unchanged at the receiver. However, the half vertical eye 
openings 𝑈𝑈! at each time slot 𝑘𝑘 and layer ℓ𝓁𝓁 are influenced by 
the singular values so that 𝑈𝑈!

(ℓ𝓁𝓁,!) = 𝜉𝜉ℓ𝓁𝓁,!  𝑈𝑈!,ℓ𝓁𝓁 holds and the 
corresponding SNR values are given by 
 

𝜌𝜌!"#
(ℓ𝓁𝓁,!) =

𝜉𝜉ℓ𝓁𝓁,!  𝑈𝑈!,ℓ𝓁𝓁!

𝑃𝑃!
=

3 𝜉𝜉ℓ𝓁𝓁,!
𝐿𝐿 (𝑀𝑀ℓ𝓁𝓁 − 1)

 
𝐸𝐸!
𝑁𝑁!
  , (15) 

 

with 𝐸𝐸! being the transmit symbol energy and the parameter 
𝑁𝑁! is describing the noise power spectral density. The overall 
bit-error rate of the uncoded MIMO system is largely 
determined by the layer with the highest BER. In order to 
balance the bit-error rates on all layers, the mean of choice is 
to equalize the SNR values 𝜌𝜌!"#

(ℓ𝓁𝓁,!) over all layers. This is 
clearly not the optimal solution for minimizing the overall 
BER but it is easy to implement and not far away from the 
optimum as shown in [3]. Therefore, the half-level transmit 
amplitude 𝑈𝑈!,ℓ𝓁𝓁 is adjusted on each layer by multiplying it with 
𝑝𝑝ℓ𝓁𝓁,! in order to apply the power allocation (PA) scheme. 

Consequently, the half vertical eye opening of the received 
symbols becomes  
 

 𝑈𝑈!,!"
(ℓ𝓁𝓁,!) = 𝑝𝑝ℓ𝓁𝓁,!   𝜉𝜉ℓ𝓁𝓁,!  𝑈𝑈!,ℓ𝓁𝓁. (16) 

 

With this adjustment the SNR values result in  
 

 𝜌𝜌!"
(ℓ𝓁𝓁,!) = 𝑝𝑝ℓ𝓁𝓁,!  𝜌𝜌!"#

(ℓ𝓁𝓁,!). (17) 
 

The overall transmit power after PA needs to be the same as 
without PA and thus 
 

 𝑃𝑃! = 𝑝𝑝ℓ𝓁𝓁,!

!

ℓ𝓁𝓁!!

⋅ 𝑃𝑃!,ℓ𝓁𝓁 =
𝑃𝑃!
𝐿𝐿
  𝑝𝑝ℓ𝓁𝓁,!

!

ℓ𝓁𝓁!!

  ∀𝑘𝑘, (18) 

 

has to be guaranteed. By combining these two requirements 
the PA factors 𝑝𝑝ℓ𝓁𝓁,! for SVD-based systems can be calculated 
as follows [3] 
 

𝑝𝑝ℓ𝓁𝓁,!
(!"#) =

(𝑀𝑀ℓ𝓁𝓁 − 1)
𝜉𝜉ℓ𝓁𝓁,!

 
𝐿𝐿
(𝑀𝑀! − 1)
𝜉𝜉!,!

!
!!!

  . (19) 

 

Using the equal-SNR criterion nearly the same BER can be 
obtained on all activated layers. The only difference between 
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the optimum PA and the proposed equal SNR PA is the 
consideration of the factor 2/(log!𝑀𝑀ℓ𝓁𝓁) ⋅ 1 − 1/ 𝑀𝑀ℓ𝓁𝓁  by the 
optimum PA. However, their influence, introduced by the 
layer-specific QAM constellation sizes, is far too small to 
generate remarkable differences in the performance [3].  
 
In the SVD-based model the singular values are varying for 
each time slot. Therefore, an additional optimization is 
applicable by not only equalizing the SNRs for all layers at a 
given time slot but also by averaging over the number of 
time-slots per block. Considering the total available transmit 
power, the condition 
 

 𝐾𝐾 ⋅ 𝐿𝐿 = 𝑝𝑝ℓ𝓁𝓁,!

!

!!!

!

ℓ𝓁𝓁!!

 (20) 

 

needs to be respected. As a result, the power allocation factors 
for layer and time-based PA in SVD systems can be 
calculated as follows 
 

 𝑝𝑝ℓ𝓁𝓁,!
(!"#) =

(𝑀𝑀ℓ𝓁𝓁 − 1)
𝜉𝜉ℓ𝓁𝓁,!

 
𝐾𝐾 ⋅ 𝐿𝐿

(𝑀𝑀! − 1)
𝜉𝜉!,!

!
!!!

!
!!!

 (21) 

 

and guarantee the above mentioned equal-SNR scenario for 
all activated layers and time slot per transmitted block. An 
illustration of the resulting SNRs of the proposed PA schemes 
for SVD systems is depicted in Fig. 4. 
 

 
 

Figure 4. Illustration of the remaining SNRs in SVD systems 
without applying PA (left), with layer-based PA (center) and 
with combined layer and time PA (right). The color black 
refers to high and white to low SNR values 
 
As mentioned before, by using SVD-based block transmission 
the achievable SNR depends on the layer specific weighting 
factors as well as the chosen QAM constellation size. 
Whereas the layer-specific PA tries to balance the SNR at a 
given time-slot, the combined layer and time-based PA 
approach guaranties the same SNR on all activated layers and 
time-slots per transmitted block. 

4.2 T-PMSVD-based Resource Allocation 

By applying T-PMSVD the ISI is fully removed by the 
equalizer and thus for each layer the half vertical eye opening 
𝑈𝑈!,ℓ𝓁𝓁 of the receive signal equals the half-level amplitude of 
the transmitted symbol 𝑈𝑈!,ℓ𝓁𝓁. The drawback of the T-PMSVD 
is that the noise and hence the noise power is weighted 
differently on each layer by the equalizer coefficients 
expressed by the factor 𝜃𝜃ℓ𝓁𝓁 so that the noise power on each 
layer results in  
 

𝑃𝑃!,ℓ𝓁𝓁 = 𝜃𝜃ℓ𝓁𝓁 𝑃𝑃!, where      𝜃𝜃ℓ𝓁𝓁 = |
∀!

𝑓𝑓ℓ𝓁𝓁,!|!. (22) 
 

Therefore, the SNR values are resulting in 
 

𝜌𝜌!!!"#$%
(ℓ𝓁𝓁) =

𝑈𝑈!,ℓ𝓁𝓁!

𝜃𝜃ℓ𝓁𝓁 𝑃𝑃!
=

3
𝜃𝜃ℓ𝓁𝓁 𝐿𝐿 (𝑀𝑀ℓ𝓁𝓁 − 1)

 
𝐸𝐸!
𝑁𝑁!
  . (23) 

 

Equalizing the SNRs on all layers is achieved by varying the 
half-level transmit amplitude with the PA factor, where the 
factor is calculated as follows 
 

𝑝𝑝ℓ𝓁𝓁
(!!!"#$%) = 𝜃𝜃ℓ𝓁𝓁   𝑀𝑀ℓ𝓁𝓁 − 1  

𝐿𝐿
𝜃𝜃!!

!!!  (𝑀𝑀! − 1)
 (24) 

 

and equals the beforehand mentioned combined layer and 
time PA SVD-based equal-SNR approach. The resulting 
SNRs for the proposed PA scheme in T-PMSVD systems are 
visualized in Fig. 5. 
 

 
 
Figure 5. Illustration of the remaining SNRs in T-PMSVD 
systems without applying PA (left) and with layer-based PA 
(right). The color black refers to high and white to low SNR 
values 

5 Results 

In this work, the BER quality is studied by using fixed 
transmission modes with a spectral efficiency of 8 bit/s/Hz. 
The analyzed QAM constellations, equivalent to how many 
bits are allocated to each layer, are shown in Table 1. 
 

throughput layer 1 layer 2 
8 bit/s/Hz 256 0 
8 bit/s/Hz 64 4 
8 bit/s/Hz 16 16 

 
Table 1: Transmission constellations 

 
To analyze the T-PMSVD, a time-invariant (2×2) MIMO 
system is investigated. The polynomial channel matrix is 
chosen as  
 

𝑯𝑯 𝑧𝑧 = 𝑯𝑯! + 𝑯𝑯! 𝑧𝑧!!      with     𝑯𝑯! =
4
5
  1 0.6
0.5 0.8  (25) 

 

and 𝑯𝑯! = 𝑯𝑯!/2. The factor 4/5 is taken to guarantee that the 
channel is not amplifying in any power allocation situation. 
The calculated BER results as a function of the symbol 
energy to the noise power spectral density 𝐸𝐸!/𝑁𝑁! are depicted 
in Figure 6 and 7. 
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Figure 6. BER with layer and time-based PA (dashed line), 
with layer-specific PA (dotted line) and without PA (solid 
line) applying SVD-based equalization when transmitting 
over the time-invariant (2×2) MIMO channel 
 

 
 

Figure 7. BER with PA (dotted line) and without PA (solid 
line) applying T-PMSVD equalization when transmitting over 
the time-invariant (2×2) MIMO channel 
 
Here the (64,4) QAM transmission mode shows the best 
results. The benefits of using the layer-based equal SNR PA 
are visible. For SVD systems further improvements in the 
resulting BER can be obtained by applying combined layer 
and time-based PA.  
 
A direct comparison of the different transmission schemes is 
shown in Fig. 8, where the SVD based equalization with layer 
and time dependent PA performs slightly better than T-
PMSVD results with layer-based power allocation. However, 
the performance of T-PMSVD can be significantly increased 
by using an optimal detector such as a maximum-likelihood-
sequence estimator, entitled as V-PMSVD. Here the available 
transmit power is equally split between the activated layers 
and the question of an optimized PA scheme remains as an 
open point for further studies. 

 
 

Figure 8. BER comparing different MIMO equalization 
techniques combined with different power allocation 
strategies transmitting with the (64,4) QAM scheme over the 
time-invariant (2×2) MIMO channel 
 
Spatial multiplexing in the optical domain can be realized by 
transferring multiple modulated light signals over different 
optical mode groups through a single multi-mode fiber 
(MMF) [1,7]. The excitation of different optical mode groups 
can be carried out by varying the light launch eccentricity. 
However, launching two different light sources into a single 
MMF with the desired eccentricities is practically complex at 
the present time. In this work fusion couplers are used for 
mode combining and splitting [7]. In order to apply MIMO 
the specific impulse responses need to be estimated. Here, the 
measurement results within a 1.4 km (2×2) optical MIMO 
channel at an operating wavelength of 1576 nm have been 
used [6]. 
 
The corresponding BER results are depicted in Figure 9 and 
10 for the different QAM constellation sizes. The (256,0) 
transmission scheme shows the best results.  
 

 

Figure 9. BER with layer and time-based PA (dashed line), 
with layer-specific PA (dotted line) and without PA (solid 
line) applying SVD-based equalization when transmitting 
over the optical (2×2) MIMO channel 
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Figure 10. BER with PA (dotted line) and without PA (solid 
line) applying T-PMSVD equalization when transmitting over 
the measured 1.4 km optical (2×2) MIMO channel at an 
operating wavelength of 1576 nm 
 
Comparing the power allocation schemes shows that PA is 
again helpful when minimizing the overall BER. Moreover, 
by applying the combined layer and time-based PA, the BER 
performance increases significantly. 
 
A direct comparison depicted in Figure 11 shows that SVD 
with combined layer and time-based PA performs similar to 
T-PMSVD equalization with PA. Transmitting with a 
bandwidth efficiency of 8 bit/s/Hz and considering the used 
symbol-frequency of 𝑓𝑓! = 1/𝑇𝑇! = 620.347 MHz, a bit-rate 
of approximately 5 Gbps is obtained.  
 

 
Figure 11. BER comparing different MIMO equalization 
techniques combined with different power allocation 
strategies transmitting with the (256,0) QAM scheme over the 
optical (2×2) MIMO channel 

6 Conclusions 

In this paper broadband MIMO systems have been described 
using polynomial matrix factorization. In order to remove the 
MIMO channel interference a singular value decomposition 

algorithm for polynomial matrices (PMSVD) including layer-
specific T-spaced equalization for eliminating the remaining 
inter symbol interference has been studied. This T-PMSVD 
technique has been compared in terms of the bit-error rate 
performance with the well-known spatio-temporal vector 
coding description applying SVD equalization. For both 
equalization types bit loading schemes have been combined 
with equal SNR power allocation in order to optimize the 
BER performance. The equal SNR criterion for power 
allocation seems to be a good sub-optimum solution for 
improving the channel performance. Furthermore, the bit and 
power loading analogies between both equalization types 
have been shown. The investigated channels show that the 
optimal QAM transmission mode largely depends upon the 
used channel type and that the activation of all transmission 
layers does not necessarily lead to the best performance. 
Here, PMSVD systems show to be an alternative to SVD-
based systems. 
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