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Abstract 

Cross-frequency coupling (CFC) is thought to represent a basic mechanism of 

functional integration of neural networks across distant brain regions. In this study, 

we analyzed CFC profiles from resting state Magnetoencephalographic (MEG) 

recordings obtained from 30 mild traumatic brain injury (mTBI) patients and 50 

controls. We used mutual information (MI) to quantify the phase-to-amplitude 

coupling (PAC) of activity among the recording sensors in six nonoverlapping 

frequency bands. After forming the CFC-based functional connectivity graphs, we 

employed a tensor representation and tensor subspace analysis to identify the 

optimal set of features for subject classification as mTBI or control.  Our results 

showed that controls formed a dense network of stronger local and global 

connections indicating higher functional integration compared to mTBI patients. 

Furthermore, mTBI patients could be separated from controls with more than 90% 

classification accuracy. These findings indicate that analysis of brain networks 

computed from resting-state MEG with PAC and tensorial representation of 

connectivity profiles may provide a valuable biomarker for the diagnosis of mTBI. 

 

Keywords: Magnetoencephalography (MEG); mild traumatic brain injury; cross-

frequency coupling, tensors 
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1. Introduction 

 

Mild traumatic brain injury (mTBI) is the most common cause of brain insult. 

Typically, patients experience an initial brief change in mental state or consciousness 

that is followed by post-concussion symptoms (PCS) (Cassidy et al., 2004), such as 

headaches, fatigue, and dizziness, which usually emerge on the day of injury and 

persist for at least the first few days thereafter (Boccaletti et al., 2006). In most 

patients, cognition recovers and PCS resolve within three months. However, up to 

25% of patients (Sigurdardottir et al., 2009) suffer residual PCS, long-term 

impairment, and sometimes disability (Levin, 2009), so that efficient identification of 

alterations due to mTBI becomes particularly important. Several cognitive functions 

are affected by mTBI, including attention (De Monte et al., 2006; Vanderploeg et al., 

2005) working memory (Vanderploeg et al., 2005), episodic memory (Tsirka et al., 

2011), verbal learning (De Monte et al., 2006; Ruff et al., 1989), and visual memory 

(Levin et al., 1987; Raskin, 2000; Ruff et al., 1989). 

Conventional neuroimaging techniques, such as acute magnetic source 

imaging (MRI) and computed tomography (CT), have limited sensitivity in detecting 

physiological alterations caused by mTBI (Bigler and Orrison, 2004; Johnston et al., 

2001; Kirkwood et al., 2006). Magnetoencephalography (MEG) on the other hand, is 

a noninvasive functional imaging technique that measures directly neuronal currents 

in gray matter with extraordinary (< 1 ms) temporal resolution and excellent (2–

3 mm) spatial localization accuracy (Leahy et al., 1998). Consequently, during the 

past several years, numerous studies have attempted to develop reliable biomarkers 

of mTBI based on MEG (see reviews by Jeter et al., 2013, and Huang et al., 2009, 

2014). Of particular interest is the analysis of resting-state MEG activity either alone 

(Luo et al., 2013, Zouridakis et al., 2012; Dimitriadis et al., 2015; Li et al., 2015) or 

combined with diffusion tensor imaging (DTI) MRI (Huang et al., 2014). 

Recent approaches to study brain function view the brain as an intricate 

network of complex systems with abundant interactions between local and distant 

areas, having the capacity to combine local specialization (segregation) with global 

integration (Tononi et al., 1994; Tognoli and Kelso, 2014). Fluctuations of 

spontaneous activity are strongly synchronized among spatially distributed neuronal 
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subsystems (Contreras and Steriade, 1997; Destexhe et al., 1999), suggesting that 

processing of stimuli is influenced by the dynamics of coherently active networks. 

These spatiotemporal patterns involve not only low-frequency activity within the δ 

(1-4 Ηz) band or below (Contreras and Steriade, 1997; Destexhe et al., 1999), but 

also higher frequencies in the θ (4–8 Hz), α (8–12 Hz), β (13–30 Hz), and γ (>30 Hz) 

ranges (Steriade et al., 1996 a, b; Destexhe et al., 1999). Oscillations in these 

frequency bands are known to be involved in a variety of cognitive processes (Engel 

and Fries, 2010; Siegel et al., 2012). 

One approach to understanding the dynamic nature of connections between 

local and distant neural assemblies is the analysis of functional and effective 

connectivity (Friston et al., 1994): the former captures patterns of statistical 

dependence, whereas the latter attempts to extract networks of causal influences of 

one physiological time series over another (Aertsen et al., 1989). Several studies 

have demonstrated changes in functional connectivity patterns after brain tumor 

resection (Douw et al., 2008), recovery from stroke (Gerloff et al., 2006), and 

traumatic brain injury (Castellanos et al., 2010; Zouridakis et al., 2012) suggesting 

that functional connectivity graphs (FCGs) of brain activity are sensitive to changes 

due to brain insult. 

The MEG is a complex signal containing different interacting frequency 

components. Power spectrum analysis based on the Fourier, wavelet, or Gabor 

transform can uncover amplitude modulations within the above-defined frequencies 

across time. Intrinsic coupling modes (ICMs) in ongoing activity are thought to reflect 

the action of two different coupling mechanisms (Engel et al., 2001): one that arises 

from phase coupling of band-limited oscillatory signals, and another one that results 

from coupled aperiodic fluctuations of signal envelopes. When studying ICMs, apart 

from exploring the relationship between same frequency signals, it is highly 

interesting to also quantify functional relationships between signals of different 

frequencies (Jensen and Colgin, 2007; Palva and Palva, 2011; Jirsa and Muller, 2013; 

Dimitriadis et al., 2014), as this cross-frequency coupling (CFC) has been 

hypothesized to represent the mechanism of interaction between local and global 

processes and therefore it is directly related to the integration of distributed 

information.  
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Recently, different forms of cross-frequency interactions were described 

(Jensen and Colgin, 2007), namely power-to-power, phase-to-phase, phase-to-

frequency, and phase-to-power. There is ample evidence that the last type of CFC, 

also called phase-amplitude modulation, occurs very often in both animals and 

humans in the prefrontal cortices, the hippocampus, and other distributed cortical 

areas (Osipova et al., 2008; Tort et al., 2008, 2009, 2010; Cohen et al., 2009a, b; 

Colgin et al., 2009; Axmacher et al., 2010a, b; Voytek et al., 2010). 

Only a few MEG studies have considered CFC interactions at rest or during 

execution of active tasks. An early study (Osipova et al., 2008) reported that γ power 

was phase-locked to α activity over occipital brain regions at rest with eyes closed 

(EC). Interestingly, there was no peak in the gamma activity estimated by Fourier 

transform, but a clear peak was evident only when studied in relation to the alpha 

phase. In another MEG study (Palva et al., 2005), cross-frequency of phase synchrony 

was identified as the main communication mechanism between frequencies from 3 

to 80 Hz. In particular, enhanced CFC phase synchrony was revealed among the α, β, 

and γ frequency bands during a continuous mental arithmetic task. This 

enhancement of CFC phase synchrony could be attributed to the integration needed 

among different brain areas activated during the task that were synchronized in the 

dominant frequency (Palva et al., 2005). 

Human brain can be divided into distinct and spatially distributed functional 

networks (Eierud, et al., 2014). These brain networks exist at a range of spatial scales 

extended from microscopic neuronal networks of individual neurons and local 

synaptic interactions, to large-scale networks of brain areas interconnected by large 

white matter tracts. In the present study, we focus on how large-scale intrinsic 

connectivity networks (ICNs) change due to mild traumatic brain injury, considering 

that interactions between large-scale brain networks are significant for high-level 

cognitive functions, such as memory and attention (Mesulam, 1998). Moreover, 

neuroimaging techniques, including electroencephalography - EEG, MEG, fMRI, and 

DTI, have recently enabled investigation of these networks in clinical populations (for 

a review see Eierud, et al., 2014). ICNs are composed of brain regions that are 

characterized by temporally coordinated activity (Beckmann et al., 2005; Smith et al., 

2009). The functional architecture of these networks possibly reflects the underlying 
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structural brain connectivity, since brain areas strongly connected via white-matter 

tracts are likely to present strong functional connections. This linkage supports the 

assumption that ICN function is vulnerable to the effects of mTBI, considering that 

diffuse axonal injury (DAI) usually damages long-distance white-matter tracts that 

connect key brain areas (known as hubs) in these networks (Smith et al., 2003; 

Gentleman et al., 1995). 

ICN abnormalities after TBI have been widely observed in resting-state fMRI, 

demonstrating both increase and decrease of connectivity in a number of networks, 

including the default mode network (DMN) and salience network (SN) (Sharp et al., 

2011; Stevens et al., 2012). Several studies have also reported that these 

abnormalities correlate with cognitive impairment or post-concussive symptoms 

(Messe et al., 2013; Caeyenberghs et al., 2014). Recent studies based on EEG and 

MEG, which provide higher temporal resolution than fMRI, have further 

demonstrated disrupted functional connectivity related to TBI for different types of 

injury severity (Castellanos et al., 2010; Tarapore et al., 2013; Dimitriadis et al., 

2015). 

Based on the aforementioned evidence from previous studies, we investigate 

the assumption that exploring ICMs in terms of cross-frequency coupling can provide 

better understanding of how mTBI alters the integration of information exchange at 

resting-state networks. Such alterations of oscillations, referred to as 

“oscillopathies” or “dysrhythmias,” could reflect malfunctioning and disruption of 

brain networks in mTBI subjects. Thus, they could assist in defining alternative or 

complementary connectomic biomarkers (Buzsáki and Watson, 2012). 

In the present study, we demonstrate how the phase of low frequency 

spontaneous MEG activity modulates higher frequency activity in mTBI subjects 

(Florin and Bairrat, 2015). Then, by adopting a phase-to-amplitude coupling (PAC) 

estimator to quantify CFC between pairs of frequencies, we construct cross-

frequency FCGs in mTBI patients and controls. We hypothesize that PAC at rest can 

capture intrinsic network interactions that play a crucial role in information 

exchange and integration. Finally, we examine the proposition that mTBI can affect 

functional integration, mainly the communication between different cell assemblies 
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that function on a prominent frequency, and these functional changes of intrinsic 

networks can be captured by CFC. 

The remainder of this paper is structured as follows: the next section, 

Methods, describes the study participants and the MEG recording procedures, the 

preprocessing steps for artifact detection and elimination, the dimensionality 

reduction algorithm, and the various classification schemes applied on the filtered 

FCGs. Furthermore, several methods for comparing the CFC pairs between the two 

groups are discussed. The following section, Results, presents the performance of 

each classification scheme on the current dataset and examines the differences 

between the two groups as potential biomarkers. The final section, Discussion, 

summarizes our findings, provides concluding remarks about the CFC metric and its 

potential use as a biomarker for mTBI, and suggests future analysis directions. 

 

 

2. Methods 

 

Our study employs network analysis of filtered directed graphs that are 

constructed from interacting networks that are coupled at specific frequency pairs 

and quantify local and global connection density in both subject groups. Cross-

frequency coupling (CFC) is thought to represent a basic mechanism of functional 

integration of neural networks across distant brain regions. In the present study, we 

measure the basic type of CFC called phase-to-amplitude (PAC). After the 

classification scheme which is used for maintaining only those frequency couples 

with high accuracy of classification, we first formed FCGs based on PAC measure 

which then be explored for topological differences between the two groups and for 

their community profile.  

An important step to understand topological differences is to first estimate a 

basic network structure with global (functional integration) and local (functional 

segregation) efficiency at both network and sensor levels, and then detect consistent 

group-functional clusters (Rubinov and Sporns, 2010). CFC is a key mechanism of 

brain functionality with which two distant brain areas oscillating at their prominent 

frequency can communicate straightforward and quickly. To further understand how 
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changes of decreased local CFC correlate with possible underlying lesioned areas and 

if these changes represent the effects of a particular main injury site or global 

effects, whereby the entire brain sustained injury, we calculate patterns of intra-

hemispheric CFC asymmetry and anterior-posterior anisotropy.  Previous studies 

showed a reduction in frontal and hemispheric asymmetry in TBI patients using PET 

(Reuter-Lorenz et al., 2000; Levine et al., 2002). We demonstrate group differences 

related to the lateralization of functional strength over a hemisphere and examine 

the predominance of functional strength anteriorly or posteriorly. 

 

2.1. Subjects and recording procedure  

 

The present study is part of a larger mTBI project (Levin, 2009) supported by 

the Department of Defense (DoD). MTBI was defined using the guidelines of DoD 

(Assistant Secretary, 2007) and the American Congress of Rehabilitation Medicine 

(Kay et al., 1993). The project was approved by the Institutional Review Boards (IRBs) 

at the participating institutions and the Human Research Protection Official’s review 

of research protocols for DoD. All procedures were compliant with the Health 

Insurance Portability and Accountability Act (HIPAA). 

Thirty right-handed mTBI patients (29.3 ± 9.2 years of age) were recruited 

from three trauma centers in the greater Houston metropolitan area that 

participated in the larger study (Levin, 2009). The Galveston Orientation and 

Amnesia Test (GOAT) (Levin et al., 1979) was administered prior to obtaining 

informed consent to identify cognitive impairment that would preclude provision of 

informed consent. Inclusion criteria required the presence of a head injury occurring 

within the preceding 24 hours, Glasgow Coma Scale (GCS, Teasdale & Jennett, 1974) 

score 13-15, loss of consciousness <30 minutes including 0 minutes, post-traumatic 

amnesia <24 hours including 0 minutes, and a negative head CT scan. Exclusion 

criteria included a score on the Abbreviated Injury Scale (AIS) >3 for any body part, 

previous head injury requiring hospitalization, history of significant pre-existing 

disease, such as psychotic disorder, bipolar disorder, post-traumatic stress disorder 

(PTSD), past treatment for alcohol dependence or substance abuse, blood alcohol 

level >80 mg/dL at the time of consent, documentation of intoxication, left-
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handedness, and contraindications for MRI, including claustrophobia and pregnancy. 

Details about subject demographics are shown in supplementary material. 

The control group included fifty right-handed age- and gender-matched 

control subjects (29.2 ± 9.1 years of age) drawn from a normative data repository at 

UTHSC-Houston. Previous head injury, history of neurologic or psychiatric disorder, 

substance abuse, and extensive dental work and implants incompatible with MEG 

were exclusion criteria for the control subjects. The research protocol received 

institutional approval prior to the study. 

Subjects were asked to lie on a bed as still as possible with eyes closed. 

Approximately 5 minutes of resting-state MEG activity was recorded from each 

subject using a 248-channel whole-head Magnes WH3600 system (4D Neuroimaging 

Inc., San Diego, CA). Data were collected at a sampling rate of 1017.25 Hz and 

bandpass filtered in hardware between 0.1–200 Hz. Axial gradiometer recordings 

were transformed to planar gradiometer field approximations using the sincos 

method implemented in Fieldtrip (Oostenveld et al., 2011). 

 

2.2. Data Preprocessing 

 

The MEG data underwent artifact reduction using Matlab (The MathWorks, 

Inc., Natick, MA, USA) and Fieldtrip (Oostenveld et al., 2011). Filtering with a notch 

filter at 60 Hz was used to reduce the effects of line noise and it was followed by 

independent component analysis (ICA) to separate cerebral from non-cerebral 

activity using the extended Infomax algorithm as implemented in EEGLAB (Delorme 

and Makeig, 2004). The data were also whitened and reduced in dimensionality 

using principal component analysis with a threshold set to 95% of the total variance 

(Delorme and Makeig, 2004; Escudero et al., 2011; Antonakakis et al., 2013). The 

statistical values of kurtosis, Rényi entropy, and skewness of each independent 

component were used to eliminate ocular and cardiac artifacts. A component was 

considered an artifact if more than 20% of its values after normalization to zero 

mean and unit variance were outside the range [-2, +2] (Escudero et al., 2011; 

Dimitriadis et al., 2013b; Antonakakis et al., 2013). 
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2.3 Estimation of Amplitude-to-Phase Coupling 

 

We explored cross-frequency interactions using phase-to-amplitude coupling 

(PAC), whereby the phase of a low-frequency rhythm modulated the amplitude of a 

higher-frequency oscillation (Tort et al., 2008). PAC was calculated between sensors 

,  (  of a multidimensional array of time series  using mutual 

information (MI), a nonlinear metric that measures the interdependence of the two 

time series  and . The MI concept stems from information theory and offers 

several advantages: it is sensitive to any type of dependence between the time 

series including nonlinear relations and generalized synchronization; it is relatively 

robust to outliers, and it is measured in bits, a physically meaningful unit. 

Initially, data from all sensors were filtered in several frequency bands, 

namely δ (0.5 – 4Hz), θ (4 – 8Ηz), α (8-15Ηz), β (15 – 30 Ηz), γ1 (30 – 45Ηz), and γ2 (45 

– 80Hz). Then, to compute the PAC values we used the Hilbert Transform (HT) to 

estimate the phase ( ) and amplitude ( ) of every filtered time series , 

separately in each frequency band using 

 

 

and 

 

 

where  and  are the imaginary and real part of , 

respectively. We then applied a band-pass filter to  using the same filter 

parameters used to extract , giving a new time series, . A second Hilbert 

transform was then used to extract the phases of the -filtered  amplitude 

envelope ) (Voytek et al., 2010).  
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According to the above, the mathematical definition of MI for the estimation 

of PAC between the phase of low frequency ,  and the amplitude of the high 

frequency  between two sensors , is given by 

 

 

 

where , and is the joint probability distribution 

function of  and , respectively, and ,  are 

the marginal probability distribution functions of  and Y, respectively (Tsiaras et al., 

2011). 

 

2.4 Elements of Graph Theory 

 

2.4.1 Topological properties of the underlying brain networks 

 

The FCGs could be characterized based on the well-known topological 

metrics of global and local efficiency, established for weighted graphs and defined 

below, with  representing the total number of nodes in the network,  the total 

number of edges, and  the weights between nodes.  

Global efficiency (GE) for a network  of  nodes is the inverse of the 

harmonic mean of the shortest path length between each pair of nodes and reflects 

the overall efficiency of parallel information transfer in the network (Achard and 

Bullmore, 2007; Latora and Marchiori, 2001). 

 

Local efficiency (LE) is understood as a measure of fault tolerance of the 

network, since it indicates how well the subgraphs exchange information when a 
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particular node is eliminated (Achard and Bullmore, 2007). Specifically, each node is 

assigned the shortest path length within its subgraph  

 

where  corresponds to the total number of spatial (first level) neighbors of the -th  

node, while d denotes the shortest path length. 

 

2.4.2 Significant links 

 

The aforementioned procedures result in a matrix of PAC values between the 

time series on all possible pairs of sensors that is modeled as a fully connected, 

directed, weighted, and symmetric FCG, representing causal influences among all 

cortical regions. The maximum number of possible directed connections N in a 

network with k=248 nodes is k2=61504, and the FCG is extremely dense. Therefore, 

the FCG connections must be filtered out so that the pattern with the most 

significant connections can emerge. We performed a topological filtering based on 

graph theory principles and data-driven thresholding. 

Topological filtering relies on graph-based analysis (Bullmore and Sporns, 

2009; Bassett et al., 2009; He and Evans, 2010; Stam, 2010; Dimitriadis et al., 2014), 

which is used to capture the structure of the neural system under investigation and 

the relationship between separation and integration of neural populations. Small-

word structures are characterized by a dense network of local connections and a 

limited number of long-range connections that provide efficient communication 

between distant nodes. Efficiency in information transmission between nodes is 

measured as the inverse of the shortest distance between the nodes, while the 

average of all pair-wise efficiencies represents the global efficiency of the graph. The 

function cost relates to the energy expenditure needed for a network to maintain its 

efficiency, and it is given by the ratio of existing connections divided by the total 

number of possible pairwise connections in a network.  
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Global cost efficiency is defined as the global efficiency GE at a given cost   

minus C the cost (GE-C), which typically has a positive maximum value at some cost 

, for an economical small-world network. Importantly, this metric of network 

topology is independent of arbitrary, investigator-specified thresholds. Instead, the 

cost efficiency curve is estimated over a wide range of thresholds, and the behavior 

of the curve is summarized by its maximum value, which occurs at a data driven 

connection density or cost C (Bassett et al., 2009, Dimitriadis et al., 2015). The 

described steps are showed the supplementary material.  

 

2.5 Classification of FCG Patterns 

 

The values of the PAC matrices are considered features in a high-dimensional 

space that can be used to classify the FCGs obtained from individual subjects. In 

most studies, however, FCGs are treated as vectors in a high-dimensional space (e.g. 

Shen et al., 2010; Pollolini et al., 2010; Richiardi et al., 2011), an approach that 

disregards the inherent tabular representation of FCGs and their nature as second-

order tensors. To overcome this limitation, we treat FCGs as tensors and resort to 

tensor subspace analysis (TSA) for appropriate feature extraction (He and Cai, 2005). 

In our formulation, the tensor form was given as (subjects x sensors x sensors) 

(Dimitriadis et al., 2013a; 2014). 

The TSA procedure blends multi-linear algebra and manifold data learning. 

Given some FCGs sampled from the space of functional connectivity patterns, the 

TSA approximation is modeled by first building an adjacency graph capturing the 

proximity relationships among the connectivity patterns and then deriving a tensor 

subspace that faithfully represents these relationships. TSA provides an optimal 

linear approximation to the FCG manifold. The entire TSA procedure is described in 

the supplementary material. 

 

2.5.1 Learning machines for classification 
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Classification of FCGs from individual subjects starts by computing the TSA 

representation and is followed by comparison with FCGs of known label. In our 

study, we used the -NN algorithm and the Frobenius norm (Horn and Johnson, 

1990) as measure of similarity. Apart from this classification scheme, indicated as 

“TSA+ -NN”, we also employed TSA with ensemble classification (“TSA+ENS”) and 

TSA with extreme learning machine (ELM) classification (“TSA+ELM”). The 

description of the “TSA+ENS” and “TSA+ELM” schemes is given in the supplementary 

material. 

To evaluate the performance of our strategy, a cross-validation scheme was 

followed. The entire set of individual FCGs (control and mTBI) was randomly 

partitioned into two subsets, a training set (the database of FCGs of known class) 

corresponding to 80% of the subjects (45 controls and 27 mTBI patients) and a test 

set (subjects for which the class had to be predicted) corresponding to the remaining 

20% of the subjects (5 controls and 3 mTBI patients). As a measure of performance 

we used the correct recognition rate (CC%) calculated as the proportion of subjects 

in the test set for which the correct label was predicted. The cross-validation scheme 

was repeated 100 times and the mean value and standard deviation of the overall 

performance, sensitivity, and specificity were estimated. 

 

2.6 Statistical and Spatial Differences in Network Metrics  

 

2.6.1 Statistical Analysis 

 

Statistical analysis was performed on the GE and LE network metrics to 

detect significant differences between the two groups at every sensor (or total GE/LE 

i.e., averaged value across sensors) and frequency pair.  

We adopted a sequential methodology (Antonakakis et al., 2013) for the 

estimation of the null hypothesis of equal means between the two groups. First, the 

single-sample Kolmogorov-Smirnov goodness-of-fit hypothesis test with Lilliefors 

correction (Conover, 1980) was employed as a test for normality to help select the 

appropriate type of statistical test to use (parametric t-test or non-parametric U-

test). If the p-value of the normality test was under the significant level, the non-

parametric Mann-Whitney U-test (Gibbons and Chakraborti, 2011) was used; 
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otherwise, a two-sample t-test was employed. The t-test was performed with either 

equal or unequal variances depending on a chi-square test (F-test) for 

heteroscedasticity of the samples. The threshold for significance of the p-value was 

set to 95%. 

 

2.6.2 Spatially reduced representation 

 

In order to visualize the variability and the distance between the two groups 

in the 3D space, a low-dimensional representation was used to visualize possible 

differences between control and mTBI subjects without using statistical analysis. 

First, GE and LE values were estimated using the Minkowski distance 

(   with p being a positive scalar) and the final estimates 

were tabulated in an 80 x 80 matrix, since the total number of subjects was 80 (50 

control and 30 mTBI GE or LE values for frequency couple). Then, using 

multidimensional scaling (Borg & Groenen, 2005), a well-known dimensionality 

reduction technique, we were able to project the original multidimensional data in 

three dimensions. A single entry of this matrix presents an estimation of the 

distinction between two different nodal GE/LE profiles. The lower its value, the more 

alike the segregation pattern between the two subjects. We then designed a colored 

convex hull for each group to visualize the variability and the distance between the 

two groups in the 3D space. As an estimator of variability within each group, we 

computed the area of corresponding convex hull (Dimitriadis et al., 2015). 

 

2.7 Intra-hemispheric Cross Frequency Functional Coupling Asymmetry and 

Anterior-Posterior Anisotropy in mTBI 

 

Possible asymmetries between the left and right hemisphere inter-

dependencies based on the estimated FCGs on each frequency couple were 

investigated by defining the following functional-coupling asymmetry index (FAI): 
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where /  is the aggregate weight from all the connection-strengths among the 

FCG nodes restricted in either the left or right hemisphere. 

Functional connectivity anisotropies between anterior and posterior brain 

areas based on the estimated FCGs on each frequency pair were investigated by 

defining the following anterior-posterior asymmetry index (API): 

 

 

 

where /  is the aggregate weight from all the connection strengths 

among the FCG nodes restricted in either the left-right frontal areas or left-right 

parieto-occipital areas. Both subareas consisted of 58 sensors. 

 

 

Figure 1 summarizes the three main steps of the proposed analysis procedure 

necessary to obtain FCGs and their topological parameters: first, the raw MEG 

recordings underwent preprocessing to eliminate non-cerebral activity; then, CFC 

pairs were estimated using PAC and a classification scheme performed on the 

filtered CFC graphs; finally, graph parameters and communities were estimated to 

compare the control and mTBI groups. 

 

[Figure 1] 

 

3 Results 

 

3.1 Classification Performance 

  

This section presents the results of CFC FCGs classification between the 

control and mTBI groups. We assessed classification performance based on the 

tensorial representation of FCGs with two classifiers, k-NN and ELM, and an 

ensemble classification scheme (ENS). Table 1 summarizes the performance of each 

classifier after keeping only those frequency pairs with accuracy > 90%. The control 
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subject labels were defined as positive and the mTBI labels as negative. Both the k-

NN and ENS showed classification accuracy > 90% only in five frequency pairs, while 

the ELM showed similar performance only in two pairs, δ-β and β-γ2. Also the k-NN 

and ENS approaches showed high sensitivity, > 90%, with specificity ranging between 

85-95%. In contrast, ELM achieved lower sensitivity and specificity values. Based on 

these classification results, the subsequent analysis was performed only on 

frequency couples with accuracy > 90%. 

 

[Table 1] 

 

3.2 Differences in Network metrics 

 

3.2.1 Statistical Analysis Results 

 

Figures 2 and 3 illustrate the average global and local efficiency, GE and LE 

respectively, across all the subjects, separately for each sensor and group. Enlarged 

circles on the topographical layouts denote statistically significant differences 

between the two groups (p < 0.05) after applying the statistical analysis described in 

Section 2.6.1 and adjusting the p-values for multiple comparisons using the 

Benjamini and Yekutieli (BY) procedure (Benjamini and Yekutieli, 2001). In particular, 

based GE topography, the mΤΒΙ group showed an enhanced diffuse pattern over 

anterior-central brain areas bilaterally in δ-β (Fig.2.a) and δ-γ1(Fig.2.b), while the 

control group exhibited an increased activation profile over the entire brain in β-γ2 

(Fig.2.e). Another interesting topographic difference was the abnormally activated 

brain area in mTBI located in right frontal regions, involving 9 sensors. This 

difference was detected on the basis of GE for frequency pairs θ-β (Fig.2.c), θ-γ11 

(Fig.2.d), and β-γ2 (Fig.2.e), and on the basis LE for all five frequency pairs (Fig.3). 

Especially for the β-γ2pair (Fig.3.e), all 9 sensors showed significantly higher 

segregation in the mTBI group compared to controls. 

 

[Figure 2] 
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[Figure 3] 

 

Finally, we estimated both GE and LE at the network level (averaged values 

across all sensors and subjects in each group) and we assessed statistically significant 

differences using the statistical analysis of Section 2.6.1 with a significant level of p < 

0.001. A significant trend between the two groups was detected only for the β-γ2 

frequency pair, with controls exhibiting higher GE (Fig. 4.a) and mTBI patients higher 

LE values (Fig.4.b). 

[Figure 4] 

 

3.2.2 Spatial Analysis Results 

 

Using the measures tabulated by the distance matrix and multi-dimensional scaling 

(MDS), we projected the 80 individual vectorial GE/LE profiles (50 control and 30 

mTBI GE or LE values for frequency couples) to distinct points in a reduced 3D space 

to visualize the variability and distance of the two groups. Το enhance our 

understanding of nodal LE, we focused on the δ-β and δ-γ1 pairs (Fig. 5). The control 

group showed higher variability by a factor of 25 and 40 compared to mTBI for the δ-

β (Fig. 5.a) and δ-γ1 (Fig. 5.b) frequency pairs, respectively. The corresponding area 

(volume) of the convex hull (Fig. 5) was also higher for the control group (V=125.79 

for δ-β and V=37.65 for δ-γ1) compared to the mTBI group (V=5.11 for δ-β and 

V=0.89 for δ-γ1).  

[Figure 5] 

 

3.3 CFC Asymmetry and Anterior-Posterior Anisotropy in mTBI 

  

Figure 6 demonstrates for each frequency pair the intra-hemispheric FAI and 

API indexes in mTBI subjects. The most consistent results among the 30 mTBI 

subjects are the right lateralization of functional strength in the β-γ2 frequency pair 
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(Fig. 6.e; 22 out of 30 subjects) and the anterior predominance of functional strength 

in δ-β, δ-γ1, θ-β, and θ-γ1 frequency pairs in 25, 26, 25, and 24 out of 30 subjects, 

respectively (Figure 6.a-d). 

 

[Figure 6] 

 

Table 2 summarizes the distribution of asymmetries of both indexes between 

the left and right hemispheres and anterior-posterior brain areas in the mTBI group. 

Finally, functional connectivity strength (FCS) showed a significant trend for higher 

values in frontal brain regions bilaterally in controls in the δ-β, δ-γ1, θ-β, and θ-γ1 

frequency pairs (Fig. 7.a-d) and higher FCS values for the mΤΒΙ patients in the  

β-γ2 frequency pair (Fig. 7.e) 

 

[Table 2] 

 

[Figure 7] 

 

4. Discussion 

 

In this study, we analyzed resting-state brain networks using MEG recordings 

obtained from 50 controls and 30 mTBI patients, under the notion of phase-

amplitude coupling. Our main goal was to investigate how cross-frequency coupling 

of spontaneous MEG activity is altered in mTBI patients compared to control 

subjects. PAC estimates show that the oscillatory activity of higher frequencies is 

modulated by the phase of slower spontaneous oscillations. We estimated PAC 

between sensors in a pair-wise fashion and between every possible pair of frequency 

bands using the concept of MI. In addition, using a tensor representation for the CFC 

directed graphs and tensor subspace analysis for optimal feature extraction, we 

showed that mTBI patients could be separated from controls with more than 90% 

classification accuracy in the frequency couples (δ, β), (δ, γ11), (θ, β), (θ, γ1), and (β, 
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γ2) (Table 1). Classification performance based on relative power at the sensor level 

succeeded to discriminate mTBI from control subjects with only a 70% accuracy (see 

Supplementary Material). A prominent asymmetry between hemispheres in the 

interdependencies among mTBI subjects was observed with a right lateralization of 

FAI in the β-γ2 frequency pair. The dominant API was observed with anterior 

predominance in most of frequency pairs. Additionally, estimation of FCS within 

bilateral frontal brain areas revealed significantly higher values for controls 

compared to mTBI subjects in most of frequency pairs, while significantly higher FCS 

values were observed in mΤΒΙ patients compared to controls in the β-γ2 frequency 

pair. 

A recent study (Dimitriadis et al., 2015) analyzed the same dataset under the 

perspective of FCGs computed by quantifying functional connectivity between 

sensors using the phase-locking value (PLV) as a metric. That analysis also examined 

the concept of intra-frequency coupling in resting-state MEG and provided initial 

evidence of how it is affected by mTBI (Dimitriadis et al., 2015). In the present study, 

we went a step further and explored how CFC, estimated via PAC, is affected by 

mTBI, in an attempt to illustrate a communication mechanism among frequency 

bands, rather than mere phase synchronization. By employing a PAC estimator for 

quantifying CFC brain networks and adopting a tensorial treatment for the 

classification procedure, we derived biomarkers that could prove valuable for the 

evaluation of mTBI. 

Further complex network analysis of PAC brain networks revealed significant 

differences between the two groups. By contrasting nodal GE and LE (Fig. 2 and 

Fig.3) between the two groups, an abnormally activated brain area was revealed in 

mTBI subjects, located over the right frontal area, that showed high levels of 

integration and segregation, as quantified by GE and LE, respectively (Fig. 2.c, d, e 

and Fig. 3.a-e). No differences were revealed by the total GE/LE, expect for the β-γ2 

frequency pair (Fig. 4). The control group also showed a dense network of stronger 

local and global connections compared to mTBI in the five frequency pairs (Fig. 5).  

Furthermore, we performed topological consensus clustering of the CFC 

values to uncover how the strength of CFC was distributed over the Euclidean 

distance between the sensors in the five frequency pairs across the two groups (see 
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Supplementary Material). We found that the structure of the five most significant 

functional clusters in both groups differed significantly across the five frequency 

pairs. Specifically, for frequency pairs (δ-β), (δ-γ1), and (θ-β), these clusters were 

spatially restricted in the control group compared to a more dispersed distribution in 

the mTBI group. Both groups demonstrated spatially scattered functional clusters in 

the frequency pairs (θ-γ1) and (β-γ2), but with different functional organization. 

Finally, the mean strength in controls was marginally higher compared to mTBI 

subjects, while mTBI showed a few strong and distant connections in the tail of the 

distributions (see Supplementary Material). Overall, our findings suggest a higher 

functional integration for controls compared to mTBI subjects.  

It has already been demonstrated that CFC and (particularly) PAC play an 

important role in the communication between regions that produce different brain 

rhythms (Palva et al., 2005; Canolty et al, 2010), and constitute the principle 

mechanism of how local oscillatory activity of low frequency is interacting with 

distant brain areas functioning at higher frequency (Florin et al., 2015). Results from 

recent studies in both animals and humans support a mechanism that oscillations at 

higher frequencies are often modulated by the phase of slower phase fluctuations 

(Osipova et al., 2008; Tort et al., 2008, 2009, 2010; Cohen et al., 2009a, b; Colgin et 

al., 2009; Axmacher et al., 2010a, b; Voytek et al., 2010). Important elements of 

nonlinear coupling across different frequencies reveal different types of CFC, such as 

phase-amplitude coupling (Tort et al., 2008, 2009, 2010; Cohen et al., 2009a,b; 

Colgin et al., 2009; Axmacher et al., 2010a,b), n:m phase locking (Dimitriadis et al., 

2014), and amplitude-amplitude coupling (Hipp et al., 2012; Engel et al., 2013). 

Cross-frequency coupling of spontaneous activity is altered during development 

(Pinal et al., 2015) and brain disorders/diseases due to structural and/or functional 

network alterations (Engel et al., 2013).  

Conventional neuroimaging techniques (MRI and CT) express limited 

sensitivity to detecting physiological alterations caused by mTBI (Bigler and Orrison, 

2004; Johnston et al., 2001; Kirkwood et al., 2006). MEG on the other hand, is a well-

established technique that measures directly neuronal currents in gray matter with 

extraordinary temporal resolution and excellent spatial localization accuracy (Leahy 

et al., 1998). Numerous studies have attempted to develop reliable biomarkers of 
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mTBI based on MEG (see reviews by Jeter et al., 2013 and Huang et al., 2009, 2014). 

The current study was successful in analyzing resting-state MEG activity alone (Luo et 

al., 2013, Zouridakis et al., 2012; Dimitriadis et al., 2015; Li et al., 2015) revealing the 

side of the FCG for which the control group presented significantly different 

efficiency than the mTBI group (Figures 2 and 3). 

Only a few MEG studies explore CFC interactions at both the resting-state 

and during active tasks in normal and diseased populations. Recently, Florin et al. 

(2015) using resting state MEG demonstrated that phase-amplitude coupling 

provides a mechanism for brain network formation, which reconciles previous 

findings and theories on long-range communication between neural populations. It 

confirms and extends previous findings in healthy participants of PAC as a key 

mechanism that support long-range brain synchronization (Palva et al., 2005; Canolty 

et al., 2006; Osipova, Hermes, and Jensen, 2008).  

Topologically, our study revealed significant trends regarding the functional 

strength of CFC interactions. An anterior predominance of FCS (API) in δ-β, δ-γ1, θ-β, 

and θ-γ1 frequency pairs was observed (Figure 6.a-d) in the majority of mTBI subjects 

(25, 26, 25, and 24 out of 30 subjects, respectively). Moreover, consistent results 

among the 30 mTBI subjects were obtained for the right lateralization of functional 

strength in the β-γ2 frequency couple (Figure 6.e; 22 out of 30 subjects). Finally, FCS 

within bilateral frontal brain regions showed significant higher values for control 

over mTBI subjects in δ-β, δ-γ1, θ-β, and θ-γ1 (Fig.7.a-d) and a higher FCS for mΤΒΙ 

over control subjects in β-γ2 (Fig.7.e). Our findings demonstrate that frontal brain 

areas are more vulnerable to brain injury and this is reflected by the lower FCS 

observed in mTBI subjects compared to controls in four frequency pairs (Fig. 7) 

(Eierud et al., 2014). These findings based on the δ band being the modulating 

frequency could reflect a lower deactivation of default mode network for mTBI 

subjects and could be attributed to inhibitory mechanisms activated at resting-state 

(Dimitriadis et al., 2010b). Findings based on the θ band being the modulating 

frequency could be related with a lower activated level of working memory at rest 

for mTBI, which can be interpreted as a lower reflex stand-by level ready to be 

activated during a cognitive task (D’Esposito et al., 1995). The role of activity in the β 

frequency is less studied and understood. A recent review suggested that activity in 
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the β frequency band might be associated with the maintenance of motor sets and 

cognition (Engel and Fries, 2010). The significantly higher FCS for mTBI compared to 

controls in β-γ2 may be associated with a balanced mechanism of the brain to keep 

the cognition on a quasi-normal level. 

In summary, this study first demonstrated that the orchestration of resting-

state brain networks is inefficient in mTBI subjects and the key mechanism of this 

collapse is CFC. Moreover, treating cross-frequency FCGs as tensors, along with 

internal cross-validation on five frequency pairs, succeeded in separating mTBI 

subjects from controls with higher than 90% classification accuracy. At a later stage, 

and using the trained classifier from this dataset, we will test its efficiency on 

predicting the labels of unknown external datasets. Therefore, MEG-CFC brain 

networks computed with PAC at rest with a tensorial representation could form a 

valuable connectomic biomarker for the diagnosis of mTBI.  

To provide a robust mapping between brain function at the resting state and 

during cognition in both healthy and disease subjects, it is necessary to adopt a 

dynamic functional connectivity approach (Dimitriadis et al., 2010a, 2012a,b,c, 

2013a,b, 2014,2015) through the definition of Functional Connectivity Microstates  

(Dimitriadis et al., 2013a) and/or network microstates (Dimitriadis et al., 2015). Our 

future studies with mTBI subjects will focus on dynamic cross-frequency coupling, 

their related microstates, and their symbolic dynamical signature on MEG resting 

state. 
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Figure 1.The main steps of the proposed analysis procedure to estimate FCGs and 

their topological parameters. 

 

Figure 2. Group-averaged global efficiency (GE) across subjects for every sensor in 

control and mTBI subjects for each pair of frequency bands. Larger circles with a 

black marker represent statistically significant differences between the two groups 

(p < 0.05). 

 

Figure 3. Group-averaged local efficiency (LE) across subjects for every sensor in 

control and mTBI subjects for each pair of frequency bands. Larger circles with a 

black marker denote statistically significant differences between the two groups (p < 

0.05).  

 

Figure 4. Global (GE) and local efficiency (LE) in control and mTBI subjects across the 

studied frequency pairs (*p < 0.01). 

 

Figure 5. The illustration of convex hull of the multidimensional scaling reduction to 

visualize better the total separation of segregated patterns from all subjects for δ-β 

and δ-γ1, respectively. Label V denotes the area (volume) of the convex hull. 

 

Figure 6. The intra-hemispheric Functional-Coupling Asymmetry (FAI) and anterior-

posterior anisotropy (API) in mTBI subjects for each frequency couple. 

 

Figure 7. Significant differences of bilateral frontal functional connectivity strength 

between controls and mTBI patients (p < 0.01, Wilcoxon rank-sum test; p’ < p/5; 

Bonferroni corrected). 

 


