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Identification of Infants at High Familiar Risk for 

Language-Learning Disorders (LLD) by Combining Machine 

Learning Techniques with EEG-based Brain Network Metrics 

 

The population of children with language-learning disorders (LLD) is heterogeneous with 

a mixture of language deficits and also sensorimotor deficits linked to dynamic processing of the 

speech information (Catts et al., 2002). The core of research focused mainly on the hypothesis of 

whether deficits on auditory spectro-temporal processing can cause phonological impairment that 

potentially can lead to reading and language disorders (Bishop and Snowling, 2004). To answer 

the aforementioned questions, neuroscientists performed longitudinal studies of infants at genetic 

risk using neuroimaging methods and experimental protocols with main scope to understand the 

effects of auditory information to the development of language skills (Leppanen et al., 2002 ; 

Lyytinen et al., 2004). An accurate understanding of the origin of LLD especially infants with or 

without high genetic risk will give an advantage for intervention strategies on individual level (for 

a review see Tallal and Gaab, 2006). 

The major outcome of many epidemiological studies is that the most prominent feature of 

developmental disabilities are language learning problems (Beitchman et al., 1986). Although 

many studies support that the main deficit of LLD is phonological impairment (Snow et al., 1998), 

the precise origin of this disorder is still on debate. The major substrates of phonological deficits 

are linked to speech or to general domains like memory, attention, perception and sensorimotor 

constraints (Mody et al., 1997 ; Ramus et al., 2003). A consistent result of various hypotheses that 
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have been tested so far is that the speed of auditory information processing and/or its production 

disrupt core components that contribute to language learning such as the phonological 

representations (Farmer and Klein, 1995 ; Fitch and Tallal, 2003 ; Tallal, 2004). Two prominent 

hypothesis have been proposed after investigating sensorimotor deficits, the rate-processing 

constraint hypothesis (Farmer and Klein, 1995 ; Fitch and Tallal, 2003 ; Tallal. 2004) and the 

magnocellular hypothesis-theory (Livingstone et al., 1991 ; Stein et al., 2001). Consistent attributes 

of both hypotheses are the constraint of the temporal information processing of the speech and its 

production which both disrupt basic components of language learning like the acquisition of 

phonological representations. Both theories suggest that central auditory mechanisms of 

information processing particularly those involved in the dynamic spectro-temporal changes 

underline the major phonological deficits in LLD.  

Tallal et al. proposed a link between the ability to analyse rapid spectro-temporal acoustic 

changes and the production of speech (Tallal et al., 2004). This hypothesis is based on the 

assumption that every language is characterized by a set of unique phonemes which composed of 

a complex  acoustic spectrum that should be learned by daily practise and overrepresented in the 

auditory cortex as neural firing patterns (Kuhl et al., 1992). According to Hebb’s proposal, neurons 

that are excited by many sensory cues that cannot be distinguished in time domain are coded as a 

unit, guiding individual experience and learning (Hebb, 1949). Further exposure generally to 

sensory input and specifically to the waveforms of speech will lead the cell assemblies to become 

more generalized and to decode individual syllables and phonemes of a language independently 

of the speaker or the context (Clark and Yallop, 1995). Additionally, the spectro-temporal 

segmentation of the ongoing speech into words and syllables will also be coded by auditory cortex 
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(Peeva et al., 2011). This statistical learning from the brain auditory cortex is referred as Hebbian 

learning in the literature (Sejnowski, 1999 ;  Rao and Sejnowski, 2003). 

The complex ability to recognize distinct changes of speech sounds in both amplitude and 

frequency domain is disturbed early in infancy in a subset of children (Choudhury and Benasich, 

2011, Tallal, 2004). This deviation from normality results in LLD, such as dyslexia and language 

impairments (Bush, 2010, Lewis and Elman, 2008), sharing also a common spectrum with autism 

(Whitehouse et al., 2008). Electrophysiological and behavioural studies at infants and newborns 

demonstrated that differences of rapid auditory processing can be identified even in newborns with 

both familiar or genetic risk for LLD (Friedrich et al., 2004). Approximately, 30-60 % of infants 

with familiar risk for LLD are at high risk of developing learning disorders  (Flax et al., 2003; 

Tomblin, 1989). 

Previous neuroimaging studies have linked LLDs with brain structural alterations even 

before birth  (Chu et al., 2015, Leonard et al., 2011). In those cases where a genetic risk for LLD 

was identified, anatomical differences are a cofactor to LLD (Choudhury and Benasich, 2011, 

Wong et al., 2013).  To reveal potential biomarkers of developmental disorders in infants linked 

to higher genetic risk of LLD, longitudinal studies from the early infancy till the first five years of 

age have been conducted  (for review see Benasich and Choudhury, 2012). Behavioral tests cannot 

provide neuroscientists with reliable biomarkers and for that reason neuroimaging approaches have 

been used in infant populations (Choudhury and Benasich, 2011, Maitre et al.,2013). 

One of the very first studies that extended behavioural results to electrophysiological 

(EEG) measurements in infant group demonstrated significant correlations between the EEG 

estimated recorded at six months to the language outcome at twenty-four months in both groups 

of familiar (FH+) and non familiar history (FH-) (Benasich et al., 2006). Group differences were 
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observed on EEG measurements to the rapid presentation of deviant tone sequences (100 ms 

interval) but not to the same sequences of tones that were presented slowly (300 ms interval). 

Topological differences were observed mainly over frontal, central and fronto-central brain areas 

on the left hemisphere (see Figure 6 in Benasich et al., 2006).  

In the last five years, a few studies appeared that attempted to improve  event-related 

potential (ERP) recordings from both magnetoencephalography (MEG) and EEG focusing on 

studying populations at-risk for the development of LLD (Barttfeld et al., 2011, Bosl et al., 2011) 

and infants at risk for autism (Stahl et al., 2012). The basic approach of averaging across trials at 

ERP studies in order to extract the amplitude and the latency at specific time instances with 

negative or positive polarity (N100, P300 etc) are not reliable in order to define robust biomarkers 

due to the variability of cognitive processes that can potentially alter the ERP components  (Stets 

et al., 2012). Additionally, developmental studies with infants have an issue with artifacts due to 

movement of the participants during the recording session and in many cases a large part of the 

subjects need to excluded from the whole analysis.  

Other studies analysed spontaneous EEG activity at the source level to detect predictors in 

populations early diagnosed with LLD (Heim and Benasich, 2011; Schiavone et al., 2014) or in 

other populations at risk (Gou et al., 2011). To extract meaningful features in order to discriminate 

the two populations (control vs target), wavelet analyses or Fast Fourier Transform (FFT) have 

been performed. This approach, even though it is more informative compared to amplitude and 

latency measurements of ERPs at specific scalp locations, cannot improve the statistical power to 

the level of introducing a reliable biomarker for any target group, e.g. LLD. 

To solve all of the aforementioned issues regarding the prediction of a target group, 

classifiers have been built using EEG discriminative features to differentiate risk groups for a 
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specific disorder (Stahl et al., 2012). Employing machine-learning classifiers as an automatic 

separation strategy have been already proposed  as a diagnostic procedure (Riaz et al., 2013). A 

recent study attempted to detect significant changes on the functional brain networks based on 

resting-state functional MRI between six and twelve months old groups of infants (Pruett et al., 

2015). The hypothesis was that during the second six-month period, a dramatic transformation of 

social, motor and cognitive processes is realized. This study provided fundamental information 

that this period of life holds important information that can be linked to atypical development of 

social abilities (Elison et al., 2013) and to LLD (Zare et al., 2016 this issue). 

A recent EEG study introduced an automatic classification approach based on network 

connectivity analysis and machine learning to firstly facilitate a framework for detecting infants at 

high familiar risk for LLD and secondly to provide features that can build a biomarker for the early 

detection of developmental disorders linked to language acquisition (Zare et al., 2016 this issue). 

The authors followed a network connectivity approach by first estimating a functional connectivity 

graph (FCG) derived from sixty two EEG (electroencephalogram) sensors during a resting-state 

condition and afterward by computing global efficiency and global/local clustering over original 

FCG and leaf / tree hierarchy indexes estimated over the unbiased unique Minimal Spanning Tree 

(MST) for each of the six studying frequency bands. Features extracted from the original FCG and 

the MST were complementary and further improved the classification accuracy to correctly 

classify FH+ and FH- around 80 % with specificity 89% and precision of 92 %. Global efficiency 

showed a decreased profile for FH+ in δ, θ and α1 while clustering coefficient demonstrated a 

mixed pattern for  δ, θ, α1 and α2. Interestingly, leaf and tree hierarchy were significantly higher 

for FH+ in δ band, suggesting more hierarchical brain networks for FH+ which can be interpreted 

as slower and inefficient information flow across the brain compared to FH-. 
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MST has been used as an alternative method that overcomes thresholding problems. Given 

a connected, undirected weighted graph, a spanning tree of the graph is a subgraph that is a tree 

and connects all the vertices together by minimizing the overall cost (Stam et al., 2014 ; Vourkas 

et al., 2014). MST will favour connections with high coupling strength but always supporting the 

objective criterion of connect all the nodes without introducing cycles. For that reason, a MST for 

a specific FCG can combine connections with a large range of strength. MST has already been 

used to EEG to detect network connectivity changes in children with math difficulties (Vourkas et 

al., 2014), through the development (Boersma et al., 2014), but this study is the first one that 

applied this unbiased method to infants (Zare et al., 2016 this issue). Features tailored to MST are 

the leaf number which is the percentage of nodes with only one link (e.g degree 1) while tree 

hierarchy is defined as the ratio of leaf number/(2mBC) where m denotes the number of edges in 

the MST and BC the highest betweenness centrality of any node in the MST. 

To conclude, this study is the first one that combined machine learning techniques with 

EEG-based brain network analysis via the notion of MST to infants with main scope to 

discriminate children with a family history of LLD (FH+) from typically-developing infants 

without such a history (FH-) (Zare et al., 2016 this issue). At this developmental key time point, 

facilitation of  a state of the art technique to distinguish those two groups is important due to the 

brain plasticity which is more flexible for intervention approaches. To further validate and improve 

the current analysis, a larger developmental data sets should be analysed by incorporating to the 

whole approach various functional connectivity estimators and also by adopting a dynamic 

functional connectivity analysis (Dimitriadis et al., 2010,2013,2015a,b, 2016).  
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