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Modulations of Brain Criticality via Suppression of EEG 

Long-Range Temporal Correlations (LRTC) in a Closed-Loop 

Neurofeedback Stimulation 

 

 

Human behavioral and cognitive performance are beset by imperfections. Even in simple tasks 

where a subject should tap with the finger at a fixed interval produce errors whether the tapping is 

defined by a metronome (Hennig et al., 2011) or not (Gilden et al., 1995). Fluctuations of tapping 

errors do not demonstrate a random variation between taps but show temporally correlated patterns 

that extend up to hundreds of seconds (Gilden et al., 1995). The error time series can be described 

via a power-law of frequency spectrum defined via P(f)∝1/f β, where P denotes the power of the 

frequency component f while the scaling exponent β refers to the propagation of tapping errors 

(Gilden et al., 1995). The range of the observed β values lie around 1 suggesting that the time 

series describing the tapping errors have long-range temporal correlations (LRTCs) (Chen et al., 

1997; Rangarajan and Ding, 2000; Hennig et al., 2011; Torre et al., 2011).  

We have known for many decades that psychological time series are not randomly clustered. 

For example, reaction-time and hit-rates in continuous performance tasks (CPT) are power-law 

autocorrelated within over hundreds of seconds time-windows (Chen et al., 2001 ; Gilden et al., 

1995 ; Gilden, 2001 ; Helps et al., 2010 ; Ihlen and Vereijken, 2010 ; Monto et al., 2008 ; Thornton 

et al., 2005). Tasks tapping into other cognitive domains such as size estimation and detection of 

threshold stimuli also demonstrate power-law frequency scaling (Gilden et al., 1995; Gilden, 1997; 

Monto et al., 2008). Naturalistic man-made sequences outside the lab-oriented experimental 
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paradigms like the fluctuations of loudness in speech and music show LRTCs (Voss and Clarke, 

1975; Levitin et al., 2012). The biological origins and relevance of these dynamics, however, 

remain unclear (Farrell et al., 2006 ; Kello, 2010). 

Similar to behavioural performance, the fluctuations of neuronal activity at various spatio-

temporal scales exhibit a scale-free and governed by distributions of power-law. On long times 

scales of around 100 secs , amplitude envelopes of spontaneous brain activity recorded with both 

magneto- and electro-encephalography (M/EEG) demonstrates both LRTCs and scale-free 

fluctuations  (Linkenkaer-Hansen, et al. 2001). These fluctuations of amplitude envelopes based 

on M/EEG reflect the underlying spontaneous human brain activity discovered via functional MRI 

(fMRI) and is defined by coherent activity described over slow fluctuations of blood oxygenation 

level-dependent (BOLD) signals among anatomical and functional distinct brain systems (Biswal 

et al., 1995 ; Raichle, 2001 ; Damoiseaux et al., 2006). The oscillation amplitudes are directly 

correlated with these BOLD fluctuations (Goldman et al., 2002 ; Leopold et al., 2003 ; Mantini et 

al., 2007 ; Sadaghiani et al., 2010 ; Scholvinck et al., 2010) while the coherent M/EEG related 

maps are closely related to the correlation maps derived from BOLD activity (Leopold et al., 2003 

; Brookes et al., 2011 ; de Pasquale et al., 2010 ; Nikouline et al., 2001). Moreover, BOLD signals 

also exhibit scale-free temporal (Suckling et al., 2008 ; Wink et al., 2008 ; He, 2011) and 

correlations in various spatiotemporal scales (Equiluz et al., 2005 ; Expert et al., 2011 ; 

Tagliazucchi et al., 2012). It is more than evident that scaling law of LRTCs is a unifying 

fundamental characteristic of spontaneous brain activity recorded with EEG, MEG and fMRI 

imaging methods (Chialvo, 2010 ; He et al., 2010). 

In temporal scales from seconds to hundreds of seconds, the amplitude fluctuations and 

psychological dynamics of neuronal oscillations obey power-law distributions of LRTCs. In the 

http://www.jneurosci.org/content/33/27/11212.full#ref-48
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msec temporal scale, neuronal activity encapsulates neuronal avalanches that also exhibit power-

law distribution and lifetime distributions (Palva et al., 2013). Fractal properties of neuronal 

activity LRTCs and avalanches and also power-law scaling behaviour support that brain functions 

near a critical state (Linkenkaer-Hansen et al., 2001 ; Chialvo, 2010 ; Beggs and Plenz, 2003 ; 

Plenz and Thiagarajan, 2007 ; Werner, 2010). Computational modelling studies validated that 

LRTCs and neuronal avalanches are coupled (Poil et al., 2008) and this relationship is supported 

from interactions of neuronal circuits in a critical regime (Chialvo, 2010). A study based on task 

and resting-state source reconstructed M/EEG recordings and behavioural responses demonstrated 

that behavioural scaling laws, LTRCs and neuronal avalanches were significantly and high 

correlated (Palva et al., 2012). 

Scale free property characterizes self-similar processes which means that their properties are 

similar at every scale  (Hardstone, et al. 2012). When a complex system operates at a critical state 

then its characteristic dynamics presents a scale-free profile (Chialvo, 2010). A complex system 

functions at a critical regime when it demonstrates critical neural dynamics which are present when 

a system operates in the boundary between regularity and randomness (Hernandez-Urbina and 

Herrmann, 2016). When a complex system balances at this boundary then it is more flexible and 

it can achieve its maximum computational power (Shew, et al. 2009,Kinouchi and Copelli. 2006), 

transmission capacity and optimal information storage  (Shew, et al. 2011). To quantitatively 

describe scale-free dynamics of a complex system that operates in a near critical state, the 

corresponding power-law scaling exponent of LRTCs can be estimated (Bak, et al. 1987). The 

scaling exponents related with LRTCs denote the decay of auto-correlations and by adopting the 

algorithmic approach of detrended fluctuation analysis (DFA), range between 0.5 to ~1, where 0.5 

indicates a temporally uncorrelated time series (Peng et al., 2004).  
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Scaling exponents of LRTCs can be valuable predictors of behavioural dynamics (Palva, et al. 

2013,Smit, et al. 2013) and habe been suggested as biomarkers of many brain diseases  

(Linkenkaer-Hansen, et al. 2005 ; Montez, et al. 2009 ; Nikulin, et al. 2012). LRTCs characterize 

the amplitude envelopes of human neuronal oscillatory dynamics in MEG and EEG (Linkenkaer-

Hansen, et al. 2001) and in intracranial recordings (Monto, et al. 2007,Zhigalov, et al. 2015). We 

analysed MEG spontaneous dynamic functional connectivity in both non-impaired and reading-

disabled children via the notion of network metrics (global and local efficiency (GE/LE)) and by 

analyzing nodal network metric time series (NMTSGE/LE) via DFA and detected significantly lower 

values of scaling exponents for reading-disabled children compared to non-impaired readers over 

left temporo-parietal brain areas (Dimitriadis et al., 2013). Recently, analysing spontaneous MEG 

source activity independently for amplitude and phase in carriers and non-carriers of APOE-e4 

allelle, we revealed significant group-differences on the scaling exponents based on the phase and 

not in amplitude only in β and γ on seven ROIs (Dimitriadis et al., 2016). 

To discover how brain criticality can be modulated, it is important to examine how (ab)normal 

LRTCs are linked to human brain (dys)functions in relationship to cognition. This is an important 

step for designing novel therapeutic strategies for various brain disorders and diseases associated 

with LRTCs. For a complex system like the human brain to operate on a critical regime, it is 

important to keep a balance between inhibition and excitation (Shew, et al. 2009,Beggs and 

Timme. 2012) and to avoid  super-critical and  sub-critical states that are linked with extreme 

levels of neuronal excitation and inhibition, respectively.  

Neurofeedback technologies have attracted growing interest from various fields of  research 

and have been applied, e.g., in the treatment of brain disorders such as the attention-deficit 

hyperactivity disorder (ADHD) (Arns, et al. 2009),  depression (Linden, 2014), Parkinson’s 
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disease (Subramanian et al., 2011) and epilepsy (Strehl, et al. 2014) helping also people with severe 

neuromuscular disorders (Wolpaw, et al. 2002). Additionally, neurofeedback has been adopted 

into brain computer interfaces (BCI) applications which gained popularity in video gaming and 

generally in digital entertainment (Kaplan, et al. 2013). Nevertheless, neurofeedback is not yet 

widely acknowledged from the neuroscience community as a common research strategy in 

cognitive neuroscience due to technical and conceptual difficulties (Jensen, et al. 2011). 

Numerous studies focused on modulating α-rhythm- (8–12 Hz) via neurofeedback (for review, 

(Gruzelier, 2014a). An increase of power in α rhythm has led to varied cognitive improvements 

like increased performance in working memory capacity in a span test (Escolano et al., 2011) and 

in a mental rotation task  (Zoefel, et al. 2011). Neurofeedback training focusing on α rhythm has 

been reported to provide  both affective and cognitive benefits like improved mood, intelligence, 

behavioural response like reaction time and sustained attention (Gruzelier. 2014a) which is a 

significant indicator that neurofeedback strategy might alter the functionality of neuronal 

processing. Endogenously, human perceptual performance can be improved via neurofeedback 

modulation of retinotopic neural activity in targeted areas of the visual cortex (Scharnowski, et al. 

2012). Similar effects can be also achieved exogenously via rhythmic visual stimulation 

(Mathewson, et al. 2012) and transcranial magnetic stimulation (TMS) (Romei, et al. 2012). 

Neurofeedback training causes changes in neural activity which are linked to shift in the 

cortical balance of excitation/inhibition (Ros et al., 2010, 2014 ; Studer et al., 2014). Particularly, 

suppression of α activity causes an increment of cortico-spinal excitability and a decrement of 

intra-cortical inhibition which was the very first evidence of linking neurofeedback modulation of 

the cortical excitation/inhibition balance (Ros, et al. 2010). In order to achieve shifts of 

excitation/inhibition balance during clinical practise and cognitive tasks via neurofeedback 
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modulation (Ros et al., 2014), cognitive and voluntary demanding approaches should be adopted. 

A closed-loop stimulation as part of neurofeedback strategy has an advantage over alternative 

methods since it combines endo/exo-genous methodology such as using specific attributes of 

neuronal activity that can trigger different sensory stimuli and can finally influence spontaneous 

activity.  

In a recent study, the researchers examined whether a closed-loop neurofeedback paradigm 

where high amplitude α oscillatory dynamics trigger flash stimuli during an eyes-closed resting-

state task (Zhigalov et al., 2016 this issue). The stimulation threshold that was adopted allowed to 

control the stimulation rate through the adjustment of α oscillatory amplitude via intrinsic 

neuroregulation. Linking α oscillatory activity with excitability, the adjustments of α oscillatory 

amplitude via intrinsic neuroregulation are directly connected with shifts in excitation/inhibition 

balance (Wang, 2010). Additionally, subjects were not aware of the link between visual stimuli 

and ongoing neuronal activity and for that reason the experimental paradigm can assess the effects 

of endogenous mechanisms adaptively (Kaplan, et al. 2005 ; Batty, et al.2006). This novel closed-

loop paradigm allowed to suppress evoked responses and LRTCs of ongoing brain activity without 

any significant changes in the α power spectrum. The results based on the estimated scaling 

exponents of EEG LRTCs during the closed-loop neurofeedback paradigm were compared with a 

disconnected sham condition. This study presented the proof of concept for a novel closed-loop 

neurofeedback paradigm that imply changes on the operating point of brain dynamics over the 

sub/super critical dimensions. This was achieved by mediating the balance between excitation and 

inhibition via the closed-loop neuroregulation strategy (Zhigalov et al., 2016 this issue). 

The presented closed-loop neurofeedback strategy that modulates the LRTC opens new 

avenues for studying the functional role of brain dynamics and criticality in healthy subjects and 
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for designing novel therapeutic protocols for various brain disorders and diseases that are linked 

to LRTCs (Zhigalov et al., 2016 this issue). Criticality estimated with LRTCs is the universal 

signature of healthy brain systems by analysing multichannel recordings from various 

neuroimaging methods (Massobrio et al., 2015). Experimental observations of LRTCs estimated 

over phase synchronization in EEG/MEG signals suggest that the main driving mechanism of the 

observed avalanche activity is global where all temporal scales contributing to the characteristic 

system behavior (Botcharova et al., 2014). LRTCs have been reported as being impaired in 

epilepsy (Monto et al., 2007), Alzheimer’s disease (Montez et al., 2009), schizophrenia (Nikulin 

et al., 2012), major depressive disorder (Linkenkaer-Hansen et al., 2005), post-traumatic stress 

disorder (PTSD) (Ros et al., 2015 ;  for reviews see Cohen et al., 2010 ) and in age-related cognitive 

disorders (Mishra and Gazzaley, 2014) and for that reason a closed-loop neurofeedback approach 

could be a valuable tool  for non-pharmaceutical treatment (Zhigalov et al., 2016 this issue).  
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