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Abstract 
 The Sahara Slide Complex in Northwest Africa is a giant submarine landslide with an estimated run-out length of ~ 
900 km. We present newly acquired high-resolution multibeam bathymetry, sidescan sonar, and sub-bottom profiler data 
to investigate the seafloor morphology, sediment dynamics and the timing of formation of the upper headwall area of the 
Sahara Slide Complex. The data reveal a ~35 km-wide upper headwall opening towards the northwest with multiple slide 
scarps, glide planes, plateaus, lobes, slide blocks and slide debris. The slide scarps in the study area are formed by 
retrogressive failure events, which resulted in two types of mass movements, translational sliding and spreading. Three 
different glide planes (GP I, II, and III) can be distinguished approximately 100 m, 50 m and 20 m below the seafloor. 
These glide planes are widespread and suggest failure along pronounced, continuous weak layers. Our new data suggest 
an age of only about 2 ka for the failure of the upper headwall area, a date much younger than derived for the landslide 
deposits on the lower reaches of the Sahara Slide Complex, which are dated at 50-60 ka. The young age of the failure 
contradicts the postulate of a stable slope off Northwest Africa during times of relative stable sea-level highstands. Such 
an observation suggests that submarine-landslide risk along the continental margin of Northwest Africa should be 
reassessed based on a robust dating of proximal and distal slope failures. 
 
Keywords: Submarine landslide evolution; multiple slope failure; weak layers; slope instability; geohazards. 
 
1. Introduction 

Submarine landslides are a widespread phenomenon 
documented in multiple geological settings such as 
tectonically active margins, passive continental margins 
and volcanic islands (Masson et al., 2006; Moernaut and 
De Batist, 2011; Krastel et al., 2014; Lamarche et al., 
2016). Submarine landslides transport large volumes of 
sediments into deeper continental slope and abyssal areas, 
and some present sufficient density and speed to pose 
important hazards to anthropogenic structures in shallower 
water (Lo Iacono et al., 2012). Submarine landslides have 
in the past generated tsunamis causing widespread damage 
to coastal communities (Harbitz et al., 2014). In addition, 
turbidity currents generated by submarine landslides are 
one of the most important near-seafloor geohazards, as 
they can potentially damage deep-water equipment and 
engineering infrastructure such as pipelines and 
communication lines (Piper and Aksu, 1987; Masson et al., 
2006; Talling et al., 2014). Hence, the recognition of 
submarine landslides on continental margins is important 
to: a) the recognition of areas prone to slope instability on 
modern continental slopes, b) the investigation of possible 
triggers of slope instability, and c) the investigation of the 
global causes of submarine landsliding such as eustasy, 
tectonics, and climatic events (Vanneste et al., 2014). 
Other factors that have been proposed to trigger submarine 
landslides at a local scale include high sedimentation rates 
(Leynaud et al., 2007; Li et al., 2014), excess pore 
pressure (Berndt et al., 2012), gas hydrate dissociation 

(Sultan et al., 2004) and earthquakes (Sultan et al., 2004; 
Zhao et al., 2015). 

In Northwest Africa, multiple large-scale submarine 
landslides have occurred during the Quaternary (Krastel et 
al. 2012). The most prominent submarine landslides in the 
region include the Sahara Slide Complex (Embley, 1982; 
Gee et al., 1999; Georgiopoulou et al., 2010), the 
Mauritania Slide Complex (Antobreh and Krastel, 2007; 
Henrich et al. 2008; Förster et al. 2010), the Cap Blanc 
Slide (Krastel et al., 2006) and the Dakar Slide (Meyer et 
al., 2012). The Sahara Slide Complex is one of the largest 
known submarine slides in the world, and affected an area 
of 48,000 km2 of the Northwest African Margin (Embley 
et al., 1982; Fig. 1). During a period of rapid sea-level rise 
at ~50-60 ka, high primary productivity in surface waters 
offshore Northwest Africa resulted in the accumulation of 
fine-grained pelagic/hemipelagic sediment on the 
continental slope (Bertrand et al., 1996; Krastel et al., 
2006). Multiple slide events were interpreted to have 
occurred retrogressively at this time (Georgiopoulou et al., 
2007; 2009). As a result, the Sahara Slide Complex 
remobilised ~600 km3 of sediments along a distance of 
~900 km (Georgiopoulou et al., 2010). The slide eroded 
and entrained a volcaniclastic layer when passing close to 
the Canary Islands, generating a two-phase debris flow; a 
lower volcaniclastic debris-flow phase and an upper 
pelagic debrite (Gee et al., 1999; Georgiopoulou et al, 
2010). The long runout-distance of the flow was explained 
by retaining excess pore pressure in the lower 
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volcaniclastic debris flow phase, which acted as a 
lubricating carpet for the overlying relatively impermeable 
pelagic debris flow phase (Gee et al., 1999; 
Georgiopoulou et al., 2010).  

Most of the published geological information on the 
Sahara Slide Complex has been acquired in its distal 
depositional part (Gee et al., 1999; 2001; Georgiopoulou 
et al., 2009; 2010). However, limited attention has been 
paid to its headwall, chiefly due to the lack of high-quality 
data on the upper continental slope of Northwest Africa. 
Reconnaissance data show that the Sahara Slide Complex 
is marked by the presence of two major scarps (named 
lower and upper headwall scarps), each up to 100 m high 
(Fig. 2). Sparse seismic lines suggested stacked landslide 
deposits (Georgiopoulou et al., 2010; Krastel et al., 2012). 

In this manuscript, we present a combination of new 
high-resolution multibeam bathymetry, sidescan sonar, 
sub-bottom profiler, and sediment gravity-core data from 
the upper headwall of the Sahara Slide Complex. This 
manuscript presents the first detailed morphological 
analysis of the upper headwall of the Sahara Slide 
Complex, so we: 

 
a) Determine the distribution, relative timing and 

estimated volumes of the different slide events in order to 
reconstruct the evolution of the upper headwall; 

b) Analyse the different types of mass movements 
that occurred in the investigated area; 

c) Discuss the timing of slope failures; 
d) Assess the hazards related to the failure of the 

upper headwall. 
 

The study contributes to the wider discussion about the 
stability of continental margins during the present-day 
relative sea-level high stand (e.g., Owen et al., 2007; Lee; 
2009; Smith et al., 2013). We show that it is crucial to 
investigate both landslide deposits and the failure area in 
order to reconstruct the evolution of submarine slide 
complexes. 

 
2. Geological setting 

 
The Northwest African continental margin is one of 

the best-studied passive margins in the world. On this 
margin, earthquakes of magnitude M≥7 have rarely been 
recorded away from the Gulf of Cadiz (Seibold, 1982), but 
moderate earthquakes (4≤M≤6) are commonly observed in 
association with the reactivation of old weakness zones 
created during the opening of the Atlantic Ocean (Hayes 
and Rabinowitz, 1975; Pereira and Alves, 2011). The 
width of the continental shelf of Northwest Africa is 
generally 40-60 km, reaching a maximum width of more 
than 100 km offshore Western Sahara (Fig. 1). The shelf 
break is observed at a water depth between 100 m and 200 
m (Fig. 1; Wynn et al., 2000). The continental slope dips 
1° to 6° from a depth of 200 to 1500 metres, while the 
continental rise is less than 1° beyond a depth of 4000 m. 
The Northwest African continental margin has been 
affected by complex sediment transport processes since its 
inception (Wynn et al., 2000; Krastel et al., 2012).  

Most of the continental margin of Northwest Africa is 
now arid and records limited sediment supply by rivers, 

even during past glacial times (Weaver et al., 2000; Wynn 
et al., 2000). The margin is affected by both a seasonal and 
permanent oceanic upwelling system (Lange et al., 1998). 
Upwelling and associated high organic productivity are 
concentrated along the outer shelf and upper slope regions, 
resulting in sedimentation rates of 5 cm/ka on average, 
which increased to 16.5 cm/ka during the last glacial 
period (Bertrand et al., 1996; Weaver et al. 2000). Deep-
water hemipelagic sedimentation in Northwest Africa 
typically consists of silts, muds, carbonate-rich marls and 
oozes (Weaver and Kuijpers, 1983). Wind-blown 
sediments transported from the Sahara Desert provide 
additional terrigenous sediment supply to the Northwest 
African continental margin (Holz et al., 2004; Henrich et 
al., 2008). 

 
3. Data and methods 

 
The dataset used in this study consists of deep-towed 

sidescan sonar, multibeam bathymetry and gravity cores 
collected at the upper headwall of the Sahara Slide 
Complex (Fig. 2a). Sub-bottom profiler data mounted on 
the sidescan sonar and a hull-mounted Parasound system 
were also interpreted in this work. 

 
3.1 Acoustic data 

 
The bulk of multibeam bathymetric data were 

collected during Cruise MSM11/2 (Bickert and cruise 
participants, 2011) using a hull-mounted Kongsberg 
Simrad system EM120. The nominal sonar frequency of 
this system is 12 kHz with an angular coverage sector of 
up to 150°. A total of 191 beams were recorded for each 
ping. The data were gridded at 50 m; vertical resolution is 
in the range of 5 -10 m. Sidescan sonar data were acquired 
during Cruise P395 using an EdgeTech DTS-1 sonar 
(Krastel and cruise participants, 2011). This sidescan sonar 
system was towed around 100 m above the seafloor and it 
worked with an operating frequency centered at 75 kHz; 
swath range per side was 750 m. The 75 kHz signal has a 
bandwidth of 7.5 kHz with a pulse length of 14 ms. 
Horizontal resolution after processing is 1 m, which 
enables the identification of complex morphological and 
sedimentary features based on the observed variations in 
backscatter (Golbeck, 2010).  

Deep-towed sub-bottom profiler data were collected 
with the sidescan sonar mosaic during cruise P395. The 
profiler operated with chirp based frequencies ranging 
from 2 kHz and 10 kHz, for a 20 ms pulse length. These 
frequencies provide a penetration depth of up to 30 m and 
a vertical resolution of a few decimeters (Golbeck, 2010). 
Parasound sub-bottom seismic profiles acquired during 
RV Meteor M58/1 and RV Maria S. Merian MSM11/2 
expeditions complete the geophysical dataset utilised in 
this work. The Parasound system DS3 (Atlas 
Hydrographic®) is a hull-mounted parametric sub-bottom 
profiler with an opening angle of only 4°. The selected 
frequency was 4 kHz, providing a sub-meter vertical 
resolution for strata below the seafloor. 

 
3.2 Gravity cores and dating 
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Sediment cores were collected in the upper headwall 
of the Sahara Slide by utilising a standard gravity corer 
equipped with a 5-m barrel. In total, 10 gravity cores were 
acquired in the upper headwall, nine (9) from the landslide 
area and one (1) from undisturbed sediments above the 
headwall area (Fig. 2a). A sample for dating the 
undisturbed drape on top of landslide deposits was taken 
from Core P395-07-1 (24°27,36' N, 17°08,18' W) 
collected at a water depth of 2132 m (Figs. 2a). The 
sample was taken 3 cm below the seafloor (bsf), which is 
the interval of the first hemipelagites that drape the debris 
deposits. No other cores included sufficient undisturbed 
sediment drape for dating on top of the landslide deposits. 
Remnants of brownish Holocene sediments were found in 
a few core liners, suggesting that some undisturbed 
sediment drape was lost during core recovery, but we do 
not have any indication of a loss of more than 10 cm of 
surface sediments. As we were not able to date the 
Holocene drape in any other gravity core, we took an 
additional sample from Core P395-04-1 (24°14,70' N, 
17°13,40' W) for our datings.  Core P395-04-01 was 
collected at a water depth of 1930 m (Fig. 2a). The sample 
in the core was taken in 5 cm bsf in a clast remobilized 
together with the slide deposits. Hence this sample 
provides a maximum age of the failure. 

Accelerated Mass Spectrometry (AMS) 14C-age 
dating was applied on monospecific samples of the 
planktonic foraminifera Globigerinoides ruber (w) and it 
was carried out by the 14C-age Leibniz-Laboratory of Kiel 
University, Germany. The conventional 14C age was 
calculated according to Stuiver and Polach (1977) method. 
A δ13C correction for isotopic fractionation was applied to 
the method based on the 13C/12C ratio measured by the 
AMS-system simultaneously with the 14C/12C ratio. The 
Calib 7.1 software, in combination with the Marine13 
calibration curve, was used to calibrate the radiocarbon 
age (Stuiver and Reimer, 1986; Reimer et al. 2013). A 
reservoir age of ±500 years was assumed for the 
calibration of the radiocarbon age (e.g., Mangerud and 
Gulliksen, 1975). 

To estimate the age of the Sahara Slide we follow the 
method in Urlaub et al. (2013). We consider the location of 
the sample to date (vertical distance to the top of the 
landslide) as the main uncertainty in our analyses, and we 
do not take into account the measurement error of the 14C 
AMS method. The sample in Core P395-07-1 was 
obtained very close (1 cm above) to the slide deposits, i.e. 
comprising the first ‘background’ hemipelagites deposited 
after the slide event. The age of the slide is calculated as 
the radiocarbon age of the sample + Dsf/SR, where Dsf is 
the distance from the sample location to the upper surface 
of the slide deposit, and SR is the sedimentation rate 
(Urlaub et al., 2013).  

 
4. Results 

 
The failure area of the Sahara Slide Complex consists 

of two major headwalls, which are called lower and upper 
headwalls in the following sections. Each of the headwall 
scarps has height of about 100 m (Fig. 2b). The upper 
headwall is found at a water depth of about 2000 m, while 
the lower headwall is located ~50 km downslope at a 

water depths of ~2700 m. In this paper we focus on the 
upper headwall, as only sparse data are available from the 
lower headwall. 

 
4.1 Morphology of the upper headwall  

 
The upper headwall of the Sahara Slide Complex has 

an average width of ~35 km and is U-shaped, facing the 
northwest (Fig. 2a). Several morphological features, 
including slide scarps, glide planes, plateaus, slide lobes 
and slide blocks can be identified on the acoustic data 
(Figs. 2 to 5). In the following sub-sections, we will 
describe the morphology of the main seafloor features. 
 
4.1.1 Slide scarps 

 
The bathymetric data show significant sediment 

evacuation from the Sahara Slide Complex's headwall, 
with well-exposed scarps (Figs. 3a and 3b). The upper 
headwall is located at water depths between 1800 m and 
2100 m, where slope gradients range from 4° to 23° (Fig. 
2a). The height of the headwall scarps ranges from 20 m to 
100 m. Two sidewall scarps show a SE-NW direction. 
Sidewall scarps are steep with gradients of 7°-18° and 
have heights of 47 m to 86 m, cutting into stratified 
deposits (Figs. 2a, 4b and 5b). 

 
4.1.2 Glide planes 
 

Three glide planes rooted at different stratigraphic 
depths, but all parallel to stratigraphy, are observed on 
both bathymetric and Parasound data (Figs. 3a, b and 4b). 
These glide planes, GP I, GP II and GP III, are 
respectively located ~100 m, ~50 m and ~20 m below a 
relatively undisturbed seafloor (Fig. 4b). The three glide 
planes are separated by steep scarps and seem to be planar, 
with only a few undulations observed in the study area 
(Figs. 3a and b). On the Parasound profiles, a thin layer 
(~10-15 m) of slide deposits characterised by chaotic 
reflections is separated by glide planes from the 
underlying strata (Figs. 4a, b, 5b and c).  
 
4.1.3 Plateaus 
 

Two large plateaus are identified in the central part of 
the study area; Plateau I and Plateau II (Figs. 2, 3a and b). 
Plateau I is located in the northeastern part of the study 
area. It has an average length of 7 km and an average 
width of 4 km. Plateau II is located in the southeastern part 
of the study area, showing an average length of 14 km and 
an average width of 6 km. The height of Plateaus I and II 
is approximately 30 m above the level of GP I. The 
morphology of both plateaus reveals the presence of 
several slide blocks (Figs. 3a and b).  

 
4.1.4 Slide lobes 

 
Slide lobes as defined based on data from the 

Storegga Slide (Haflidason et al., 2004) are individual or 
group of mass movements. Two slide lobes are visible in 
the upper headwall on the sidescan sonar mosaic (Fig. 6). 
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One lobe is located to the south of the headwall, whereas a 
second lobe is located on the northwestern part of Plateau 
I. 

 
4.1.5 Hummocky topography with slide blocks 

 
Slide blocks are widespread in the upper headwall 

and particularly found above GP I and GP II (Fig. 3). The 
deposits show a characteristic hummocky geometry 
especially in lower half of GP I (Fig. 3c). In contrast, the 
shallowest part of the GP I area is relatively smooth (Figs. 
3a and b). The slide blocks can also be identified from 
Parasound profiles crossing the deeper part of GP I (Fig. 
5c). The diameter of the imaged blocks reaches a 
maximum of 500 m and a maximum height of 35 m (Fig. 
3c). 
 
4.2 Acoustic facies 

 
Sidescan sonar data provide a detailed image of 

seafloor morphology and texture in the upper headwall of 
the Sahara Slide Complex (Figs. 6 and 7). Based on 
observed variations in backscatter character, we defined 
four different types of acoustic facies.  

 
4.2.1 Facies 1: Smooth, medium backscattering seafloor 

 
Facies 1 is characterised by homogenous, medium 

backscatter values (Figs. 6 and 8a). Facies 1 is located in 
regions of undisturbed slope strata, upslope of imaged 
headwall scarps (Fig. 7), where stratified slope sediments 
are imaged on sub-bottom profiler data (Figs. 6 and 8b). 
We interpret these areas as comprising undisturbed fine-
grained hemipelagites.  

 
4.2.2 Facies 2: Medium to high backscattering seafloor 
with slight variations in backscatter 
 

Facies 2 is characterised by a smooth, medium to 
high backscatter seafloor, with small variations in 
backscatter strength. It mainly occurs on GP I and II (Figs. 
6 and 7). Facies 2 is interpreted to be associated with the 
presence of smooth glide planes over which sediments 
were evacuated. Minor variations in backscatter strength 
indicate the presence of thin slide deposits. Sub-bottom 
profile data crossing Facies 2 also shows the seafloor as a 
relatively smooth, regular surface (Fig. 4a). 
 
4.2.3 Facies 3: Sediment ridges and crown cracks 

 
Facies 3 shows alternating high and low backscatter 

values, which highlight the presence of elongated 
topographical highs that are oriented parallel to the 
headwall (Figs. 8a and 9a). These elongated features are 
irregular and of variable sizes, and their length varies from 
a few tens of meters to several kilometers. Most of these 
elongated features are observed above GP II and GP III in 
the southeastern and northeastern parts of the upper 
headwall, respectively (Figs. 6 and 7). 

Facies 3 comprises sediment ridges based on their 
distribution and morphology. Their orientation is parallel 
to the headwall. The dimension of sediment ridges to the 

northeast is relatively small when compared to the region 
to the southeast of the upper headwall (Figs. 8a and 9a). 
Sediment ridges can be more than 1 km in length to the 
southeast of the upper headwall (Fig. 9a). Thus, Facies 3 
can be further divided into two sub-facies 3a and 3b, based 
on the dimensions of sediment ridges. Facies 3a represents 
the area with small-scale (<500 m in length) sediment 
ridges and Facies 3b indicates the area with large-scale 
(>1 km in length) sediment ridges. The sediment ridges 
show a closer spacing in the areas nearest to the headwall, 
while their sizes and spacing increases downslope (Fig. 
9a). 

Crown cracks are visible in undisturbed strata behind 
the upper headwall (Figs. 8a and 9b). A secondary crown 
crack is identified ~430 m away from the headwall to the 
southeast (Fig. 9a). It has a length of 545 m and a width of 
51 m (Fig. 9b). 
 
4.2.4 Facies 4: Slide blocks and basal striae 

 
Facies 4 is observed over GP I and GP II (Figs. 6 and 

7). Slide blocks are imaged as high backscatter areas with 
shadow zones and are widespread over GP I and GP II 
(Figs. 6 and 10a). The size of the slide blocks varies 
greatly, ranging from 500-m long features to smaller 
blocks <40 m in length. Blocks of Facies 4 are identified 
in sub-bottom profiler data as a hummocky seafloor (Fig. 
10b). Facies 4 can be further subdivided into Facies 4a, 
areas dominated by small slide blocks <40 m, and Facies 
4b, areas dominated by large slide blocks >40 m.  

Facies 4 also includes striations, which are elongate 
areas (stripes) of smooth backscatter. Slide blocks are 
usually found at the end of these striations (Fig. 6). 
Usually the striations show slightly higher backscatter 
values compared to background strata (Figs. 6 and 10a). 
The striations are interpreted as load casts formed by 
moving slide blocks because major blocks are found at 
their downslope terminations. The moving blocks eroded 
the glide plane through large distances to form the 
elongate basal striations. The NW-SE orientation of these 
basal striations suggests a predominant direction of mass 
movement to the northwest, away from the headwall (Fig. 
10a), which is consistent with the direction of the 
maximum slope gradient. 

 
4.3 Volume estimation of the mass movements 

 
Estimates of the affected area and volume of strata 

involved in mass movements are critical for the 
assessment of their tsunamigenic potential (Watts et al., 
2005). The hazard potential usually increases with the 
volume of the mass movements as the magnitude of 
tsunamis that were generated by landslides is mainly 
controlled by the size, initial acceleration, maximum 
velocity and pathway of the displaced mass movements 
(Harbitz et al., 2006).  

As the interpreted bathymetry data do not provide full 
coverage of the upper headwall, we can only provide an 
estimate of 1700 km2 for the area of the landslide scar 
enclosed by the upper headwall area (Fig. 2a). GP I has an 
area of 1485 km2. GP II covers a total area of 130 km2, 
including Plateau I with 25 km2, Plateau II with 75 km2 
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and the area affected by large-scale sediment ridges with 
30 km2. GP III has an area of 85 km2 in the northeastern 
part affected by small-scale sediment ridges. The total 
volume of remobilized strata in the upper headwall is ~150 
km3. The volumes of removed sediment on GP I, II and III 
are approximately 140 km3, 7 km3 and 3 km3, respectively. 
The calculated volume of missing sediments over GP I and 
II is reasonably accurate because bathymetric data fully 
cover this area, although we cannot be sure on the pre-
failure morphology. The volume of missing sediments 
above GP I is a minimum estimate because the bathymetry 
indicates that the evacuation zone continues further 
downslope, beyond the limit of our data coverage. 
 
4.4 Timing of the mass movements 

 
In total, ten gravity cores were taken in the headwall 

area. Nine of the ten cores were taken in the landslide area 
(Fig. 2a). They all contain debrite deposits dominated by 
clasts (Fig. 11). Gravity core P395-07-1 shows a distinct 
thin (~4 cm) sedimentary drape on top of the underlying 
debris (Fig. 11). The core did not reach the glide plane. 
The sedimentary drape contains well-oxidised sediment 
(beige-pink foraminifera-bearing mud). No drape being 
thick enough for dating (>2cm) was identified in any other 
core targeting the landslide deposits. As described in the 
method section, we assume the loss of no more than 10 cm 
of surface sediments occurred at any point in our coring.  

A sample for dating the undisturbed drape on top of 
the landslide deposits were taken at 3 cm bsf in Core 
P395-07-1, which is about 1 cm above the slide deposits 
(Fig. 11). The measured age for this sample is 1840 ± 23 
years BP (Table 1). This age is not representing the failure 
age but a minimum age. A common procedure for 
calculating the failure age is to add the time needed for the 
deposition of the undisturbed deposits between the top of 
the landslide deposits and the sample location used for 
dating. Sedimentation rate is needed for this approach. The 
sample in Core P395-07-1 is taken only about 1 cm above 
the slide deposits. If we assume that the top of the core 
represents the seafloor and the sample is 3 cm bsf, we 
calculate a sedimentation rate of only ~1.63 cm/ka 
assuming a constant sedimentation rate. A value of ~1.63 
cm/ka for the sedimentation rate is significantly lower than 
documented in previous studies from nearby areas (~5 
cm/ka on average after, Bertrand et al., 1996; Weaver et al. 
2000; Georgiopoulou et al., 2009). The most likely 
explanation for this discrepancy is that surface sediments 
were lost during gravity coring (as stated above). Using 
sedimentation rates of 1.63 cm/ka and 5 cm/ka, age 
corrections would be 0.6 ka and 0.2 ka, respectively, 
following the approach described in the method section. 
As a result, the corrected age of the slide deposits at the 
location of Core P395-07-1 is ~2.24±0.2 ka. We are aware 
that a single date may not represent the age of the entire 
failure. However, we point out that cores beneath the 
headwall are available at various locations (Fig. 2a), and 
none of these additional cores shows an undisturbed drape 
thick enough to allow a reliable dating of the Sahara Slide 
Complex. Even considering a loss of about 10 cm of 
surface sediments, an age of ~ 2 ka for the failure would 
still be estimated by assuming a sedimentation rate of 5 

cm/ka. The missing drape may indicate an even younger 
age. 

In order to support a young age of the failure, we 
dated one clast being part of the debrite deposits in core 
P395-04-1. The age of this clast is 6172 ± 78 years BP 
(Fig. 11, Tab. 1). This clast provides a maximum age for 
the slide event on GP I because it comprises disrupted 
slope material deposited prior to the failure. Hence, this 
date also suggests a young age of the failure. 

In summary, we consider the entire failure of the 
upper headwall area of the Sahara Slide to have occurred 
in Late Holocene times. This age contrasts to the estimate 
of ~50-60 ka revealed in previous studies for the distal 
Sahara Slide deposits (Gee et al, 1999; Georgiopoulou et 
al., 2010). 

 
5. Discussion 
 
5.1 Types of mass movements at the headwall of the 
Sahara Slide Complex 

 
Differences in morphology in the GP I, II and III 

areas indicate distinct mass-movement types (e.g. Micallef 
et al., 2007; Baeten et al., 2013) (Figs. 3 and 6). The 
elongate ridges and troughs indicate widespread extension, 
leading to gravitational spreading. Gravitational spreading 
has a characteristic morphology, with repetitive ridges and 
troughs oriented parallel to scarps and perpendicular to the 
direction of mass movement (Micallef et al., 2007; Baeten 
et al., 2013). Gravitational spreading is a common and 
pervasive type of mass movement, which has been 
identified (among other areas) in the Ormen Lange area of 
the Storegga Slide (Kvalstad et al., 2005; Micallef et al., 
2007), the Hinlopen Slide area (Vanneste et al., 2006), the 
St. Pierre Slope (Piper et al., 1999), the continental slope 
offshore Mauritania (Krastel et al., 2007), and at an 
outcrop in SE Crete (Alves and Lourenço, 2010; Alves, 
2015). At the upper headwall of the Sahara Slide Complex, 
the morphology of flat-topped glide planes, with no or 
very little debris remaining on them, and internal 
architecture showing glide planes parallel to the 
stratigraphy, reveal that translational sliding also took 
place which commonly occurs along a planar failure 
surface, with little rotation or backward tilting (Varnes, 
1978). Translational slides often disintegrate into debris 
flows (Piper et al., 1999). This is also observed for the 
Sahara Slide Complex, where elongated ridges are 
disintegrated downslope into blocks of decreasing size, 
leading to full transformation into debris flow and 
turbidity currents (Georgiopoulou et al., 2009). Many 
submarine landslides identified on continental margins are 
translational in nature and are developed retrogressively in 
multiple episodes of slope failure, e.g. the Hinlopen Slide 
on the Arctic Ocean margin (Vanneste et al., 2006), the 
Mauritania Slide Complex on the Northwest African 
continental margin (Krastel et al., 2007) and Storegga 
Slide on the Norwegian continental margin (Haflidason et 
al., 2004). We believe similar processes took place in the 
Sahara Slide Complex. 

Gravitational spreading occurred mainly in the 
northeastern (along GP III) and southeastern (along GP II) 
parts of the upper headwall, where multiple sediment 
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ridges are observed. The size of sediment ridges vary 
between GP II and III, with ridges being smaller on GP III 
compared to GP II (Figs. 8a and 9a). Due to the lack of 
deeper sediment samples, we cannot address the specific 
reasons for these differences. The scale of the sediment 
ridges has been proposed to be controlled by several 
factors including gravitationally induced stress, angle of 
internal friction of the sediment, pore pressure escape, and 
basal friction (Micallef et al., 2007).  

Translational sliding occurred in the central part of 
the slide scar on GP I, and on two large plateaus along GP 
II (Figs. 6 and 7). GP I and II are located at two different 
stratigraphic levels, but present similar morphologies. 
Both areas are characterised by widespread large sediment 
blocks and elongated striations in some places (Facies 4b, 
Fig. 10a), whereas other places show small blocks and thin 
debris deposits (Facies 4a, Fig. 10a). This observation 
provides robust evidence that mass movement processes 
on GP I and II are similar. Sediment blocks likely resulted 
from the disintegration of failed strata but they do not 
disintegrate fully as they are clearly seen as blocks in the 
morphological data. The striations imply bottom contact 
causing erosion and drag forces, suggesting that the blocks 
moved not very fast. This is further supported by the fact 
that the blocks are found relatively close to the headwall. 
However, full disintegration seems to occur in places 
(Facies 4a) suggesting a higher energy regime for these 
areas. Hence, the translational sliding on GP I and II may 
represent "fast sliding" of failed slope deposits at least in 
the areas where full disintegration is taking place, while 
relative "slow sliding" (i.e. spreading) took place above 
GP III and small parts of GP II, forming detached 
sediment ridges. The cracks identified away the headwall 
to the southeast suggest the presence of sediment slabs, 
highlighting the preferential region for future translational 
sliding (Laberg et al., 2013). The presence of cracks may 
also indicate a permanent state of instability on the 
continental slope. 

 
5.2 Evidence for multiple slope failures 

 
The upper headwall of the Sahara Slide shows a 

complex morphology in bathymetric and sidescan sonar 
data (Figs. 2a and 6). The exposed headwall scarps and the 
lack of slide debris close to the headwall scarps indicate 
that the upper headwall has been evacuated (Fig. 2a). This 
complex morphology is evidence for the formation of the 
upper headwall during multi-stage failure events. These 
events are results of two different types of mass 
movements that occurred in the upper headwall; 
translational sliding and gravitational spreading. We 
interpret gravitational spreading in the GP I area as a 
direct consequence of translational sliding further 
downslope due to the lack of support from removed 
sediments. In addition, we consider that that retrogressive 
failure formed the upper headwall of the Sahara Slide 
Complex. Retrogressive failures have been identified for 
many landslides including the Humboldt Slide on the 
northern California continental margin (Gardner et al., 
1999) and the Storegga Slide on the Norwegian 
continental margin (Kvalstad et al., 2005). 

The relationship between the upper and lower 

headwalls, however, remains unclear as no age data and 
detailed acoustic data are available for the latter region. 
The distal deposits of the Sahara Slide are dated at 50-60 
ka (Gee et al., 1999; Georgiopoulou et al., 2010), a date 
much older than the age estimated for the upper headwall 
in this study. A plausible explanation for this discrepancy 
in ages is that the lower headwall may have been formed 
in association with the 50-60 ka failure event, whereas the 
upper headwall is the result of a much younger instability. 
Sparse sediment echo-sounder data suggest younger 
failures of the upper headwall compared to the lower 
headwall. In this case, we would consider slope failure of 
the upper and lower headwalls as independent events due 
to the long time spanning these two events. The observed 
distance of ~50 km between the two headwalls would also 
be unusually large for a retrogressive failure (e.g. Imbo et 
al., 2003; Locat et al., 2009; Baeten et al., 2013).  

An alternative explanation is that both headwalls 
were formed 50-60 ka ago, and the younger failure of the 
upper headwall represents a phase of reactivation of this 
latter area. This would imply that failure of both headwalls 
is somewhat related, but more data is necessary to 
investigate this hypothesis. 
 
5.3 Possible preconditioning factors and triggers for 
slope instability at the upper headwall of the Sahara 
Slide Complex 
 

Various preconditioning factors have been proposed 
as promoting failures on continental margins, including 
high sedimentation rates (Leynaud et al., 2007) and the 
presence of weak layers (Baeten et al., 2014). Recent 
modeling results from Urlaub et al. (2015) suggest that 
sedimentation rates in the Sahara Slide area (~5 cm/ka) are 
insufficient to destabilise the slope. Weak layers were 
defined by Locat et al. (2014) as sediment layers that have 
lower strength compared to adjacent units, and can 
provide a potential focus for the development of a surface 
of rupture. The presence of weak layers have been 
considered as an important preconditioning factor for the 
generation of submarine landslides in several regions such 
as the slopes at Finneidfjord, northern Norway (L’Heureux 
et al., 2012) and the Mauritania Slide area (Antobreh and 
Krastel, 2007). Slope failure in the upper headwall of the 
Sahara Slide Complex occurred along three pronounced 
and widespread glide planes; we consider this observation 
as evidence for the presence of weak layers at distinct 
depths below the seafloor. However, we do not know the 
composition of these layers due to missing sediment 
samples. 

One possibility could be the presence of sediment 
layers with particularly high compressibilities as it has 
been proposed to play a vital role for the instabilities 
offshore Northwest Africa (Urlaub et al., 2015). Organic-
rich sediments typically have high compressibilities 
(Booth and Dahl, 1986; Bennett et al., 1985). In fact, the 
study area is affected by a strong upwelling system driven 
by the Northeast Trade Winds (Cropper et al., 2014), 
which results in high primary productivity and the 
deposition of organic-rich sediments. This upwelling 
system typically reached its maximum productivity during 
deglaciations (Bertrand et al., 1996), which may explain 



 7

the different stratigraphic depths of the glide planes.  
Our new data do not provide any information on the 

final trigger of the slope failure. However, we consider 
seismicity possibly related to the reactivation of old 
fracture zone or the evolution of the Canary Islands as 
most likely trigger. The Canary Islands and surrounded 
areas are presently seismically active, characterised by 
small and medium-size earthquakes (Ibáñez et al., 2012). 
The study area is ~300 km away from the Canary Islands 
and earthquakes associated with these same islands might 
be a triggering mechanism for the slide events in the upper 
headwall of Sahara Slide. Thus, we conclude that the 
presence of weak layers consisting of a particular sediment 
type is the main potential preconditioning factor, but the 
final triggering of the failures remains speculative. 

 
5.4 Timing of the failure and implications for 
geohazard assessment 

 
Several authors have discussed potential relationships 

between sea-level and landslide frequency (Owen et al., 
2007; Lee, 2009; Leynaud et al., 2009; Urlaub et al., 2013). 
Based on a compilation of available ages for landslides on 
the Atlantic Ocean margin, Lee (2009) stated that the 
continental margin is relatively stable at present, partly 
related to the stable sea level. Only 2-3 landslides are 
documented during the past 5000 years; the frequency of 
landslide occurrence for this period is less by a factor of 
1.7 to 3.5 compared to the time of sea-level rise after the 
last glaciation. Major landslides off Northwest Africa were 
also related to periods of low or rising sea level (Krastel et 
al., 2012). The distal deposits of the Sahara Slide are dated 
at 50-60 ka before present, which was during a period of 
rising sea level (Gee et al., 1999; Georgiopoulou et al., 
2007). 

A link between sea-level and landslide frequency, 
however, is negated by Urlaub et al. (2013) based on a 
statistical analysis of a global compilation of available 
ages for large (>1 km3) continental margin landslides. 
Urlaub et al. (2013) stated that the global data set did not 
show statistically significant patterns, trends or clusters in 
landslide abundance but they note that significantly fewer 
events occurred in the past 6 ka. Urlaub et al. (2013) also 
analysed landslides at the Northwest African continental 
margin as subset of the global data set concluding that 
ages are nearly evenly distributed without any clustering 
or increased frequency. Our study suggests that the failure 
of the upper headwall of the Sahara Slide is only 
~2.24±0.2 ka old. Despite the fact, that this age is only 
based on one dated sample, we consider the missing 
undisturbed drape on top of the landslide deposits at all 
other cores as very strong evidence for a similarly young 
age for the entire failure of the upper headwall area during 
a period of constantly high sea level. This interpretation is 
further supported by the occurrence of debrite deposits of 
a similar age up to 250 km downslope of the headwall and 
an associated turbidite extending for more than 700 km 
(Georgiopoulou et al., 2009). Georgiopoulou et al. (2009) 
suggest that the linked turbidite-debrite bed was formed 
during the recent failure of the Sahara Slide headwall. 

While we consider the upper and lower headwall area 
of the Sahara Slide complex as independent events, the 

failure of the upper headwall of the Sahara Slide Complex 
most likely occurred in several retrogressive stages as 
indicated by glide planes at different levels and multiple 
headwalls. A retrogressive failure has large implications 
for the tsunamigenic potential. Tsunamigenic potential in 
the Sahara Slide would be larger if the slide events 
occurred simultaneously, compared to the case of 
retrogressive landslides (Harbitz et al., 2014). A key 
observation in the study area is that missing volumes on 
top of individual glide planes are large (> 100 km3). 
Relatively small failures in the past have triggered 
significant tsunamis. In the case of the 1998 event at 
Papua New Guinea, Tappin et al. (2001) concluded the 
tsunami, which resulted in the deaths of over 2000 people, 
was a direct result of a slump with an estimated volume of 
5-10 km3. The 11,500-year BP BIG’95 landslide detected 
in the Mediterranean Sea involved a total volume of 26 
km3 (Lastras et al., 2004; Urgeles et al., 2006). Even such 
failures with small volume landslide deposits may cause 
catastrophic tsunamis based on the recent tsunami 
simulations (Løvholt et al., 2014). Modelling of the 165 
km3 Currituck landslide (Locat et al., 2009), also revealed 
potential for a devastating tsunami (Geist et al., 2009). The 
volumes of the removed sediments on GP I, II and III in 
the upper headwall of Sahara Slide are approximately 140 
km3, 7 km3 and 3 km3, respectively. It is unlikely, that the 
failure on top of GP III occurred as a single event, but the 
examples above show that individual failures of the Sahara 
Slide complex were large enough to present a significant 
tsunamigenic potential, even if occurring in relatively 
large water depths (~2000 m) (Lo Iacono et al., 2012; 
Harbitz et al., 2014). In addition, Georgiopoulou et al. 
(2009) observed turbidite deposits up to 700 km 
downslope of the Sahara Slide headwall. They interpret 
this turbidite to have formed by recent failure of the 
Sahara Slide headwall; either by the near-simultaneous 
generation of a debris flow and turbidity current, or by 
entrainment of water into the debris flow leading to the 
generation of a turbidity current. These processes and the 
long run-out distance of the turbidity current suggest a 
relatively fast moving landslide body, High flow velocities 
have high tsunamigenic potential (Harbitz et al., 2006). 
Such an observation, in combination with the young age of 
the failure, calls for a reassessment of landslide hazards 
along the Northwest African continental margin, estimated 
to be low in previous studies (Lee, 2009). However, such a 
reassessment is beyond the scope of this manuscript. 

 
6. Conclusions 

 
A combination of high-resolution bathymetry, 

sidescan sonar, sub-bottom profiler data, and sediment 
cores allowed to reconstruct the failure behavior of the 
upper headwall of Sahara Slide Complex on the 
continental margin offshore Northwest Africa. The main 
conclusions of this study are: 

 
(1) The upper headwall was evacuated, and several 

morphological elements (e.g., slide scarps, glide planes, 
plateaus, lobes and slide blocks) are identified on the 
modern seafloor. The volume of the evacuated area 
exceeds 150 km3. 



 8

 
(2) The morphology and configuration of the upper 

headwall is the result of multiple failure events probably 
occurring mainly as spreading and translational sliding on 
three different glide planes retrogressively. The presence 
of weak layers is considered as the main preconditioning 
factor for instability in the Sahara Slide Complex. 

 
(3) The slide processes on glide plane I and II record 

the generation of disintegrated slide blocks of different 
scales, indicating relatively "fast sliding". In contrast, the 
slide processes on glide plane III were mainly 
characterised by spreading resulting in widespread 
sediment ridges, troughs and cracks upslope (in the 
unfailed strata) as relative "slow sliding". 

 
(4) The upper headwall of the Sahara Slide Complex 

was active (or reactivated) in the late Holocene about 2 ka 
BP during times of a stable sea-level high stand. The 
failure may be the largest of Holocene failures worldwide. 
The young age is an important contribution to the ongoing 
debate on potential relationships between sea-level and 
landslide frequency, as it shows that very large landslide 
do occur during times of a stable sea level high stand. The 
young age in combination with the large volume calls for a 
reassessment of the slope instability and the tsunamigenic 
potential along the margin offshore Northwest Africa and 
other continental margins that are considered currently 
stable. 

 
(5) Crown cracks indicate the slope may not be at 

equilibrium and instability may still be ongoing. 
 

Acknowledgments 
 
We thank the crews and captains of RV Poseidon Cruise P395 and RV 

Maria S. Merian Cruise MSM11/4. Financial support was provided by the 
Deutsche Forschungsgemeinschaft (DFG). W. Li is funded by the China 
Scholarship Council (CSC). We also acknowledge Michele Rebesco (Editor), 
Marc De Batist (reviewer) and one anonymous reviewer for their 
constructive comments that clarified the manuscript. 

 
Reference 
Alves, T.M., 2015. Submarine slide blocks and associated soft-sediment deformation in 

deep-water basins: A review. Marine and Petroleum Geology 67, 262-285. 
Alves, T.M., Lourenço, S.D.N., 2010. Geomorphologic features related to gravitational 

collapse: Submarine landsliding to lateral spreading on a Late Miocene–
Quaternary slope (SE Crete, eastern Mediterranean). Geomorphology 123, 13-
33. 

Antobreh, A.A., Krastel, S., 2007. Mauritania Slide Complex: morphology, seismic 
characterisation and processes of formation. International Journal of Earth 
Sciences 96, 451-472. 

Baeten, N.J., Laberg, J.S., Forwick, M., Vorren, T.O., Vanneste, M., Forsberg, C.F., 
Kvalstad, T.J., Ivanov, M., 2013. Morphology and origin of smaller-scale mass 
movements on the continental slope off northern Norway. Geomorphology 187, 
122-134. 

Baeten, N.J., Laberg, J.S., Vanneste, M., Forsberg, C.F., Kvalstad, T.J., Forwick, M., 
Vorren, T.O., Haflidason, H., 2014. Origin of shallow submarine mass 
movements and their glide planes—Sedimentological and geotechnical analyses 
from the continental slope off northern Norway. Journal of Geophysical 
Research: Earth Surface 119, 2335-2360. 

Bennett, R.H., Lehman, L., Hulbert, M.H., Harvey, G.R., Bush, S.A., Forde, E.B., 
Crews, P., Sawyer, W.B., 1985. Interrelationships of organic carbon and 
submarine sediment geotechnical properties. Marine Geotechnology 6, 61-98. 

Berndt, C., Costa, S., Canals, M., Camerlenghi, A., de Mol, B., Saunders, M., 2012. 
Repeated slope failure linked to fluid migration: The Ana submarine landslide 
complex, Eivissa Channel, Western Mediterranean Sea. Earth and Planetary 
Science Letters 319-320, 65-74. 

Bertrand, P., Shimmield, G., Martinez, P., Grousset, F., Jorissen, F., Paterne, M., Pujol, 
C., Bouloubassi, I., Buat Menard, P., Peypouquet, J.P., Beaufort, L., Sicre, M.A., 
Lallier-Verges, E., Foster, J.M., Ternois, Y., Program O.P.o.t.S., 1996. The 
glacial ocean productivity hypothesis: the importance of regional temporal and 
spatial studies. Marine Geology 130, 1-9. 

Bickert, T., cruise participants, 2011. Pre-Site Survey for an IODP cruise Neogene 
Paleoclimate and sediment transport at the continental margin of NW Africa - 

Cruise No. MSM11/2 - March 14 - April 09, 2009 - Dakar (Senegal) - Las 
Palmas (Canary Islands, Spain). MARIA S. MERIAN Berichte, MSM11/2, 53 
pp., DFG-Senatskommission für Ozeanographie, DOI: 10.2312/cr_msm11_2. 

Booth, J.S., Dahl, A.G., 1986. A note on the relationships between organic matter and 
some geotechnical properties of a marine sediment. Marine Geotechnology 6, 
281-297. 

Cropper, T.E., Hanna, E., Bigg, G.R., 2014. Spatial and temporal seasonal trends in 
coastal upwelling off Northwest Africa, 1981–2012. Deep Sea Research Part I: 
Oceanographic Research Papers 86, 94-111. 

Embley, R.W., 1982. Anatomy of Some Atlantic Margin Sediment Slides and Some 
Comments on Ages and Mechanisms, in: Saxov, S., Nieuwenhuis, J.K. (Eds.), 
Marine Slides and Other Mass Movements. Springer US, Boston, MA, pp. 189-
213. 

Förster, A., Ellis, R.G., Henrich, R., Krastel, S., Kopf, A.J., 2010. Geotechnical 
characterization and strain analyses of sediment in the Mauritania Slide 
Complex, NW-Africa. Marine and Petroleum Geology 27, 1175-1189. 

Gardner, J.V., Prior, D.B., Field, M.E., 1999. Humboldt Slide — a large shear-
dominated retrogressive slope failure. Marine Geology. 154, 323–338. 

Gee, M.J.R., Masson, D.G., Watts, A.B., Allen, P.A., 1999. The Saharan debris flow: an 
insight into the mechanics of long runout submarine debris flows. 
Sedimentology 46, 317-335. 

Gee, M.J.R., Masson, D.G., Watts, A.B., Mitchell, N.C., 2001. Passage of debris flows 
and turbidity currents through a topographic constriction: seafloor erosion and 
deflection of flow pathways. Sedimentology 48, 1389-1409.Geist, E.L., Lynett, 
P.J., Chaytor, J.D., 2009. Hydrodynamic modeling of tsunamis from the 
Currituck landslide. Marine Geology 264, 41-52. 

Georgiopoulou, A., Krastel, S., Masson, D.G., Wynn, R.B., 2007. Repeated Instability 
Of The NW African Margin Related To Buried Landslide Scarps, in: Lykousis, 
V., Sakellariou, D., Locat, J. (Eds.), Submarine Mass Movements and Their 
Consequences: 3 International Symposium. Springer Netherlands, Dordrecht, 
pp. 29-36. 

Georgiopoulou, A., Masson, D.G., Wynn, R.B., Krastel, S., 2010. Sahara Slide: age, 
initiation and processes of a giant submarine slide. Geochemistry, Geophysics, 
Geosystems 11, 1-22. 

Georgiopoulou, A., Wynn, R.B., Masson, D.G., Frenz, M., 2009. Linked turbidite–
debrite resulting from recent Sahara Slide headwall reactivation. Marine and 
Petroleum Geology 26, 2021-2031. 

Golbeck, I., 2010. The Sahara Slide Complex. Unpublished thesis. Department of 
Geosciences, University of Bremen, 137 pp. 

Haflidason, H., Sejrup, H.P., Nygård, A., Mienert, J., Bryn, P., Lien, R., Forsberg, C.F., 
Berg, K., Masson, D., 2004. The Storegga Slide: architecture, geometry and 
slide development. Marine Geology 213, 201-234. 

Harbitz, C.B., Løvholt, F., Bungum, H., 2014. Submarine landslide tsunamis: how 
extreme and how likely? Natural Hazards 72, 1341-1374. 

Harbitz, C.B., Løvholt, F., Pedersen, G., Masson, D.G., 2006. Mechanisms of tsunami 
generation by submarine landslides: a short review. Norw. J. Geol. 86, 255-264 

Hayes, D.E., Rabinowitz, P.D., 1975. Mesozoic magnetic lineations and the magnetic 
quiet zone off northwest Africa. Earth and Planetary Science Letters 28, 105-
115. 

Henrich, R., Hanebuth, T.J.J., Krastel, S., Neubert, N., Wynn, R.B., 2008. Architecture 
and sediment dynamics of the Mauritania Slide Complex. Marine and Petroleum 
Geology 25, 17-33. 

Holz, C., Stuut, J.b.W., Henrich, R., 2004. Terrigenous sedimentation processes along 
the continental margin off NW Africa: implications from grain-size analysis of 
seabed sediments. Sedimentology 51, 1145-1154. 

Ibáñez, J.M., De Angelis, S., Díaz-Moreno, A., Hernández, P., Alguacil, G., Posadas, A., 
Pérez, N., 2012. Insights into the 2011–2012 submarine eruption off the coast of 
El Hierro (Canary Islands, Spain) from statistical analyses of earthquake activity. 
Geophysical Journal International 191, 659-670. 

Imbo, Y., De Batist, M., Canals, M., Prieto, M.J., Baraza, J., 2003. The Gebra Slide: a 
submarine slide on the Trinity Peninsula Margin, Antarctica. Marine Geology 
193, 235-252. 

Krastel, S., Behmann, J.-H., Völker, D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., 
Huhn, K., Strasser, M., Harbitz, C.B., 2014. Submarine mass movements and 
their consequences. 6th International Symposium. Advances in Natural and 
Technological Research 37, pp 683. 

Krastel, S., cruise participants, 2011. FS POSEIDON Fahrtbericht/Cruise Report P395-
Sahara Slide Complex, 04.02.-19.02.2010 Las Palmas - Las Palmas (Spain). 
IFM-GEOMAR Report, 50. IFM-GEOMAR, Kiel, 43 pp. DOI 10.3289/IFM-
GEOMAR_REP_50_2011. 

Krastel, S., Wynn, R.B., Georgiopoulou, A., Geersen, J., Henrich, R., Meyer, M., 
Schwenk, T., 2012. Large-Scale Mass Wasting on the Northwest African 
Continental Margin: Some General Implications for Mass Wasting on Passive 
Continental Margins. 189-199. 

Krastel, S., Wynn, R.B., Hanebuth, T.J.J., Henrich, R., Holz, C., Meggers, H., 
Kuhlmann, H., Georgiopoulou, A., Schulz, H.D., 2006. Mapping of seabed 
morphology and shallow sediment structure of the Mauritania continental 
margin, Northwest Africa: some implications for geohazard potential. 
Norwegian Journal of Geology 86, 163-176. 

Kvalstad, T.J., Andresen, L., Forsberg, C.F., Berg, K., Bryn, P., Wangen, M., 2005. The 
Storegga slide: evaluation of triggering sources and slide mechanics. Marine and 
Petroleum Geology 22, 245-256. 

L’Heureux, J.-S., Longva, O., Steiner, A., Hansen, L., Vardy, M.E., Vanneste, M., 
Haflidason, H., Brendryen, J., Kvalstad, T.J., Forsberg, C.F., Chand, S., Kopf, 
A., 2012. Identification of Weak Layers and Their Role for the Stability of 
Slopes at Finneidfjord, Northern Norway, in: Yamada, Y., Kawamura, K., 
Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M. (Eds.), 
Submarine Mass Movements and Their Consequences: 5th International 
Symposium. Springer Netherlands, Dordrecht, pp. 321-330. 

Løvholt, F., Harbitz, C.B., Vanneste, M., Blasio, F.V., Urgeles, R., Iglesias, O., Canals, 
M., Lastras, G., Pedersen, G., Glimsdal, S., 2014. Modeling Potential Tsunami 
Generation by the BIG’95 Landslide, in: Krastel, S., Behrmann, J.-H., Völker, 
D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M., 



 9

Harbitz, B.C. (Eds.), Submarine Mass Movements and Their Consequences: 6th 
International Symposium. Springer International Publishing, Cham, pp. 507-
515. 

Laberg, J.S., Baeten, N.J., Lågstad, P., Forwick, M., Vorren, T.O., 2013. Formation of a 
large submarine crack during the final stage of retrogressive mass wasting on the 
continental slope offshore northern Norway. Marine Geology 346, 73-78. 

Lamarche, G., Mountjoy, J., Bull, S., Hubble, T., Krastel, S., Lane, E., Micallef, A., 
Moscardelli, L., Mueller, C., Pecher, I., Woelz, S., 2016. Submarine mass 
movements and their consequences. 7th International Symposium. Advances in 
Natural and Technological Research, 41, pp 621. 

Lange, C.B., Romero, O.E., Wefer, G., Gabric, A.J., 1998. Offshore influence of coastal 
upwelling off Mauritania, NW Africa, as recorded by diatoms in sediment traps 
at 2195 m water depth. Deep Sea Research Part I: Oceanographic Research 
Papers 45, 985-1013. 

Lastras, G., Canals, M., Urgeles, R., De Batist, M., Calafat, A.M., Casamor, J.L., 2004. 
Characterisation of the recent BIG'95 debris flow deposit on the Ebro margin, 
Western Mediterranean Sea, after a variety of seismic reflection data. Marine 
Geology 213, 235-255. 

Lee, H.J., 2009. Timing and occurrence of large submarine landslides on the Atlantic 
Ocean Margin. Marine Geology 264, 53-64. 

Leynaud, D., Mienert, J., Vanneste, M., 2009. Submarine mass movements on glaciated 
and non-glaciated European continental margins: A review of triggering 
mechanisms and preconditions to failure. Marine and Petroleum Geology 26, 
618-632. 

Leynaud, D., Sultan, N., Mienert, J., 2007. The role of sedimentation rate and 
permeability in the slope stability of the formerly glaciated Norwegian 
continental margin: the Storegga slide model. Landslides 4, 297-309. 

Li, W., Wu, S., Völker, D., Zhao, F., Mi, L., Kopf, A., 2014. Morphology, seismic 
characterization and sediment dynamics of the Baiyun Slide Complex on the 
northern South China Sea margin. Journal of the Geological Society 171, 865-
877. 

Lo Iacono, C., Gràcia, E., Zaniboni, F., Pagnoni, G., Tinti, S., Bartolomé, R., Masson, 
D.G., Wynn, R.B., Lourenço, N., Pinto de Abreu, M., Dañobeitia, J.J., Zitellini, 
N., 2012. Large, deepwater slope failures: Implications for landslide-generated 
tsunamis. Geology 40, 931-934. 

Locat, J., Lee, H., ten Brink, U.S., Twichell, D., Geist, E., Sansoucy, M., 2009. 
Geomorphology, stability and mobility of the Currituck slide. Marine Geology 
264, 28-40. 

Locat, J., Leroueil, S., Locat, A., Lee, H., 2014. Weak Layers: Their Definition and 
Classification from a Geotechnical Perspective, in: Krastel, S., Behrmann, J.-H., 
Völker, D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, 
M., Harbitz, C.B. (Eds.), Submarine Mass Movements and Their Consequences. 
Springer International Publishing, pp. 3-12. 

Mangerud, J., Gulliksen, S., 1975. Apparent radiocarbon ages of recent marine shells 
from Norway, Spitsbergen, and Arctic Canada. Quaternary Research 5, 263-
273.Maslin, M., Owen, M., Day, S., Long, D., 2004. Linking continental-slope 
failures and climate change: testing the clathrate gun hypothesis. Geology 32, 
53-56. 

Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G., Løvholt, F., 2006. Submarine 
landslides: processes, triggers and hazard prediction. Philosophical Transactions 
of the Royal Society of London A: Mathematical, Physical and Engineering 
Sciences 364, 2009-2039. 

Meyer, M., Geersen, J., Krastel, S., Schwenk, T., Winkelmann, D., 2012. Dakar Slide 
Offshore Senegal, NW-Africa: Interaction of Stacked Giant Mass Wasting 
Events and Canyon Evolution, in: Yamada, Y., Kawamura, K., Ikehara, K., 
Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M. (Eds.), Submarine 
Mass Movements and Their Consequences. Springer Netherlands, pp. 177-188. 

Micallef, A., Masson, D.G., Berndt, C., Stow, D.A.V., 2007. Morphology and mechanics 
of submarine spreading: A case study from the Storegga Slide. Journal of 
Geophysical Research: Earth Surface 112, 1-21. 

Moernaut, J., De Batist, M., 2011. Frontal emplacement and mobility of sublacustrine 
landslides: Results from morphometric and seismostratigraphic analysis. Marine 
Geology 285, 29-45. 

Owen, M., Day, S., Maslin, M., 2007. Late Pleistocene submarine mass movements: 
occurrence and causes. Quaternary Science Reviews 26, 958-978. 

Pereira, R., Alves, T.M., 2011. Margin segmentation prior to continental break-up: A 
seismic–stratigraphic record of multiphased rifting in the North Atlantic 

(Southwest Iberia). Tectonophysics 505, 17-34. 
Piper, D.J.W., Aksu, A.E., 1987. The source and origin of the 1929 grand banks 

turbidity current inferred from sediment budgets. Geo-Marine Letters 7, 177-
182. 

Piper, D.J.W., Cochonat, P., Morrison, M.L., 1999. The sequence of events around the 
epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and 
turbidity current inferred from sidescan sonar. Sedimentology 46, 79-97. 

Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., 
Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, 
T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., 
Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, 
J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., 2013. IntCal13 and 
Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal BP. 

Seibold, E., 1982. The Northwest African Continental Margin — An Introduction, in: 
von Rad, U., Hinz, K., Sarnthein, M., Seibold, E. (Eds.), Geology of the 
Northwest African Continental Margin. Springer Berlin Heidelberg, Berlin, 
Heidelberg, pp. 3-20. 

Smith, D.E., Harrison, S., Jordan, J.T., 2013. Sea level rise and submarine mass failures 
on open continental margins. Quaternary Science Reviews 82, 93-103. 

Stuiver, M., Polach, H. A., 1977. Reporting on 14C data. Radiocarbon 19, 355–363. 
Stuiver, M., Reimer, P. J., 1986. A computer program for radiocarbon age calibration. 

Radiocarbon 28, 1022-1030. 
Sultan, N., Cochonat, P., Canals, M., Cattaneo, A., Dennielou, B., Haflidason, H., 

Laberg, J.S., Long, D., Mienert, J., Trincardi, F., Urgeles, R., Vorren, T.O., 
Wilson, C., 2004. Triggering mechanisms of slope instability processes and 
sediment failures on continental margins: a geotechnical approach. Marine 
Geology 213, 291-321. 

Talling, P., Clare, M., Urlaub, M., Pope, E., Hunt, J., Watt, S., 2014. Large Submarine 
Landslides on Continental Slopes: Geohazards, Methane Release, and Climate 
Change. Oceanography 27, 32-45. 

Tappin, D.R., Watts, P., McMurtry, G.M., Lafoy, Y., Matsumoto, T., 2001. The Sissano, 
Papua New Guinea tsunami of July 1998 — offshore evidence on the source 
mechanism. Marine Geology 175, 1-23. 

Urgeles, R., Leynaud, D., Lastras, G., Canals, M., Mienert, J., 2006. Back-analysis and 
failure mechanisms of a large submarine slide on the ebro slope, NW 
Mediterranean. Marine Geology 226, 185-206. 

Urlaub, M., Talling, P.J., Masson, D.G., 2013. Timing and frequency of large submarine 
landslides: implications for understanding triggers and future geohazard. 
Quaternary Science Reviews 72, 63-82. 

Urlaub, M., Talling, P.J., Zervos, A., Masson, D., 2015. What causes large submarine 
landslides on low gradient (<2°) continental slopes with slow (~0.15 m/kyr) 
sediment accumulation? Journal of Geophysical Research: Solid Earth 120, 
6722-6739. 

Vanneste, M., Mienert, J., Bunz, S., 2006. The Hinlopen Slide: A giant, submarine slope 
failure on the northern Svalbard margin, Arctic Ocean. Earth and Planetary 
Science Letters 245, 373-388. 

Vanneste, M., Sultan, N., Garziglia, S., Forsberg, C.F., L'Heureux, J.-S., 2014. Seafloor 
instabilities and sediment deformation processes: The need for integrated, multi-
disciplinary investigations. Marine Geology 352, 183-214. 

Varnes, D.J., 1978. Slope movement types and processes, in Schuster, R.L., and Krizek, 
R.J., eds., Landslides-Analysis and control: National Research Council, 
Washington, D.C., Transportation Research Board, Special Report 176, 11-33. 

Watts, P., Grilli, S.T., Tappin, D.R., Fryer, G.J., 2005. Tsunami Generation by Submarine 
Mass Failure. II: Predictive Equations and Case Studies. Journal of Waterway, 
Port, Coastal, and Ocean Engineering 131, 298-310. 

Weaver, P.P.E., Kuijpers, A., 1983. Climatic control of turbidite deposition on the 
Madeira Abyssal Plain. Nature 306, 360-363. 

Weaver, P.P.E., Wynn, R.B., Kenyon, N.H., Evans, J., 2000. Continental margin 
sedimentation, with special reference to the north-east Atlantic margin. 
Sedimentology 47, 239-256. 

Wynn, R.B., Masson, D.G., Stow, D.A.v., Weaver, P.P.E., 2000. The Northwest African 
slope apron: a modern analogue for deep-water systems with complex seafloor 
topography. Marine and Petroleum Geology 17, 253-265. 

Zhao, F., Alves, T.M., Li, W., Wu, S., 2015. Recurrent slope failure enhancing source 
rock burial depth and seal unit competence in the Pearl River Mouth Basin, 
offshore South China Sea. Tectonophysics 643, 1-7. 

 



 10

Figure Captions 
 
Fig. 1 Combined bathymetric and topographic map highlighting the distribution of the Sahara Slide Complex, which is 
marked in yellow (modified after Wynn et al., 2000; Georgiopoulou et al., 2010). Key bathymetric and structural features 
include the Saharan Seamounts to the west of the Sahara Slide, and the Canary Islands to the north of the study area. The 
red box represents the precise location of the study area. Bathymetric contours are shown as black solid lines with 
intervals of 1000 m. 

 
Fig. 2 (a) Multibeam bathymetric map of the headwall of the Sahara Slide Complex. The map highlights the presence of 
a complex headwall and associated sidewall scarps. The black boxes show the locations of the illuminated perspective 
views in Fig. 3. Interpreted sidescan sonar mosaics are outlined by the blue box (see detail in Fig. 6). The black solid 
lines indicate the Parasound profiles used in this study (Figs. 4a, b and 5a). Contours are shown at intervals of 200 m. 
The red circles represent the locations of sediment cores acquired during Cruise P395. (b) Profile A-A' (see location in 
Fig. 2a) illustrates the locations of the upper and lower headwall; each one with a height of ~100 m. 

 
Fig. 3 Three-dimensional (3D) perspective of the upper headwall of the Sahara Slide. See Fig. 2 for location of the 3D 
views. (a) Northeastern part of the upper headwall showing key morphological features including headwall scarps, glide 
planes (GP I, GP II and GP III) and Plateau I. (b) Southeastern part of the upper headwall showing headwall scraps, 
sidewall scarps and glide planes (GPI, GPII and GP III). (c) Central part of the upper headwall showing multiple 
sediment blocks and erosive channels. 

 
Fig. 4 (a) Parasound profile crossing the upper headwall towards the distal part of the Sahara Slide. The zoomed section 
reveals stratified sediments separated by a glide plane from slide deposits above. (b) Along-slope Parasound profile 
crossing the upper headwall showing a sidewall scarp, and Plateaus I and II. Three different glide planes (GP I, II and III) 
are highlighted in the figure by a yellow dashed line. The locations of the profiles are shown in Fig. 2. 

 
Fig. 5 (a) Parasound profile crossing the distal part of the upper headwall of the Sahara Slide Complex, along the 
continental slope. The profile shows well-developed sidewall scarps and numerous slide blocks. (b) Zoomed section 
imaging slide deposits over two distinct glide planes. The yellow dashed line highlights the position of the glide plane. (c) 
Zoomed section revealing the slide deposits and the underlying undulated glide plane. Location of profile is shown in Fig. 
2. 

 
Fig. 6 Sidescan sonar mosaic on the upper headwall of the Sahara Slide Complex. Dark colors represent areas of high 
backscatter. Four different acoustic facies, two lobes and plateau I, II are indicated in the mosaic. The white boxes 
highlight the zoomed sections in Figs. 8a, 9a and 10a. The inset figure shows the distribution of the three glide planes 
(GP I, II and III). 

 
Fig. 7 Interpretation of the sidescan sonar data in Fig. 6 highlighting the distribution of four acoustic facies in the upper 
headwall of Sahara Slide Complex. See text for details. 

 
Fig. 8 (a) Sidescan sonar data of the northern part of the upper headwall showing acoustic Facies 1 and 3a. Dark colors 
represent areas of high backscatter. See Fig. 6 for location of the mosaic. Multiple cracks are observed near the headwall. 
(b) Sub-bottom profile revealing the morphology of ridges and troughs. A high-amplitude reflection represents GP III.  
 
Fig. 9 (a) Sidescan sonar data of the southern part of the upper headwall showing the morphology of large-scale 
sediment ridges. A crown crack is identified in stratified (slope) sediments south of the headwall scarp. Dark colors 
represent areas of high backscatter. See Fig. 6 for location of sidescan sonar mosaic. (b) Zoomed section showing the 
morphology of the crown crack located south of the headwall. The crown crack has a length of ~ 550 m and a width of 
~50 m. (c) Sub-bottom profile illustrating ridges, troughs and the headwall of the Sahara Slide Complex. 

 
Fig. 10 (a) Sidescan sonar data of the central part of the study area, downslope from the upper headwall, showing 
multiple slide blocks and striae. Prominent isolated blocks are located at the termination of the striae. Dark colors 
represent areas of high backscatter. See Fig. 6 for location of the image (b) Sub-bottom profile showing the striae 
referred to in the text, which are surrounded by blocky deposits. 
 
Fig. 11 Photo and schematic illustration of sediment cores P395-04-1 and P395-07-1 (see Fig. 2 for location of cores). 
Black solid dots in core P395-04-1 and P395-07-1 represent the positions of AMS 14C-age dating samples in 5 and 3 cm 
below seafloor (bsf) with the calibrated ages. Note the distance from sample location to the boundary between Holocene 
drape and debris, which is ~1 cm for core P395-07-1. 
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