Open Access

Gamal A. El-Hiti*, Keith Smith, Mohammed B. Alshammari, Mansour D. Ajarim and Benson M. Kariuki

Crystal structure of *tert*-butyl 2-phenylethylcarbamate, C₁₃H₁₉NO₂

DOI 10.1515/ncrs-2016-0077 Received March 14, 2016; accepted June 22, 2016; available online July 6, 2016

Abstract

C₁₃H₁₉NO₂, monoclinic, $P2_1/n$ (no. 14), a = 5.2692(3) Å, b = 13.8663(9) Å, c = 17.8020(13) Å, $\beta = 93.323(6)^{\circ}$, V = 1298.50(15), Z = 4, $R_{gt}(F) = 0.0590$, $wR_{ref}(F^2) = 0.1932$, T = 293 K.

CCDC no.: 1487250

The asymmetric unit of the title structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

tert-Butyl 2-phenylethylcarbamate was synthesized from the reaction of 2-phenylethylamine with 1.2 equivalents of di*tert*-butyl dicarbonate in the presence of 1.5 equivalents of triethylamine in dichloromethane at 0 °C for 15 minutes and

*Corresponding author: Gamal A. El-Hiti, Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia, e-mail: gelhiti@ksu.edu.sa

Keith Smith and Benson M. Kariuki: School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK Mohammed B. Alshammari: Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia

Mansour D. Ajarim: Criminal Evidence Department, Ministry of Interior, Riyadh 11632, PO Box 86985, Saudi Arabia

Table 1: Data collection and handling.

Crystal:	Colourless needle
	Size $0.57 \times 0.18 \times 0.10$ mm
Wavelength:	Mo <i>Kα</i> radiation (0.71073 Å)
μ:	$0.8 \ {\rm cm^{-1}}$
Diffractometer, scan mode:	SuperNova, ω
$2\theta_{max}$, completeness:	59.8°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	6696, 3146, 0.022
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 1985
N(param) _{refined} :	186
Programs:	SHELX [14], CrysAlis ^{PRO} [15],
	WinGX [16]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	z	U _{iso} */U _{eq}
01	-0.1282(3)	0.15249(12)	-0.02887(9)	0.0674(5)
02	0.1718(2)	0.24524(10)	0.03205(8)	0.0595(4)
C1 ^a	0.3832(2)	-0.01016(10)	-0.21915(8)	0.056(2)
C2 ^a	0.1667(2)	-0.00308(10)	-0.26730(8)	0.0677(17)
H2 ^a	0.0548	0.0481	-0.2625	0.081*
C3 ^a	0.1176(2)	-0.07251(10)	-0.32257(8)	0.0730(16)
H3ª	-0.0272	-0.0678	-0.3548	0.088*
C4 ^a	0.2850(2)	-0.14901(10)	-0.32968(8)	0.0682(17)
H4 ^a	0.2521	-0.1955	-0.3667	0.082*
C5 ^a	0.5015(2)	-0.15610(10)	-0.28153(8)	0.0739(17)
H5 ^a	0.6134	-0.2073	-0.2863	0.089*
C6 ^a	0.5506(2)	-0.08667(10)	-0.22626(8)	0.0676(17)
H6 ^a	0.6954	-0.0914	-0.1940	0.081*
C7 ^a	0.4229(17)	0.0638(8)	-0.1572(5)	0.070(3)
H7A ^a	0.6014	0.0643	-0.1405	0.084*
H7B ^a	0.3815	0.1270	-0.1777	0.084*
C8 ^a	0.2677(7)	0.0468(3)	-0.0900(2)	0.070(3)
H8A ^a	0.0906	0.0388	-0.1068	0.084*
H8B ^a	0.3242	-0.0121	-0.0649	0.084*
C1A ^b	0.3508(7)	-0.0104(3)	-0.2191(2)	0.055(3)
C2A ^b	0.1686(7)	-0.0229(3)	-0.2779(2)	0.068(2)
H2A ^b	0.0330	0.0198	-0.2839	0.082*
C3A ^b	0.1890(7)	-0.0994(3)	-0.3277(2)	0.078(2)
H3A ^b	0.0671	-0.1078	-0.3670	0.093*
C4A ^b	0.3917(7)	-0.1633(3)	-0.3186(2)	0.075(2)
H4A ^b	0.4053	-0.2145	-0.3519	0.090*
C5A ^b	0.5739(7)	-0.1508(3)	-0.2598(2)	0.087(2)
H5A ^b	0.7095	-0.1936	-0.2538	0.105*

CC) BY-NC-ND © 2016 Gamal A. El-Hiti et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Table 2 (continued)

Atom	x	у	z	U _{iso} */U _{eq}
C6A ^b	0.5535(7)	-0.0743(3)	-0.2100(2)	0.076(2)
H6A ^b	0.6754	-0.0660	-0.1707	0.091*
C7A ^b	0.349(2)	0.0737(9)	-0.1667(6)	0.064(3)
H7A1 ^b	0.5195	0.1005	-0.1611	0.076*
H7A2 ^b	0.2380	0.1231	-0.1887	0.076*
C8A ^b	0.2655(13)	0.0486(4)	-0.0927(4)	0.066(4)
H8A1 ^b	0.0885	0.0292	-0.0980	0.080*
H8A2 ^b	0.3630	-0.0064	-0.0738	0.080*
C9	0.0918(4)	0.17255(14)	-0.01289(11)	0.0506(5)
C10	-0.0073(4)	0.30852(16)	0.06855(12)	0.0579(5)
C11	-0.1721(5)	0.36138(18)	0.01000(16)	0.0782(7)
H11A	-0.0665	0.3920	-0.0251	0.117*
H11B	-0.2708	0.4093	0.0341	0.117*
H11C	-0.2840	0.3164	-0.0162	0.117*
C12	0.1684(5)	0.3775(2)	0.11144(18)	0.0922(10)
H12A	0.2756	0.3423	0.1472	0.138*
H12B	0.0698	0.4237	0.1374	0.138*
H12C	0.2718	0.4105	0.0770	0.138*
C13	-0.1626(5)	0.25076(18)	0.12148(14)	0.0718(7)
H13A	-0.2796	0.2101	0.0928	0.108*
H13B	-0.2556	0.2939	0.1519	0.108*
H13C	-0.0514	0.2116	0.1533	0.108*
N1	0.2909(3)	0.12580(13)	-0.03773(10)	0.0613(5)
H1	0.4407	0.1437	-0.0217	0.074*

^aOccupancy: 0.558(8); ^bOccupancy: 0.442(8).

then under reflux for 1 h. The crude product was purified by crystallization from hexane to give the title compound (90%) as colourless crystals, mp 56–57 °C (lit. 56.1–56.4 °C [1]; 54–55 °C [2]; 55–56 °C [3]).

Experimental details

The methylbenzene segment of the molecule is disordered and was refined with the occupancies 56(1)% and 44(1)%. The aromatic ring was constrained into a regular hexagon with C–C distances of 1.39 Å. All H atoms were placed in calculated positions and refined using a riding model. For the methyl groups, C–H bonds were fixed at 0.96 Å and U_{iso} (H) set to $1.5U_{eq}$ (C) with free rotation around the C–C bond. For the rest of the hydrogens, U_{iso} (H) was set to $1.2U_{eq}$ (C) with aromatic C–H and N–H distances of 0.93 and 0.86 Å, respectively.

Discussion

Various carbamate and thiocarbamate derivatives show antimicrobial activities [4–6] and various synthetic procedures have been reported for the production of carbamates. Convenient and efficient syntheses involve reactions of amino acids with *Boc*-benzotriazoles in the presence of triethylamine in aqueous acetonitrile at room temperature [7], of amines with phenyl 4,5-dichloro-6-oxopyridazine-1(6*H*)carboxylate in tetrahydrofuran (THF) at room temperature [8], of nitriles with an excess of di-*tert*-butyl dicarbonate in the presence of a catalytic amount of nickel boride in methanol at room temperature [9], of aromatic carboxylic acids with di-*tert*-butyl dicarbonate in the presence of sodium azide, tetrabutylammonium bromide and zinc(II) trifluoromethanesulfonate in THF at 40 °C [10] and of nitro aromatics with excess chloroformates in the presence of zinc and ammonium chloride in aqueous THF at 0 °C [11]. High yields of substituted derivatives can be produced from regioselective lithiation of aryl carbamates using lithium reagents, at room temperature, followed by treatment of the lithium intermediates obtained *in situ* with electrophiles [12, 13].

The asymmetric unit of the title structure consists of one molecule with a disordered benzyl fragment. All bond lengths and angles are in the expected ranges. In the crystal structure, the amide group is involved in a N–H···O hydrogen bond (N···O distance = 3.078(2)Å, N–H···O angle = 153.3°) leading to the formation of *C*(4) chains along [100].

Acknowledgements: The authors extend their appreciation to the College of Applied Medical Sciences Research Centre and the Deanship of Scientific Research at King Saud University for their funding of this research.

References

- Hanada, S.; Yuasa, A.; Kuroiwa, H.; Motoyama, Y.; Nagashima, H.: Hydrosilanes are not always reducing agents for carbonyl compounds, II: Ruthenium-catalyzed deprotection of *tert*-butyl groups in carbamates, carbonates, esters, and ethers. Eur. J. Org. Chem. 6 (2010) 1021–1025.
- Chong, P. Y.; Janicki, S. Z.; Petillo, P. A.: Multilevel selectivity in the mild and high-yielding chlorosilane-induced cleavage of carbamates to isocyanates. J. Org. Chem. 63 (1998) 8515–8521.
- Baumgarten, H. E.: Reactions of amines. XVIII. The oxidative rearrangement of amides with lead tetraacetate. J. Org. Chem. 40 (1975) 3554–35561.
- Krátký, M.; Volková, M.; Novotná, E.; Trejtnar, E.; Stolaříková, J.; Vinšová, J.: Synthesis and biological activity of new salicylanilide *N*,*N*-disubstituted carbamates and thiocarbamates. Bioorg. Med. Chem. **22** (2014) 4073–4082.
- Blaser, A.; Palmer, B. D.; Sutherland, H. S.; Kmentova, I.; Franzblau, S. G.; Wan, B.; Wang, Y.; Ma, Z.; Thompson, A. M.; Denny, W. A.: Structure–activity relationships for amide-, carbamate-, and urea-linked analogues of the tuberculosis drug (6*S*)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7dihydro-5*H*-imidazo[2,1-*b*][1, 3]oxazine (PA-824). J. Med. Chem. 55 (2012) 312–326.
- Yang, Y. H.; Voak, A.; Wilkinson, S. R.; Hu, L. Q.: Design, synthesis, and evaluation of potential prodrugs of DFMO for reductive activation. Bioorg. Med. Chem. Lett. 22 (2012) 6583–6586.

- Ibrahim, T. S.; Tala, S. R.; El-Feky, S. A.; Abdel-Samii, Z. K.; Katritzky, A. R.: Benzotriazole reagents for the syntheses of *Fmoc-*, *Boc-*, and *Alloc-*protected amino acids. Synlett. 14 (2011) 2013–2016.
- Lee, H.-G.; Kim, M.-J.; Park, S.-E.; Kim, J.-J.; Lee, S.-G.; Yoon, Y.-J.: Phenyl 4,5-dichloro-6-oxopyridazine-1(6H)carboxylate as carbonyl source: Facile and selective synthesis of carbamates and ureas under mild conditions. Synlett. 17 (2009) 2809–2814.
- Caddick, S.; Judd, D. B.; Lewis, A. K. de K.; Reich, M. T.; Williams, M. R. V.: A generic approach for the catalytic reduction of nitriles. Tetrahedron 59 (2003) 5417–5423.
- Lebel, H.; Leogane, O.: Curtius rearrangement of aromatic carboxylic acids to access protected anilines and aromatic ureas. Org. Lett. 8 (2006) 5717–5720.

- Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O.: Facile procedure for the synthesis of *N*-aryl-*N*-hydroxy carbamates. Synlett. 5 (2009) 798–802.
- Smith, K.; El-Hiti, G. A.; Alshammari, M. B.: Directed lithiation of N'-(2-(4-methoxyphenyl)ethyl)-N,N-dimethylurea and *tert*butyl (2-(4-methoxyphenyl)ethyl)carbamate. Synthesis 46 (2014) 394–402.
- Smith, K.; El-Hiti, G. A.; Alshammari, M. B.: Variation in the site of lithiation of 2-(2-methylphenyl)ethanamine derivatives. J. Org. Chem. 77 (2012) 11210–11215.
- 14. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Agilent. CrysAlis^{PRO}. Agilent Technologies, Yarnton, England, 2014.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.