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What we can learn about the behavior of
�rms from the average monthly frequency of
price-changes: an application to the UK CPI

data.�

Huw David Dixony Kun Tian.z

November 17, 2016

Abstract

The monthly frequency of price-changes is a prominent feature of
many studies of the CPI micro-data. In this paper, we see what the
frequency implies for the behavior of price-setters in terms of the cross-
sectional distribution average of price-spell durations across �rms. We
derive a lower bound for the mean duration of price-spells averaged
across �rms. We use the UK CPI data at the aggregate and sectoral
level and �nd that the actual mean is about twice the theoretical min-
imum consistent with the observed frequency. We construct hypothet-
ical Bernoulli-Calvo distributions from the frequency data which we
�nd can result in similar impulse responses to the estimated hazards
when used in the Smets-Wouters (2003) model.
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1 Introduction

In recent years, there have been many studies using comprehensive micro-
data on pricing. For the US we have Bils and Klenow (2004), Klenow
and Kryvtsov (2008), Nakamura and Steinsson (2008). In the Euro area,
there has been the in�ation persistence network (IPN ) consisting of national
studies of the CPI and PPI microdata1, which are summarized in Alvarez et
al (2006). There are other studies: for example Bunn and Ellis (2012) for
the UK and Baharad and Eden (2004) for Israel. One common focus of these
studies has been the frequency statistic of the proportion of prices changing
per month (this can either be an average over several months, or a monthly
statistic). This statistic can be presented in several ways, depending on the
level of disaggregation and the treatment of temporary sales and so on2.
In this paper, we seek to analyze what this frequency statistic implies for
the behavior of "�rms" (or more accurately price-setters) in the economy in
terms of the mean duration of prices set by �rms. Each period �rms set prices:
they may either choose to leave the price unchanged or to change it. The
proportion of �rms resetting price corresponds to the proportion of prices
changing (for simplicity we take a 1-1 correspondence between �rms and
prices3). The prices of some product types change frequently (e.g. gasoline,
tomatoes) and some very infrequently (coin operated laundromats).
We can think of the CPI dataset as a panel of observations, each cross-

section corresponding to the prices set by the price-setters at that date. The
cross-sectional distribution of completed price spells can be seen as capturing
the behavior of the �rms, which represents the "structure" of the economy
in this respect: what proportion of �rms set prices of a particular duration,
what is the average behavior of the �rms in the economy. The cross-sectional
distribution of durations is needed if we are to calibrate price-setting on the
economy as a generalized Taylor economy (GT) where we consider the econ-
omy as made up of price-setters who set prices for di¤erent durations which
are known ex ante (Taylor 2015, Dixon and Le Bihan 2012). The pur-
pose of this paper is to explore what we can learn about this cross-sectional
distribution from the frequency data. What is the cost of losing informa-
tion by summarizing the distribution of durations using just the frequency
data? In fact, we show that the loss can be quite small: it turns out that
the behavior of the economy using hypothetical distributions generated by
the frequency data can look quite similar to those based on the estimated

1See Baudry et al (2007) and Alvarez and Hernando (2006) for France and Spain inter
alia.

2See Kehoe and Midrigan (2015) for a discussion for the US data.
3See Akvarez and Lippi (2013) for the case of multi-prodict �rms.
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distribution. However, a wide variety of hypothetical distributions are con-
sistent with a given frequency and some can give rise to behavior that are
quite di¤erent. We need to know which hypothetical frequency-based distri-
butions work best. For example, Dixon and Kara (2010,2011) assume that
the frequencies correspond to a �xed Bernoulli probability each period that
a �rm�s price will change, giving rise to the corresponding (cross-section)
Bernoulli-Calvo distribution.
Our approach to interpreting the frequency data is twofold. Firstly, we ask

a purely theoretical question - what is the range of possible cross-sectional
means consistent with a given frequency. Secondly we compare the cross-
sectional distribution estimated from the micro data with two hypothetical
distributions derived purely from the frequency data: (a) the "minimum dis-
tribution" generating the lowest mean durations and (b) the Bernoulli-Calvo
distribution which is implied by the popular Calvo (1983) model of pricing.
We use the UK CPI data for the period 1996-2007 and consider frequency
data at three di¤erent levels of disaggregation: the 11 sector COICOP4, the
67 sector COICOP and the highest possible level of disaggregation at 570
items, to see how the actual data on price-spell durations compares to the
hypothetical distributions consistent with the frequency data. We �nd that
the cross-sectional mean duration estimated directly from the CPI data is
10.9 months and the median is 7.8 months. We use the full data set and
include all price-spells including sales and other short lived prices.
Turning �rst to the theoretical minima generated from the frequency

data. In Proposition 1 we �nd that the theoretical minimum consistent
with a given frequency is only attained if all price-spells have the same or
almost the same duration, whilst in the data the distribution contains a lot
of heterogeneity in durations which implies a cross-sectional mean that will
far exceed this theoretical minimum. Hence it is no surprise to �nd that
the estimated mean is 62-90% higher than the theoretical minimum means
generated at di¤erent levels of disaggregation5. The theoretical minimum is
not just of theoretical interest: Carvalho et al (2015) take the frequency data
from Bils and Klenow (2004) and Nakamura and Steinsson (2008) and use
the minimum mean distribution as a prior in their Bayesian estimation of
the cross sectional distribution.
Secondly, we interpret the frequency data under the hypothesis that

4COICOP stands for "Classi�cation of Individual Consumption According to Purpose"
and is an international standard used for constructing consumer price indexes (see for
example UN Statistics division http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=5).

5The theoretical maximum is only bounded by an upper bound on durations: a fre-
quency of 20% could be generated by 20% of �rms changing price each period, with 80%
never changing price, yielding an in�nite mean.
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within the sectors the frequency is generated by a Bernoulli-Calvo distri-
bution as has been assumed in applied work by Dixon and Kara 2010, 2011.
We look at this in two ways. We �rst take implied distribution of durations
in each sector (for a given level of disaggregation) and then for each dura-
tion we aggregate over sectors using the CPI weights to �nd the aggregate
distribution. We can then compare this implied distribution derived from
the frequencies to the distribution estimated directly from the data survival
function.

� The aggregate distribution derived under the Bernoulli-Calvo hypothe-
sis at the sectoral level has a similar mean and median to the estimated
distribution, with the mean increasing with the level of disaggregation.
For example, the 570-item model yields a mean of 10.8 and median of
7.8 months, whilst the estimated values are 10.9 and 7.8 respectively.

� However, the implied Bernoulli-Calvo distributions di¤er to the esti-
mated distribution in signi�cant ways: (i) there is a 12 month spike
in the estimated distribution absent from the Bernoulli-Calvo distrib-
utions, (ii) the proportion of short price-spells (1-3 months) is less in
the Bernoulli-Calvo than in the estimated distribution.6

Whilst the Bernoulli-Calvo distributional hypothesis might not provide a
good statistical �t, does this matter in terms of how the economy behaves?
Since the Bernoulli-Calvo hypothesis yields a mean and median close to the
estimated distribution, perhaps the di¤erences will not result in di¤erent
behavior of the economy in terms of impulse response functions (IRFs). We
explore this in the context of two macro models: a simple Quantity Theory
model and the Smets andWouters (2003) Euro area model. We also calibrate
the models for quarterly and monthly versions. The pricing models used are
the Generalized Taylor (GT) and Generalized Calvo (GC) as in Dixon and
Le Bihan (2012), which are both consistent with any micro distributions of
durations and can be calibrated both to the estimated distribution and the
hypothetical distributions under both the Bernoulli-Calvo hypothesis and the
theoretical minimum duration corresponding to Proposition 1.

6We also examined whether the Bernoulli-Calvo is a good �t in each of the 11 COICOP
sectors in an earlier version of the paper (Cesifo working paper4226). Since the data set
is large, even small deviations of the actual distribution from the hypothetical Bernoulli-
Calvo distribution cause the Bernoulli-Calvo null to be rejected under the Kolmogorov-
Smirnov test, which is indeed the case. However, whilst in some sectors the hypothesized
Bernoulli-Calvo distribution looks completely di¤erent (for example in Health which has a
very large 12 month spike), in others the Bernoulli-Calvo looks more similar (Transporta-
tion).
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Our �ndings for the IRFs are mixed. Whilst the best hypothetical dis-
tribution yields IRFs close to those generated by the estimated distribution,
sometimes they can be far away. The minimum duration distributions all
perform badly relative to the Bernoulli-Calvo distributions. Amongst the
Bernoulli-Calvo distributions, in general we �nd that the most disaggregated
gives the worst �t in terms of IRFs for the GT pricing model. This sug-
gests that the "best �t" in terms of the cross-sectional distribution does not
imply the best calibration for IRFs. In almost all cases considered, we �nd
that the intermediate level of disaggregation (67 COICOP) gives the IRFs
closest to the one from the estimated distribution. We also �nd that the
di¤erences in calibration matter less in the Smets-Wouters model than in the
simple QT: this is not surprising, since there are more sources of dynamics in
the SW framework than nominal rigidity. Since most macroeconomists will
be interested in using micro-data to calibrate in models of a similar degree
of complexity to the SW model, our results suggest that using the sectoral
frequency data under the Bernoulli-Calvo distributional hypothesis might be
a useful shortcut and alternative to estimating the distribution using the
hazard function. Indeed, where the hazard function is not available or not
estimated reliably, we can be con�dent that the use of sectoral frequencies
with the Bernoulli-Calvo distributional hypothesis can be a good working
approximation. However, using the most disaggregated data might not lead
to the best calibration. Since the Bils-Klenow dataset used by Dixon and
Kara (2010, 2011) is highly disaggregated with 350 frequencies, our results
from the UK CPI data suggest that it would have been better for them to
have used the frequency data in a more aggregated form.
The structure of the paper is follows. In Section 2, we give a theoretical

description of the steady state distributions of durations. In Section 3, we
derive the propositions in which the average duration across �rms consistent
with the mean frequency of price changes. We show an application to the UK
CPI data in Section 4. In Section 5, we compare the di¤erent microeconomic
distributions by simulating a simple quantity theory model and a Smets-
Wouters model, both with Generalized Taylor and Generalized Calvo price-
setting respectively. We conclude in Section 6.

2 Steady state distributions of durations.

The statistical framework for understanding the CPI microdata is outlined in
detail by Dixon (2012), so in this paper we just summarize in a less technical
manner the key properties needed for this paper. There is a continuum

5



of price-setting �rms f 2 [0; 1] ; time is discrete7 and in�nite t 2 Z+ =
f0; 1; 2:::1g : The price set by �rm f at time t is pft. A price spell is a
duration, a sequence of consecutive periods that have the same price pft.
For every ft; fg � [0; 1] � Z+ we can assign an integer d(t; f) which is the
duration of the price-spell to which pft belongs8. The distribution of price-
spell durations is simply the proportions of all durations having length i =
1:::F : �d =

�
�di
	F
i=1

2 �F�1. We assume a steady-state, so that the
distribution of durations of new price-spells is the same for each new cohort
of price-spells. This means that the distribution of all price-spells is exactly
the same as the distribution of new price spells at any period.
Whilst the distribution of durations �d 2 �F�1 is one way of looking

at the microdata, it ignores the panel structure of the data, since it puts
all of the price-spells together and ignores their start date. However, each
row of the panel is a trajectory of prices corresponding to a particular �rm
(or more accurately product sold at an outlet). Each column is a cross-
section of all of the prices set by �rms at a point in time. The cross-sectional
distribution of completed price-spell durations is � 2 �F�1. This takes a
representative t, and for each �rm we see the completed price-spell duration
at that time d(f; t): �i is then the proportion of �rms that set prices for
i periods. Equivalently, it is the proportion of price-spells at any time t
which last for i periods. We will call this cross-sectional distribution the
distribution across �rms, or DAF for short.
To see why we are interested in the cross-sectional DAF, we can consider

the following example. Think of an economy with two sectors of equal size.
In one, prices are perfectly �exible and change every month. In the other
�x-price sector, prices only change once every �ve years. Suppose we have
one observation taken from each sector each month over 5 years coinciding
with one �x-price spell. We will have a panel with two rows and 60 columns:
a total of 120 price observations. If we look at the price-spells, we have 61:
one 5 year spell and 60 one month spells. The average spell duration is
approximately 2 months (120/61). The frequency of price change is 50%.
You might conclude that with price-spells being on average 2 months, prices
were quite �exible. However, this is not the case: for half the economy
prices are very in�exible and last 5 years. This is better captured by the
cross-sectional mean of 30.5 months.
The proportion of �rms re-setting price each month is denoted as �h : in

7Typically, CPI data are collected on a monthly basis, the price observations being
obtained in the �rst two weeks of the calender month.

8Note that in assigning an integer to a duration, we start with 1 by convention: it
would be equally valid to start with 0. With our convention, a new price-spell is 1 month
old, rather than becoming 1 on completion of the �rst month.
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the UK this is equal to 21%: We de�ne the mean duration9 of price-spells
across the panel as a whole as

�d
�
�d
�
=

FX
i=1

i�di

and cross-sectional mean (across �rms or price-setters) as

�T (�) =
FX
i=1

i�i (1)

Note that the cross sectional mean in general be larger than the mean
duration �T � �d: this is because in cross-section you have length-biased
sampling, since the probability of a price-spell being observed in cross-section
is proportional to its duration. Indeed, the two can be equal ( �T = �d) if and
only if �F = �dF = 1; so that all price-spells are F months long and there is
no heterogeneity to generate a length bias.
From Dixon (2012), we know that10:

�h = �d�1 (2)

=
FX
i=1

�i
i

(3)

That is, the proportion of �rms resetting price is equal to the reciprocal of
the mean duration �d. Furthermore, the proportion of �rms resetting price is
related to the cross-sectional distribution by equation (3) : In steady-state,
a proportion i�1 of the �i i�duration �rms reset their price. The aggregate
proportion is simply the sum over the durations i = 1:::F .

2.1 The average duration across �rms consistent with
h̄: some theoretical results.

Now, for a given frequency �h there are many possible distributions across
�rms (DAF) � 2 �F�1 consistent with identity (3) and each distribution re-
sults in a corresponding mean across �rms �T (�): We can de�ne the mapping

9Again, this way of de�ning the mean is consistent with our convention of assigning the
integer 1 to the �rst time period. Had we instead assigned a 0 to this value, then we would
have the expression

PF
i=1(i � 1)�i (as we do with human ages). An equally acceptable

measure is to take the midpoint and have
PF

i=1(i � 0:5)�i We can move between these
de�nitions simply by adding or subtracting a constant.
10In continuous time, we have �d = � 1

log(1��h) ; which allows for the price to change more
than once per period. Again, we are using a discrete time setting in which durations are
integer valued.
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H
�
�h
�
: [0; 1]! �F�1

H
�
�h
�
=

(
� 2 �F�1 :

FX
i=1

�i
i
= �h

)

H
�
�h
�
is the set of all DAFs which are consistent with a given mean duration

of price-spells �d expressed in terms of the corresponding proportion of �rms
resetting prices �h. Clearly, since the maximum duration is F , we have
�h � F�1 so that H is non-empty. Since H

�
�h
�
is de�ned by a linear

restriction on the sector shares �, H
�
�h
�
� �F�2 and is closed and bounded.

Since from (1) �T (�) continuous, both a maximum and a minimum value for
T will exist consistent with � 2 H

�
�h
�
. The minimum �T consistent with a

given �h is given by:

�Tmin = min �T (�) s:t: � 2 H
�
�h
�

(4)

The maximum �T consistent with a given �h is given by:

�Tmax = max �T (�) s:t: � 2 H
�
�h
�

(5)

Proposition 1 For a given frequency �h: the minimum mean from (4) is
�Tmin = �h�1 = �d. The maximum average contract mean from (5) is
�Tmax = F

�
1� �h

�
+ 1.

Proofs are in the appendix. To understand Proposition 1, we just need to
think of what is generating the mean duration of spells �d and the proportion
of �rms changing price each period �h. There is the unit interval of �rms,
divided into proportions �i with di¤erent price-spell durations i = 1:::F .
Firms with price-spell lengths i will set prices once every i�1 periods: the
longer the price-spell, the more infrequently the �rm will reset price. Hence,
we can have the same proportion of �rms re-setting price (and hence same
mean duration of spells) and increase the mean duration across �rms by
having more very short (1 period) and more longer price-spells. The maxi-
mum Tmax is reached when we have as many F period contracts as possible,
consistent with �h, which means we have a mix of 1 period and F period
price-spells. The existence of a maximum relies on us assuming an upper
bound F : clearly, as F ! 1, Tmax ! 1. The minimum occurs when all
�rms have price-spells of (almost) the same length: if �d happens to be an in-
teger, then all price-spells have exactly the same length and the distribution
of price spells durations and the cross section are the same: �d = � (there
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is no length bias in cross-section). Note that �Tmax = �Tmin if and only if
F = �h = 1, with all prices changing every period.
Thirdly, we look at a particular distribution: the discrete time Bernoulli

process where the probability of a price-change ending the price-spell in any
particular period (the Bernoulli measure) is �h. This is important in the
macroeconomic context, because the Calvo model of price-setting uses the
Bernoulli measure as a key parameter (often referred to in macroeconomics
as the Calvo probability in the context of wage or price-setting). In terms
of the distribution of durations �d this gives rise to the familiar Geometric
distribution:

�di = (1� �h)i�1�h
As shown in Dixon and Kara (2006), this corresponds to the cross-sectional

distribution � = f�ig1i=1 where:

�i = i:�h2(1� �h)i�1 (6)

We will denote (6) as the Bernoulli-Calvo (BC) speci�cation of the cross-
sectional DAF. The corresponding cross-sectional mean is:

�TBC = 2:�h�1 � 1: (7)

The Bernoulli-Calvo mean is at most almost twice the theoretical mini-
mum from Proposition 1, since:

�TBC = 2:Tmin � 1

Note that �TBC = �Tmin = d iff �h = 1. That is the Bernoulli-Calvo mean
equals the minimum if and only if all are perfectly �exible and change every
period. If some price remain unchanged each period (�h < 1), then �TBC >
�Tmin. For example, if the Bernoulli measure is 0.25, then �TBC = 7 and
�Tmin = 4; a Bernoulli measure of 0.10 implies �TBC = 19 and �Tmin = 10:

3 An application to the UK CPI data11.

In this section, we take the frequency data from the UK and construct the
three hypothetical distributions corresponding to the upper and lower bounds

11This work contains statistical data from ONS which is Crown copyright and repro-
duced with the permission of the controller of HMSO and Queen�s Printer for Scotland.
The use of the ONS statistical data in this work does not imply the endorsement of the
ONS in relation to the interpretation or analysis of the statistical data. This work uses
research datasets which may not exactly reproduce National Statistics aggregates
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for the cross-sectional mean duration and the Bernoulli-Calvo distribution.
These three distributions are then compared to the estimated distribution.
The dataset we use is the locally collected CPI price microdata covering the
period January 1996 to December 2007 which is described in detail in the
Appendix. The period covered corresponds to the Great Moderation period
when the frequencies were stationary.
First, we consider the estimated distribution �̂ = f�̂ig44i=1 which is esti-

mated using the whole disaggregated microdata set. We have truncated the
distribution at F = 44 months. We estimate the Survivor function S(i)
using the nonparametric Kaplan-Meier method as was used in Dixon and
Le Bihan (2012) for French data and Dixon (2012) for the same UK data.

This gives us the sequence of estimates of survival probabilities
n
Ŝ(i)

o44
i=1

;

where Ŝ(i) is the estimated probability of a price-spell surviving at least i
periods. The corresponding hazard ĥ(i), the probability that the spell will
end in the ith period conditional on having survived i periods, can be derived
from the survivor function12. From this we are able to estimate the aggregate
cross-sectional distribution using the steady-state identity:

�̂i = �h:i:(Ŝ(i)� Ŝ(i+ 1))

Note the estimated distribution is based on all of the price spells across all
COICOP sectors appropriately weighted: �h is the aggregate Bernoulli-Calvo
measure (�h = 0:214). We believe that the use of the steady-state identity
is justi�ed given that our time period is part of the great moderation in the
UK.
We now turn to the hypothetical distributions derived from the same

dataset but at di¤ering levels of aggregation, to see how the level of dis-
aggregation a¤ects the results. For the UK, we have the following levels
of disaggregation available from the ONS, based on COICOP categories de-
scribed below:

� 11 COICOP categories

� 67 disaggregated COICOP categories.

� 570 items.

Each of these disaggregations represents exactly the same data. To get
an idea of the level of aggregation, we can depict the broad 11 COICOP

12 ĥ(i) =
�
Ŝ(i)� Ŝ(i+ 1)

�
=Ŝ(i)
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COICOP Category. CPI adj.wt freq Min(months) Max(months)
Transport 10.4% 36.0% 2.8 29.2
Alcoholic Beverages and Tobacco 7.1% 27.6% 3.6 32.9
Clothing and Footwear 9.3% 27.2% 3.7 33
Food and Non-Alcoholic Beverages 17.6% 26.0% 3.8 33.6
Furniture and Home Maintenance 11.3% 22.7% 4.4 35
Communications 0.2% 22.5% 4.4 35.1
Recreation and Culture 9.9% 20.0% 5 36.2
Housing and Utilities 8.3% 13.7% 7.3 39
Miscellaneous Goods and Services 6.5% 12.7% 7.9 39.4
Restaurants and Hotels 17.5% 10.5% 9.5 40.4
Health 1.9% 10.4% 9.6 40.4
Mean 21.4% 4.7 35.6

Table 1: COICOP 11 sectoral frequencies
"Freq" denotes the frequencies of prices changes, which are reported in

percent per month. "CPI adj" denotes the adjusted CPI expenditure weight
of the CPI sectors after excluding the Education sector. "Min" denotes the
minimum average duration. "Max" denotes the maximum average duration

with F=44.

categories (excluding education which is not included in the ONS dataset) in
Table 1. For example, there is the category "food and non-alcoholic bever-
ages" which represents 17.6% of the CPI weight in the subsample available
in the dataset. The second level of disaggregation subdivides these into a
total of 67 COICOP subcategories. For example, within ""food and non-
alcoholic beverages" there are 11 subcategories: 2 for drinks (tea, co¤ee and
cocoa; mineral water, soft drinks and juices) and 9 for food (such as meat,
�sh, fruit). The lowest level of disaggregation is the item level. An item is
a particular product or service on which the price observation is made. For
example: canned sweet corn (198g-340g); co¤ee - take-away; fresh lettuce
(iceberg). The 570 items we include are all of the items which were included
throughout the sample period - it excludes old items which were either dis-
continued or new items introduced within this period. These items represent
over 66.4% of the total CPI.
Firstly, in Table 1 we present the appropriate CPI weight and the fre-

quency13 for the 11 COICOP sectors. In the �rst column of the Table 1 is

13In a given month, the percentage of current prices (for items at a location) that are
di¤erent from the price set in the previous month for the same product at the same
location. The �gure excludes items for which there was no observation the month before
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the COICOP sector, in the second is the CPI weight for the sector, normal-
ized so that they add up to 100 (since Education is excluded) and the third
the frequency (to three d.p.). In the fourth we have the minimum average
duration in that sector and in the �fth the maximum from Proposition 1
based on the assumption that the longest price-spell is F = 44 months.
We next generate the cross-sectional distribution in the whole economy

corresponding to the minimum average duration consistent with the observed
frequencies. First we have the COICOP 11 disaggregation. From Proposition
1, in each sector we will have one or two durations with a non-zero share. In
Recreation & Culture, since 20% of prices change per month, there will only
be 5 month price-spells. In Food & Non-Alcoholic Beverages there will be
a mixture of 20% 3 month and 80% 4 month price-spells to yield the mean
duration of 3.8 months. The shortest durations are 2 months (in Transport)
and the longest 10 months (in Health). For each duration, we can then add
up across the 11 sectors to get the weighted cross-sectional distribution. We
also perform the same procedure for the COICOP 67 and the 570 item level.
These are all depicted in Figure 1, along with the estimated distribution.

Figure 1: The minimum duration distributions compared to the estimated DAF.

The minimum duration distributions share some common features when
compared to the estimated distribution: they all put too little weight on
month 1, month 12, and longer durations. They all put too much weight on
months 3-5 and months 9 and 10. However, the minimum duration distrib-
utions generated from di¤erent levels of aggregation are also quite di¤erent
from each other. The level of disaggregation clearly matters when construct-
ing a possible cross-sectional distribution. We can see this from the mean
and median durations in Table 2.

These are far too short, re�ecting the fact that the minimum duration
distributions put a large weight on the shorter distributions and do not have
a long fat tail as in the data except for the most-disaggregated 570 item. In
fact, the minimum durations are just over half the estimated mean duration.
Carvalho et al (2015) estimate the mean cross-sectional quarterly distri-

bution from US data on the basis of a variation the "minimum method".
Using the Bils and Klenow (2004) sticky prices table of frequencies, they use
the continuous time estimate of the mean duration, which is di¤erent from
the discrete time Bernoulli formulation. The continuous time mean is less
than the discrete time one, because it allows for durations in between the in-
teger values. However, as in discrete time, the cross-sectional mean can only

(e.g. it is the �rst price observation of the item at the outlet). The monthly frequencies
are averaged over the whole data period.
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Mean DAF(in months) Median DAF(in months)
ED 10.9 7.8
MD11 5.5 4
MD67 6.1 4.5
MD570 6.7 5.8

Table 2: The minimum mean and median duration accross �rms comparison
"ED" denotes the cross-sectional distribution implied by the estimated
survivor function, "MD11", "MD67", and "MD570" denote the

cross-sectional distributions derived from the "minimum method" at
di¤erent disaggregation level, corresponding to 11 COICOP categories,67
disaggregated COICOP categories,and 570 items respectively. "Mean DAF"
and "Median DAF" denote the mean and median length of duration across

�rms in months.

equal this in continuous time if all spells have the same length. Carvalho
et al (2015) use this as the basis for a prior and then go on to estimate the
cross-section using Bayesian methods.
Next we look at the Bernoulli-Calvo distribution hypothetical distribu-

tion. Within each sector k = 1:::N , we observe a sectoral frequency of �hk
and the implied cross-sectional distribution for that sector �BCk =

�
�BCik

	1
i=1

given by (6) : Each sector has a CPI weight ck. We can then aggregate
across the N sectors using the CPI weights to get the share of each duration
across all sectors � = f�ig1i=1 where:

�BCi =

NX
k=1

ck�
BC
ki (8)

The mean duration of the Bernoulli-Calvo distribution at the sectoral level
is (7), so that the mean of the aggregate distribution is then:

�TBC =
NX
k=1

ck
2� �hk
�hk

This is the method used in Dixon and Kara (2010, 2011) for generating the
Bils-Klenow distribution based on the Bils Klenow (2004) appendix dataset
of 350 sectoral frequencies for the US. The Bernoulli process does not have
a �nite upper bound on possible durations: in empirical applications we
will have to truncate it at some F , bundling together all of the theoretical
durations of at least F periods into duration F . In this paper we assume

13



F = 44 (months) to be consistent with our estimated distribution14.
It is important to note that by assuming a Bernoulli-Calvo distribution,

we are not assuming a Calvo pricing model within each sector. We are simply
describing the distribution of price-spell durations in each sector generated
by a constant Bernoulli measure (Calvo probability) that is equal to the sec-
toral frequency. This is purely descriptive of the distribution. It is perfectly
compatible with a Taylor model, where within each sector the length of the
price-spells is known ex ante. What we are doing is constructing � = f�ig1i=1
using (8): that means we take out all of the i duration spells from each sector
k and put them together into a "duration sector" �i, which includes all of
the price-spells of length i in the economy across all the COICOP sectors.
The key di¤erence between the Calvo and Taylor pricing frameworks is that
under Taylor the �rms know the length of the price-spell when they set the
price, whereas in the Calvo pricing model they do not.

Figure 2: The Bernoulli-Calvo distributions compared to the estimated DAF.

In Figure 2, we represent the Bernoulli-Calvo distributions at di¤erent
levels of aggregation: the one sector "aggregate BC" (ABC) distribution
based on the mean UK frequency of 0.2140; the 11 sector COICOP, the 67
sector COICOP and the 570 item level. We have truncated the theoretical
Bernoulli-Calvo distributions at 44 months.
The �rst observation is that the level of aggregation in�uences the shape

of the aggregate distribution. The distributions all have a "hump" shape,
which peaks at 2 months (COICOP 67 and Item 570) , 3 months (COICOP
11), and 4 months(ABC). They all have far too few one-month shares and of
course miss the 12 month spike, as pointed out by Alvarez and Burriel (2010).
However, from month 8, COICOP 67 and Item 570 both track the estimated
distribution fairly well (except for month 12). ABC and COICOP 11 both
overestimate the share of durations between 3 months and 16 months, and
they underestimate the share of durations longer than 16 months. However,
COICOP 11 is relatively closer to the estimated distribution than ABC. If
we look at the Item 570 Bernoulli-Calvo distribution, the most disaggregated
one we have, this peaks at month 2 and is the only Bernoulli-Calvo distri-
bution to be roughly close to (a little less than) the estimated proportion
of 1 months. Furthermore, the Bernoulli-Calvo distribution generated by
Item 570 is quite similar from the months 2 onwards, only missing the 12
months spike. The UK distribution has a fatter tail, but the Bernoulli-Calvo
tails are certainly quite substantial. Essentially, the Bernoulli-Calvo distrib-
utions put too much weight on the shorter months (2-7) and hence puts less

14In Dixon and Kara (2010) we set F = 60, wiht the longest duration being 20 quarters.
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Mean DAF(in months) Median DAF(in months)
ED 10.9 7.8
BC11 9.1 6.8
BC67 10.5 7.2
BC570 10.8 7.8
ABC 8.3 6.5

Table 3: Mean and median durations of Calvo distributions
"ED" denotes the estimated cross-sectional distribution, "ABC","BC11",
"BC67", and "BC570" denote the cross-sectional distributions derived from
the "Bernoulli-Calvo distribution" at di¤erent aggregate level, corresponding
to one aggregate sector, 11 COICOP categories,67 disaggregated COICOP
categories,and 570 items respectively. "Mean DAF" and "Median DAF"
denote the mean and median length of duration across �rm in months.

weight on the remaining durations. The level of disaggregation matters for
the mean, since from (7) the mean of the DAF is a convex function the fre-
quency �h: hence with sectoral heterogeneity the mean will increase at more
disaggregated levels due to Jensen�s inequality15.
The means and medians of the di¤erent Bernoulli-Calvo distributions

are listed in Table 3. Here we can see that as the category becomes more
disaggregated, the mean and median of Bernoulli-Calvo distributions become
closer to the estimated distribution. Indeed, the Bernoulli-Calvo distribution
generated by Item 570 almost has the same mean and median value as what
we get from the estimated distribution. If we compare the means of the
Bernoulli-Calvo distributions, these are linked to the minimum distributions
in Table 1, since the mean of the minimum duration distribution is

�Tmin =
NX
k=1

ck�h
�1
k

which yields the theoretical relation �TBC = 2: �Tmin�1. Hence the Bernoulli-
Calvo means are similar to the estimated mean, whilst the theoretical mini-
mum is just over half. No such exact relation holds for the medians. If we look
at Tables 2 and 3, we can see that the Bernoulli-Calvo means are less than
2: �Tmin � 1 and (7). This is because we have truncated the Bernoulli-Calvo
distributions at 44 months: if we extend this then the mean will approach
its theoretical value. Truncation reduces the mean quite signi�cantly, since

15This is of course also true for the minimum distributions in Table 2, since the mean
DAF is given by Proposition 1 is also convex in �h.
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the long tail of the Bernoulli-Calvo distribution will be allocated to the 44th
month: whilst the shares of these longer durations are small, they are also
long and so a¤ect the mean.
Whilst the Bernoulli-Calvo assumption gives us a mean that is about

right, it still di¤ers considerably from the estimated distribution. There are
not enough one-period price-spells: in the data, there are a lot of products
that have perfectly �exible prices that change almost every month (petrol,
vegetables etc.). Hence the one period share �BC1 needs to be higher than
in the standard Bernoulli-Calvo case. Second there are too many 3-8 month
spells. Then of course there is a 12 month peak in the estimated distribution
which is absent from the smooth Bernoulli-Calvo distribution.
In this section we have looked at the aggregate economy. We can also

look at the distributions within each of the 11 COICOP sectors16. There
is considerable heterogeneity in the sectoral distributions. Since we have
such a large data set, the formal Kolmogorov-Smirnov test17 rejects the null
hypothesis that the estimated distribution and the Bernoulli-Calvo distrib-
utions are the same in all of the 11 sectors. In conclusion, we can say that
the Bernoulli-Calvo distribution is not a good description of the data either
at the aggregate level or the COICOP 11 level18.

4 The Simulation of di¤erent pricing models.

We have found that we can use the sectoral frequencies to generate the cor-
responding hypothetical Bernoulli-Calvo distributions. For the UK data at
least, we �nd that at high levels of disaggregation, the resultant hypothet-
ical aggregate distribution matches the estimated distribution quite well in
terms of both the mean and the median. There are signi�cant di¤erences,
most notably the hypothetical distribution has no 12 month spike and too
few �exible prices. Since the mean and median are close, do the di¤erences

16For details see an earlier version of this paper, CESifo working paper 4226, especially
appendix 3.
17Best and Raynor (2003) examine tests for the geometric distribution, which is the

distribution of
�
�di
	
with a constant hazard. These tests all rely on the Kolmogorov-

Smirnov statistics. Whilst the tests di¤er in small sample sizes, since we have a large
sample size these they are all equivalent and give the same results as the Kolmogorov-
Smirnov test we used. We would like to thank a referee for pointing this out to us.
18Fougere et al (2003) adopt a Wald test on the hazard function estimates on sectors

that are as disaggregated as possible (using French price quote data). They �nd that
in 35% of sectors by CPI weight (Table 2) the null of a constant hazard rate cannot be
rejected. Our test is always at the aggregate distribution using the Kolmogorov-Smirnov
test: theirs is always at the microlevel. It is perfectly consistent with our results that the
Bernoulli Calvo distribution might work in 35% of micro sectors, but fail in the aggregate.
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matter at the aggregate level? If we simulate a DSGE macro model using
the hypothetical Bernoulli-Calvo distribution, will it yield a good approxi-
mation to the simulations using the estimated distribution found in the UK
data? If the answer is "yes", then it implies that the absence of the 12 month
spike and too few �exible prices does not matter from the perspective of the
macroeconomic properties of the DSGE model. This would validate the ap-
proach taken in Dixon and Kara (2010,2011) and Kara (2011) which used
the hypothetical Bernoulli-Calvo distribution derived from the Bils-Klenow
table of sectoral frequencies in order to calibrate their US pricing models.
We will perform our simulations using two DSGEmodels: a simple Quan-

tity Theory model (QT) and the Smets andWouters (2003) (SW) model. We
will look at two pricing models in both of these cases: the Generalized Taylor
(GT) and Generalized Calvo (GC) model as in Dixon and Le Bihan (2012).
We will also consider both models using quarterly and monthly calibrations.

4.1 Price setting.

There are two general time-dependent models which are capable of re�ecting
the underlying distribution found in the micro-data: the Generalized Taylor
(GT)19 and Generalized Calvo (GC) models20. The key di¤erence between
the models is that in the GT the �rms know how long the price spell will
last when they set the price, and so each duration of price-spell will have
a di¤erent reset price. In the GC, in contrast, the �rms do not know how
long the price spell will last and have a distribution over possible price-spells
durations. All �rms have the same distribution and hence there is only one
reset price every period as in the simple Calvo model. In the Generalized
Taylor Economy (GT ) there are N sectors, i = 1; :::; N: In sector i there are
i�period contracts: each period a cohort of i�1 of the �rms in the sector sets
a new price (or wage). If we think of the economy as a continuum of �rms,
we can describe the GT as a vector of sector shares: �i is the proportion
of �rms that have price-spells of length i. If the longest observed price-spell
is F , then we have

PF
i=1 �i = 1 and � 2 �F�1 is the F -vector of shares

� = f�igFi=1. We can think of the "sectors" as "duration sectors": we can
classify the economy by the length of price-spells. The essence of the Taylor
model is that when they set the price, �rms know exactly how long its price
is going to last. The simple Taylor economy is a special case where there is
only one length of price-spell (e.g. �2 = 1 is a simple Taylor "2 quarters"

19See Taylor 1993 and 2015, Coenen et al. 2007, Dixon and Kara 2010, 2011.
20See Wolman 1999, Mash 2003 and 2004, Guerrieri 2006, Sheedy 2010, Paustian and

von Hagen 2008.
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economy).
The log-linearised equation for the aggregate price pt is a weighted average

of the sectoral prices pit, where the weights are �i :

pt =

FX
i=1

�ipit (9)

In each sector i, a proportion i�1 of the �i �rms reset their price at each
period. Assuming imperfect competition and standard demand curve, the
optimal reset price in sector i; xit is given by the �rst-order condition of
an intertemporal pro�t-maximization program under the constraint implied
by price rigidity. The log-linearized equation for the reset price, as in the
standard Taylor set-up, is then given by :

xit =

 
1Pi�1
k=0 �

k

!
i�1X
k=0

�kEtp
�
t+k (10)

where � is a discount factor, Et is the expectation operator conditional on
information available at date t, and p�t+k is the optimal �ex price at time
t+ k. The reset price is thus an average over the optimal �ex prices for the
duration of the contract (or price-spell). The formula for the optimal �ex
price will depend on the model: clearly, it is a markup on marginal cost. We
will specify the exact log-linearized equation for the optimal �ex-price when
we specify the exact macroeconomic model we use.
The sectoral price is simply the average over the i cohorts in the sector:

pit =
1

i

i�1X
k=0

xit�k (11)

In each period, a proportion �h of �rms reset their prices in this economy:
proportion ��1 of sector i which is of size �i resulting in equality (3).
In the GC, �rms have a common set of duration-dependent reset prob-

abilities: the probability of resetting price i periods after you last reset the
price is given by hi. This is a time-dependent model, and the pro�le of
reset probabilities is h = fhigFi=1. Clearly, if F is the longest price-spell we
have hF = 1 and hi 2 [0; 1) for i = 1:::F � 1. Again, the duration data
can be represented by the hazard function. The estimated hazard function
can then be used to calibrate h. Since any distribution of durations can be
represented by the appropriate hazard function, we can choose the GC to
exactly �t micro-data.
In economic terms, the di¤erence between the Calvo approach and the

Taylor approach is that when the �rm sets its price, it does not know how
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long its price is going to last. Rather, it has a survivor function S(i) which
gives the probability that its price will last at up to i periods. The survivor
function in discrete time is21:

S(1) = 1 (12)

S(i) =

i�1Y
j=1

(1� hj) i = 2; :::; F

Thus, when they set the price in period t, the �rms know that they will last
one period with certainty, at least 2 periods with probability S(2) and so
on. The Calvo model is a special case where the hazard is constant hi = �h,
S(i) = (1��h)i�1 and F =1. Of course, in any actual data set, F is �nite.
In the GC model the reset price is common across all �rms that reset

their price. The optimal reset price, in the same monopolistic competition
set-up as mentioned above, is given in log-linearized form by:

xt =
1PF

i=1 S(i)�
i�1

FX
i=1

S(i)�i�1Etp
�
t+i�1 (13)

The evolution of the aggregate price-level is given by:

pt =
FX
i=1

S(i)xt�i+1 (14)

That is, the current price level is constituted by the surviving reset prices of
the present and previous F � 1 periods.

4.2 A simple quantity theory model with price-setting.

We will �rst examine the GC and GT models of prices in a quantity the-
ory model with labour as the only input of production. This model has the
great advantage of being very simple, so that almost all its dynamic proper-
ties are generated by the pricing models alone. DSGE models like the SW
model in contrast are quite complicated with dynamic properties emerging
from the interaction of pricing with many other features of the model. The
model we present is in its log-linearized version (see Ascari 2003, Dixon and
Kara 2010 for the derivation from microeconomic foundation). We present

21Note that the discrete time survivor function e¤ectively assumes that all "failures"
occur at the end of the period (or the start of the next period): this corresponds to
the pricing models where the price is set for a whole period and can only change at the
transition from one period to the next.
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both a monthly and a quarterly calibrations. We look at how the model
behaves using the estimated distribution, denoting resultant IRFs as ED.
We can then compare ED to the IRFs derived from the frequency data using
the Bernoulli-Calvo (these IRFs denoted as BC11, BC 67 and BC570) and
"minimum duration" distributions (denoted as MD11, MD67 and MD570).
To model the demand side, we use the constant-velocity Quantity Theory:

yt = mt � pt

where (pt; yt) are aggregate price and output and mt the money supply. We
model the monetary growth process as an autoregressive process of order one
AR (1) :

mt = mt�1 + "t

"t = �"t�1 + �t

where �t is a white noise error term (e¤ectively a monetary growth shock).
Following Chari et al( 2000), we set � = 0:5 for the quarterly model and the
equivalent of 0:85 in the monthly model22.
The optimal �exible price p�t at period t in all sectors is given by:

p�t = pt + 
yt (15)

The key parameter 
 captures the sensitivity of the �exible price to output23.
As discussed in Dixon and Kara (2010), there are a range of calibrated and
estimated values for 
: for illustrative purposes, we use the "moderate" case
of 
 = 0:1 as in Mankiw and Reis (2002). As shown by Ascari (2003) and
Edge (2002), the value of 
 can be interpreted as resulting from either wage
or price-setting. The value of 
 is common across the monthly and quarterly
models.
In Figures 3(a)-(d), we see the IRFs for the quarterly and monthly QT

model responding to a monetary 1% monetary growth shock for derived
from the Bernoulli-Calvo and the minimum duration distributions. There are
seven IRFs: the IRF ED generated from the estimated UK distribution (ED),
and the IRFs generated from the three Bernoulli-Calvo (BC) and minimum
duration (MD) distributions derived from the sectoral frequencies at di¤erent
levels of aggregation.

22This calibration is also used in Dixon and Kara (2010) and Mankiw and Reis (2002).
23This can be due to increasing marginal cost and/or an upward sloping supply curve

for labour. See for example Walsh (2003, chapter 5) and Woodford (2003, chapter 3).
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Figures 3(a)-(d) here.

Turning �rst to the Bernoulli-Calvo IRFs, we can summarize in a few
points:
(a) the IRFs for output and in�ation BC11, BC67 and BC570 are similar

to ED for both pricing models (GC and GT) and calibrations (monthly and
quarterly). In the monthly calibration they are very close.
(b) the GT has a hump shaped reaction function for in�ation, the GC

does not (monthly and quarterly).
Turning to the minimum distribution IRFs, we can summarize:
(c) For the GT pricing model, the IRFs for output and in�ation MD11,

MD67 and MD570 are quite similar to each other, but signi�cantly di¤er-
ent to ED for both the quarterly and monthly calibration. The MD IRFs
all posses a hump shape for output and in�ation. The monthly calibration
results in a jagged MD11 and MD67 for in�ation, which re�ects the irregu-
lar nature of the underlying minimum distributions at the more aggregated
levels.
(d) For the GC pricing model, the impact e¤ect of all MD is closer to

ED than all BC. However, after the �rst period BC are closer than MD. The
MD all display a hump shape for in�ation (monthly and quarterly) that is
absent in the BC (and ED).
It is rare for a GC to display a hump shape for in�ation. The reason

we �nd it here is that the minimum distributions are myopic relative to the
Bernoulli Calvo and estimated distributions. Myopia means that the reset
price puts a greater weight on the short-run and hence tends to adjust less
on impact, potentially leading to a delayed hump-shape response. Because
the expected duration of a price-spell is relatively low in the minimum dis-
tributions, it results in myopia despite the forward looking "in�nite horizon"
feature of the GC pricing model. Sheedy (2010) showed that a hump shaped
IRF could result with GC pricing if the hazard function was upward sloping.
In order to more explicitly quantify di¤erences between the IRFs, we

de�ne the point-by-point absolute di¤erence between ED and the particular
BC IRFs as a percentage of the mean ED: �i =

jIRFED�IRFBC j
jmean(IRFED)j � 100%: We

then �nd the average of these di¤erences over 5 years (20Q or 60 months)
to get the average relative di¤erence (ARD)24, which is shown in the Table

24For robustness we also calculated Tables 4-7 using the average absolute di¤erences and
Quadratic di¤erences. The results were consistent with existing Tables 4-7 using ARD.
The results are available from the authors on request.
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QT GT GC
ARD BC11 BC67 BC570 BC11 BC67 BC570
Quarterly
Output

9.12% 8.73% 21.82% 4.34% 14.41% 21.42%

Quarterly
In�ation

9.93% 5.36% 11.87% 9.01% 7.99% 10.49%

Monthly
Output

11.23% 2.54% 11.26% 14.01% 0.32% 6.50%

Monthly
In�ation

8.48% 2.43% 8.98% 9.50% 1.69% 3.35%

Table 4: The average relative di¤erence AD in IRF from QT model
"BC11", "BC67", and "BC570" are the IRFs derived from the cross-sectional
Bernoulli-Calvo distribution at di¤erent levels of aggregation, corresponding
to 11 COICOP categories, 67 disaggregated COICOP categories, and 570
items respectively.

425. The ARD appear as percentages. there are three columns for each
pricing model (GT and GC), with two rows (output and in�ation) for each
calibration (quarterly and monthly).
Here we can see that with the GT model, BC67 is the one closest to ED

for both calibrations. However, in the GC model, the results are more mixed.
For the quarterly IRF in output, the BC11 is the one has the smallest ARD.
However, in both the quarterly and monthly calibrations, BC67 is the best.
If we compare the ARD in the quarterly and the monthly calibrations,

we can see that the di¤erences between ED and BC67 are smaller in the
monthly case. For the GT, both quarterly and monthly, BC11 comes second
and BC570 last. However, for GC matters are reversed with the monthly
calibration: BC570 does better than BC67. For quarterly GC, BC11 out-
performs BC570 and indeed has the lowest ARD for output.
Macroeconomic models are generally quarterly, which indicates that for

in�ation, for both GT and GC the intermediate level of disaggregation BC67
is closest to ED. For output, this also holds for GT, but in the case of GC
the BC11 performs better. The most disaggregated level can perform quite
badly: for both the GT and GC, the ARD with BC570 takes relatively high

25For the quarterly model, we have

ARD =
1

20

X20

i=1
�i

and analogously for the monthly calibration.
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values over 20% for output. This is because the degree of persistence is far
too great. Thus, although the 570 item Bernoulli-Calvo distribution has the
closest mean and median to the estimated cross-sectional distribution, this
does not imply that the resultant IRFs are closer to those generated by the
estimated distribution in the simple QT model. For the GT, both BC11 and
BC67 are within 10% ARD for both output and in�ation: For the GC, only
BC11 is within 10% for both output and in�ation. To see the di¤erences
between monthly and quarterly calibrations, we if we compare the 12 panels
for monthly with the 12 panels for the quarterly calibration, in 9 out of 12
pairwise comparisons the ARD is smaller for the monthly calibration. For
example, we can compare the panels for GT using BC67 for output the IRF:
the monthly ARD is 2.54% as compared the the quarterly 8.73%.
Lastly, we perform the same exercise for the QT model using the min-

imum duration distributions derived in Proposition 1. The IRFs MD11,
MD67 and MD570 are a long way from the ED, with very high ARDs, as
illustrated in Table 5. We can see that the ARD is decreasing the more
disaggregated we get and that MD 11, MD67 and MD570 work better for
the GC than the GT. The poor performance of the minimum duration cal-
ibration shows that getting the microeconomic distribution wrong can have
major implications for the way macroeconomic models behave. The mini-
mum duration distributions lack a long-fat tail and give rise to far to little
persistence in the IRFs, which results in the large ARD.
.

4.3 A DSGE model: Smets and Wouters (2003)

In this section, we use the Smets and Wouters (2003) model of the euro area
commonly employed for monetary policy analysis to compare the di¤erent
calibrations. The SW model is much more complicated than the simple QT
model we have just used: there are many sources of dynamics other than
prices and wages, including capital adjustment, capital utilization, consumer
dynamics with habit formation, and a monetary policy reaction function.
The behavior of the model is the outcome of the interaction of all of these
processes together as it should be in a DSGE model. Hence the e¤ect of
pricing dynamics is not isolated as in the simple QT framework of the previ-
ous section. The details of the model and calibration are outlined in Dixon
and Le Bihan (2012) using a notation consistent with this paper, and the
Dynare program can be downloaded from huwdixon.org. The original SW
model is quarterly: however, we calibrate an equivalent monthly version of
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QT GT GC
ARD MD11 MD67 MD570 MD11 MD67 MD570
Quarterly
Output

76.76% 71.81% 62.39% 61.51% 52.29% 45.10%

Quarterly
In�ation

74.19% 64.84% 55.28% 47.09% 37.55% 32.04%

Monthly
Output

70.25% 62.34% 53.82% 74.93% 67.57% 59.65%

Monthly
In�ation

61.51% 54.05% 45.71% 58.17% 48.64% 40.16%

Table 5: The average relative di¤erence AD in IRF from QT model
"MD11", "MD67", and "MD570" denote the IRFs corresponding to the
cross-sectional distributions derived from the minimum duration distribution
at di¤erent aggregate level, corresponding to 11 COICOP categories, 67 dis-
aggregated COICOP categories, and 570 items respectively.

the model26.

Figure 4(a)-(b): The IRFs for output and in�ation in the quarterly SW model

We depict the IRFs for an interest rate shock, which causes output and
in�ation to fall initially (as shown in Figures 4 for the quarterly model with
GC and GT pricing)27. Here we see that the di¤erences between the BC11,
67 and 570 and ED are much smaller and less visible when compared to
the QT model. This is probably because the structure on the dynamics is
also determined by the rest of the model�s complex interactions, which leaves
less room for the precise distribution of price-spell durations to matter. The
ARD are shown in the Table 6 and are quite small compared to the ARD in
the QT model28.
We can see that for both the GT and GC model, the intermediate level

of disaggregation (COICOP 67) always yields the lowest ARD. The quar-
terly GT calibration has a lower ARD for all cases when compared with the
monthly. For the GC, it is almost the opposite- the monthly calibration
has lower values than the quarterly except for in�ation with 570 item. If

26The model and calibrations are summarized in Appendix 3.
27The IRFs for the monthly data are given in Figure A1 in the appendix.
28In Tables 6 and 7, we are comparing the same pricing model across di¤erent distrib-

utions. We do not compared the two pricing model across the same distributions in this
paper.
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we compare the SW simulations with the QT, we can see that in general
the di¤erences are much smaller. The big exception is for in�ation with GT
pricing in the monthly calibration where the ARD is higher in the SW model
than the QT.
Turning next to the IRFs MD11, 67 and 570, in Table 7 we can see that in

the SW model the ARDs are much bigger than for the any of the BC cases.
In all cases, MD570 gives the lowest ARD: for both GT and GC, monthly
and quarterly, output and in�ation. The only cases that give an ARD below
5% are output with GC pricing for monthly data. Out of the remaining 21
panels, 17 are less than 20%, and 3 more than 30% (the remaining one at
23%).
If we take the results from the simulations of both the QT model and

the SW model, we can see that small di¤erences in the distribution of du-
rations need not matter that much when it comes to the behavior of the
macroeconomic model in terms of IRFs. Within the three Bernoulli-Calvo
distributions, the resultant IRFs BC11, BC67 and BC570 are fairly similar
across a range of possibilities (output and in�ation, GT and GC pricing,
monthly and quarterly). The distribution closest to the estimated distrib-
ution (570 item) does not necessarily give the best performance in terms of
IRF: BC11 performs better than BC570.
However when we look at distributions that are substantially di¤erent,

the resultant IRFs will also di¤er. The three minimum distributions have
means and medians that are much lower than the estimated distribution.
The resultant IRFs are also very di¤erent in almost all cases. The poor
performance of MD11, 67 and 570 suggests that this is not a good calibration:
using it as a prior in a Bayesian estimation as in Carvalho et al (2015) is
perhaps not a good place to start. Using the Bernoulli-Calvo distribution
ensures that we have a result closer to the estimated distribution, at least
for UK data.

5 Conclusion

In this paper we asked the question what can the sectoral data on the fre-
quency of price-change tell us? On the theoretical level, sectoral frequencies
tell us what expected duration of a price-spell is. This is of some interest,
but from a macroeconomic perspective we are more interested in the behav-
ior of the economic agents setting prices - the cross-sectional distribution is
much more informative. Unfortunately the frequency itself says little about
the cross-sectional distribution: to uncover this we need to make additional
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SW GT GC
ARD BC11 BC67 BC570 BC11 BC67 BC570
Output
Quarterly

2.64% 0.87% 3.54% 3.71% 1.28% 3.58%

In�ation
Quarterly

3.10% 0.91% 3.28% 6.12% 2.06% 2.34%

Output
Monthly

2.96% 1.21% 4.20% 1.11% 0.07% 0.46%

In�ation
Monthly

8.71% 4.35% 13.87% 4.56% 1.38% 1.60%

Table 6: The average relative di¤erence AD in IRF from SW model
BC11, BC67, and BC570 denote the IRFs implied by the cross-sectional
distributions derived from the "Bernoulli-Calvo distribution" at di¤erent
aggregate level, corresponding to 11 COICOP categories, 67 disaggregated
COICOP categories, and 570 items respectively.

SW GT GC
ARD MD11 MD67 MD570 MD11 MD67 MD570
Output
Quarterly

12.33% 11.33% 10.39% 18.94% 16.73% 14.90%

In�ation
Quarterly

16.07% 14.71% 12.67% 22.68% 18.92% 16.90%

Output
Monthly

12.23% 11.67% 11.01% 4.41% 4.12% 3.73%

In�ation
Monthly

33.37% 33.91% 32.37% 14.71% 13.19% 12.06%

Table 7: The average relative di¤erence AD in IRF from SW model
MD11, MD67, and MD570 denote the IRFs corresponding to the cross-
sectional distributions derived from the "minimum distribution" at di¤erent
levels of aggregation, corresponding to 11 COICOP categories, 67 disaggre-
gated COICOP categories, and 570 items respectively.
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assumptions. However, we are able to say what the theoretical minimum
cross-sectional mean duration is consistent with an observed frequency: it is
the mean duration of a price-spell which occurs when all price-spells in the
sector have the same or almost the same length. However, the cross-sectional
mean can be much longer: intuitively, �rms that have prices that last for a
long time do not reset their prices very often. These �rms contribute little
to the monthly frequency but can add a lot to the cross-sectional mean.
When we look at the UK data using an estimated hazard function, we

�nd that the UK data is a long way from the distribution implied by the the-
oretical minimum. Looking at di¤erent levels of disaggregation, we �nd that
whilst the minimum theoretical mean duration is around 5.5-6.7 months, the
mean estimated from the data is almost twice as long at 11 months. We also
look at the aggregate data using the hypothesis that the sectoral frequencies
are generated by a Bernoulli-Calvo distribution. Under this assumption, the
cross-sectional mean is much larger than the minimum, and gets closer to
the estimated mean as you become more disaggregated, with the most dis-
aggregated having almost exactly the same mean and median as estimated
from the data. Whilst the mean and median of the hypothetical Bernoulli-
Calvo distribution can be close to the estimated values, the shape di¤ers in
two distinct ways: �rstly, there is no 12 month spike, secondly there are not
enough �exible prices.
However, the hypothetical distributions are similar to the estimated dis-

tribution in a signi�cant manner: unlike the minimum duration distribution,
they also have a long fat tail of long durations, which can generate substan-
tial persistence in the response of output and in�ation to monetary policy
shocks (Dixon and Kara 2011). Hence, although we do �nd that whilst the
Bernoulli-Calvo distribution hypothesis di¤ers from the estimated distribu-
tion both at the aggregate and sectoral levels, it can nonetheless "work" at
the aggregate level when it is used to calibrate DSGE models. However, the
level of disaggregation at which the frequencies are measured seems to have
a major e¤ect. In our examples, the intermediate level of disaggregation
yielded the best IRFs, better than the most disaggregated. This suggests
that when we do not have reliable hazard function estimates or access to
the price microdata, we can use the disaggregated frequency data to cali-
brate DSGE models. The theoretical minimum distribution is a long way
from the estimated distribution in the case of the UK data. However, the
Bernoulli-Calvo distribution seems to provide a calibration closer to the es-
timated one.
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7 Appendix:

7.1 Proofs.

We will �rst prove Lemma 1 and Lemma 2 from which the Proposition im-
mediately follows.

Lemma 1. Let �min 2 �F�1 solve (4):

(a) No more than two sectors i have values greater than zero
(b) If there are two sectors �i > 0, �j > 0 then i and j will be

consecutive integers (ji� jj = 1).
(c) There is one solution i¤ �h�1 = k 2 Z+. In this case, �k = 1:

Hence Tmin = �h�1:

Lemma 2. Let �max 2 �F�1 solve (5). Then �max1 = F
F�1

�h� 1
F�1 ; �

max
F =

F
F�1

�
1� �h

�max
and �maxi = 0 and for i = 2:::F � 1: Hence �Tmax =

F
�
1� �h

�
+ 1:

Proof of Lemma 1.. Firstly we will prove (a) and (b). We do this
by contradiction. Let us suppose that the solution such that �k > 0 and
�j > 0 and k � j � 2 We will then show that there is another feasible
�0 2 H

�
�h
�
with �j > 0 and �j+1 > 0 which generates a shorter average

contract length.
For the proposed solution �; the two sectors k and j have sector shares

satisfying:

�k + �j = � = 1�
FX

i=1;i6=j;k

�i (16)

�k
k
+
�j
j

= � = �h�
FX

i=1;i6=j;k

�i
i

� is the total share of the two sectors: � is the contribution of these two
sectors to �h. Since k > j, � > �j; hence we can rewrite (16) as

�j =
kj

k � j
� � j

k � j
� (17)

�k = � kj

k � j
� +

k

k � j
�
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Hence we can choose
�
�0j; �

0
j+1

�
which satis�es satis�es (17), but yields a

lower average contract length:

�0j = j (j + 1) � � j� (18)

�0j+1 � �j+1 = (j + 1)�� j (j + 1) �

De�ne ��j+1 = �0j+1 � �j+1: What we are doing is redistributing the total
proportion � over durations j and j + 1 so that the aggregate proportion of
�rms resetting the price is the same: �02H

�
�h
�
;since (18) is equivalent to

(17) implies

��j+1 + �0j = � (19)

��j+1
k

+
�0j
j

= �

�0 has a lower average contract length. Since we leave the proportions of
other durations constant, their contribution to the average contract length
is unchanged. From (17) the contribution of durations k and j is given by

Tk = kak + j�j = � (k + j)� kj�

Likewise the contribution with �0 is given by

Tj = (j + 1)��j+1 + j�0j = � (2j + 1)� (j + 1) j�

Hence (noting that � > �j):

Tk � Tj+1 = � (k + j � 2j � 1)� � (kj � (j + 1) j)
> � [j (k � j � 1)� kj + (j + 1) j] = 0

That is �T (�)� �T (�0) = Tk � Tj+1 > 0 the desired contradiction. To prove
(c) for su¢ ciency, if �h�1 = k 2 Z+, then �k = 1 2 H

�
�h
�
: If �k < 1 any

other element of H
�
�h
�
must involve strictly positive �j and �i with j�i � 2,

which contradicts the parts (a) and (b) of the proposition already established.
For necessity, note that if �h�1 =2 Z+; then no solution with only one contract
length can yield the observed proportion of �rms resetting prices.
Proof of Lemma 2. Assume the contrary, that there is a distribution �
with �i > 0 where 1 < i < F which solves (5). Redistribute the weight on
sector i between f1; Fg in order to ensure that we remain in H

�
�h
�
so that:

��1 +
��F
F

=
�i
i
; ��1 +��F = �i
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which implies:

��F = �i
F (i� 1)
i (F � 1);��1 = �i

F � i

i (F � 1)

Hence:

��T = �i

�
F (i� 1)
i (F � 1) (F � i)� F � i

i (F � 1) (i� 1)
�

=
�i (i� 1) (F � 1)

i (F � 1) [F � 1] > 0

The desired contradiction. Given that all contracts must be either 1 or F
periods long, the the proposition follows by simple algebra.

7.2 Data description

The data is described in some detail by Bunn and Ellis (2009, 2012) so
our description will be brief. The ONS collect a longitudinal micro data
set of monthly price quotes from over ten thousands of outlets to compute
the national index of consumer prices. There are two basic price collection
methods: local and central. Local collection is used for most items. The UK
was divided into its standard regions (e.g. Wales, East Midlands etc.) and a
number of locations are random selected in each region according to the total
expenditure for the region. There are about 150 locations around the UK,
and around 120,000 quotations are obtained each month by local collection.
For some items, collection in individual shops across the 150 locations is not
required- for example, for larger chain stores who have a national pricing
policy or where the price is the same for all UK residents or the regional
variation in prices can be collected centrally. The data that we were able
to access for this study via the VML at Newport (Wales) consists of the
locally collected data covering about two thirds of total CPI (centrally col-
lected data covers about 33% of CPI). The sample spans over the time period
from January 1996 to December 2007 and contains between 112,676 (1996)
and 99,524 (2007) elementary price quotations per month, with a resulting
dataset of around 14 million price observations. The coverage and classi�ca-
tion of the CPI indices are based on the international classi�cation system
for household consumption expenditures known as COICOP (classi�cation of
individual consumption by purpose). This is a hierarchical classi�cation sys-
tem comprising: divisions e.g. 01 Food and non-alcoholic beverages, groups
e.g. 01.1 Food, and classes ( the lowest published level) e.g. 01.1.1 Bread and
cereals. The division Food and non-alcoholic beverages accounts for about
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17% of the CPI weight in the subsample available in the dataset. Educa-
tion is not contained in the VML dataset, as these prices are all collected
centrally: but all other CPI divisions have locally collected observations and
are included in the dataset.
In our CPI research data set, each individual price quote consists of infor-

mation on the item code, the outlet, the region, the date etc. The product
category at the elementary level is de�ned as an item - for example large
loaf, white, unsliced (800g). However, the data has been anonymized with
respect to the variety and brand of the product. With the information on
the item i, the shop j, the location k, and the date t, we can construct a
price trajectory Pijk;t, which is sequence of price quotes for a speci�c item
belonging to a product category in a speci�c shop over time. Speci�cally,
we take two sequential price quotes belong to the same price trajectory if
the they have the same product identity, location and shop code. There are
about 614; 000 price trajectories. And the average length of each price tra-
jectory is about 24 months. Each trajectory will consist of a sequence of
one or more price-spells: there are 3,174,692 price-spells in the data (i.e. on
average about 5 price-spells per trajectory).

7.3 The log-linearized Smets-Wouters (2003) model and
parameter values.

The log-linearized equations used in this paper are the same as in Dixon
and Le Bihan (2012), which we brie�y summarize here. In this paper, we
only allow for a monetary policy shock - all others are set to zero. The
consumption Euler equation with habit persistence is given by:

ct =
b

1� b
ct�1 +

1

1 + b
ct+1 �

1� b

(1 + b)�c
(rt � Et�t+1)

Second there is an investment equation and related Tobin�s q equation

bIt =
1

1 + �
bIt�1 + �

1 + �
EtbIt+1 + '

1 + �
qt

qt = � (rt � Et�t+1) +
1� �

1� � + �rk
Etqt+1 +

�rk

1� � + �rk
Etr

k
t+1

where bIt is investment in log-deviation, qt is the shadow real price of capital,
� is the rate of depreciation, �rk is the rental rate of capital. In addition,
' is a parameter related to the cost of changing the pace of investment, and
� ful�lls � =

�
1� � + �rk

��1
. Capital accumulation is given by
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bKt = (1� �) bKt�1 + � bIt�1
Labour demand is given by

nt � bLt = � bwt + (1 +  )brKt + bKt�1

Good market equilibrium condition is given by (leaving out government
expenditure):

bYt = (1� �ky � gy)bct + �kybIt = �� bKt�1 + �� brKt + �(1� �)bLt
The monetary policy reaction function is:

bit = �bit�1 + (1� �)f�t + r�(b�t�1 � �t) + rY (bYt � bY P
t )g

+f(r��(b�t � b�t�1) + r�Y ((bYt � bY P
t )� (bYt�1 � bY P

t�1))g+ �Rt

where the monetary policy shock is iid with Et�1�
R
t = 0. The pricing

equations are as described in section 4.1.
The calibration of the parameters we use is given in Table 1. below. It

is based on the mode of the posterior estimates, as reported in Smets and
Wouters (2003) for their quarterly calibration. The monthly calibration is
a suitably rescaled version of the quarterly version.

Table 1
Parameter Value Interpretation Monthly
� 0.99 Discount rate 0.996
� 0.025 Depreciation rate 0.008
� 0.30 Capital share 0.30
�w 0.5 Mark-up wages 0.5
'�1 6.771 Inv. adj. cost 2.257
�c 1.353 Consumption utility elasticity 1.353
b 0.573 Habit formation 0.831
�L 2.400 Labour utility elasticity 2.400
� 1.408 Fixed cost in production 1.408
�e 0.599 Calvo employment 0.843
 0.169 Capital util. adj. cost 0.056
Reaction function coe¢ cients
r� 1.684 to in�ation 1.684
r�� 0.140 to change in in�ation 0.140
� 0.961 to lagged interest rate 0.987
ry 0.099 to the output gap 0.099
r�y 0.159 to change in the output gap 0.159
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Figure	1	Estimated	DAF	vs.	minimum	duration	distribution	

“ED”	denotes	the	cross-sectional	distribution	implied	by	the	estimated	survivor	function,	“MD11”,”MD67”,”MD570”	denote	the	
cross-sectional	distributions	derived	from	the	“minimum	method”	at	different	disaggregation	level,	corresponding	to	11	COICOP	categories,	

67	disaggregated	COICOP	categories,	and	570	items	respectively.	
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Figure	2	Estimated	DAF	vs.	Bernuli-Calvo	distributions	

“ED”	denotes	the	cross-sectional	distribution	implied	by	the	estimated	survivor	function,	“ABC”,	“BC11”,	“BC67”,	and	“BC570”denote	the	
cross-sectional	distributions	derived	from	the	“Bernoulli-Calvo	distribution”	at	different	aggregate	level,	corresponding	to	one	aggregate	

sector,	11	COICOP	categories,	67	disaggregated	COICOP	categories,	and	570	items	respectively.	
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Figure	3(a)	IRFs	for	monetary	shock	in	a	quarterly	QT	model	with	GT	pricing	
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Figure	3(b)	IRFs	for	monetary	shock	in	a	quarterly	QT	model	with	GC	pricing	
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Figure	3(c)	IRFs	for	monetary	shock	in	a	monthly	QT	model	with	GT	pricing	
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Figure	3(d)	IRFs	for	monetary	shock	in	a	monthly	QT	model	with	GC	pricing	
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Figure	4(a)	IRF	for	monetary	shock	in	a	quarterly	SW	model	with	GT	pricing	
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Figure	4(b)	IRF	for	monetary	shock	in	a	quarterly	SW	model	with	GC	pricing	
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Figure	A1(a)	IRF	for	monetary	shock	in	a	monthly	SW	model	with	GT	pricing	
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Figure	A1(b)	IRF	for	monetary	shock	in	a	monthly	SW	model	with	GT	pricing	
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