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DEFORMATIONS OF WREATH PRODUCTS

MARIUS DADARLAT, ULRICH PENNIG, AND ANDREW SCHNEIDER

Abstract. Connectivity is a homotopy invariant property of a separa-

ble C∗-algebra A which has three important consequences: absence of

nontrivial projections, quasidiagonality and realization of the Kasparov

group KK(A,B) as homotopy classes of asymptotic morphisms from

A to B ⊗ K if A is nuclear. Here we give a new characterization of

connectivity for separable exact C*-algebras and use this characteriza-

tion to show that the class of discrete countable amenable groups whose

augmentation ideals are connective is closed under generalized wreath

products. In a related circle of ideas, we give a result on quasidiagonality

of reduced crossed-product C*-algebras associated to noncommutative

Bernoulli actions.

1. Introduction

Voiculescu [23] has shown that the K-theory of the two-torus T
2 can be

captured from sequences of pairs of almost commuting unitaries un, vn ∈

U(n) with limn→∞ ‖unvn − vnun‖ = 0 or equivalently from completely pos-

itive and contractive (cpc) discrete asymptotic morphisms {ϕn : C(T2) ∼=

C∗(Z2) →Mn(C)}n. Let us recall that a cpc discrete asymptotic morphism

is a sequence of completely positive contractive maps ϕn : A→ Bn, which is

almost multiplicative in the sense that limn→∞‖ϕn(a)ϕn(b) − ϕn(ab)‖ = 0

for all a, b ∈ A. Voiculescu’s example is not an isolated phenomenon. In-

deed, Connes and Higson [4] showed that the concept of asymptotic mor-

phism plays a fundamental role in the algebraic topology of C∗-algebras.

The homotopy classes of asymptotic morphisms from the suspension of A to

the stable suspension of B is isomorphic to the E-theory group E(A,B) ∼=

[[SA, SB⊗K]], the universal half-exact C∗-stable homotopy bifunctor on sep-

arable C∗-algebras. Building on these ideas, Houghton-Larsen and Thom-

sen [13] have shown that the Kasparov groups can be realized as homotopy

classes of cpc asymptotic morphisms, KK(A,B) ∼= [[SA, SB⊗K]]cp. A cpc
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2 MARIUS DADARLAT, ULRICH PENNIG, AND ANDREW SCHNEIDER

asymptotic morphism consists of a family of cpc maps {ϕt : A → B}t∈[1,∞)

such that the map t 7→ ϕt(a) is continuous and limt→∞‖ϕt(a)ϕt(b)−ϕt(ab)‖ =

0 for all a, b ∈ A. The role of suspensions is two-fold as it provides both a

group structure and a good supply of maps due to the quasidiagonality of

SA.

An important question in this context is to characterize the class of C*-

algebras for which one can dispense with suspensions and realize E(A,B)

and KK(A,B) as homotopy classes of asymptotic morphisms [[A,B ⊗ K]]

and respectively [[A,B ⊗ K]]cp. Desuspension results have played a key

role in the classification theory of nuclear C*-algebras [19]. Moreover, the

realization of K-homology of a C*-algebra A as homotopy classes of cpc

deformations of A into matrices [[A,M∞(C)]]cp ∼= [[A,K]]cp has other signif-

icant applications as illustrated in [3], [8]. The pairing K0(A)×K0(A) → Z

can then be described using the canonical trace on matrices rather than the

Fredholm index.

A first answer to the question of desuspending in E-theory is given in [9]:

the natural map [[A,B⊗K]] → E(A,B) is an isomorphism for all separable

C∗-algebras B if and only if A is homotopy symmetric, which means that

[[idA]] ∈ [[A,A⊗K]] has an additive inverse or equivalently that [[A,A⊗K]]

is a group. Unfortunately, it is quite hard in practice to check that a given

C∗-algebra is homotopy symmetric. In a recent paper [10], we employed

results of Thomsen [20] to prove that a separable nuclear C*-algebra is

homotopy symmetric if and only if A is connective, a property which is

much easier to verify, see Definition 2.1 below. Our original terminology for

connectivity was property (QH). In this paper we give a new characterization

of this property, see Prop. 2.3, and that prompted us to introduce the more

descriptive notion of connectivity in place of property (QH). A countable

discrete group G is called connective if the kernel I(G) ⊂ C∗(G) of the

trivial representation ι : C∗(G) → C is a connective C*-algebra.

Connectivity is a homotopy invariant property and it has the important

feature that it passes to C∗-subalgebras. This has allowed us to exhibit

vast new classes of homotopy symmetric C∗-algebras [10]. Connectivity has

two other important consequences: absence of nontrivial projections and

quasidiagonality. With this in mind, the task of establishing connectivity

for large classes of (amenable) group C*-algebras becomes particularly in-

teresting, since this stronger property would give a new explanation of why

the conjectures of Kadison-Kaplansky and Rosenberg are true for amenable

groups as proved by Higson and Kasparov [12] and respectively by Tikuisis,

White and Winter [21].
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It is implicitly conjectured in [8] that the augmentation ideal I(G) of a dis-

crete, torsion free, amenable group G is homotopy symmetric and hence that

the Kasparov group KK(I(G), B) can be realized as the homotopy classes

of asymptotic morphisms [[I(G), B ⊗ K]] for any separable C∗-algebra B.

The case of abelian groups is covered by results from [9]. The conjecture

has been verified for nilpotent groups in [10] using the equivalence between

homotopy-symmetry and connectivity. It was also shown there that the class

of discrete countable connective amenable groups is closed under torsion free

central extensions and under direct limits. The main result of this paper

is Theorem 3.2 which shows that the class of discrete countable amenable

connective groups is closed under generalised wreath products. Since con-

nectivity passes to subgroups, this class contains a lot of new examples of

connective groups, including the free solvable ones. Moreover, Corollary 3.3

shows that semidirect products of amenable discrete connective groups with

respect to periodic actions are connective. The arguments from the proof

of Theorem 3.2 lead naturally to the question of quasidiagonality of crossed

products of the type (
⊗

GD)⋊r G for D a separable unital C*-algebra and

G a discrete countable group. Taking advantage of the breakthrough results

from [16] and [21] we show in Theorem 4.2 that (
⊗

GD)⋊rG is quasidiagonal

if and only if D is quasidiagonal and G is amenable.

2. Preliminaries

We will use the notation from [7, Sec. 5]. For a Hilbert space H, we denote

by L(H) the C*-algebra of bounded and linear operators on H. The ideal of

compact operators is denoted by K. If A is a C∗-algebra, H, H′ are Hilbert

spaces, F ⊂ A is a finite set, ε > 0 and ϕ : A → L(H) and ψ : A → L(H′)

are two maps, we write ϕ ≺F,ε ψ if there is an isometry v : H → H′ such

that ‖ϕ(a)− v∗ψ(a)v‖ < ε for all a ∈ F . If v can be chosen to be a unitary,

we write ϕ ∼F,ε ψ. Moreover, we write ϕ ≺ ψ if ϕ ≺F,ε ψ for all finite

sets F and for all ε > 0. Most maps that we use in this paper are either

unital and completely positive (abbreviated ucp) or completely positive and

contractive (cpc). If {ϕn : A → L(Hn)}n and {ϕ′
n : A → L(H′

n)}n are two

sequences of maps, we write (ϕn) ∼ (ϕ′
n) if there is a sequence of unitaries

un : Hn → H′
n such that limn→∞ ‖ϕn(a) − u∗nϕ

′(a)un‖ = 0 for all a ∈ A.

A ucp (or cpc) asymptotic morphism is a sequence {ϕn : A → Bn}n of ucp

(respectively cpc) maps which are asymptotically multiplicative in the sense

that limn→∞ ‖ϕn(ab)− ϕn(a)ϕn(b)‖ = 0 for all a, b ∈ A.

Let us recall from [10] that a separable C∗-algebra A has property (QH) if

there is a discrete cpc asymptotic homomorphism {γn : A→ L(Hn)}n with
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dim(Hn) = kn ր ∞ , which is injective and null-homotopic. This means

that lim supn ‖γn(a)‖ = ‖a‖ for all a ∈ A and that there is a discrete cpc

asymptotic homomorphism {ϕn : A→ C0[0, 1)⊗L(Hn)}n, ϕn = (ϕ
(t)
n )t∈[0,1],

such that ϕ
(0)
n = γn for all n ∈ N. It is shown in [10, Prop.2.5] that in the

definition of property (QH) restated above, one can replace all the spacesHn

by the same separable infinite dimensional Hilbert space H. Let us denote

C0[0, 1)⊗L(H) by CL(H). The following definition will change terminology

from property (QH) to connectivity. This is motivated by Proposition 2.3.

Definition 2.1. A separable C*-algebra A is connective if there is a ∗-

monomorphism Φ : A →
∏

nCL(H)/
⊕

nCL(H) which is liftable to a cpc

map ϕ : A →
∏

nCL(H). A discrete countable group G is connective if its

augmentation ideal I(G) = ker(ι : C∗(G) → C) is connective.

By [10, Prop.2.5], A has property (QH) if and only if A is connective.

A connective C*-algebra is quasidiagonal and p = 0 is the only idempotent

element of A⊗K and in fact of any minimal tensor product A⊗B. Indeed, it

is straightforward to check that these properties are inherited from CL(H).

Proposition 2.3 below gives a new equivalent definition of connectivity, in

the case of exact C∗-algebras. Specifically, it shows that all the components

of the injective and null-homotopic discrete cpc asymptotic homomorphism

{γn}n can be chosen to be equal to any given ∗-representation of A on H

which is essential, i.e. π−1(K(H)) = {0}. For the proof we need Lemma 5.3

of [7] reproduced below.

Lemma 2.2 ([7] ). Let B be a separable unital C∗-algebra. Let {ϕn : B →

Mk(n)(C)}n and {γn : B → Mr(n)(C)}n be ucp discrete asymptotic mor-

phisms. Suppose that lim supn ‖γn(b)‖ = ‖b‖ for all b ∈ B. Then there exist

a sequence (ω(n)) of disjoint finite subsets of N with maxω(n−1) < minω(n)

and a ucp discrete asymptotic morphism {ϕ ′
n : B → Ms(n)(C)}n such that

(ϕn ⊕ ϕ ′
n) ∼ (γω(n)), where γω(n) = ⊕i∈ω(n)γi.

For a C∗-algebra A we denote by Ã its unitalization. Let ι : Ã → C be

the corresponding character. Let H be a separable Hilbert space. The map

obtained by composing ι with the unital homomorphism C → L(H) will be

denoted ι · idH or by ι∞ if H is infinite dimensional. Let γ : Ã→ L(H) be a

ucp map. We will use the notation γ∞ for the infinite sum γ ⊕ γ ⊕ . . . .

Proposition 2.3. Let A be a separable exact C∗-algebra. Then A is con-

nective if and only if for any essential unital representation π : Ã → L(H)

of Ã on a separable infinite dimensional Hilbert space, any finite subset
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F ⊂ Ã and any ε > 0 there is an (F, ε)-multiplicative ucp map ϕ : Ã →

C[0, 1]⊗ L(H), ϕ = (ϕt)t∈[0,1] such that ϕ0 = π and ϕ1 = ι∞.

Proof. One direction is trivial and it holds for arbitrary separable C*-algebras

A. Suppose now that A is exact and connective. By unitalizing the rele-

vant C∗-algebras and maps, we obtain a ucp discrete asymptotic morphism

{Γn : Ã → C[0, 1]⊗ L(Hn)}n, Γn = (Γ
(t)
n )t∈[0,1], Hn finite dimensional, such

that {Γ
(0)
n : Ã → L(Hn)}n is injective and Γ

(1)
n = ι · idHn

for all n ∈ N. Let

γn := Γ
(0)
n .

If αn : Ã → L(Hn) is a sequence of maps and m > n we define α[n,m] =

αn ⊕ αn+1 ⊕ · · · ⊕ αm .

Claim. Fix an essential representation π : Ã → L(H). Then, for any

finite subset F ′ ⊂ Ã, any ε′ > 0 and any n0 ∈ N, there are integers m >

n > n0 such that π ∼F ′,ε′ γ
∞
[n,m].

Let us observe that if we prove the claim, then we can complete the proof

as follows. Let F and ε be given as in the statement of the proposition. It

is straightforward to find a finite set F ′ ⊂ Ã and ε′ > 0 with the property

that for any two (F ′, ε′)-multiplicative ucp maps α, β : Ã → L(H) with

‖α(a) − β(a)‖ < ε′ for all a ∈ F ′, it follows that (1 − t)α + tβ is (F, ε)-

multiplicative for all t ∈ [0, 1]. Fix n0 such that Γn is (F, ε)-multiplicative

for all n > n0 and choose m,n as in the claim. We may identify the Hilbert

space H with the Hilbert space corresponding to γ∞[n,m]. Since π ∼F ′,ε′ γ
∞
[n,m],

there is a unitary u ∈ U(H) such that ‖uπ(a)u∗ − γ∞[n,m](a)‖ < ε′ for all

a ∈ F ′. Let ut be a norm-continuous path of unitaries in U(H) from 1 to u.

Define ϕt to be the continuous path of ucp maps obtained by concatenating

the paths πt = utπu
∗
t with µt = (1−t)uπu∗+tγ∞[n,m] and with νt = (Γ

(t)
[n,m])

∞.

Due to our choice of F ′, ε′ and n0, the map t 7→ ϕt defines a continuous

path of (F, ε)-multiplicative ucp maps joining π with ι∞.

Let us now verify the claim for any given data π, F ′, ε′ and n0. By [6,

Lemma 5.1] applied to Ã, F ′ ⊂ Ã and ε′ > 0, there exist a finite subset

F ′′ ⊂ Ã and ε′′ > 0 with the property that if αi : Ã → L(Hi), i = 1, 2

are any two (F ′′, ε′′)-multiplicative ucp maps such that α∞
1 ≺F ′′,ε′′ α2 and

α∞
2 ≺F ′′,ε′′ α1 then α1 ∼F ′,ε′ α2. Let (Fi)i be an increasing sequence of

finite subsets of Ã with union dense in Ã and let (εi)i be a sequence of

strictly positive numbers convergent 0. Since A is separable, exact and

quasidiagonal, it follows from Theorem 6 of [5] that there is a discrete ucp

asymptotic morphism {θi : Ã → L(Hi)}i∈N, with Hi finite dimensional

Hilbert spaces, such that π ∼Fi,εi θ
∞
i for all i. Fix now i sufficiently large

such that π ∼F ′′,ε/2′′ θ
∞
i .
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By Lemma 2.2, there exist integers m > n > n0 such that γ[n,m] is

(F ′′, ε′′)-multiplicative and θi ≺F ′′,ε′′/2 γ[n,m] and hence θ∞i ≺F ′′,ε′′/2 γ
∞
[n,m].

This last relation in conjunction with π ∼F ′′,ε′′/2 θ
∞
i gives π∞ ≺F ′′,ε′′ γ

∞
[n,m].

By Voiculescu’s theorem [22] and Stinespring’s theorem [1, Thm. 1.5.3] we

have γ∞[n,m] ≺F ′′,ε′′ π. We can then apply [6, Lemma 5.1] as explained above,

to conclude that π ∼F ′,ε′ γ
∞
[n,m]. �

Lemma 2.4. Let G and H be discrete groups and assume that H acts on

G by automorphisms. Then there is a split short exact sequence

0 → I(G)⋊H → I(G⋊H) → I(H) → 0 ,

where we use the maximal crossed product throughout.

Proof. By the universality property of the crossed product [14, p.170], the

sequence

0 → I(G)⋊H → C∗(G)⋊H → C⋊H → 0

is exact. There are natural isomorphisms C⋊H ∼= C∗(H) and C∗(G)⋊H ∼=

C∗(G⋊H). Let J be the kernel of the map I(G⋊H) → I(H) induced by

the projection G⋊H → H. The rows in the commutative diagram

0 // J //

��

I(G⋊H)

��

// I(H)

��

// 0

0 // I(G)⋊H // C∗(G⋊H)

��

// C∗(H) //

��

0

C
=

// C

are exact and a diagram chase yields that the map I(G⋊H) → C∗(G⋊H)

restricts to an isomorphism J ∼= I(G) ⋊ H. The sequence splits via the

∗-homomorphism induced by the splitting H → G⋊H. �

Proposition 2.5. Let G and H be countable discrete amenable groups, such

that H acts on G by automorphisms. Suppose that H and I(G) ⋊ H are

connective. Then G⋊H is connective.

Proof. This follows from Lemma 2.4 together with [10, Thm. 3.3 (d)] which

states that a split extension of separable nuclear connective C∗-algebras is

connective. �

3. Wreath Products

For a unital C∗-algebra D and a countable set J one defines the minimal

tensor product
⊗

J D as the inductive limit of finite minimal products
⊗

F D
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where F runs through the family of finite subsets of J ordered by inclusion.

Note that if F ⊂ F ′ the connecting map
⊗

F D →
⊗

F ′ D is isometric.

Indeed this map takes
⊗

j∈F aj to
⊗

j′∈F ′ bj′ where bj′ = aj if j ∈ F and

bj′ = 1D if j′ ∈ F ′ \ F .

LetD be a unital separable C∗-algebra endowed with a unital character ι :

D → C and let I(D) = ker(ι). Let ι⊗ :
⊗

J D → C be the character induced

by ι and let I(
⊗

J D) denote its kernel. Let H be a discrete countable

group and let J be a set with a left action of H. H acts on A :=
⊗

J D by

permuting the tensor factors: h · (
⊗

j∈J aj) =
⊗

j∈J ah−1j . We denote this

action by α : H → Aut(A). Note that I(
⊗

J D) is an H-invariant ideal of A

since ι⊗ ◦ αh = ι⊗ for all h ∈ H.

The following proposition gives new examples of connective C∗-algebras.

Proposition 3.1. Suppose that D is exact and that I(D) is connective.

Then for any discrete countable amenable group H the crossed product I(
⊗

J D)⋊

H is connective.

Proof. Let π : D → L(H) be a faithful essential representation. Since

I(D) is connective, by Proposition 2.3 there exists a discrete ucp asymptotic

morphism {ϕn : D → C[0, 1]⊗L(H)}n, such that ϕ
(0)
n = π and ϕ

(1)
n = ι · idH

for all n ∈ N. Let B =
⊗

J L(H) (minimal tensor product) and define

Φ
(t)
n =

⊗
J ϕ

(t)
n : A→ B for each t ∈ [0, 1]. By Stinespring’s theorem, Φ

(t)
n is

also a ucp map. For each n ∈ N and a ∈ A the map t 7→ Φ
(t)
n (a) is continuous.

In order to verify this property, since Φ
(t)
n is linear and contractive, we may

assume without any loss of generality that a =
⊗

j∈F aj ∈
⊗

F D ⊂ A for

some finite set F ⊂ J . Continuity of t 7→ Φ
(t)
n (a) follows in this case from

the continuity of t 7→
⊗

j∈F ϕ
(t)
n (aj). Hence, we obtain a sequence of ucp

maps

{Φn : A→ C[0, 1]⊗B}n .

We show that this sequence is in fact an asymptotic morphism. To prove

asymptotic multiplicativity of {Φn}n we need to verify that limn→∞ ‖Φn(ab)−

Φn(a)Φn(b)‖ = 0 for a, b ∈ A. Since the Φn are linear and contractive, we

may restrict to the case a =
⊗

j∈F aj and b =
⊗

j∈F bj for a finite subset
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F ⊂ J with ‖aj‖, ‖bj‖ ≤ 1 for all j ∈ F . Then, for each t ∈ [0, 1] we have

‖Φ(t)
n (a)Φ(t)

n (b)− Φ(t)
n (ab)‖

=

∥∥∥∥∥∥

⊗

j∈F

ϕ(t)
n (aj)ϕ

(t)
n (bj)−

⊗

j∈F

ϕ(t)
n (ajbj)

∥∥∥∥∥∥

≤
∑

j∈F

‖ϕ(t)
n (aj)ϕ

(t)
n (bj)− ϕ(t)

n (ajbj)‖,

and hence

‖Φn(a)Φn(b)− Φn(ab)‖ ≤
∑

j∈F

‖ϕn(aj)ϕn(bj)− ϕn(ajbj)‖.

Each term of the sum from above converges to 0 for n→ ∞. Thus, the ucp

maps Φn : A→ C[0, 1]⊗B form a discrete asymptotic morphism such that

Φ
(0)
n =

⊗
J π is an isometric ∗-homomorphism and Φ

(1)
n = ι⊗ · 1B.

Let β : H → Aut(B) be the action of H on B that permutes the tensor

factors: βh(
⊗

j∈J bj) =
⊗

j∈J bh−1j . Then we have Φ
(t)
n ◦ αh = βh ◦ Φ

(t)
n

for all h ∈ H and t ∈ [0, 1] or equivalently Φn ◦ αh = γh ◦ Φn, where

γh = idC[0,1] ⊗ βh. Since H acts trivially on C[0, 1], there is a canonical

isomorphism of crossed products (C[0, 1]⊗B)⋊H ∼= C[0, 1]⊗ (B⋊H) (see

for example [1, Ex. 4.1.3]). By [18, Thm. 3.5 (d)], Φn induces a ucp map:

Φ̃n : A⋊H → C[0, 1]⊗ (B ⋊H)

such that for all a ∈ A and h ∈ H, Φ̃n(auh) = Φn(a)vh, where we denote by

uh and vh the canonical unitaries of the corresponding crossed products so

that αh(a) = uhau
∗
h and γh(b) = vhbv

∗
h. Let a, a′ ∈ A and h, h′ ∈ H. The

identities

‖Φ̃n(auh)Φ̃n(a
′uh′)− Φ̃n(auh a

′uh′)‖(1)

= ‖Φn(a) γh(Φn(a
′))vhh′ − Φn(aαh(a

′))vhh′‖

= ‖Φn(a) Φn(αh(a
′))− Φn(aαh(a

′))‖

show that the sequence Φ̃n is asymptotically multiplicative. By Theo-

rem 7.7.5 from [17], any equivariant embedding of C∗-algebras induces an

embedding of reduced crossed products. It follows that Φ̃
(0)
n : A⋊H → B⋊H

is an isometric ∗-homomorphism since Φ
(0)
n has that property. Let

ηn = Φ̃n

∣∣∣
I(A)⋊H

: I(A)⋊H → C[0, 1]⊗ (B ⋊H).

We have that η
(0)
n is an isometric ∗-homomorphism, and η

(1)
n = 0 since

Φ̃
(1)
n (auh) = Φ

(1)
n (a)vh = ι⊗(a)vh = 0 for all a ∈ I(A) = ker(ι⊗) and h ∈
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H. Finally, since I(A) ⋊ H is separable, there is a separable C∗-algebra

E ⊂ B ⋊ H such that the image of ηn is contained in C0[0, 1) ⊗ E for all

n. Since η
(0)
n is an isometric ∗-homomorphism, it follows that I(A) ⋊H is

connective, since Definition 2.1 is verified as a consequence of the “if ” part

of Proposition 2.3. �

Let G and H be countable discrete groups and let J be a set with a left

action of H. Recall that the wreath product is defined as

G ≀J H =

(
⊕

J

G

)
⋊H ,

where H acts on the direct sum via the action on the indices.

Theorem 3.2. Let G and H be countable discrete amenable groups and let

J be a countable H-set. If G and H are connective, then the wreath product

G ≀J H is also connective.

Proof. Let A =
⊗

J C
∗(G). Since C∗(

⊕
J G)

∼=
⊗

J C
∗(G), we have that

C∗(G ≀J H) ∼= A⋊H, where H acts on A by permuting the tensor factors:

h · (
⊗

j∈J aj) =
⊗

j∈J ah−1j . Let ι : C
∗(G) → C be the character induced by

the trivial representation and let ι⊗ : A→ C be the character induced by ι.

Note that the isomorphism
⊗

J C
∗(G) ∼= C∗(

⊕
J G) intertwines ι⊗ with the

corresponding character of C∗(
⊕

J G). Let

I(A) = ker(ι⊗) ∼= I

(
⊕

J

G

)
.

We apply Proposition 3.1 to obtain that I(A)⋊H is connective. It follows

now from Proposition 2.5 that G ≀J H is connective. �

As a consequence of the last theorem we can prove that semidirect prod-

ucts with respect to periodic actions are connective.

Corollary 3.3. Let G, H be countable discrete amenable connective groups.

Let α : H → Aut(G) be a homomorphism with finite image. Then the semidi-

rect product G⋊α H is connective.

Proof. Let K = ker(α) and set S = H/K ∼= im(α). The group S is finite by

assumption. H acts on S via left multiplication. Denote this action by β.

Let π : H → S be the quotient homomorphism and let α̇ : S → G be such

that α̇ ◦ π = α. Consider the group homomorphism

ϕ : G→
⊕

S

G
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given by ϕ(g)(s) = α̇s−1(g). Observe that ϕ is injective and

ϕ(αh(g))(s) = α̇s−1(αh(g)) = α̇s−1π(h)(g) = α̇(π(h)−1s)−1(g)

= ϕ(g)(π(h)−1s) = βh(ϕ(g))(s) ,

which proves that ϕ intertwines the two actions on both sides. Hence we

obtain a homomorphism Φ: G⋊αH → G ≀SH. Since connectivity passes to

C∗-subalgebras, in view of Thm. 3.2 it suffices to prove that Φ is injective.

Since Φ(g, h) = (ϕ(g), h), this follows from the injectivity of ϕ. �

Example 3.4. Since connectivity passes to C∗-subalgebras, it follows from

Thm. 3.2 that ifG andH are countable discrete amenable connective groups,

then any subgroup of G ≀H = G ≀H H also is connective

In this way we obtain many interesting examples of connective groups,

including the free solvable groups Sr,n on r generators of derived length n.

Every solvable group with r generators of derived length n is a quotient of

Sr,n. The groups Sr,n can be defined recursively as follows: Let F (0) = F =

Fr be the free group on r generators and let F (n+1) = [F (n), F (n)] be the

commutator subgroup of F (n). Then we have Sr,n = F/F (n). In particular,

Sr,1 ∼= Z
r and Sr,2 is the free metabelian group on r generators. In other

words Sr,2 is a metabelian group with r generators which maps surjectively

onto any other metabelian group with r generators. By Magnus’ embedding

theorem [15] we have the following: Let G be a finitely generated countable

discrete group and choose a free group F = Fr on r generators and a normal

subgroup R⊳F , such thatG is isomorphic to F/R. Let R′ be the commutator

subgroup of R. Let A be the free abelian group on r generators. Then F/R′

embeds as a subgroup into A ≀G. Thus, if G is amenable and is connective,

the same holds true for F/R′. By induction it follows from this observation

that all Sr,n is connective.

Chapuis gave a characterization of the subgroups of Zr ≀ Zs in terms of

model theory [2, Cor. 3.1] generalizing the embedding theorem of Magnus

in the free metabelian case. He called these ∀-free metabelian. By our

observations above, they are all connective.

4. Quasidiagonality of crossed-products associated to

noncommutative Bernoulli shifts

Prop. 3.1 leads naturally to the question of quasidiagonality of the crossed

products of the type (
⊗

GD)⋊r G for D a separable unital C*-algebra and

G a discrete countable group. Theorem 4.2 below shows that (
⊗

GD)⋊r G

is quasidiagonal if and only if D is quasidiagonal and G is amenable.
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Recall the following characterisation of quasidiagonality due to Voiculescu.

A separable C∗-algebra A is quasidiagonal if and only if for every finite sub-

set F ⊂ A and every ε > 0 there is n ∈ N and a cpc map ψ : A → Mn(C)

such that ‖ψ(xy)−ψ(x)ψ(y)‖ < ε for all x, y ∈ F and ‖ψ(x)‖ ≥ ‖x‖− ε for

all x ∈ F [24, Thm. 1]. Note that in fact it suffices to fulfil the condition

‖ψ(x)‖ ≥ ‖x‖ − ε for just a single element x ∈ F at a time, since one can

then consider finite directs sums of such maps.

All the tensor products in the sequel are minimal tensor products.

Lemma 4.1. Let A, B, Cn, Dn be separable C∗-algebras. If {αn : A→ Cn}n
and {βn : B → Dn}n are cpc discrete asymptotic morphisms with

lim sup
n→∞

‖αn(a)‖ = ‖a‖ , lim
n→∞

‖βn(b)‖ = ‖b‖ ,

then {αn ⊗ βn : A⊗B → Cn ⊗Dn}n is a cpc discrete asymptotic morphism

such that lim supn→∞‖(αn ⊗ βn)(x)‖ = ‖x‖ for all x ∈ A⊗B.

Proof. As in the proof of Prop. 3.1 one verifies that αn⊗βn is a cpc discrete

asymptotic morphism. Therefore it suffices to prove that the induced ∗-

homomorphism

η : A⊗B →

∏
n∈NCn ⊗Dn⊕
n∈NCn ⊗Dn

is injective. Seeking a contradiction suppose this is false. Let J = ker(η) 6= 0.

By Kirchberg’s Slice Lemma [19, Lem. 4.1.9] there is 0 6= x ∈ A ⊗ B, such

that x∗x ∈ J and xx∗ = a⊗ b for some a ∈ A, b ∈ B. We have

0 = ‖η(x∗x)‖ = ‖η(xx∗)‖ = lim sup
n→∞

‖αn(a)⊗ βn(b)‖

= lim sup
n→∞

(‖αn(a)‖ ‖βn(b)‖) =

(
lim sup
n→∞

‖αn(a)‖

)
‖b‖ = ‖a‖ ‖b‖ .

But this implies ‖a⊗b‖ = 0 and therefore x = 0, which is a contradiction. �

Using the results from [16] and [21], we can now adapt the method used

in Prop. 3.1 to prove the following:

Theorem 4.2. Let D be a unital separable quasidiagonal C∗-algebra and

let G be a countable discrete amenable group. Then the crossed product

(
⊗

GD)⋊G is quasidiagonal.

Here we work with minimal tensor products and G acts via noncommu-

tative Bernoulli shifts. Rosenberg has shown that quasidiagonality of the

reduced group C∗-algebra C∗
r (G) of a countable discrete group G implies

the amenability of G [11]. Hence, since both D and C∗(G) are subalgebras
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of (
⊗

GD)⋊r G, the conditions that D is quasidiagonal and G is amenable

are certainly necessary.

Proof. Let A =
⊗

GD. By Voiculescu’s characterisation of quasidiagonality

it suffices to find a discrete ucp asymptotic morphism {Ψn : A⋊G→ Bn}n
with lim supn→∞‖Ψn(x)‖ = ‖x‖ for all x ∈ A⋊G, such that all C∗-algebras

Bn are quasidiagonal.

By quasidiagonality of D there is a ucp discrete asymptotic morphism

{ϕn : D →Mk(n)(C)}n with limn→∞‖ϕn(d)‖ = ‖d‖ for all d ∈ D. Define

Φn :
⊗

G

D →
⊗

G

Mk(n)(C)

by Φn =
⊗

G ϕn and let Rn =
⊗

GMk(n)(C). As in the proof of Prop. 3.1 it

follows that {Φn}n∈N is a ucp discrete asymptotic morphism. Next we show

that lim supn→∞‖Φn(a)‖ = ‖a‖ for all a ∈ A. It suffices to verify this for

elements a ∈
⊗

F D for any finite set F ⊂ G. This is proved by induction

on the cardinality of F , using Lemma 4.1.

Since each Φn is cpc and G-equivariant (where G acts on Rn via Bernoulli

shifts), each Φn extends to a ucp map Φ̃n : A ⋊ G → Rn ⋊ G by [18,

Thm. 3.5 (d)]. The same calculation as in (1) shows that {Φ̃n}n∈N is a

discrete asymptotic morphism. By [16] and [21] the algebra Bn = Rn ⋊ G

is quasidiagonal.

To conclude the proof it remains to be shown that

(2) lim sup
n→∞

‖Φ̃n(y)‖ = ‖y‖ ∀y ∈ A⋊G .

To this purpose consider the commutative diagram

A⋊G

E
��

Φ̃n
// Rn ⋊G

En

��

A
Φn

// Rn

where E and En are the canonical faithful conditional expectations (see [1,

Prop. 4.1.9]). Suppose (2) is false. Then there exists an x ∈ A ⋊ G with

x ≥ 0, x 6= 0 such that lim supn→∞‖Φ̃n(x)‖ = 0. But since En(Φ̃n(x)) =

Φn(E(x)) and En are contractive, we obtain

0 = lim sup
n→∞

‖En(Φ̃n(x))‖ = lim sup
n→∞

‖Φn(E(x))‖ = ‖E(x)‖ ,

which implies x = 0 by faithfulness of E and yields a contradiction. �



DEFORMATIONS OF WREATH PRODUCTS 13

Acknowledgements. We thank the referee for a number of suggestions

that improved the exposition and for pointing out that Lemma 2.4 and

its proof holds without assuming amenability of the involved groups. Part

of this work was completed during the research program “Classification of

Operator Algebras: Complexity, Rigidity, and Dynamics” at the Institut

Mittag-Leffler. The authors would like to thank the organisers and the

staff at the IML for the hospitality and for the inspiring and productive

atmosphere.

References

[1] N. P. Brown and N. Ozawa. C∗-algebras and finite-dimensional approx-

imations, volume 88 of Graduate Studies in Mathematics. American

Mathematical Society, Providence, RI, 2008.

[2] O. Chapuis. ∀-free metabelian groups. The Journal of Symbolic Logic,

62(01):159–174, Mar. 1997.

[3] A. Connes, M. Gromov, and H. Moscovici. Conjecture de Novikov et

fibrés presque plats. C. R. Acad. Sci. Paris Sér. I Math., 310(5):273–

277, 1990.
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