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Abstract

We propose a metaheuristic for the Time-Dependent Pollution-Routing Problem, which consists of routing
a number of vehicles to serve a set of customers and determining their speed on each route segment with
the objective of minimizing the cost of driver’s wage and greenhouse gases emissions. The vehicles face
traffic congestion which, at peak periods, significantly restricts vehicle speeds and leads to increased
emissions. Our algorithm is based on an adaptive large neighborhood search heuristic and uses new
removal and insertion operators which significantly improve the quality of the solution. A previously
developed departure time and speed optimization procedure is used as a subroutine to optimize departure
times and vehicle speeds. Results from extensive computational experiments demonstrate the effectiveness
of our algorithm.

Keywords: Routing, Freight transportation, Green vehicle routing, Greenhouse gases emissions,
Metaheuristic algorithm, Departure time and speed optimization.

1. Introduction

In the past, the planning of freight transportation activities mostly focused on cutting costs and increasing
profitability by considering internal transportation costs only, that is, mainly fuel cost and drivers’ wages
(see, e.g., Forkenbrock 1999, 2001). Nowadays, freight companies also need to consider the impact of
their vehicle fleet on the environment and particularly the amount of greenhouse gases (GHG) they emit,
which is typically measured using the carbon dioxide equivalent (CO2e) measure. This is because many
cities have enacted new environmental legislations which restrict heavy freight vehicle traffic in certain
areas - and at certain times of the day (see, e.g., Demir et al. 2014, 2015). Congestion, which is a
major problem in many cities, increases GHG emissions and therefore should be taken into account when
planning vehicle routes.

In this paper, we consider a vehicle routing problem, called the Time-Dependent Pollution-Routing
Problem (TDPRP), which considers GHG emissions as well as traffic congestion. The TDPRP is an
extension of classical the Vehicle Routing Problem (VRP), which consists of determining the optimal set
of routes for a fleet of vehicles in order to satisfy the demands of a set of customers. The traditional
objective in the VRP is the minimization of the total distance traveled by the vehicles. Considering
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the negative externalities of freight transportation, Bektaş and Laporte (2011) introduced the Pollution-
Routing Problem (PRP) which aims at minimizing a total cost function comprising drivers’ wages and
vehicle fuel costs (given that GHG emissions are proportional to fuel consumption). The TDPRP was
first studied by Franceschetti et al. (2013); it extends the PRP by considering traffic congestion at peak
traffic congestion periods, which constrains the vehicle travel speeds and increases GHG emissions. The
authors provided a mixed integer linear programming formulation for the TDPRP and derived a complete
characterization of the optimal solution for a single-arc version of the problem. Finally, they proposed
the Departure time and Speed Optimization Procedure (DSOP) to optimize the travel speeds and the
departure times of a single vehicle visiting a given sequence of customer locations in the presence of
traffic congestion, which builds on the analytical results they obtain for the single-arc version of the
problem.

In this paper we develop a metaheuristic algorithm to solve the TDPRP, which uses the DSOP from
Franceschetti et al. (2013) as a subroutine. Other recent studies have developed metaheuristic algorithms
for the PRP and its variants: Demir et al. (2012) proposed a metaheuristic that iterates between the solu-
tion of the Vehicle Routing Problem with Time Windows (VRPTW) and a speed optimization problem.
The VRPTW is solved by an Adaptive Large Neighborhood Search (ALNS) and the speed optimization
problem is solved by means of a procedure that runs in polynomial time. In a related study, Demir et al.
(2013) investigated the trade-offs between fuel consumption and driving time. The authors showed that
in order to achieve a considerable reduction in fuel consumption and GHG emissions, trucking companies
do not have to compromise significantly in terms of driving time. Koç et al. (2014) introduced the Fleet
Size and mix PRP, which considers a heterogenous vehicle fleet and developed a hybrid evolutionary algo-
rithm. Dabia et al. (2016) obtained exact solutions based on a branch-and-price algorithm by formulating
the master problem as a set partitioning problem, and the pricing problem as a speed and start time
elementary shortest path problem with resource constraints. They solved the master problem by means
of column generation, and the pricing problem by a tailored labeling algorithm. Kramer et al. (2015b)
proposed a method that combines a local search-based metaheuristic embedding an integer programming
algorithm to solve a set covering formulation and a recursive speed optimization algorithm for the PRP.
In a related study, Kramer et al. (2015a) presented an exact and efficient algorithm to optimize the travel
speeds and the departure times of a single vehicle visiting a sequence of customer locations in the absence
of traffic congestion. We note that none of these approaches can be directly used to solve the TDPRP,
because they do not consider traffic congestion and ignoring the drop in vehicle speed at peak hours may
lead to infeasible solutions in a congested network in the presence of hard time windows at the customers
locations.

The main contributions of our paper are as follows. First we consider an extension of the PRP to
a time-dependent setting with traffic congestion, namely the TDPRP, for which, to our knowledge, no
tailored solution method has ever been proposed. Second, our algorithm is based on an adaptive large
neighborhood search (ALNS) heuristic for which we develop new removal and insertion operators. Our
new removal operators are motivated by the impact of congestion on vehicle speed and as such, are
specifically tailored to the TDPRP problem. All newly developed operators are shown to significantly
improve the quality of the solution. Third, we show numerically that our algorithm performs well and
even yields very good results even for the PRP, which is a special case of the TDPRP with no traffic
congestion.

The remainder of this paper is organized as follows. In §2 we describe the main features of the
TDPRP. In §3 we describe the proposed metaheuristic algorithm. In §4, we present our numerical study.
Conclusions are stated in §5.
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2. The time-dependent polution-routing problem

In this section we present the main features of the TDPRP (see Franceschetti et al. (2013) for a more
in-depth description) and discuss the feasibility conditions of the problem.

2.1. Problem description

The TDPRP consists of routing vehicles to make deliveries from a depot to a set of customers. It is
defined on a complete graph G = (N,A), where N is the set of nodes, and A is the set of arcs between
every pair of nodes. Let 0 denote the depot, and N0 = N \ {0} denote the set of customer nodes. The
distance between two nodes (i 6= j ∈ N) is denoted by di,j . We consider a homogeneous fleet with an
unlimited number of vehicles of capacity of Q, initially located at the depot. Let hi denote the service
time at customer node i ∈ N0. We set the service time at the depot equal to 0, i.e. h0 = 0. Also let [li, ui]
denote the hard time window at customer node i ∈ N during which service must start: if a vehicle arrives
at node i ∈ N before the lower time window limit li, the driver must wait until time li to start serving
the customer; we refer to this as the (mandatory) pre-service waiting time. After the service has been
completed, the vehicle is allowed to wait idly at the customer node before leaving for the next customer
node; we refer to this time as the post-service waiting time. Without loss of generality, we assume that
any voluntary waiting time at customer nodes takes place after the completion of service. As shown by
Franceschetti et al. (2013), in some cases waiting idly at the customer is an effective strategy to avoid
traveling in congestion and may lead to a reduction in fuel consumption and GHG emissions. Note that
the time window limits l0 and u0 at the depot are defined for the vehicles return trips. Without loss of
generality we set l0 = 0 and we can interpret u0 as the end of the planning horizon. Finally, let qi denote
the delivery quantity at customer node i ∈ N0.

In line with Franceschetti et al. (2013) we consider two methods to calculate the drivers’ wages,
referred to as drivers’ wage policies: the drivers are paid from the beginning of the planning horizon,
or the drivers are paid from their departure time from the depot. The objective of the TDPRP is to
determine: (i) the set of vehicle routes, each starting and ending at the depot, (ii) the vehicle speed on
each arc, and (iii) the departure times from each node, so as to minimize GHG emissions and drivers’
wages.

As in Jabali et al. (2012), traffic congestion in the TDPRP is modeled through a two-level speed
function with an initial period of congestion, lasting a units of time, during which the vehicle is forced
to travel at a congestion speed vc, followed by a free-flow period, during which the vehicle is allowed to
drive at any speed up to a maximum value of vmax > vc. Let vf denote the speed chosen by the vehicle
during the free-flow period. The left panel of Figure 1 shows the vehicle speed as a function of time.

Let T (d, w, vf ) denote the total travel time needed to traverse an arc of length d assuming a departure
time from its origin node of w and a free-flow speed of vf . The right panel of Figure 1 shows how T
varies with w (for fixed d and vf ). We have

T (d, w, vf ) =



















d
vc

if w ≤
(

a− d
vc

)+

vf−vc
vf

(a− w) + d
vf

if
(

a− d
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)+
< w < a

d
vf

if w ≥ a.

(1)

The first row in (1) corresponds to the case where the vehicle drives the entire distance of the arc in
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Figure 1: Time-dependent speed and travel time profiles

congestion. The second row corresponds to the case where she drives partially during the congestion
period and partially during the free-flow period. Finally the third row corresponds to the case where she
drives entirely during the free-flow period.

Alternatively we can write the travel time as T (d, w, vf ) = T c(d, w, vf ) + T f (d, w, vf ), where
T c(d, w, vf ) = min{(a − w)+, d/vc} is the time spent by the vehicle traveling in congestion, and
T f (d, w, vf ) = [d− (a− w)+vc]

+/vf is the time spent by the vehicle traveling in free flow.

To calculate the amount of vehicle GHG emissions we use the comprehensive modal emissions model
(CMEM) by Scora and Barth (2006) and Barth and Boriboonsomsin (2009). According to this model,
the amount of GHG produced by a vehicle is directly proportional to the amount of fuel consumed. This
amount is dependent on the type of vehicle, environment and traffic-related parameters, such as vehicle
load, travel speed, acceleration, etc. (see, e.g., Demir et al. (2011)). Specifically, let F denote the amount
of fuel consumed by a vehicle when traversing a distance d at a constant speed of v carrying a load of f ,
which is given by

F (d, v, f) = Ã(µ+ f)d+ B̃
d

v
+ C̃dv2, (2)

where µ is the vehicle curb weight and Ã, B̃ and C̃ are non-negative constants (see Franceschetti et al.
(2013) for how to calculate these values). In this expression, the first term is independent of the vehicle
speed and it is called weight module, the second one is linear in the travel time (which, in this case, is
equal to the distance divided by the (constant) vehicle speed) and it is called engine module, finally the
last one is quadratic in the speed and it is called speed module. Figure 2 illustrates how the three modules
vary with the speed. The values of the parameters used in Figure 2 are reported in Table 1.

As shown in Figure 2, the amount of fuel consumed (and therefore the quantity of GHG generated
by a vehicle) increases significantly as the speed decreases below to a certain threshold (which for most
applications is approximately equal to 15 km/h). This suggests that traffic congestion has a very strong
impact both on the drivers’ wage and GHG emissions costs.

Let A = fcÃ, B = fcB̃ and C = fcC̃, where fc is the fuel cost per liter. Also let D denote the drivers’
wage per unit of time. Furthermore, let TC(d, w, vf , f) denote the cost of a vehicle traversing an arc of
length d given a departure time from its origin node of w, a free-flow speed of vf and a transported load
of f ; this cost is measured from time w until the completion of service at the arrival node. If the arrival
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Figure 2: Fuel consumption rate F as a function of speed v

time at the node is before its upper time window, then

TC(d, w, vf , f) = A(µ+ f)d+BT (d, w, v) + C[T c(d, w, vf )v
3
c + T f (d, w, vf )v

3
f ] +

T f (d, w, vf )v
3
f ] +D (max {l − w, T (d, w, v)}+ h) , (3)

where l and h are the lower time window limit and service time at the arrival node respectively. If the
origin node of the arc is the depot, i.e., if this is the first arc of the vehicle route, and the driver is paid
from her departure time from the depot, then a quantity of Dw must be subtracted from TC. For the
linear mixed-integer programming formulation of the TDPRP we refer to Franceschetti et al. (2013).

An example of a feasible route is described below.

Example 1. Figure 3 depicts a feasible route with five arcs and four customer nodes. We report under
each arc, the corresponding length in km; we report under each node i the lower time window limit, i.e.,
li and the upper time window limit. Without loss of generality we assume that the service time and
the demand at each node are zero. The departure time from each node is reported in brackets above the
corresponding node. The travel speeds are reported in bold above each arc. We assume a congestion period
of 9000 seconds and a congestion speed of 10 km/h. In this example the vehicle waits at the depot for

Figure 3: Representation of a feasible route. The congestion period is represented by the thick line.

7200 seconds, then travels on the first half of arc (0, 1) in congestion at 10 km/h and on the second half in
free-flow at 36 km/h, to arrive at node 1 exactly at the upper time window limit u1 = 9500. After serving
node 1 the vehicle travels on arc (1, 2) at 55.19 km/h reaching node 2 before the lower time window limit.
The vehicle waits pre-service at node 2 and then leaves the node exactly at time l2. The vehicle travels on
the rest of the route at 75.34 km/h without pre- or post- service waiting at any intermediate node. Given
the cost parameter reported in Table 1, the total cost of this solution is £ 30.55.
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2.2. Feasibility conditions

The TDPRP is feasible if it is possible to serve each customer with a separate vehicle, driving at the
maximum speed outside of the congestion period without exceeding the vehicle capacity constraint nor
violating their upper time window at the customer node as well as at the depot for the return trip, that
is, if qi ≤ Q, min {a, d0,i/vc}+ ((d0,i − avc)

+)/vmax ≤ ui and µi
0 ≤ u0 for all i ∈ N0, where µi

0 denotes
the earliest possible arrival time back the depot from a trip to visit only customer node i, which is given
by

µi
0 =


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





















max
{

a+
d0,i−avc
vmax , li

}

+ hi +
di,0
vmax if a <

d0,i
vc

,

max
{

d0,i
vc

, li

}

+ hi +
di,0
vmax if

d0,i
vc

< a < max
{

d0,i
vc

, li

}

+ hi,

a+
di,0−

[

a−max
{

d0,i
vc

,li

}

−hi

]

vc

vmax if max
{

d0,i
vc

, li

}

+ hi < a < max
{

d0,i
vc

, li

}

+ hi +
di,0
vc

,

max
{

d0,i
vc

, li

}

+ hi +
di,0
vc

if a > max
{

d0,i
vc

, li

}

+ hi +
di,0
vc

.

The first row corresponds to the case where the outbound trip is driven in transient zone and the
return trip in free flow. In the second row, the outbound trip is driven in congestion and the return trip
is driven entirely in free flow. In the third row the outbound trip is driven in congestion and the return
trip in the transient zone. Finally in the last row both trips are driven entirely in congestion. For use
in our numerical experiments, we define amax to be the maximum value for the length of the congestion
period so that the problem is still feasible. We show how to calculate this value in Appendix A.

Next we discuss the feasibility conditions for a given vehicle route. Let (0, 1, ..., 0) denote a fixed route
where 0 is the depot and i ∈ {1, ..., n} are customer nodes which are visited on this route. Let wi denote
the earliest possible service completion time at node i, which is obtained by assuming that the vehicle
drives at the maximum speed vmax on every arc of the route after the end of the congestion period and
never waits at any node following the completion of service. The values of wi can be computed recursively
as

w0 = 0

wi =



















max
{

wi−1 +
di−1,i

vc
, li

}

+ hi if wi−1 ≤ (a− di−1,i/vc)
+ ,

max
{

a+
di−1,i−(a−wi−1)vc

vmax , li

}

+ hi if (a− di−1,i/vc)
+ ≤ wi−1 ≤ a

max
{

wi−1 +
di−1,i

vmax , li

}

+ hi if wi−1 ≥ a.

for i = 1, ..., n
(4)

The first term in (4) corresponds to the case in which the vehicle travels from node i− 1 to node i during
the congestion period. The second term corresponds to the case in which the vehicle departs from node
i − 1 before the end of the congestion period and arrives at node i past the congestion period, that is,
during the free-flow period. Finally the last term corresponds to the case in which the vehicle travels
from node i− 1 to node i entirely during the free-flow period.

The route is feasible if (i) the sum of delivery quantities does not exceed the vehicle capacity, i.e.,
∑n

i=1 qi ≤ Q, and (ii) the vehicle arrives at each customer node before its upper time window limit when
driving at the maximum speed without any post-service waiting time or, alternatively, if the earliest
possible service starting time at each customer node is smaller or equal than its upper time window limit,
i.e. wi − hi ≤ ui for i = 1, ..., n.
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3. An Adaptive Large Neighborhood Search Heuristic for the TDPRP

This section presents an Adaptive Large Neighborhood Search (ALNS) heuristic for the TDPRP. Pio-
neered by Pisinger and Ropke (2007) and Ropke and Pisinger (2006a), the ALNS heuristic is an extension
of Large Neighborhood Search (LNS) introduced by Shaw (1998). Both methods are metaheuristics aimed
at computing near-optimal solutions by repeatedly looking for a better solution in a large neighborhood
around the current solution. Specifically, the neighborhood of the current solution is explored using a
removal operator and an insertion operator in order to create an incumbent solution. The removal oper-
ator partially deconstructs the current solution and the insertion operator rebuilds it in a different way.
Whether the incumbent solution is accepted as the new current solution is determined using a simulated
annealing acceptance rule: the incumbent solution is always accepted if it has a better objective value
than that of the current solution and is accepted with a certain probability otherwise. This probability is
calculated using a temperature variable which decreases at the end of each iteration such that the prob-
ability of accepting the incumbent solution goes down over time. The ALNS heuristic extends the LNS
heuristic by allowing the use of multiple removal and insertion operators. At each iteration, the ALNS
heuristic selects one removal and one insertion operator using a roulette wheel mechanism, where the
probability of choosing a certain operator is adjusted dynamically and depends on the past and current
performance of all operators. The ALNS heuristic has been proved to be very efficient on a wide variety
of transportation problems, (see, e.g., Ropke and Pisinger 2006a, Hemmelmayr et al. 2012, Aksen et al.
2014).

In this paper, we use the same general framework as in Pisinger and Ropke (2007), Ropke and Pisinger
(2006a) and Demir et al. (2012). A formal description of our method is provided in Algorithm 1 below
where we use Si to denote the initial solution, Sb to denote the best solution encountered so far, Sc to
denote the current solution and Sn to denote the incumbent solution.

Our implementation of the simulated annealing acceptance rule is the same as that of Ropke and
Pisinger (2006a) and Demir et al. (2012): given a current solution Sc with a total cost TC(Sc),
the incumbent solution Sn is always accepted if it has a lower cost than that of the current solu-
tion, i.e., if TC(Sn) ≤ TC(Sc). Otherwise, the incumbent solution Sn is accepted with probability
e−(TC(Sn)−TC(Sc))/T , where T is the current temperature. The temperature starts at a positive value,
equal to η · TC(Si), then decreases over time as it gets multiplied by the cooling rate ς ∈ [0, 1] at each
iteration. The ALNS heuristic stops when a number ∆ of iterations has been reached. All user-controlled
parameters are denoted by Greek letters. A detailed description of each part of Algorithm 1 is provided
in the following subsections.

3.1. Construction of the initial solution

An initial feasible solution is generated using a modified version of the sequential insertion heuristic (SIH)
introduced by Solomon (1987). The SIH starts creating a first route from a “seed” customer which is the
one closest to the depot. In each subsequent step, the SIH either adds one of the currently unassigned
nodes to one of the existing (partial) routes or creates a new route with only that node (leaving from the
depot and returning to it immediately afterwards).

Let (j0, ..., jn+1) be a current partial route, where j0 and jn+1 are two copies of the depot, i.e.,
j0 = jn+1 = 0. The cost of inserting unassigned node i between adjacent nodes jk and jk + 1 for
k ∈ {0, 1, ..., n} is Ci

jk,jk+1, which is calculated as
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Algorithm 1: The overall ALNS framework

Input: Set of removal operators Ω−, set of insertion operators Ω+, cooling rate ς and constants
α, α, η, γ, γ, β, δ, k, λ, σ1, σ2, σ3 and ∆.
Output: A feasible solution Sb

Si ← Generate an initial solution using α and α
For each removal operator i ∈ Ω−, initialize probability φ−

i ←
1

|Ω−|

For each insertion operator j ∈ Ω+, initialize probability φ+
j ←

1
|Ω+|

T ← η · TC(Si)
Sb ← Si

Sc ← Si

repeat
Select a removal operator i ∈ Ω− with probability φ−

i

Select a insertion operator j ∈ Ω+ with probability φ+
j (DSOP is used as a subroutine for some

of the operators)
Sn ← Obtain incumbent solution by applying operators i and j to Sc (possibly using γ, γ, β, δ
and κ)
if TC(Sn) < TC(Sc) then

Sc ← Sn

else
r ← Generate a random number in [0, 1]
if r < e−(TC(Sn)−TC(Sc))/T then

Sc ← Sn

if TC(Sc) < TC(Sb) then
Sb ← Sc

T ← ς · T
Update φ−

i , φ
+
i using constants λ, σ1, σ2 and σ3.

until The maximum number of iterations ∆ is reached ;

Ci
jk,jk+1 =

{

djk,i + di,jk+1 − αdjk,jk+1 if route (j0, ..., jk, i, jk+1, ..., jn+1) is feasible,

∞ otherwise.
(5)

In equation (5), α is a diversification parameter used to obtain different initial solutions in separate
runs of the ALNS heuristic. Specifically, every time we compute the insertion cost, a new α value
is randomly drawn from the interval [α, α] according to a continuous uniform distribution. Note that
the insertion cost is infinite if inserting customer i between nodes jk and jk+1 would violate the route
feasibility conditions of §2.2. At each iteration, the SIH considers each unassigned node i one by one and
calculates the cost of inserting it in each possible position in the current set of partial routes, as well as
the cost of creating a new route to serve this customer, i.e., Ci

0,0. The unassigned node with the least
insertion cost is then selected and inserted in the position where it minimizes the insertion cost. After all
customers have been inserted into a feasible position, the DSOP of Franceschetti et al. (2013) is run to
optimize the travel speeds and departure times on each route. For a complete description of the DSOP
algorithm we refer to Franceschetti et al. (2013).
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3.2. Roulette wheel mechanism

The selection of the removal and insertion operators is regulated by a roulette wheel mechanism in which
a weight is assigned to each operator and the probability of selection is proportional to these weights. Let
Ω− and Ω+ denote the set of removal and insertion operators, respectively, and let ρ−j and ρ+j denote the

weights of the jth removal and insertion operator, respectively. At each iteration of the ALNS algorithm,

the probability φ−
j of choosing operator j is calculated as φ−

j = ρ−j /
∑|Ω−|

i=1 ρ−i and φ+
j = ρ+j /

∑|Ω+|
i=1 ρ+i

respectively for the removal and insertion operators. The basic idea is to adjust the weight of each
operator based on its past performance. At the beginning all insertion and removal operators have
weight set equal to one. As in Pisinger and Ropke (2007) let define a segment as a set of 100 iterations.
At the end of each segment the weights of the removal and insertion operators are updated as follows.
Consider removal operator j ∈ Ω− and insertion operator k ∈ Ω+, their weights are recalculated as

ρ−j ←ρ−j (1− λ) + λ
Ψj

n−
j

or ρ+k←ρ+k (1− λ) + λ
Ψk

n+
k

, (6)

where λ ∈ [0, 1] is the roulette wheel parameter, n−
j or n+

k is the number of times removal operator j
and insertion operator k have been used since the start of the segment, and Ψj and Ψk are the scores of
operators j and k at the end of the segment. At the beginning of each segment the scores Ψj and Ψk are
set to zero for all j ∈ Ω− and k ∈ Ω+. At the end of each iteration, if a new solution is accepted, the
scores of the removal and insertion operators which were used in this iteration are increased by either
σ1, σ2 and σ3. Specifically, σ1 is used when a new best solution is found i.e., if TC(Sn) ≤ TC(Sb), σ2 is
used when the incumbent solution is better than the current solution, i.e., if TC(Sn) ≤ TC(Sc) and σ3 is
used when the incumbent solution is worse than the current solution, i.e., if TC(Sn) > TC(Sc). In other
words the weights of the operators is updated at the end of each segment as a weighted average of their
past values and a score of performance over the last segment.

3.3. Removal and insertion operators

Our proposed ALNS heuristic uses eight removal operators and four insertion operators. In the removal
phase, a removal operator is used to remove a number of customer nodes from the current solution and
put them on a removal list L. Subsequently, in the insertion phase, an insertion operator is used to
reinsert all nodes from L into the partially destroyed solution, so as to obtain the incumbent solution.
The DSOP is then run to optimize the travel speeds and the departure times of the vehicles on each
route.

3.3.1. Removal operators

We first provide a description of our eight removal operators. The first five, namely the RR, WNR, PSR,
CR and NGR, are adapted from existing work (see Shaw (1998), Ropke and Pisinger (2006a), Demir et al.
(2012), Ribeiro and Laporte (2012), Demir et al. (2013)). The last three, namely the LSG, WSR and
LWT, are new operators which we specifically designed for the TDPRP. Most of the removal operators
operate by sorting the customer nodes according to a given metric. A fixed number of nodes are then
removed from the current solution such that nodes with a smaller index in the sorted list are more likely
to be chosen. In practice, this choice is implemented using a randomization process as follows. Consider
a ranking of n customer nodes according to a given metric. For each node, a random number y is drawn
from a continuous uniform distribution on [0, 1]. The node chosen for removal is the ⌊yδn⌋-th one on the
list, where δ is a positive fixed input parameter. Note that high (low) δ values lead to a higher (lower)
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probability of choosing nodes with smaller indices. This randomization process is performed in order to
diversify the search, as in Ribeiro and Laporte (2012).

We now provide a detailed description of the removal operators used in our ALNS algorithm. In
what follows, γ, which is the number of nodes removed from the current solution, is a value randomly
generated in each iteration from a discrete uniform distribution on [γ, γ].

Random removal operator (RR)
The RR operator randomly selects γ customer nodes and removes them from the current solution
Sc.

Worst node removal operator (WNR)
The WNR operator sorts the customer nodes according to their removal cost calculated as TC(Sc)−
TC(Sc \ i), where TC(Sc \ i) is the cost of solution Sc after removing node i, which is calculated
after running the DSOP in order to re-optimize the speeds and the departure times in the route
which included i. Given the ranking of customer nodes based on their removal cost (from highest
to lowest), γ nodes are chosen using the randomization process described above.

Proximity-based Shaw removal operator (PSR)
The PSR operator randomly selects a node in N0 and adds it to the removal list L. Then the
customer nodes that are not in L are sorted based on their distance to this node (from the closest
to the furthest), and a node is chosen from this ranking using the randomization process described
above. Next, a node in L is selected at random and the customer nodes which are in N0\L are then
sorted based on their distance to this node (from the closest to the furthest). The next node added
to L is then chosen from this ranking using the randomization process described above, etc. The
process repeats until γ nodes have been removed from the current solution Sc.

Cluster removal operator (CR)
The CR operator starts by randomly choosing a route r from the current solution, then divides
its nodes into two subsets using a modified version of the Kruskal’s algorithm for the Minimum
Spanning Tree Problem (Kruskal 1956) which stops as soon as two connected components are found.
After the two clusters have been created, the CR operator randomly selects one of the two subsets,
removes all its nodes from the current solution and adds them to the removal list L. If the total
number of removed nodes is less than γ, the CR operator selects a random node j ∈ L and looks
for a node closest to j but belonging to a different route, say route r′. Route r′ is then partitioned
into two clusters and the process is repeated until at least γ nodes have been removed from the
current solution.

Neighbor graph removal operator (NGR)
The NGR operator chooses γ nodes to remove using some historical information saved in a neighbor
graph. To each arc (i, j) in the original graph is associated a weight in the neighbor graph which
corresponds to the total cost of the best solution found so far, when node i is visited just before
node j by the same vehicle. At the beginning of the ALNS heuristic all arcs have an infinite weight.
These weights are then updated at the end of each iteration. Given a current solution Sc the NGR
operator calculates the cost of customer node i by summing the arcs weights in the neighbor graph
of the arcs going into and out of node i. The customer nodes are then sorted based on that cost
metric (from the highest to the lowest) and γ nodes are chosen for removal using the randomization
process described above.

Largest speed gap removal operator (LSG)
Given the current solution Sc, the LSG operator assigns to every customer node a value equal to the
absolute value of the difference between the travel speed on the outgoing arc and the travel speed
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on the incoming arc. If a vehicle starts traversing an arc during the congestion period and reaches
the end of the arc during the free-flow period, the speed considered for comparison is the speed
used in the last part of the arc, i.e. the free-flow speed. The customer nodes are then sorted based
on this value (from highest to lowest) and γ nodes are chosen for removal using the randomization
process described above. The reasoning behind this newly developed operator is that changing the
position of the nodes that mark a decrease or an increase in the vehicle speed may help even out
the travel speeds, and therefore reduce GHG emissions.

Worse speed removal operator (WSR)
Given the current solution Sc, the WSR operator assigns a positive value to every customer node
as follows. If the vehicle arrives at the node before the end of the congestion period, this value is
set to infinity; otherwise it is set equal to the traveling speed on the incoming arc. The customer
nodes are then sorted based on these values (from highest to lowest), and γ nodes are chosen for
removal using the randomization process described above. The idea behind this operator is to
remove the nodes that are reached during the congestion period or by a vehicle traveling at a very
high speed. As with the previous operator, removing these nodes may even out the travel speeds,
thereby reducing GHG emissions.

Longest waiting time removal operator (LWT)
The LWT operator assigns a value to every customer node equal the total waiting time at that node,
that is, the sum of pre- and post-service waiting times. The customer nodes are then sorted based on
these values (from highest to lowest), and γ nodes are chosen for removal using the randomization
process described above. The idea behind this operator is that, since the driver is paid during the
waiting times, reducing them may lower the drivers’ wage and therefore the total cost.

3.3.2. Insertion operators

Let Sp denote the partial solution obtained after removing a number of customer nodes from the current
solution Sc using one of the removal operators listed above and let L be the removal list, where the nodes
are listed in the order in which they were removed. We now describe the insertion operators that we
use to construct the incumbent solution Sn. The first three operators, namely the BGI, MGI and k-RIH
operators, are adapted from Shaw (1998), Ropke and Pisinger (2006b), Demir et al. (2012), Ribeiro and
Laporte (2012), Demir et al. (2013), the last one, namely the β-HIH operator, is a new operator we
propose.

Best greedy insertion operator (BGI)
The BGI operator selects the nodes in L one at time (in the order they are listed). For each
node, it calculates its insertion cost between every pair of adjacent nodes in the partially destroyed
solution Sp, as well as in a new route from a depot and returning to it immediately afterwards.
This insertion cost is equal to the increase in total cost after inserting the node (calculated after
running the DSOP) if the resulting solution satisfies the route feasibility conditions from §2.2, and
is infinite otherwise. The node is then inserted in the position with the least insertion cost. The
process is repeated until all nodes in L have been inserted back.

Modified greedy insertion operator (MGI)
The MGI operator works in a similar way as the BGI operator, except that the insertion cost of
node i ∈ L between adjacent nodes j and k in Sp is calculated as dji + dik − djk if the insertion
satisfies the route feasibility conditions from §2.2, and is infinite otherwise. Compared to BGI
operator, this operator is much faster since calculating the insertion cost does not require solving
the DSOP. Here the DSOP is run only once, after all nodes in L have been inserted.
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κ-regret insertion operator (κ-RIH)
For each node in L, the κ-RIH operator first calculates the cost of inserting it between every pair
of adjacent nodes in the partial destroyed solution Sp, as well as in a new route from a depot and
returning to it immediately afterwards, in the same way as the BGI operator. Then, for each node
i ∈ L the κ-RIH operator calculates the Regret Value RVi = Ci,κ − Ci,1, where Ci,κ is the cost
of inserting node i into the position with the κth lower cost, where κ is a fixed integer parameter
greater than one. The node with the maximum regret value is then removed from L and inserted
where it generates the lowest insertion cost. The process is repeated until all nodes in L have been
inserted in Sp.

Note that the DSOP is run whenever an insertion cost is calculated and whenever an unassigned
node is inserted into the partial solution. The main advantage of this operator is that it improves
on the myopic behavior of the operators previously introduced (see Potvin and Rousseau 1993,
Ropke and Pisinger 2006b) because it considers inserting a node in a non-cost-minimizing position,
thereby creating more diversification in the solution.

Hybrid insertion operator (β-HIH)
The β-HIH operator first modifies the removal list L by reversing the order of the nodes from the
list with probability 1/2. If the length of the removal list L is less or equal to a fixed integer
positive parameter β, the β-HIH operator tries to insert the whole list of nodes between every pair
of adjacent nodes and also considers creating a new route with these nodes only. The insertion cost
of the sequence of nodes is equal to the increase in total cost if the resulting route satisfies the route
feasibility conditions from §2.2 and is infinite otherwise. If the minimum insertion cost is finite, the
sequence of nodes is inserted in the position of lowest insertion cost. If not, or if the removal list L
is longer than β, the β-HIH operator randomly selects nodes one at a time from L, and inserts them
each in the position where their insertion cost is minimized. This operator improves the myopic
behavior of the BGI and MGI as it tries to insert multiple nodes all at once. Furthermore, we
believe that this operator is particularly beneficial in the following cases: (i) when the nodes in L
are close to each other (which tends to be the case when the (PSR) removal operator is used), or
(ii) when the nodes in L have tight upper lime window limits (which tends to be the case when
the (WSR) removal operator is used). Note that the DSOP is run whenever an insertion cost is
calculated and after an unassigned node is inserted in the partial solution.

4. Computational Experiments

In this section we present the results of computational experiments we have conducted to assess the per-
formance of our metaheuristic on the TDPRP. We used all instances from the PRP Library (PRPLIB),
available at http://www.apollo.management.soton.ac.uk/prplib.htm as well as all instances pro-
posed by Kramer et al. (2015b) which are adapted from the PRP Library. The PRPLIB contains 180
problem instances, partitioned into nine sets of 20 instances, such that the instances in each set have
the same number of customer nodes, which varies between 10 and 200 nodes. Each instance comes with
the following information: (i) the distances between each pair of nodes (these are based on actual ge-
ographical distances between randomly selected cities from the United Kingdom), (ii) the demand at
each node, (iii) the service time window at each node, (iv) the service duration at each node and (v) the
maximum vehicle traveling speed which is assumed to be the same on every arc. Kramer et al. (2015b)
created two new sets of instances, namely set B and set C, by modifying the time window limits from the
PRPLIB, while keeping all other parameters unchanged. Specifically, in set B the length of the service
time window interval at each customer is randomly selected in the interval 2,000 and 5,000. Similarly, in
set C the length of the service time window interval at each node is randomly selected between 2,000 and
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15,000. As a result, the instances in set B have the tightest time windows, followed by the instances in
set C, followed by the original PRPLIB instances. Once the lengths of the service time windows intervals
are defined, the authors set the lower time window limit in such a way that it is feasible to reach each
customer and return back to the depot before the upper time window limit at the depot, as in the orignal
PRPLIB instances. The lower time window limit is randomly selected within this interval, the upper time
window limit is calculated by summing the lower time window and the time window interval. Finally
the upper time window at the depot for the return trip is set equal to the same value as in the PRPLIB
original instances. Note that the time windows in sets B and C were chosen to guarantee feasibility of the
problem instances in the absence of traffic congestion. In the setting of the TDPRP, the drop in vehicle
speed during the initial period of traffic congestion can render the problem instance infeasible depending
on its length therefore we calculated the maximum feasible value of the traffic congestion period length as
explained in §2.2. In our numerical experiments, we use the same cost function parameters as in Demir
et al. (2012) and Franceschetti et al. (2013), which are reported in Table 1. Unless stated otherwise, we
assume that the driver is paid from the beginning of the planning horizon, i.e., drivers’ wage policy (a).

Table 1: Cost function parameters

Notation Description Unit Value

A Weight module constant £ m/(kJ,s2) 1.176E−8
B Engine module constant £ s2 0.00142
C Speed module constant £ kg/(kJ,m) 1.98E−7
D Drivers’ wage £/s 0.0022
µ Curb weight kg 6,350

Our algorithm was coded in Java and run on a server with 64-bit GNU/Linux operating system, 96
GB of RAM and one processor Intel Xeon X5675 running at 3.07 GHz.

4.1. Parameter tuning

The implementation of the ALNS heuristic contains 14 user-controlled parameters which are provided
in Table 2, along with the value we used in our numerical experiments. As in Demir et al. (2012), we
divide the parameters into four groups. Group (i) includes the parameters that control the generation of
the initial solution. Group (ii) includes the parameters that control the roulette wheel mechanism which
governs the choice of the operators at each iteration. Group (iii) includes the parameters that control
the simulated annealing search framework and the ones that calibrate the initial temperature and cooling
rate. Finally, group (iv) includes all parameters used by the removal and insertion operators.

In order to set the value of these parameters, we conducted some parameter-tuning numerical experi-
ments. All tests are performed on a tuning set consisting on the following 27 instances: nine instances from
the PRPLIB, i.e., UK10 01, UK10 02, UK10 03, UK100 01, UK100 02, UK100 03, UK200 01, UK200 02,
UK200 03, nine instances from Kramer et al. (2015b) Set B, i.e., UK10 01-B, UK10 02-B, UK10 03-B,
UK100 01-B, UK100 02-B, UK100 03-B, UK200 01-B, UK200 02-B, UK200 03-B, and nine instances
from Kramer et al. (2015b) Set C, i.e., UK10 01-C, UK10 02-C, UK10 03-C, UK100 01-C, UK100 02-C,
UK100 03-C, UK200 01-C, UK200 02-C, UK200 03-C. We considered multiple sets of values and for
each parameter setting we apply our ALNS to all instances from the tuning set ten times. In particular,
we considered multiple sets of values for the (σ1, σ2, σ3), λ and η parameters as in Ropke and Pisinger
(2006a) and Demir et al. (2012). The results from these tuning experiments are shown in the following
subsections. The values of all other parameters are set as in Table 2. To ensure comparison fairness we
used the same initial solution and seeds for the random numbers across runs with different parameter
values. For the rest of our numerical experiments the congestion speed and the maximum free flow speed
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Table 2: Parameters used in the ALNS heuristic

Group Notation Description Value

(i) α Minimum α value 0.7
α Maximum α value 2

(ii) λ Roulette wheel parameter 0.2
σ1 Operators score when a new best solution found 30
σ2 Operators score when a new incumbent solution is accepted which is better than current solution 10
σ3 Operators score when a new incumbent solution is accepted which is worse than current solution 20

(iii) ∆ Total number of iterations 25, 000
η Initial temperature parameter 0.001
ς Cooling rate 0.99975

(iv) γ Minimum number of nodes to remove ⌊log10(N)⌋

γ Maximum number of nodes to remove ⌊log1.35(N)⌋
δ Randomization parameter 4
κ Insertion control parameter for κ-RIH operator 4
β Insertion control parameter for β-HIH operator 3

are set to vc = 10 km/h and to vmax = 90 km/h, respectively. The congestion period is set at 75% of the
maximum feasible congestion period length amax as defined in §2.2.

4.1.1. Tuning of the roulette wheel mechanism parameters

In order to tune the control parameters used in the roulette wheel mechanism, i.e., σ1, σ2 and σ3 defined
in §3.2, we ran some numerical tests on all instances from the tuning set. Note that in all the problem
instances we used, the value of amax was finite. The values of parameters λ and η are set to 0.5 and
0.001, respectively. We considered the following four value combinations for σ = (σ1, σ2, σ3): (30, 20, 10),
(30, 10, 20), (10, 10, 10) and (10, 30, 20). The comparison of the four different combinations is reported in
Table 3. For each instance of the tuning set the columns Best report the best solution found out of ten
runs using a given combination, the columns %Dev report the percentage deviation with respect to best
solution value calculated across all combinations.

The results reported in Table 3 show that, in terms of percentage deviation, (30, 10, 20) overall per-
forms the best and (10, 30, 20) performs the worst, even though the difference across all combinations is
relatively small. Based on this analysis, we decided to use σ1 = 30, σ2 = 10, σ3 = 20 for the rest of our
numerical experiments. Given the definitions of the sigma values (see §3.2), the chosen combination set
is such that the highest weight is assigned when a new best solution was found and interestingly, the
second highest weight is given when the incumbent solution was worse than the current solution. This
indicates that there is value in encouraging diversification amongst operators, in order to avoid a situation
where early good performers end up dominating the roulette wheel mechanism at the detriment of other
possibly promising operators.

4.1.2. Tuning of the roulette wheel control parameter

In order to tune the parameter λ, which controls the assignment of weights to the operators, we ran some
tests on all instances from the tuning set using four different parameter values: 0, 0.25, 0.5 and 0.75.
When λ is equal to zero the dynamic adjustment of the operators weights is removed and the score of
each operator remains constant i.e., equal to one. A higher value of λ means that the updating of the
operators’ score is more sensitive to their performance in the most recent segment of iterations. Setting λ
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Table 3: Tuning of the roulette wheel mechanism parameters (σ1, σ2, σ3)

Instance (σ1, σ2, σ3) = 30, 20, 10) (σ1, σ2, σ3) = (30, 10, 20) (σ1, σ2, σ3) = (10, 10, 10) (σ1, σ2, σ3) = (10, 30, 20) Min
Best %Dev Best %Dev Best %Dev Best %Dev

UK10 1 323.19 0.00 323.19 0.00 323.19 0.00 323.19 0.00 323.19
UK10 1-B 245.96 0.00 245.96 0.00 245.96 0.00 245.96 0.00 245.96
UK10 1-C 223.70 0.00 223.70 0.00 223.70 0.00 223.70 0.00 223.70
UK10 2 326.49 0.00 326.49 0.00 326.49 0.00 326.49 0.00 326.49
UK10 2-B 303.09 0.00 303.09 0.00 303.09 0.00 303.09 0.00 303.09
UK10 2-C 277.15 0.00 277.15 0.00 277.15 0.00 277.15 0.00 277.15
UK10 3 318.82 0.00 318.82 0.00 318.82 0.00 318.82 0.00 318.82
UK10 3-B 301.12 0.00 301.12 0.00 301.12 0.00 301.12 0.00 301.12
UK10 3-C 242.18 0.00 242.18 0.00 242.18 0.00 242.18 0.00 242.18
UK100 1 1,760.04 1.40 1,760.04 1.40 1,735.73 0.00 1,743.96 0.47 1,735.73
UK100 1-B 1,625.09 0.00 1,625.96 0.05 1,645.07 1.23 1,645.34 1.25 1,625.09
UK100 1-C 1,517.59 0.00 1,522.66 0.33 1,522.55 0.33 1,531.49 0.92 1,517.59
UK100 2 1,630.97 0.55 1,622.12 0.00 1,626.24 0.25 1,627.98 0.36 1,622.12
UK100 2-B 1,636.56 0.76 1,624.24 0.00 1,627.38 0.19 1,629.30 0.31 1,624.24
UK100 2-C 1,476.71 0.39 1,476.25 0.36 1,471.02 0.00 1,483.18 0.83 1,471.02
UK100 3 1,553.82 0.34 1,549.33 0.05 1,551.54 0.19 1,548.54 0.00 1,548.54
UK100 3-B 1,548.69 0.46 1,541.59 0.00 1,548.47 0.45 1,554.63 0.85 1,541.59
UK100 3-C 1,349.59 0.00 1,351.60 0.15 1,352.47 0.21 1,353.67 0.30 1,349.59
UK200 1 2,934.45 0.00 2,940.28 0.20 2,937.98 0.12 2,945.07 0.36 2,934.45
UK200 1-B 2,872.91 0.46 2,868.41 0.30 2,859.78 0.00 2,871.29 0.40 2,859.78
UK200 1-C 2,656.57 0.16 2,663.14 0.41 2,659.17 0.26 2,652.39 0.00 2,652.39
UK200 2 2,816.70 0.00 2,822.32 0.20 2,831.87 0.54 2,820.49 0.13 2,816.70
UK200 2-B 2,699.62 0.93 2,685.81 0.41 2,692.83 0.68 2,674.73 0.00 2,674.73
UK200 2-C 2,520.46 0.31 2,529.00 0.64 2,525.04 0.49 2,512.79 0.00 2,512.79
UK200 3 2,974.57 0.34 2,985.75 0.72 2,965.63 0.04 2,964.37 0.00 2,964.37
UK200 3-B 2,849.79 0.28 2,841.80 0.00 2,877.88 1.27 2,874.08 1.14 2,841.80
UK200 3-C 2,614.45 0.32 2,612.35 0.24 2,606.20 0.00 2,617.56 0.44 2,606.20
Average 0.25 0.20 0.23 0.29

equal to zero means that the weights of the operators remain constant, so that each one is always equally
likely to be chosen in each iteration. The comparison is reported in Table 4. The values of Best and
%Dev are as described for Table 3.

The results in Table 4 show that dynamically changing the weights of the operators so that their
probability of being chosen depends on past performance does not always lead to a better solution, as
evidenced by the many problem instances for which setting λ equal to zero led to the minimum total
cost. We found, however, that overall the best performing value of λ was 0.5 so based on these results
we decided to use this value in our computational experiments.

4.1.3. Tuning of the initial temperature parameter

In order to tune the parameter η, which controls the initial temperature, we ran some tests on all instances
from the tuning set using three different parameter values: 0.001, 0.01, and 0.1. A higher value of η means
that the initial temperature is higher, leading to a higher probability of accepting the incumbent solution
in each iteration, given a fixed cost difference value with the current solution. The comparison is reported
in Table 5. The values of Best and Dev are as described for Table 3.

Our results suggest that it is preferable to use a small values of η, since 0.001 generally leads to
lower total cost values. Based on this analysis, we decided to set the value of η equal to 0.001 in our
computational experiments.
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Table 4: Tuning of the roulette wheel control parameter (λ)

Instance λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 Min
Best %Dev Best %Dev Best %Dev Best %Dev

UK10 1 323.19 0.00 323.19 0.00 323.19 0.00 323.19 0.00 323.19
UK10 1-B 245.96 0.00 245.96 0.00 245.96 0.00 245.96 0.00 245.96
UK10 1-C 223.70 0.00 223.70 0.00 223.70 0.00 223.70 0.00 223.70
UK10 2 326.49 0.00 326.49 0.00 326.49 0.00 326.49 0.00 326.49
UK10 2-B 303.09 0.00 303.09 0.00 303.09 0.00 303.09 0.00 303.09
UK10 2-C 277.15 0.00 277.15 0.00 277.15 0.00 277.15 0.00 277.15
UK10 3 318.82 0.00 318.82 0.00 318.82 0.00 318.82 0.00 318.82
UK10 3-B 301.12 0.00 301.12 0.00 301.12 0.00 301.12 0.00 301.12
UK10 3-C 242.18 0.00 242.18 0.00 242.18 0.00 242.18 0.00 242.18
UK100 1 1,752.73 0.63 1,741.82 0.00 1,760.04 1.05 1,749.56 0.44 1,741.82
UK100 1-B 1,649.30 1.56 1,624.03 0.00 1,625.96 0.12 1,641.58 1.08 1,624.03
UK100 1-C 1,532.31 0.63 1,526.56 0.26 1,522.66 0.00 1,526.91 0.28 1,522.66
UK100 2 1,633.19 0.68 1,629.91 0.48 1,622.12 0.00 1,629.22 0.44 1,622.12
UK100 2-B 1,623.40 0.00 1,630.78 0.45 1,624.24 0.05 1,630.33 0.43 1,623.40
UK100 2-C 1,475.42 0.00 1,479.28 0.26 1,476.25 0.06 1,476.82 0.09 1,475.42
UK100 3 1,542.84 0.00 1,547.13 0.28 1,549.33 0.42 1,547.39 0.29 1,542.84
UK100 3-B 1557.64 1.04 1,558.92 1.12 1,541.59 0.00 1,559.29 1.15 1,541.59
UK100 3-C 1348.78 0.27 1,345.10 0.00 1,351.60 0.48 1,351.97 0.51 1,345.10
UK200 1 2,933.64 0.01 2,945.82 0.42 2,940.28 0.23 2,933.46 0.00 2,933.46
UK200 1-B 2,868.76 0.03 2,869.96 0.07 2,868.41 0.01 2,868.00 0.00 2,868.00
UK200 1-C 2,658.43 0.21 2,666.13 0.50 2,663.14 0.38 2,652.99 0.00 2,652.99
UK200 2 2,825.35 0.70 2,835.73 1.07 2,822.32 0.59 2,805.77 0.00 2,805.77
UK200 2-B 2,678.78 0.00 2,689.21 0.39 2,685.81 0.26 2,682.31 0.13 2,678.78
UK200 2-C 2,533.40 0.17 2,540.91 0.47 2,529.00 0.00 2,532.08 0.12 2,529.00
UK200 3 2,979.76 0.00 2,979.73 0.00 2,985.75 0.20 2,979.76 0.00 2,979.73
UK200 3-B 2,850.16 0.29 2,886.67 1.58 2,841.80 0.00 2,870.18 1.00 2,841.80
UK200 3-C 2,592.89 0.00 2,619.10 1.01 2,612.35 0.75 2,613.01 0.78 2,592.89
Average 0.23 0.31 0.17 0.25

4.2. Computational time analysis

In this section we analyze the speed performance of our ALNS heuristic using instances from the tuning
set. Table 6 shows the average computational (CPU) time across ten runs of the ALNS heuristic. The
column entitled CPU time reports the average CPU time for running the algorithm (in minutes). The
column entitled RO time reports the average CPU time (in minutes) collectively spent by all the removal
operators during one run of the algorithm. The column IO time reports the average CPU time (in
minutes) collectively spent by all the insertion operators during one run of the algorithm, finally the
column DSOP time reports the average CPU time (in minutes) spent solving the DSOP, which is used
as a subroutine. All these values are displayed in Table 6. Note that these are average values calculated
across all instances from the tuning set with the same number of nodes. Table 6 shows that our ALNS
algorithm generates a solution in a reasonable time: less than 10 minutes on average for problems with
100 nodes and about 36 minutes for problems with 200 nodes. Moreover we see that, on average, the
insertion operators require more time than the removal operators. This is because three out of four
insertion operators (namely BGI, κ-RIH and β-HIH) run the DSOP as a subroutine versus only one
out of the eight removal operators (namely WNR). Running the DSOP is a time-consuming process as
evidenced by the fact that it requires more than 50% of the total CPU time. We further analyze the time
required by each operator in the next section.

4.3. Relative performance of the operators

In this section, we study the relative performance of the removal and insertion operators both in terms of
speed and the solution quality. To this end, we solve all instances from the tuning set. For each one, we
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Table 5: Tuning of the initial temperature parameter (η) for the simulated annealing acceptance rule

Instance η = 0.001 η = 0.01 η = 0.1 Min
Best %Dev Best %Dev Best %Dev

UK10 1 323.19 0.00 323.19 0.00 323.19 0.00 323.19
UK10 1-B 245.96 0.00 245.96 0.00 245.96 0.00 245.96
UK10 1-C 223.70 0.00 223.70 0.00 223.70 0.00 223.70
UK10 2 326.49 0.00 326.49 0.00 326.49 0.00 326.49
UK10 2-B 303.09 0.00 303.09 0.00 303.09 0.00 303.09
UK10 2-C 277.15 0.00 277.15 0.00 277.15 0.00 277.15
UK10 3 318.82 0.00 318.82 0.00 318.82 0.00 318.82
UK10 3-B 301.12 0.00 301.12 0.00 301.12 0.00 301.12
UK10 3-C 242.18 0.00 242.18 0.00 242.18 0.00 242.18
UK100 1 1,760.04 1.13 1,740.32 0.00 1,746.13 0.33 1,740.32
UK100 1-B 1,625.96 0.00 1,642.22 1.00 1,633.27 0.45 1,625.96
UK100 1-C 1,522.66 0.65 1,515.76 0.20 1,512.77 0.00 1,512.77
UK100 2 1,622.12 0.00 1,624.09 0.12 1,637.82 0.97 1,622.12
UK100 2-B 1,624.24 0.00 1,628.48 0.26 1,649.84 1.58 1,624.24
UK100 2-C 1,476.25 1.19 1,474.25 1.05 1,458.88 0.00 1,458.88
UK100 3 1,549.33 0.24 1,545.65 0.00 1,563.84 1.18 1,545.65
UK100 3-B 1,541.59 0.00 1,548.50 0.45 1,557.97 1.06 1,541.59
UK100 3-C 1,351.60 0.00 1,353.13 0.11 1,370.81 1.42 1,351.60
UK200 1 2,940.28 0.00 2,973.39 1.13 2,977.64 1.27 2,940.28
UK200 1-B 2,868.41 0.00 2,902.70 1.20 2,928.85 2.11 2,868.41
UK200 1-C 2,663.14 0.00 2,708.00 1.68 2,720.90 2.17 2,663.14
UK200 2 2,822.32 0.00 2,833.12 0.38 2,852.90 1.08 2,822.32
UK200 2-B 2,685.81 0.00 2,712.10 0.98 2,741.27 2.07 2,685.81
UK200 2-C 2,529.00 0.00 2,552.37 0.92 2,582.37 2.11 2,529.00
UK200 3 2,985.75 0.04 2,985.37 0.03 2,984.51 0.00 2,984.51
UK200 3-B 2,841.80 0.00 2,894.06 1.84 2,916.88 2.64 2,841.80
UK200 3-C 2,612.35 0.21 2,606.94 0.00 2,657.37 1.93 2,606.94

Average 0.13 0.42 0.83

Table 6: Average computational time spent in each stage of the algorithm

# nodes CPU time RO time IO time DSOP time
(min) (min) (min) (min)

10 0.11 0.01 0.10 0.09
100 9.09 0.87 8.21 7.43
200 36.07 3.41 32.66 30.61

Average 15.09 1.43 13.66 12.71

ran our algorithm ten times. The first column in Table 7 reports the name of the operators. The columns
%Usage report the percentage of total iterations in which an operator is used. The columns %IBest
report the percentage of iterations in which the incumbent solution was better than the best solution for
which that particular operator was used. Finally the columns CPU report the normalized CPU time
of each operator, where the normalization is done using the minimum value of the average CPU time
across all operators of one type: for the removal (insertion) operators, the minimum average CPU time
was obtained by the RR (MGI) operator. Hence, for example, a value of 1.55 for normalized average
CPU time for the CR operator means that it was on average 1.55 times slower than the RR operator.
All values reported in Table 7 are average values calculated across the instances with the same number
of nodes.

In terms of quality of the solution, as measured by the proportion of improvements to the best solution,
the best performing removal operators are the CR, NGR operators followed by our newly developed LSG
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Table 7: Relative performance of the operators

10 nodes 100 nodes 200 nodes Average
% Usage % IBest Avg CPU % Usage % IBest Avg CPU % Usage % IBest Avg CPU % Usage % IBest Avg CPU

Removal

RR 12% 8% 1.00 13% 2% 1.00 12% 3% 1.00 12% 5% 1.00
WNR2 15% 14% 5.35 13% 14% 225.59 13% 13.3% 714.32 13% 14% 315.09
PSR 11% 9% 1.17 13% 14% 2.06 13% 14% 2.48 12% 12% 1.90
CR 14% 19% 1.50 14% 24% 1.85 13% 21% 1.77 14% 22% 1.71
NGR 12% 18% 1.35 11% 12% 3.29 11% 12% 6.16 11% 14% 3.60
LSG1 14% 16% 1.17 12% 10% 2.24 13% 12% 3.00 13% 13% 2.14
WSR1 11% 9% 1.20 13% 13% 2.37 13% 12% 2.77 12% 12% 2.11
LWT1 13% 6% 1.24 12% 11% 2.23 12% 12% 2.86 12% 10% 2.11
Insertion

BGI2 25% 34% 18.89 25% 28% 70.16 25% 31% 95.33 25% 31% 61.46
MGI 26% 2% 1.00 26% 3% 1.00 25% 3% 1.00 26% 3% 1.00
KRI2 25% 30% 38.62 24% 33% 181.80 25% 34% 243.01 25% 32% 154.48
HIH1,2 24% 35% 23.07 25% 36% 73.69 25% 32% 98.94 25% 34% 65.24

1 newly developed operator, 2 uses the DSOP as a subroutine. %Usage = # of iterations in which an operator is used divided by
total # of iterations(∆). % IBest = # of iterations in which the operator generated produced an incumbent solution better than the
best solution divided by total # of iterations in which an incumbent solution is better than the best solution. Norm. Avg. CPU
time = average CPU time required by the removal (insertion) operator divided by the minimum average CPU time across all removal
(insertion) operators.

operator. Regarding the insertion operators, the one which leads to the most in the best solution is our
β-HIH operator. In contrast relatively very few improvements are achieved with RR removal operator
and the MGI insertion operator. In terms of speed, we see that, as expected, all operators which use the
DSOP as a subroutine are much slower than those which do not. Overall, there seems to be a trade-off
between speed and quality of the solution: the RR and MGI operators are the fastest but the worst
performing ones.

Next we further study the performance of the operators, focusing on the new ones we developed. For
this purpose we ran two different versions of our ALNS heuristic algorithm on all the 100-, and 200-node
instances. In Version #1, we included all the removal and insertion operators described in §3.3. In
Version #2, we included only the removal and insertion operators adapted from the literature, that is, we
excluded the three removal operators (LSG, WSR and LWR) and the one insertion operator (β-HIH) we
developed. Hence, comparing the performance of Versions #1 and #2 measures the value of the removal
and insertion operators we proposed. To ensure fairness, we used the same initial solution and seeds for
the random numbers across versions. All results were calculated assuming a congestion period equal to
the 75% of the maximum feasible congestion period length amax and a congestion speed of 10 km/h.
For each instance we ran our algorithm ten times. The complete results for all the 100-, and 200-node
instances are reported in Tables 12 and 13 in Appendix B. We also report the p-values obtained from
comparing the minimum cost values across the two versions using a one-tailed Wilcoxon signed rank test
(see Rey and Neuhäuser (2011)). A summary of the results is reported in Table 8. The columns Average
and Maximum respectively report the average and the maximum percentage cost reduction over ten runs
obtained from using the new removal and insertion operators. To calculate these values, we use the best
solution value across the ten runs for each instance/version, that is, we calculated the percentage cost

reduction as Dev = 100[TC(SV ersion#2
b )− TC(SV ersion#1

b )]/TC(SV ersion#1
b ).

Table 8 shows that, in most cases, using our newly developed operators leads to an improvement in
the performance of our ALNS algorithm. This confirms that our newly developed operators improve the
quality of the solution given by the ALNS heuristic. A possible explanation is that, while the operators
adapted from the literature are mainly aimed at minimizing the total distance traveled by the vehicles,
the new ones aim at reducing the negative effects of fluctuating speeds in transport networks, which
negatively impact emissions. As discussed in Franceschetti et al. (2013), these negative effects become
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Table 8: Value of the newly developed operators

# of nodes % Cost Reduction (Dev)
Average Maximum

UK100 -0.03 0.86
UK100-B 0.16 0.78
UK100-C 0.26 1.26
UK200 0.10 0.96
UK200-B 0.11 1.07
UK200-C 0.14 1.17

Average = average percentage cost reduction across all instances with the same number of nodes; Maximum = maximum percentage

cost reduction across all instances with the same number of nodes where Dev = [TC(SV ersion#2
b

)−TC(SV ersion#1
b

)]/TC(SV ersion#1
b

).

more relevant in the presence of traffic congestion and therefore they cannot be ignored.

4.4. Performance on TDPRP instances

In this section we study the performance of our ALNS heuristic on TDPRP instances. First we use
a set of small-size (i.e., 10-, 20-, and 25-node) instances from the PRPLIB to compare our algorithm
to the solution found in Franceschetti et al. (2013) using the MIP of Franceschetti et al. (2013), which
was ran using CPLEX. Note that the MIP formulation of Franceschetti et al. (2013) requires that the
number of vehicles be fixed at a value K, while, in our model, we optimize the number of vehicles to use
without imposing a maximum value constraint. To ensure the fairness in our comparisons, we modified
the original MIP formulation from Franceschetti et al. (2013) by replacing constraint

∑

j∈N x0j = K with
∑

j∈N x0j ≤ |N0|, where |N0| is the number of customer nodes in the network. We used this modified
MIP version to compute the results displayed in Tables 9 and 10. All results were calculated assuming a
congestion period of 1 hour and a congestion speed of 10 km/h. For each instance we ran our algorithm
ten times. Table 9 presents the comparison for the case where the driver is paid from the beginning
of the planning horizon and Table 10 presents the results for the case where the driver is paid from
her departure time. The columns ALNS report total cost, i.e. TC, of the best solution found by our
metaheuristic. The columns CPLEX report the total cost calculated using the MIP formulation. Finally,
the columns entitled Dev. report the percentage difference between the two cost values, calculated as
[TC(SALNS

b )− TC(SCPLEX)]/TC(SALNS
b ).

The results in Table 9 and 10 show that most of the instances have very small deviations (in absolute
value), which suggests that our ALNS heuristic performs very well. The maximum positive deviation is
0.43%, which is the worst performance of our solution method. In a few cases the deviation is negative,
implying that the solution obtained with our ALNS heuristic is actually better than that obtained by
Franceschetti et al. (2013). This is due to the fact that the MIP formulation of Franceschetti et al.
(2013) uses a discrete set of values for the free-flow travel speeds whereas our ALNS heuristic allows for
continuous values. The average CPU times required by our heuristic to solve a single instance of 10-, 15-,
and 20-node are respectively 10.8 seconds, 18.69 seconds, and 25.15 seconds. In contrast, the average
CPU times required by CPLEX to solve a single instance of 10-, 15- and 20-node using CPLEX are
respectively 41.55 seconds, 503.44 seconds, and 8058.76 seconds. Hence, our algorithm is significantly
faster than the CPLEX solving the MIP, expecially for large instances.

Next, we solve all instances from the PRPLIB and from Kramer et al. (2015b) in order to further
assess the performance of our algorithm. For every instance, we ran our algorithm ten times. Note that,
for the instances with more than 20-node, solving the MIP formulation from Franceschetti et al. (2013)
using CPLEX is computationally too expensive; therefore we do not have values to compare our solution
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Table 9: Total cost comparison between ALNS and CPLEX (driver paid from the beginning of the planning horizon)

Instance UK 10 UK 15 UK 20

ALNS CPLEX ALNS CPLEX ALNS CPLEX
TC(£) TC(£) Dev. (%) TC(£) TC(£) Dev. (%) TC(£) TC(£) Dev. (%)

1 323.19 323.19 0.00 455.08 455.12 -0.01 499.38 499.08 0.06
2 326.49 326.50 0.00 353.27 353.30 -0.01 524.15 524.19 -0.01
3 318.82 318.84 -0.01 384.40 384.47 -0.02 323.78 326.90∗ -0.96
4 299.62 299.65 -0.01 423.66 423.67 0.00 497.05 497.11 -0.01
5 244.79 244.82 -0.01 489.98 490.02 -0.01 468.02 468.02 0.00
6 350.17 350.24 -0.02 377.51 377.61 -0.03 511.35 511.43 -0.02
7 277.567 277.78 -0.08 377.77 377.80 -0.01 351.12 351.80 -0.19
8 357.49 357.58 -0.03 256.24 255.13 0.43 463.88 463.81 0.01
9 240.87 240.89 -0.01 363.98 363.67 0.09 551.73 560.12∗ -1.52
10 273.58 273.58 0.00 353.38 353.51 -0.04 448.76 448.81 -0.01
11 401.99 402.20 -0.05 445.59 445.64 -0.01 529.98 530.10 -0.02
12 296.45 296.45 0.00 475.79 475.79 0.00 481.69 481.68 0.00
13 312.42 312.43 0.00 388.67 388.67 0.00 498.43 498.55 -0.02
14 266.97 267.00 -0.01 510.50 510.54 -0.01 582.00 582.00 0.00
15 221.95 221.95 0.00 352.21 352.29 -0.02 477.83 477.87 -0.01
16 248.57 248.60 -0.01 329.10 329.16 -0.02 487.35 487.42 -0.01
17 252.25 252.25 0.00 409.44 409.45 0.00 528.48 533.38∗ -0.93
18 240.22 240.27 -0.02 449.22 449.22 0.00 530.27 530.30 -0.01
19 292.66 292.71 -0.02 303.88 304.93 -0.35 524.89 524.92 0.00
20 259.48 259.56 -0.03 300.34 300.34 0.00 514.90 514.99 -0.02

Average -0.02 0.00 -0.18

Dev = [TCALNS − TCCPLEX ]/TCALNS .

Table 10: Total cost comparison between ALNS and CPLEX (driver paid from departure time)

Instance UK 10 UK 15 UK 20

ALNS CPLEX ALNS CPLEX ALNS CPLEX
TC(£) TC(£) Dev. (%) TC(£) TC(£) Dev. (%) TC(£) TC(£) Dev. (%)

1 214.77 214.77 0.00 321.32 321.37 -0.01 399.27 403.96 -1.18
2 247.81 247.82 -0.01 248.97 249.03 -0.03 420.10 420.10 0.00
3 226.56 226.56 0.00 310.91 310.98 -0.02 233.60 233.69 -0.04
4 202.90 202.94 -0.02 339.13 339.89 -0.22 383.96 384.10 -0.04
5 193.44 193.44 0.00 367.37 367.45 -0.02 358.75 358.75 0.00
6 257.34 257.34 0.00 290.11 290.11 0.00 383.62 383.71 -0.03
7 235.31 235.43 -0.05 294.10 294.23 -0.04 273.56 278.42 -1.78
8 268.75 268.91 -0.06 202.24 202.29 -0.02 354.53 354.72 -0.05
9 181.77 181.79 -0.01 289.06 289.09 -0.01 407.59 407.64 -0.01
10 237.89 237.94 -0.02 261.60 261.69 -0.04 326.06 326.06 0.00
11 333.25 335.68 -0.73 311.81 311.96 -0.05 445.26 442.93 0.52
12 202.75 201.66 0.54 368.49 368.73 -0.07 371.91 372.24 -0.09
13 216.29 216.33 -0.02 298.58 298.58 0.00 381.71 381.91 -0.05
14 217.83 217.87 -0.02 409.23 409.33 -0.02 431.74 431.74 0.00
15 161.55 161.65 -0.06 263.12 263.12 0.00 376.80 376.82 -0.01
16 183.86 183.91 -0.03 232.46 232.57 -0.05 378.19 378.29 -0.03
17 200.31 199.12 0.59 328.28 328.34 -0.02 453.57 449.61 0.87
18 195.62 195.62 0.00 332.55 332.55 0.00 424.71 418.90 1.37
19 228.14 228.15 0.00 206.94 207.00 -0.03 401.93 405.26 -0.83
20 180.38 180.38 0.00 212.24 212.24 0.00 409.60 409.73 -0.03

Average 0.01 -0.03 -0.07
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to. In other words, our ALNS approach is the first solution method capable of yielding a solution for
instances with more than 20 customer nodes.

Tables 14-22 in Appendix C display the computational results for the 10-, 15-, 20-, 25-, 50-, 75-,
100-, 150- and 200-node instances, under the assumption that the driver is paid from the beginning of
the planning horizon. The columns PRPLIB report the results calculated using the instances from the
PRPLIB library, the columns KSVC14 Set B report the results calculated using the Set B instances from
Kramer et al. (2015b), similarly the columns KSVC14 Set C report the results calculated using the Set C
instances from Kramer et al. (2015b). The first column lists the instance number, the columns a report
the length of the congestion period, the columns CPU report the average CPU time (in seconds) out of
ten runs, the columns Avg. report the average solution cost out of ten runs, the columns Best report
the total cost of the best solution found out of ten runs, finally the column Gap report the average gap,
calculated as Gap = 100(Avg.−Best)/Best.

We see from Tables 14-22 that our ALNS algorithm is very robust as in most cases, the percentage gap
between best and average solution is of the order of 1 to 2%. The comparison of the total cost across the
three sets of problem instances (the original PRPLIB and sets B and C) speaks to the impact of the time
windows on the total costs. Instances from the original PRPLIB, which are those with the loosest time
window intervals, have the lowest total cost, while instances of set B, which are those with the tightest
time windows interval, have the highest total cost. Also we see that instances with tighter time windows
take longer to solve, since it generally takes longer to find a feasible incumbent at each iteration.

4.5. Performance on PRP instances

In this section we compare the performance of our ALNS heuristic to other solution methods for the
PRP which, as discussed earlier, is a special case of the TDPRP where the congestion period is zero.
We compare our results on all the 100-node instances from the PRPLIB to the results from Demir
et al. (2012), Koç et al. (2014) and Kramer et al. (2015b) in Table 11. The first column lists the
instance name, the second one reports the best solution calculated with our ALNS heuristic (out of
ten runs). The columns DBL12, KBJL14 and KSVC14 provide the results reported in Demir et al.
(2012), Koç et al. (2014) and Kramer et al. (2015b), respectively. Finally, the columns entitled Dev.
report the percentage cost deviation between our algorithm and the solution methods from the litera-
ture, namely [TC(SALNS

b )−TC(SDBL12
b )]/TC(SALNS

b ), [TC(SALNS
b )−TC(SKBJL14

b )]/TC(SALNS
b ) and

[TC(SALNS
b )− TC(SKSV C14

b )]/TC(SALNS
b ).

Table 11 shows that our ALNS heuristic is able to compete with the best heuristics for the PRP,
even though it was designed for a more general version of the problem, namely the TDPRP. In fact, it
is very remarkable that our algorithm provides the best solution of all methods for four of the instances
(namely UK100 02, UK100 13, UK100 16, and UK100 20). A full characterization of the best solution
we obtained for each problem instance is available upon request. In particular Table 11 indicate that
our algorithm significantly outperforms that of Demir et al. (2012). The reason may be that there are
some significant differences between the ALNS of Demir et al. (2012) and our algorithm, in terms of the
number of operators used, the inclusion of speed factor in removal phase, scoring mechanism and the
number of removable nodes. Further, the ALNS of Demir et al. (2012) uses SOP algorithm at the end
of 25,000 iterations to improve the solution quality whereas we use DSOP algorithm at each insertion
phase. We believe that the more frequent application of the DSOP drives the performance improvement
(however it also leads to an increase in the average CPU time).
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Table 11: Computational results on 100-node PRP instances

Instance ALNS DBL12 KBJL14 KSVC14
TC(£) TC(£) Dev. (%) TC (£) Dev. (%) TC (£) Dev. (%)

UK100 01 1,216.18 1240.79 -2.02 1,212.72 0.28 1,209.11 0.58
UK100 02 1,146.55 1168.17 -1.89 1,149.16 -0.23 1,146.79 -0.02
UK100 03 1,089.74 1092.73 -0.27 1,080.87 0.81 1,078.75 1.01
UK100 04 1,086.95 1106.48 -1.80 1,085.66 0.12 1,075.29 1.07
UK100 05 1,041.57 1043.41 -0.18 1,033.19 0.80 1,028.86 1.22
UK100 06 1,194.73 1213.61 -1.58 1192.67 0.17 1,193.38 0.11
UK100 07 1,051.99 1060.08 -0.77 1,044.58 0.70 1,045.02 0.66
UK100 08 1,090.29 1106.78 -1.51 1,092.67 -0.22 1,089.84 0.04
UK100 09 991.38 1015.46 -2.43 992.36 -0.10 988.41 0.30
UK100 10 1,067.70 1076.56 -0.83 1,063.05 0.44 1,059.95 0.73
UK100 11 1,204.81 1210.25 -0.45 1,200.53 0.35 1,196.50 0.69
UK100 12 1,039.43 1053.02 -1.31 1,030.17 0.89 1,027.38 1.16
UK100 13 1,129.73 1154.83 -2.22 1,132.02 -0.20 1,132.03 -0.20
UK100 14 1,245.03 1264.50 -1.56 1,241.31 0.30 1,242.68 0.19
UK100 15 1,306.61 1315.50 -0.68 1,311.36 -0.36 1,300.13 0.50
UK100 16 980.46 1005.03 -2.51 986.57 -0.62 981.86 -0.14
UK100 17 1,267.22 1284.81 -1.39 1,257.44 0.77 1,258.16 0.71
UK100 18 1,086.44 1106.00 -1.80 1,088.89 -0.23 1,073.38 1.20
UK100 19 1,016.82 1044.71 -2.74 1,024.17 -0.72 1,015.95 0.09
UK100 20 1,237.87 1263.06 -2.04 1,249.84 -0.97 1,240.00 -0.17

Average -1.50 0.10 0.49

5. Conclusions

We have developed a metaheuristic algorithm for the TDPRP, which extends the PRP to settings with
traffic congestion. This problem is of high practical relevance since congestion is an important problem
for many cities and the amount of greenhouse gas emissions significantly increase at lower vehicle speeds.
Our algorithm is based on an application of the classical ALNS heuristic and uses the departure and speed
optimization procedure (DSOP) from Franceschetti et al. (2013) as a subroutine. Our implementation
of the ALNS combines newly developed with pre-existing removal and insertion operators and we show
that the new operators significantly improve the solution quality for medium- and large-size instances.
Our numerical results show that our algorithm performs well and is relatively fast on instances with up
to 200 nodes.
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Appendix A: Calculation of the maximum congestion period length

In this section we show how to calculate the maximum length of the congestion period, denoted amax in
such a way that the problem is feasible. To this end, for each customer node i ∈ N0 we calculate the
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maximum length of the congestion period, denoted amax
i so that it is possible for a vehicle to arrive at

the customer node by the upper time window limit ui and return to the depot by the upper time window
limit u0. There are three cases, depending on the distances, service time and time window limit values:

• Case 1: It is possible for a vehicle to arrive by ui and u0 in congestion, that is,
d0,i
vc

< ui and

max{
d0,1
vc

, li}+ hi +
di,0
vc

< u0. In this case, no matter what the length of the congestion period, the
vehicle always arrives on time, i.e., amax

i =∞.

• Case 2: It is possible for a vehicle to arrive by ui in congestion but not by u0, that is,
d0,i
vc

< ui and

max{
d0,1
vc

, li}+ hi +
di,0
vc

> u0. In this case, the vehicle always arrives on time at the customer node
but to arrive at the depot back on time, at least the return trip must be driven (partially) at the
free flow speed. The arrival time back at the depot is given by

µi
0 =























max
{

a+
d0,i−avc
vmax , li

}

+ hi +
di,0
vmax if a <

d0,i
vc

max
{

d0,i
vc

, li

}

+ hi +
di,0
vmax if

di,0
vc

< a < max
{

d0,i
vc

, li

}

+ hi

a+
di,0−

[

a−max
{

d0,i
vc

,li

}

−hi

]

vc

vmax if max
{

d0,i
vc

, li

}

+ hi < a < max
{

d0,i
vc

, li

}

+ hi +
di,0
vc

.

To have µi
0 ≤ u0, in the first row, we need

a ≤
u0v

max − hiv
max − d0,i − di,0

vmax − vc

because we can assume that li + hi +
di,0
vmax ≤ u0 otherwise the problem is infeasible for all values of

a.

In the second row, if
d0,i
vc

+ hi +
di,0
vmax > u0, then for all values of a which falls into the range

[

di,0
vc

,max
{

d0,i
vc

, li

}

+ hi

]

, the vehicle would arrive at the depot late. Hence the outbound trip must

take place in the transient region, in other words, we must have a < d
vc
.

In the third row, we need

a ≤
u0v

max −max
{

d0,i
vc

, li

}

vc − hivc − di,0

vmax − vc
.

Therefore

amax
i = min







u0v
max − hiv

max − d0,i − di,0
vmax − vc

,
u0v

max −max
{

d0,i
vc

, li

}

vc − hivc − di,0

vmax − vc







=
u0v

max −max
{

hiv
max,max

{

d0,i
vc

, li

}

vc + hivc

}

− di,0

vmax − vc
.

• Case 3: It is not possible for the vehicle to arrive by ui in congestion, that is,
d0,i
vc

> ui. In this

case, a must be less than
d0,i
vc

so outbound trip is driven in the transient zone and the return trip
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in free flow. The earliest possible arrival times at both nodes as a function of a are

µi = a+
d0,i − avc
vmax

µ0 = max

{

a+
d0,i − avc
vmax

, li

}

+ hi +
di,0
vmax

.

So we need

µi ≤ ui ⇔ a ≤
uiv

max − di,0
vmax − vc

µ0 ≤ u0 ⇔ a ≤
u0v

max − hiv
max − d0,i − di,0

vmax − vc
.

Again, note that li + hi +
di,0
vmax ≤ u0 since otherwise the problem is infeasible for all values of a.

Therefore

amax
i = min

{

uiv
max − d0,i

vmax − vc
,
u0v

max − hiv
max − d0,i − di,0

vmax − vc

}

=
min{uiv

max, (u0 − hi)v
max − di,0} − d0,i

vmax − vc
.

Combining all three cases, we obtain

amax
i =























min{uiv
max,(u0−hi)v

max−di,0}−d0,i
vmax−vc

if
d0,i
ui

≥ vc

u0v
max−max

{

hiv
max,max

{

d0,i
vc

,li

}

vc+hivc

}

−di,0

vmax−vc
if

d0,i
vc

< ui and max{
d0,i
vc

, li}+ hi +
di,0
vc

≥ u0

∞ if
d0,i
vc

< ui and max{
d0,i
vc

, li}+ hi +
di,0
vc

< u0

for i = 1, ..., n.

Finally, we have

amax = min
i∈N0

amax
i .

Appendix B: Value of the newly developed operators

In this section we provide complete results for our analysis of the value of the newly developed operators
over all the instances from the tuning set. In Table 12 the the column entitled Avg. report the best
solution found out of ten runs using Version 1 and Version 2 of the algorithm, respectively. The columns
entitled SV ersion#1

b and SV ersion#2
b report the best solution found out of ten runs using Version 1 and

Version 2 of the algorithm, respectively. Finally, the column entitled Dev. reports the percentage cost
reduction between the two best solutions, Dev = [TC(SV ersion#2

b )− TC(SV ersion#1
b )]/TC(SV ersion#1

b ).
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Table 12: Comparisons of Version # 1 and Version #2 on the 100-node instances

Instance Version#1 Version#2 Dev. (%) p-value

Avg. TC(S
V ersion#1

b
) Avg. TC(S

V ersion#2

b
)

UK100 01 1,775.85 1,739.33 1,780.9 1,742.6 0.19 0.25
UK100 02 1,661.87 1,622.12 1,668.2 1,636.0 0.86 0.36
UK100 03 1,573.72 1,549.33 1,559.3 1,544.6 -0.31 0.14
UK100 04 1,565.55 1,547.92 1,557.5 1,541.5 -0.41 0.03
UK100 05 1,574.33 1,552.31 1,569.8 1,548.2 -0.26 0.29
UK100 06 1,791.34 1,759.96 1,778.4 1,763.3 0.19 0.08
UK100 07 1,528.59 1,518.92 1,533.9 1,520.9 0.13 0.17
UK100 08 1,537.15 1,530.04 1,535.4 1,527.3 -0.18 0.19
UK100 09 1,421.93 1,409.89 1,425.0 1,406.2 -0.27 0.40
UK100 10 1,555.16 1,520.60 1,551.2 1,525.9 0.35 0.19
UK100 11 1,740.56 1,727.62 1,741.4 1,716.6 -0.64 0.22
UK100 12 1,532.78 1,520.53 1,534.7 1,513.8 -0.44 0.40
UK100 13 1,692.68 1,680.68 1,696.7 1,671.8 -0.53 0.48
UK100 14 1,789.21 1,763.17 1,792.8 1,752.2 -0.62 0.32
UK100 15 1,887.12 1,854.64 1,885.7 1,860.9 0.34 0.48
UK100 16 1,506.27 1,489.38 1,516.1 1,499.1 0.65 0.01
UK100 17 1,801.15 1,776.99 1,806.0 1,772.0 -0.28 0.40
UK100 18 1,585.78 1,570.27 1,583.8 1,564.8 -0.35 0.36
UK100 19 1,500.69 1,464.38 1,495.0 1,473.2 0.60 0.32
UK100 20 1,857.40 1,839.29 1,875.0 1,844.8 0.30 0.02
UK100 01-B 1,660.94 1,625.96 1,650.1 1,618.52 -0.46 0.07
UK100 02-B 1,641.51 1,624.24 1,642.3 1,628.30 0.25 0.40
UK100 03-B 1,576.26 1,541.59 1,581.4 1,553.45 0.77 0.32
UK100 04-B 1,515.30 1,498.92 1,518.6 1,502.78 0.26 0.12
UK100 05-B 1,550.37 1,522.14 1,549.9 1,532.18 0.66 0.44
UK100 06-B 1,711.88 1,695.03 1,705.1 1,692.01 -0.18 0.04
UK100 07-B 1,549.15 1,542.97 1,544.9 1,542.97 0.00 0.05
UK100 08-B 1,553.68 1,537.51 1,552.9 1,537.38 -0.01 0.40
UK100 09-B 1,444.56 1,424.88 1,441.3 1,433.54 0.61 0.32
UK100 10-B 1,556.28 1,531.50 1,550.8 1,534.67 0.21 0.06
UK100 11-B 1,679.03 1,668.58 1,676.6 1,657.75 -0.65 0.29
UK100 12-B 1,437.48 1,421.41 1,442.8 1,432.53 0.78 0.08
UK100 13-B 1,677.96 1,653.45 1,672.1 1,654.87 0.09 0.22
UK100 14-B 1,735.30 1,698.22 1,733.3 1,703.44 0.31 0.29
UK100 15-B 1,791.38 1,761.05 1,788.0 1,772.05 0.62 0.32
UK100 16-B 1,427.73 1,410.04 1,429.2 1,417.47 0.53 0.36
UK100 17-B 1,737.80 1,711.61 1,726.7 1,710.87 -0.04 0.02
UK100 18-B 1,552.92 1,541.33 1,550.4 1,530.91 -0.68 0.22
UK100 19-B 1,470.30 1,441.51 1,464.0 1,438.03 -0.24 0.19
UK100 20-B 1,700.02 1,665.86 1,707.3 1,671.92 0.36 0.48
UK100 01-C 1,550.51 1,522.66 1,539.41 1,520.63 -0.13 0.05
UK100 02-C 1,502.72 1,476.25 1,500.84 1,479.63 0.23 0.48
UK100 03-C 1,366.37 1,351.60 1,365.79 1,354.21 0.19 0.29
UK100 04-C 1,429.74 1,405.74 1,424.31 1,401.10 -0.33 0.25
UK100 05-C 1,371.39 1,352.85 1,457.59 1,365.79 0.96 0.14
UK100 06-C 1,533.18 1,513.62 1,538.48 1,514.30 0.05 0.25
UK100 07-C 1,377.41 1,357.25 1,366.88 1,355.90 -0.10 0.01
UK100 08-C 1,441.77 1,419.95 1,433.48 1,410.85 -0.64 0.07
UK100 09-C 1,323.80 1,313.72 1,324.94 1,316.35 0.20 0.40
UK100 10-C 1,393.27 1,369.83 1,398.65 1,382.40 0.92 0.17
UK100 11-C 1,560.26 1,533.17 1,569.97 1,552.52 1.26 0.08
UK100 12-C 1,274.46 1,259.72 1,279.01 1,256.71 -0.24 0.17
UK100 13-C 1,496.27 1,473.94 1,487.29 1,471.82 -0.14 0.04
UK100 14-C 1,593.11 1,570.15 1,587.42 1,573.18 0.19 0.10
UK100 15-C 1,690.93 1,671.20 1,681.10 1,668.82 -0.14 0.03
UK100 16-C 1,271.56 1,246.90 1,269.81 1,253.98 0.57 0.25
UK100 17-C 1,622.98 1,606.50 1,620.18 1,609.12 0.16 0.32
UK100 18-C 1,377.57 1,351.86 1,378.82 1,364.85 0.96 0.44
UK100 19-C 1,323.38 1,305.83 1,319.67 1,310.40 0.35 0.17
UK100 20-C 1,581.79 1,556.33 1,585.28 1,571.01 0.94 0.29
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Table 13: Comparisons of Version # 1 and Version #2 on the 200-node instances

Instance Version#1 Version#2 Dev. (%) p-value

Avg. TC(S
V ersion#1

b
) Avg. TC(S

V ersion#2

b
)

UK200 01 2,961.79 2,940.28 2,954.23 2,937.10 -0.11 0.17
UK200 02 2,846.00 2,822.32 2,843.39 2,831.90 0.34 0.32
UK200 03 2,999.55 2,985.75 2,995.80 2,969.51 -0.54 0.05
UK200 04 2,798.91 2,775.31 2,798.59 2,776.50 0.04 0.32
UK200 05 3,033.96 2,998.85 3,024.76 3,006.11 0.24 0.10
UK200 06 2,746.86 2,734.37 2,744.59 2,731.15 -0.12 0.44
UK200 07 2,924.40 2,907.60 2,923.74 2,908.68 0.04 0.25
UK200 08 3,042.72 3,025.49 3,045.86 3,019.79 -0.19 0.22
UK200 09 2,732.12 2,706.26 2,730.27 2,691.77 -0.54 0.25
UK200 10 3,214.45 3,185.81 3,219.50 3,195.82 0.31 0.44
UK200 11 2,808.32 2,793.15 2,818.76 2,808.07 0.53 0.01
UK200 12 2,941.13 2,906.05 2,937.60 2,901.12 -0.17 0.36
UK200 13 3,047.95 3,010.19 3,049.56 3,028.57 0.61 0.40
UK200 14 2,890.13 2,876.86 2,894.91 2,877.53 0.02 0.06
UK200 15 2,967.42 2,949.03 2,974.70 2,945.18 -0.13 0.22
UK200 16 2,936.96 2,906.59 2,928.26 2,906.58 0.00 0.19
UK200 17 3,146.65 3,105.67 3,137.16 3,097.24 -0.27 0.10
UK200 18 2,892.18 2,875.36 2,892.02 2,877.08 0.06 0.44
UK200 19 2,687.20 2,656.33 2,700.42 2,680.44 0.91 0.08
UK200 20 3,117.70 3,073.94 3,122.30 3,103.60 0.96 0.22
UK200 01-B 2,896.23 2,868.41 2,888.74 2,859.37 -0.32 0.10
UK200 02-B 2,716.90 2,685.81 2,714.33 2,688.98 0.12 0.29
UK200 03-B 2,876.03 2,841.80 2,883.89 2,865.50 0.83 0.00
UK200 04-B 2,735.03 2,706.47 2,742.09 2,718.28 0.44 0.19
UK200 05-B 2,951.49 2,925.49 2,941.19 2,910.40 -0.52 0.07
UK200 06-B 2,711.00 2,676.30 2,709.43 2,683.69 0.28 0.29
UK200 07-B 2,772.41 2,749.17 2,766.31 2,748.82 -0.01 0.25
UK200 08-B 2,924.04 2,877.81 2,918.86 2,871.83 -0.21 0.36
UK200 09-B 2,609.52 2,572.47 2,622.01 2,599.93 1.07 0.08
UK200 10-B 3,001.31 2,979.99 2,999.26 2,975.82 -0.14 0.19
UK200 11-B 2,731.97 2,710.23 2,740.33 2,727.12 0.62 0.07
UK200 12-B 2,906.92 2,878.31 2,902.10 2,876.88 -0.05 0.32
UK200 13-B 2,865.27 2,845.21 2,863.58 2,850.51 0.19 0.48
UK200 14-B 2,832.61 2,805.29 2,822.18 2,788.13 -0.61 0.10
UK200 15-B 2,914.38 2,871.20 2,907.77 2,884.42 0.46 0.17
UK200 16-B 2,852.73 2,829.41 2,848.78 2,826.42 -0.11 0.25
UK200 17-B 2,982.58 2,949.17 2,979.86 2,946.95 -0.08 0.32
UK200 18-B 2,856.53 2,811.88 2,864.31 2,834.02 0.79 0.22
UK200 19-B 2,572.62 2,549.55 2,568.53 2,543.70 -0.23 0.36
UK200 20-B 2,979.89 2,956.62 2,975.72 2,944.95 -0.39 0.25
UK200 01-C 2,683.23 2,663.14 2,679.85 2,664.49 0.05 0.25
UK200 02-C 2,565.09 2,529.00 2,562.30 2,542.72 0.54 0.44
UK200 03-C 2,631.72 2,612.35 2,635.16 2,596.04 -0.62 0.36
UK200 04-C 2,526.65 2,488.33 2,529.98 2,493.34 0.20 0.44
UK200 05-C 2,718.89 2,699.56 2,727.39 2,706.16 0.24 0.32
UK200 06-C 2,461.60 2,440.44 2,461.71 2,435.57 -0.20 0.40
UK200 07-C 2,610.89 2,574.81 2,611.17 2,573.59 -0.05 0.48
UK200 08-C 2,637.10 2,619.46 2,637.88 2,608.67 -0.41 0.22
UK200 09-C 2,395.47 2,377.58 2,398.71 2,379.78 0.09 0.25
UK200 10-C 2,705.21 2,660.76 2,714.17 2,685.24 0.92 0.08
UK200 11-C 2,531.30 2,510.59 2,534.32 2,503.82 -0.27 0.44
UK200 12-C 2,672.57 2,631.50 2,668.76 2,655.95 0.93 0.32
UK200 13-C 2,637.66 2,619.02 2,632.95 2,607.96 -0.42 0.29
UK200 14-C 2,571.10 2,543.72 2,563.38 2,546.83 0.12 0.19
UK200 15-C 2,659.14 2,642.61 2,654.70 2,635.56 -0.27 0.14
UK200 16-C 2,625.74 2,591.23 2,622.02 2,605.65 0.56 0.25
UK200 17-C 2,689.45 2,663.41 2,710.96 2,694.62 1.17 0.40
UK200 18-C 2,593.43 2,562.59 2,586.86 2,557.18 -0.21 0.25
UK200 19-C 2,376.19 2,347.99 2,376.72 2,348.70 0.03 0.48
UK200 20-C 2,660.56 2,617.58 2,658.52 2,627.90 0.39 0.48
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Table 14: Computational results for the 10-node instances.

PRPLIB KSVC14 Set B KSVC14 Set C
Instance a CPU Avg. Best Gap a CPU Avg. Best Gap a CPU Avg. Best Gap

(s) (min) (£) (£) (s) (min) (£) (£) Gap (s) (min) (£) (£) (%)
UK10 01 17235 0.23 323.19 323.19 0.00 3261 0.25 245.96 245.96 0.00 11614 0.19 223.70 223.70 0.00
UK10 02 14722 0.11 326.49 326.49 0.00 5232 0.29 303.09 303.09 0.00 9672 0.18 277.15 277.15 0.00
UK10 03 16506 0.19 318.82 318.82 0.00 5070 0.23 301.12 301.12 0.00 8570 0.22 242.18 242.18 0.00
UK10 04 15085 0.14 299.62 299.62 0.00 3035 0.18 273.40 273.40 0.00 12189 0.15 242.72 242.72 0.00
UK10 05 14219 0.16 244.79 244.79 0.00 2987 0.13 293.37 293.37 0.00 7444 0.15 216.28 216.28 0.00
UK10 06 15581 0.15 350.17 350.17 0.00 4348 0.28 332.91 332.91 0.00 11099 0.19 316.94 316.94 0.00
UK10 07 14913 0.16 277.567 277.567 0.00 5199 0.27 312.93 312.93 0.00 8880 0.24 230.92 230.92 0.00
UK10 08 14030 0.16 357.49 357.49 0.00 5940 0.23 338.91 338.91 0.00 6421 0.17 304.96 304.96 0.00
UK10 09 14411 0.20 240.87 240.87 0.00 2143 0.13 262.32 262.32 0.00 5429 0.26 201.03 201.03 0.00
UK10 10 15883 0.16 273.58 273.58 0.00 3788 0.25 287.76 287.76 0.00 9751 0.19 282.59 282.59 0.00
UK10 11 13744 0.19 401.99 401.99 0.00 6210 0.21 424.88 424.88 0.00 5479 0.18 307.50 307.50 0.00
UK10 12 14474 0.12 296.45 296.45 0.00 2506 0.17 252.67 252.67 0.00 7538 0.24 217.42 217.42 0.00
UK10 13 15015 0.20 312.42 312.42 0.00 2936 0.25 272.80 272.80 0.00 5704 0.21 223.68 223.68 0.00
UK10 14 14354 0.21 266.97 266.97 0.00 4396 0.19 282.26 282.26 0.00 5853 0.22 226.29 226.29 0.00
UK10 15 14118 0.18 221.95 221.95 0.00 3952 0.29 202.25 202.25 0.00 6718 0.31 175.99 175.99 0.00
UK10 16 14706 0.21 248.57 248.57 0.00 4275 0.30 244.85 244.85 0.00 11516 0.12 242.34 242.34 0.00
UK10 17 14546 0.24 252.25 252.25 0.00 3704 0.25 289.13 289.13 0.00 11071 0.20 239.61 239.61 0.00
UK10 18 13922 0.18 240.44 240.22 0.09 7403 0.28 250.73 250.73 0.00 6519 0.17 202.56 202.56 0.00
UK10 19 15881 0.20 292.66 292.66 0.00 4422 0.23 328.44 328.44 0.00 10008 0.19 255.66 254.00 0.65
UK10 20 16429 0.22 259.48 259.48 0.00 2866 0.26 208.74 208.74 0.00 5102 0.21 203.27 203.27 0.00
Average 0.18 0.00 0.23 0.00 0.20 0.03
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Table 15: Computational results for the 15-node instances.

PRPLIB KSVC14 Set B KSVC14 Set C
Instance a CPU Avg. Best Gap a CPU Avg. Best Gap a CPU Avg. Best Gap

(s) (min) (£) (£) (s) (min) (£) (£) Gap (s) (min) (£) (£) (%)
UK15 01 15199 0.30 455.08 455.08 0.00 2277 0.26 389.36 389.36 0.00 9769 0.31 372.99 372.99 0.00
UK15 02 15849 0.28 353.27 353.27 0.00 3101 0.38 294.92 294.92 0.00 10520 0.34 299.24 299.24 0.00
UK15 03 13385 0.30 384.40 384.40 0.00 3425 0.34 439.37 439.37 0.00 7172 0.45 338.24 338.24 0.00
UK15 04 15096 0.36 423.66 423.66 0.00 2366 0.41 398.91 398.91 0.00 4516 0.48 359.07 359.07 0.00
UK15 05 14807 0.20 489.98 489.98 0.00 2910 0.30 451.55 451.55 0.00 8215 0.23 401.37 400.99 0.09
UK15 06 16607 0.27 377.51 377.51 0.00 2607 0.49 336.27 336.27 0.00 3860 0.36 270.69 265.48 1.96
UK15 07 14655 0.278 377.77 377.77 0.00 6947 0.39 399.75 399.75 0.00 7777 0.29 338.52 338.48 0.01
UK15 08 15450 0.45 256.24 256.24 0.00 4414 0.31 258.06 258.06 0.00 1793 0.37 216.25 216.25 0.00
UK15 09 13818 0.25 363.98 363.98 0.00 5599 0.38 343.09 343.09 0.00 6204 0.41 309.45 309.45 0.00
UK15 10 16375 0.53 353.38 353.38 0.00 3579 0.63 315.52 315.52 0.00 3518 0.55 257.51 257.51 0.00
UK15 11 15653 0.27 445.59 445.59 0.00 5666 0.45 432.86 432.86 0.00 5793 0.26 349.25 349.25 0.00
UK15 12 14632 0.26 475.79 475.79 0.00 3463 0.50 402.96 402.96 0.00 3597 0.41 359.89 359.81 0.02
UK15 13 13572 0.33 388.67 388.67 0.00 3954 0.44 366.13 359.11 1.95 5068 0.48 304.26 304.26 0.00
UK15 14 14453 0.26 510.50 510.50 0.00 3008 0.37 461.63 461.63 0.00 12835 0.25 480.28 480.28 0.00
UK15 15 14232 0.34 352.21 352.21 0.00 2549 0.30 344.31 344.31 0.00 4455 0.23 277.62 277.62 0.00
UK15 16 14909 0.31 329.23 329.10 0.04 3961 0.48 355.25 355.25 0.00 8637 0.45 281.78 281.78 0.00
UK15 17 14480 0.38 409.44 409.44 0.00 2888 0.38 416.82 416.82 0.00 4061 0.27 326.41 326.41 0.00
UK15 18 13258 0.20 449.22 449.22 0.00 3245 0.49 480.58 480.58 0.00 6777 0.23 386.81 386.81 0.00
UK15 19 16683 0.27 303.88 303.88 0.00 4321 0.33 272.32 272.32 0.00 9592 0.34 234.87 234.87 0.00
UK15 20 14999 0.41 300.46 300.34 0.04 3607 0.46 288.72 288.72 0.00 15273 0.44 330.74 330.74 0.00
Average 0.31 0.00 0.41 0.10 0.36 0.10
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Table 16: Computational results for the 20-node instances.

PRPLIB KSVC14 Set B KSVC14 Set C
Instance a CPU Avg. Best Gap a CPU Avg. Best Gap a CPU Avg. Best Gap

(s) (min) (£) (£) (s) (min) (£) (£) Gap (s) (min) (£) (£) (%)
UK20 01 14172 0.38 499.38 499.38 0.00 3329 0.76 443.83 443.83 0.00 4174 0.51 384.78 384.78 0.00
UK20 02 13177 0.35 528.66 524.15 0.86 2825 0.68 442.01 442.01 0.00 6782 0.38 396.39 396.39 0.00
UK20 03 15013 0.45 324.49 323.78 0.22 2427 0.89 322.18 322.18 0.00 2241 0.49 262.94 262.94 0.00
UK20 04 14356 0.50 498.80 497.05 0.35 2190 0.57 477.44 473.04 0.93 2949 0.44 398.49 398.29 0.05
UK20 05 14317 0.44 468.02 468.02 0.00 2138 0.85 430.68 430.68 0.00 6311 0.65 353.44 353.44 0.00
UK20 06 14768 0.56 511.35 511.35 0.00 2489 0.53 489.45 488.05 0.29 8083 0.61 439.02 438.30 0.16
UK20 07 14035 0.432 351.28 351.12 0.05 4218 0.85 322.34 322.34 0.00 5263 0.63 288.38 288.38 0.00
UK20 08 15799 0.32 463.88 463.88 0.00 4179 0.63 444.28 444.28 0.00 6754 0.41 372.60 371.36 0.33
UK20 09 15044 0.61 551.73 551.73 0.00 2581 0.69 505.46 505.46 0.00 5052 0.44 415.50 412.74 0.67
UK20 10 15506 0.33 448.76 448.76 0.00 2491 0.40 409.23 409.23 0.00 3878 0.66 368.13 366.88 0.34
UK20 11 14227 0.56 529.98 529.98 0.00 4654 0.71 577.65 577.65 0.00 7483 0.54 484.97 482.60 0.49
UK20 12 14873 0.37 483.78 481.69 0.44 4372 0.67 507.48 507.48 0.00 6039 0.53 372.33 371.85 0.13
UK20 13 14865 0.34 499.17 498.43 0.15 5605 0.46 463.22 462.01 0.26 5370 0.52 399.24 399.17 0.02
UK20 14 14243 0.30 582.00 582.00 0.00 4950 0.49 562.47 562.47 0.00 10299 0.31 550.03 550.03 0.00
UK20 15 14215 0.44 479.60 477.83 0.37 2475 0.65 501.69 501.69 0.00 7532 0.72 390.77 390.77 0.00
UK20 16 13984 0.39 487.35 487.35 0.00 5377 0.44 495.68 495.68 0.00 6281 0.64 433.79 433.79 0.00
UK20 17 13819 0.40 529.55 528.48 0.20 4100 0.44 506.67 506.67 0.00 9380 0.54 473.28 472.95 0.07
UK20 18 13842 0.36 530.27 530.27 0.00 2769 0.92 481.52 481.52 0.00 3385 0.62 417.44 417.44 0.00
UK20 19 14612 0.46 535.03 524.89 1.93 3585 0.58 505.39 503.42 0.39 4965 0.46 408.34 391.49 4.31
UK20 20 15132 0.39 514.90 514.90 0.00 2251 0.68 506.34 506.34 0.00 8863 0.42 432.47 432.47 0.00
Average 0.42 0.23 0.64 0.09 0.53 0.33
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Table 17: Computational results for the 25-node instances.

PRPLIB KSVC14 Set B KSVC14 Set C
Instance a CPU Avg. Best Gap a CPU Avg. Best Gap a CPU Avg. Best Gap

(s) (min) (£) (£) (s) (min) (£) (£) Gap (s) (min) (£) (£) (%)
UK25 01 14063 0.78 445.63 445.63 0.00 3605 1.51 436.05 436.05 0.00 4333 0.78 375.92 374.04 0.50
UK25 02 14190 0.66 489.75 488.15 0.33 3311 0.85 480.40 479.35 0.22 4300 1.02 434.87 433.22 0.38
UK25 03 14546 0.81 318.74 315.19 1.13 4304 0.85 338.68 335.71 0.88 10544 0.81 318.74 315.19 1.13
UK25 04 13838 0.57 370.59 370.59 0.00 2910 1.17 407.78 407.61 0.04 5424 0.86 333.84 333.84 0.00
UK25 05 14255 0.61 521.27 519.88 0.27 3604 0.80 476.93 476.93 0.00 5174 0.66 419.80 415.37 1.07
UK25 06 13940 0.71 424.71 424.69 0.01 5560 0.75 459.06 457.89 0.26 5853 0.57 381.82 379.00 0.74
UK25 07 14036 0.63 501.93 501.29 0.13 2981 0.78 484.32 478.23 1.27 5728 0.53 422.71 413.78 2.16
UK25 08 14269 0.42 541.72 536.40 0.99 3096 0.69 506.74 506.20 0.11 4891 0.80 468.35 444.33 5.41
UK25 09 16804 0.66 461.14 459.80 0.29 4956 1.23 398.08 397.78 0.07 7237 0.84 381.78 381.78 0.00
UK25 10 13762 0.59 503.99 502.92 0.21 2826 1.07 485.72 485.55 0.04 4942 0.84 449.93 447.18 0.62
UK25 11 13825 0.58 550.48 544.82 1.04 3613 1.00 528.90 525.23 0.70 4854 0.68 439.06 432.83 1.44
UK25 12 13922 0.62 615.51 608.80 1.10 4080 1.18 598.78 598.78 0.00 3216 0.86 481.92 481.92 0.00
UK25 13 15083 1.04 364.32 364.32 0.00 3710 0.83 376.37 376.27 0.03 7280 0.73 339.61 332.13 2.25
UK25 14 14409 0.43 592.72 592.72 0.00 2373 1.10 536.68 530.20 1.22 3930 0.47 455.51 449.73 1.29
UK25 15 14111 0.50 586.54 586.54 0.00 2683 1.52 536.93 536.93 0.00 8559 0.69 505.11 499.11 1.20
UK25 16 14399 0.61 495.37 495.37 0.00 4869 0.47 501.71 493.77 1.61 4331 0.76 432.81 430.49 0.54
UK25 17 15606 0.53 730.12 730.12 0.00 3127 0.59 629.71 629.61 0.02 5876 0.58 573.67 573.14 0.09
UK25 18 13969 0.61 598.44 598.44 0.00 2791 0.63 526.71 525.61 0.21 6148 1.05 496.93 496.86 0.01
UK25 19 14273 0.73 614.34 614.13 0.03 4066 1.15 609.32 609.11 0.03 4424 0.64 494.91 494.77 0.03
UK25 20 14385 0.55 536.17 523.97 2.33 4644 0.63 531.26 522.64 1.65 4203 0.79 431.94 427.92 0.94
Average 0.63 0.39 0.94 0.42 0.75 0.99
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Table 18: Computational results for the 50-node instances.

PRPLIB KSVC14 Set B KSVC14 Set C
Instance a CPU Avg. Best Gap a CPU Avg. Best Gap a CPU Avg. Best Gap

(s) (min) (£) (£) (s) (min) (£) (£) Gap (s) (min) (£) (£) (%)
UK50 01 14248 1.97 906.52 893.38 1.47 3120 2.80 898.98 888.02 1.23 5707 2.45 784.08 773.99 1.30
UK50 02 14320 1.88 883.78 883.78 0.00 2185 2.95 883.11 878.97 0.47 3005 2.55 784.16 780.19 0.51
UK50 03 13682 2.22 903.69 882.91 2.35 3153 3.84 859.50 853.86 0.66 3145 2.40 790.98 772.22 2.43
UK50 04 14361 1.89 1,094.15 1,053.01 3.91 3508 2.67 1,031.20 1,023.97 0.71 2386 2.31 912.30 897.25 1.68
UK50 05 13238 1.97 869.93 869.12 0.09 2212 2.52 906.55 904.56 0.22 4710 2.72 822.31 811.11 1.38
UK50 06 14561 2.14 854.32 850.56 0.44 4315 2.51 840.39 835.75 0.56 3897 2.73 761.56 757.60 0.52
UK50 07 13021 2.55 750.19 749.82 0.05 2721 2.61 766.69 758.05 1.14 3732 2.66 716.61 709.87 0.95
UK50 08 13021 2.18 800.25 791.62 1.09 2472 2.85 814.55 808.37 0.76 6309 2.29 719.51 716.66 0.40
UK50 09 13712 1.90 1,022.50 1,010.13 1.22 2996 3.15 947.13 934.55 1.35 4932 2.06 843.01 834.22 1.05
UK50 10 14211 1.82 1,001.97 983.27 1.90 2136 2.24 908.81 891.55 1.94 4247 2.56 851.15 840.88 1.22
UK50 11 14114 1.80 940.21 930.87 1.00 1758 3.25 889.54 882.66 0.78 3886 2.34 775.13 765.58 1.25
UK50 12 15202 2.14 873.39 860.31 1.52 2375 3.03 812.41 808.57 0.47 3591 3.11 724.02 717.22 0.95
UK50 13 13681 2.16 816.14 805.05 1.38 2527 2.96 804.72 802.70 0.25 2775 2.13 772.31 765.40 0.90
UK50 14 14305 1.81 1,010.24 994.91 1.54 2620 2.26 963.46 942.18 2.26 3600 2.52 800.86 790.81 1.27
UK50 15 13965 2.03 866.43 859.81 0.77 2900 3.11 830.96 823.67 0.88 4988 2.71 741.83 730.94 1.49
UK50 16 14004 1.70 896.91 847.73 5.80 3302 3.08 786.29 783.49 0.36 5734 2.68 751.64 742.74 1.20
UK50 17 16262 2.74 731.20 719.36 1.65 2954 3.35 721.16 713.27 1.11 3194 2.61 635.65 623.10 2.02
UK50 18 14503 1.93 1,013.90 1,005.45 0.84 3647 3.23 940.13 917.49 2.47 2148 2.53 842.90 840.04 0.34
UK50 19 14557 2.01 891.23 874.23 1.95 2924 3.31 823.62 813.09 1.30 4799 2.15 760.31 753.74 0.87
UK50 20 14530 2.59 1,006.38 1,003.11 0.33 2205 2.94 939.03 912.27 2.93 3474 2.41 836.70 820.50 1.97
Average 2.07 1.47 2.93 1.09 2.50 1.19
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Table 19: Computational results for the 75-node instances.

PRPLIB KSVC14 Set B KSVC14 Set C
Instance a CPU Avg. Best Gap a CPU Avg. Best Gap a CPU Avg. Best Gap

(s) (min) (£) (£) (s) (min) (£) (£) Gap (s) (min) (£) (£) (%)
UK75 01 13791 3.76 1,429.58 1,414.82 1.04 2473 5.70 1,392.11 1,379.86 0.89 4081 5.03 1,224.90 1,207.52 1.44
UK75 02 14724 3.91 1,262.61 1,247.01 1.25 2623 7.13 1,192.99 1,179.96 1.10 3439 4.33 1,055.24 1,048.61 0.63
UK75 03 14357 4.13 1,294.05 1,282.06 0.93 2597 6.97 1,266.17 1,246.06 1.61 2702 6.16 1,079.22 1,064.03 1.43
UK75 04 14487 4.64 1,175.53 1,166.10 0.81 2577 6.00 1,161.13 1,155.14 0.52 2977 5.59 1,113.08 1,104.62 0.77
UK75 05 13790 4.48 1,290.63 1,258.37 2.56 2281 7.13 1,258.48 1,246.75 0.94 3058 5.36 1,080.27 1,072.16 0.76
UK75 06 13871 3.98 1,356.91 1,327.90 2.18 3677 6.90 1,315.16 1,307.21 0.61 2911 5.40 1,170.27 1,152.94 1.50
UK75 07 14600 4.19 1,421.00 1,413.67 0.52 2615 5.89 1,361.21 1,322.89 2.90 2142 5.28 1,147.00 1,137.82 0.81
UK75 08 13756 3.81 1,407.70 1,390.00 1.27 2662 5.17 1,308.47 1,296.98 0.89 2180 5.16 1,239.08 1,231.22 0.64
UK75 09 13485 4.10 1,338.12 1,324.47 1.03 2343 6.48 1,290.23 1,266.64 1.86 3328 4.94 1,141.67 1,126.06 1.39
UK75 10 13678 3.72 1,403.51 1,371.05 2.37 1827 5.42 1,314.71 1,288.71 2.02 2492 5.17 1,197.91 1,182.73 1.28
UK75 11 14280 3.49 1,057.66 1,024.76 3.21 2982 6.38 1,015.20 1,006.75 0.84 4024 5.14 922.08 914.49 0.83
UK75 12 14166 3.81 1,302.20 1,286.17 1.25 1988 5.84 1,177.70 1,161.57 1.39 2612 4.72 1,103.37 1,093.29 0.92
UK75 13 13206 3.64 1,384.41 1,363.84 1.51 2595 5.24 1,345.63 1,343.85 0.13 2813 5.01 1,187.50 1,165.09 1.92
UK75 14 13577 4.09 1,341.10 1,308.85 2.46 2954 5.59 1,270.97 1,251.24 1.58 6717 4.59 1,196.13 1,175.82 1.73
UK75 15 13208 3.93 1,415.43 1,383.70 2.29 2882 5.28 1,433.11 1,412.61 1.45 2605 4.93 1,202.93 1,174.59 2.41
UK75 16 13455 4.08 1,296.93 1,292.30 0.36 2992 5.44 1,301.61 1,284.41 1.34 4129 4.92 1,202.49 1,175.82 2.27
UK75 17 13742 3.82 1,301.64 1,269.42 2.54 2879 5.19 1,346.36 1,337.42 0.67 2870 4.99 1,162.26 1,139.92 1.96
UK75 18 14189 4.47 1,282.90 1,266.32 1.31 2653 6.06 1,220.37 1,194.25 2.19 4924 4.89 1,112.84 1,100.81 1.09
UK75 19 14518 3.81 1,266.01 1,236.67 2.37 3094 6.46 1,191.36 1,178.82 1.06 4954 5.29 1,084.82 1,071.01 1.29
UK75 20 14258 3.84 1,359.03 1,329.19 2.25 2902 6.58 1,326.19 1,304.07 1.70 4061 4.91 1,181.01 1,165.13 1.36
Average 3.98 1.68 6.04 1.28 5.09 1.32
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Table 20: Computational results for the 100-node instances.

PRPLIB KSVC14 Set B KSVC14 Set C
Instance a CPU Avg. Best Gap a CPU Avg. Best Gap a CPU Avg. Best Gap

(s) (min) (£) (£) (s) (min) (£) (£) Gap (s) (min) (£) (£) (%)
UK100 01 13788 9.01 1,775.85 1,739.33 2.10 3277.00 11.18 1,660.94 1,625.96 2.15 2988.00 11.17 1,550.51 1,522.66 1.83
UK100 02 13269 9.02 1,661.87 1,622.12 2.45 2096.00 13.11 1,641.51 1,624.24 1.06 3631.00 11.24 1,502.72 1,476.25 1.79
UK100 03 13663 8.50 1,573.72 1,549.33 1.57 2413.00 12.83 1,576.26 1,541.59 2.25 2425.00 12.00 1,366.37 1,351.60 1.09
UK100 04 14037 9.61 1,565.55 1,547.92 1.14 2130.00 12.53 1,515.30 1,498.92 1.09 2385.00 12.23 1,429.74 1,405.74 1.71
UK100 05 13713 9.30 1,574.33 1,552.31 1.42 3117.00 13.31 1,550.37 1,522.14 1.85 3447.00 11.03 1,371.39 1,352.85 1.37
UK100 06 14217 8.80 1,791.34 1,759.96 1.78 2987.00 14.65 1,711.88 1,695.03 0.99 3542.00 10.24 1,533.18 1,513.62 1.29
UK100 07 13631 9.89 1,528.59 1,518.92 0.64 2402.00 13.82 1,549.15 1,542.97 0.40 2165.00 11.44 1,377.41 1,357.25 1.49
UK100 08 12826 9.31 1,537.15 1,530.04 0.46 2780.00 10.94 1,553.68 1,537.51 1.05 2425.00 11.48 1,441.77 1,419.95 1.54
UK100 09 13288 9.44 1,421.93 1,409.89 0.85 2526.00 13.17 1,444.56 1,424.88 1.38 3812.00 11.71 1,323.80 1,313.72 0.77
UK100 10 13524 8.79 1,555.16 1,520.60 2.27 2403.00 12.85 1,556.28 1,531.50 1.62 5118.00 9.75 1,393.27 1,369.83 1.71
UK100 11 13845 8.71 1,740.56 1,727.62 0.75 2699.00 13.59 1,679.03 1,668.58 0.63 2841.00 11.28 1,560.26 1,533.17 1.77
UK100 12 13783 8.37 1,532.78 1,520.53 0.81 2070.00 13.36 1,437.48 1,421.41 1.13 2548.00 11.37 1,274.46 1,259.72 1.17
UK100 13 13822 9.13 1,692.68 1,680.68 0.71 3108.00 13.64 1,677.96 1,653.45 1.48 2703.00 12.11 1,496.27 1,473.94 1.52
UK100 14 13292 7.61 1,789.21 1,763.17 1.48 2281.00 12.97 1,735.30 1,698.22 2.18 2988.00 10.65 1,593.11 1,570.15 1.46
UK100 15 13688 8.26 1,887.12 1,854.64 1.75 3635.00 12.13 1,791.38 1,761.05 1.72 4231.00 10.06 1,690.93 1,671.20 1.18
UK100 16 14651 9.89 1,506.27 1,489.38 1.13 3167.00 14.35 1,427.73 1,410.04 1.25 2628.00 12.23 1,271.56 1,246.90 1.98
UK100 17 14651 8.50 1,801.15 1,776.99 1.36 2317.00 12.13 1,737.80 1,711.61 1.53 3214.00 12.23 1,622.98 1,606.50 1.03
UK100 18 14451 8.99 1,585.78 1,570.27 0.99 2307.00 12.13 1,552.92 1,541.33 0.75 2128.00 9.82 1,377.57 1,351.86 1.90
UK100 19 13983 9.09 1,500.69 1,464.38 2.48 2436.00 14.13 1,470.30 1,441.51 2.00 6323.00 11.76 1,323.38 1,305.83 1.34
UK100 20 13961 8.17 1,857.40 1,839.29 0.98 2788.00 12.28 1,700.02 1,665.86 2.05 3541.00 11.52 1,581.79 1,556.33 1.64
Average 8.92 1.36 12.96 1.43 11.27 1.48
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Table 21: Computational results for the 150-node instances.

PRPLIB KSVC14 Set B KSVC14 Set C
Instance a CPU Avg. Best Gap a CPU Avg. Best Gap a CPU Avg. Best Gap

(s) (min) (£) (£) (s) (min) (£) (£) Gap (s) (min) (£) (£) (%)
UK150 01 13748 22.14 2,142.57 2,113.38 1.38 2810 27.54 2,106.50 2,079.48 1.30 3653 25.98 1,927.06 1,902.26 1.30
UK150 02 13588 20.02 2,405.09 2,386.41 0.78 1728 27.00 2,317.50 2,290.05 1.20 2915 23.89 2,145.32 2,104.92 1.92
UK150 03 13396 19.86 2,059.18 2,053.40 0.28 1945 31.13 2,089.86 2,065.12 1.20 2548 25.67 1,860.00 1,838.40 1.17
UK150 04 13440 18.74 2,363.72 2,335.53 1.21 2236 24.72 2,308.84 2,277.51 1.38 2283 25.49 2,187.80 2,154.78 1.53
UK150 05 14113 21.19 2,205.49 2,184.24 0.97 2373 28.47 2,079.40 2,054.00 1.24 3805 24.96 1,933.89 1,908.61 1.32
UK150 06 13351 21.64 2,178.35 2,161.14 0.80 2517 23.39 2,169.21 2,140.02 1.36 2622 23.07 1,942.99 1,924.33 0.97
UK150 07 13658 19.80 2,449.80 2,413.44 1.51 2558 29.49 2,387.58 2,361.18 1.12 3287 25.81 2,206.74 2,183.08 1.08
UK150 08 13375 18.60 2,242.10 2,218.11 1.08 2491 31.00 2,155.34 2,140.44 0.70 3212 24.96 2,064.26 2,020.67 2.16
UK150 09 13692 19.66 2,409.45 2,384.49 1.05 2194 26.89 2,278.69 2,248.08 1.36 3039 23.09 2,089.03 2,075.83 0.64
UK150 10 12793 19.98 2,257.46 2,242.52 0.67 2038 29.63 2,252.27 2,238.52 0.61 2910 26.04 2,072.90 2,055.90 0.83
UK150 11 13575 18.44 2,409.85 2,374.14 1.50 2457 28.20 2,305.03 2,289.52 0.68 2161 25.36 2,159.53 2,137.02 1.05
UK150 12 13564 18.88 2,513.77 2,500.93 0.51 2468 21.20 2,378.83 2,347.08 1.35 3567 22.72 2,260.26 2,214.06 2.09
UK150 13 13863 19.45 2,364.80 2,339.61 1.08 2725 26.66 2,254.47 2,238.72 0.70 2208 24.75 2,023.20 1,999.61 1.18
UK150 14 13679 19.34 2,364.25 2,340.97 0.99 1712 28.53 2,348.70 2,328.91 0.85 3935 21.56 2,107.89 2,092.72 0.72
UK150 15 14571 19.30 2,159.74 2,139.43 0.95 2133 29.99 2,044.73 2,022.52 1.10 3295 22.07 1,880.75 1,862.98 0.95
UK150 16 13000 18.87 2,306.00 2,283.59 0.98 2786 27.47 2,283.51 2,256.25 1.21 2743 24.33 2,091.01 2,059.69 1.52
UK150 17 13343 18.11 2,355.58 2,317.54 1.64 2158 26.18 2,293.13 2,271.06 0.97 2942 23.97 2,138.93 2,103.37 1.69
UK150 18 13884 20.07 2,391.15 2,369.61 0.91 2237 28.31 2,222.45 2,201.73 0.94 3300 24.97 2,047.83 2,029.08 0.92
UK150 19 13406 19.10 2,524.14 2,495.35 1.15 2004 25.28 2,415.49 2,385.03 1.28 3070 22.51 2,240.82 2,214.74 1.18
UK150 20 13787 19.75 2,526.38 2,500.41 1.04 2193 26.90 2,428.96 2,410.32 0.77 2386 23.77 2,184.68 2,150.95 1.57
Average 19.65 1.02 27.40 1.07 24.25 1.29
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Table 22: Computational results for the 200-node instances.

PRPLIB KSVC14 Set B KSVC14 Set C
Instance a CPU Avg. Best Gap a CPU Avg. Best Gap a CPU Avg. Best Gap

(s) (min) (£) (£) (s) (min) (£) (£) Gap (s) (min) (£) (£) (%)
UK200 1 13305 32.53 2,961.79 2,940.28 0.73 2325 48.88 2,896.23 2,868.41 0.97 2691 46.04 2,683.23 2,663.14 0.75
UK200 2 13991 34.86 2,846.00 2,822.32 0.84 2612 51.25 2,716.90 2,685.81 1.16 3836 43.85 2,565.09 2,529.00 1.43
UK200 3 14094 33.45 2,999.55 2,985.75 0.46 2010 50.17 2,876.03 2,841.80 1.20 4221 43.46 2,631.72 2,612.35 0.74
UK200 4 13983 37.10 2,798.91 2,775.31 0.85 2218 50.81 2,735.03 2,706.47 1.06 3525 45.47 2,526.65 2,488.33 1.54
UK200 5 13171 30.36 3,033.96 2,998.85 1.17 2381 49.00 2,951.49 2,925.49 0.89 1906 43.00 2,718.89 2,699.56 0.72
UK200 6 13959 36.87 2,746.86 2,734.37 0.46 1835 50.34 2,711.00 2,676.30 1.30 1832 46.59 2,461.60 2,440.44 0.87
UK200 7 14070 35.10 2,924.40 2,907.60 0.58 2176 49.54 2,772.41 2,749.17 0.85 3446 45.24 2,610.89 2,574.81 1.40
UK200 8 14137 36.32 3,042.72 3,025.49 0.57 2562 48.46 2,924.04 2,877.81 1.61 2702 46.71 2,637.10 2,619.46 0.67
UK200 9 13892 36.47 2,732.12 2,706.26 0.96 2183 47.66 2,609.52 2,572.47 1.44 3302 46.05 2,395.47 2,377.58 0.75
UK200 10 13997 31.76 3,214.45 3,185.81 0.90 2133 52.53 3,001.31 2,979.99 0.72 2449 43.09 2,705.21 2,660.76 1.67
UK200 11 13968 37.36 2,808.32 2,793.15 0.54 2586 49.04 2,731.97 2,710.23 0.80 3635 48.73 2,531.30 2,510.59 0.82
UK200 12 12883 32.68 2,941.13 2,906.05 1.21 2204 49.16 2,906.92 2,878.31 0.99 2521 43.99 2,672.57 2,631.50 1.56
UK200 13 13614 34.68 3,047.95 3,010.19 1.25 2330 46.83 2,865.27 2,845.21 0.71 2636 41.72 2,637.66 2,619.02 0.71
UK200 14 13775 33.21 2,890.13 2,876.86 0.46 1868 48.91 2,832.61 2,805.29 0.97 2320 47.20 2,571.10 2,543.72 1.08
UK200 15 13349 32.47 2,967.42 2,949.03 0.62 2580 47.42 2,914.38 2,871.20 1.50 2697 45.42 2,659.14 2,642.61 0.63
UK200 16 13617 32.94 2,936.96 2,906.59 1.04 2117 49.07 2,852.73 2,829.41 0.82 2765 41.19 2,625.74 2,591.23 1.33
UK200 17 13540 33.99 3,146.65 3,105.67 1.32 2466 47.35 2,982.58 2,949.17 1.13 2066 42.28 2,689.45 2,663.41 0.98
UK200 18 13492 34.20 2,892.18 2,875.36 0.58 2376 45.67 2,856.53 2,811.88 1.59 2978 42.25 2,593.43 2,562.59 1.20
UK200 19 13875 37.65 2,687.20 2,656.33 1.16 1790 53.31 2,572.62 2,549.55 0.90 2394 45.93 2,376.19 2,347.99 1.20
UK200 20 13913 34.50 3,117.70 3,073.94 1.42 2156 47.72 2,979.89 2,956.62 0.79 2353 42.50 2,660.56 2,617.58 1.64
Average 34.42 0.84 49.16 1.07 44.54 1.07
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Appendix C: Computational Results
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