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ABSTRACT 

Alternative splicing (AS) is a closely regulated process that allows a single gene to 

encode multiple protein isoforms, thereby contributing to the diversity of the proteome. 

Dysregulation of the splicing process has been noted to be associated with many 

diseases. However, in amongst the pathogenic AS events there are numerous 

“passenger” events whose inclusion or exclusion does not lead to significant changes 

with respect to protein function. In this study, we evaluate the protein secondary and 

tertiary structural features of proteins associated with disease-causing and neutral AS 

events, and show that several protein structurale features are strongly associated with 

the pathological relevanceimpact of exon inclusion. We further develop a machine 

learning-based computational model, ExonImpact, for prioritizing and evaluating the 

functional impact consequences of hitherto uncharacterized AS events. We evaluated 

our model using several strategies including cross-validation, and the data from the 

Gene-Tissue Expression (GTEx) and ClinVar databases. ExonImpact is freely available 

at http://watson.compbio.iupui.edu/ExonImpact 

  

http://watson.compbio.iupui.edu/ExonImpact


 

Introduction 

Alternative splicing is a tightly regulated process by which exons in the pre-mRNA 

transcripts are differentially joined or skipped, thereby allowing a single gene to encode 

multiple protein isoforms. As an important level of gene regulation that greatly 

contributes to proteome diversity, alternative splicing is a widespread phenomenon in 

eukaryotic cells, and plays key roles in a variety of biological processes, including cell 

division, cell fate decisions, tissue maturation and cellular responses to the changes of 

extracellular environment, such as responses to stress [YUNLONG:  Review 

reference?]. Importantly, many studies have suggested that dysregulation of the 

alternative splicing process is associated with a wide variety of human genetic 

diseases1. Therefore, investigating the functional effects of individual alternative splicing 

events is crucial to understanding the complexity of biological systems and the molecular 

mechanisms of human disease. 

 

Recent advances in the development and implementation of high-throughput sequencing 

technology have enabled the profiling of pre-mRNA splicing patterns on a genome-wide 

scale. Many alternative splicing events can be identified from RNA-seq data using 

existing bioinformatics tools such as Mix-of-Isoforms (MISO)2, Multivariate Analysis of 

Transcript Splicing (rMATS)3, SpliceTrap4, and ASprofile5. Despite these advances, very 

few tools are actually available for evaluating the functional impacts of individual 

alternative splicing events on protein function. Indeed, several studies suggest that only 

a subset of alternative splicing events have an influence on protein function6. In addition, 

our previous work on non-frameshifting INDELs (insertions /deletions) showed that the 

addition or omission of a limited number of amino acid residues does not guarantee a 

functional change, unless the residues occur within key structural elements of the 

protein7. Therefore, a systematic strategy to prioritize functional alternative splicing 



 

events will be essential for biologists to identify important candidates for further 

mechanistic investigation.  

 

Several studies have attempted to select the most influential events based on the 

genomic and protein structure features in the vicinity of the alternatively spliced exons. 

For instance, Lu et al.6 designed a prediction method by combining multi-genome 

alignment data with RNA selection pressure calculations, which were based on the 

number of synonymous variants within the alternatively spliced exons and flanking 

intronic regions. This relieds upon the assumption that such regions are enriched with 

binding sites for splicing regulatory factors, and therefore should be depleted of variants 

responsible for functionally important events. Other studies have evaluated the potential 

impact of individual alternatively spliced exons on protein function by examining their 

overlap with known protein functional domains, post-translational modification sites, and 

binding domains that facilitate protein-protein interactions. It has been observed that the 

proteins containing tissue-specific alternative exons tend to have more a greater number 

of interactions in the protein-protein interaction (PPI) networks, suggesting their 

widespread role in controlling the tissue-specific dynamics of the protein interactions8.  

 

Prompted by these studies, we systematically evaluated the protein structural features 

that are related to the exons whose splicing outcomes are associated with human 

genetic disease. By comparing the exons containing disease-causing variants 

documented in the Human Gene Mutation Database9 and the exons containing 

putatively non-harmful insertions/deletions in the 1000 Genomes Database10, we 

confirmed that several features relating to protein structure are strongly associated with 

the disease-relevance or otherwise of the exon inclusion status. We further developed 

an algorithm, ExonImpact, to predict the disease relevance of the alternatively spliced 



 

exons that have not been previously investigated. The model was further evaluated by a 

subset from of an independent test dataset from our own data set [YUNLONG: can we 

simplify this sentence by removing at least one mention of the word ‘set’?], splicing 

patterns derived from the GTEx (Genotype-Tissue Expression) database11 and the 

ClinVar12 database, which documents both the benign and pathogenic mutations from 

clinical testing, literature curation and population studies. Our results suggest that 

ExonImpact can reliably identify disease-causing events, derived from various genome-

wide studies, located within hundreds of alternatively spliced exons. The schematic of 

the overall study is illustrated in Figure 1.   



 

Results 

Disease-causing AS events have distinct protein structure features  

In order to examine what differentiates the pathogenic and neutral AS events, we 

systematically evaluated dozens of protein structure features that are potentially 

associated with the alternatively spliced exons. Features were clustered into five 

categories, each with slightly different measurements (Supplementary Table 1). The five 

categories included solvent accessible surface area (ASA), protein secondary structure, 

probability of intrinsic disordered region (disorder score), relationship with known protein 

family domains, and the presence of known post-translational modification (PTM). In 

addition, the evolutionary conservation scores and the length of the alternatively spliced 

region were also included.  

 

Disease-causing AS events tend to locate in structured protein regions 

Intrinsically disordered protein (IDP) regions are stretches of amino acid residues that 

lack a fixed or ordered three-dimensional structure. Compared to structured proteins, 

IDPs tend to have distinct properties in terms of function, structure, sequence, 

interactions, evolution and regulation. The disorder measurement is calculated using 

SPINE-D13, an algorithm that we previously developed to predict disorder probability 

based on a protein’s amino acid sequence. For each amino acid residue, SPINE-D 

reports a disorder score ranging from 0 to 1, where 0 and 1 indicate that the residue in 

question locates fully within structured and disordered regions, respectively. We define 

12 features to characterize the disorder status of the AS exon (Supplementary Table 1); 

one example of the 12 features can be found in Supplementary Figure 1. Each feature is 

evaluated based on its power to discriminate the AS events in the positive (disease-

causing) and negative (neutral) training sets. All the 12 disorder-related features showed 

different distributions between the positive and negative training sets (Kolmogorov-



 

Smirnov test) with most features exhibiting p-values < 1x10-16 (Figure 2C). The 

probability density function (PDF) and cumulative distribution function (CDF) of one 

representative disorder feature, the maximum disorder score of all the amino acids, are 

shown in Figures 2A and 2B. As with our earlier observation on small exo-INDELs7 , 

pathogenic AS events showed significantly lower disorder scores, which suggests that 

they tend to be located  within structured protein regions.  

 

Disease-causing AS events tend to be buried inside core regions of protein 

structures 

Solvent accessible surface area (ASA) is a measurement of the surface area of a protein 

that is accessible to a solvent. A smaller ASA value usually indicates that an amino acid 

residue is buried within the core regions of the protein structure, whereas a larger ASA 

value suggests that it is exposed on the protein surface. For each amino acid residue, 

we calculated its ASA value using SPINE-X14 . For each exon, three ASA-related 

measures, average, minimum and maximum ASA values across all residues in the exon, 

were used to assess the differences between disease-causing and neutral AS events. 

As with protein disorder measurements, all three features showed statistically significant 

differences on in terms of the distribution between the two groups of exons (K-S test), 

while the average ASA of an exon’s translated amino acids yields the largest K-S 

statistic (D-value=0.258, p-value<1x10-16). Figure 2B clearly demonstrates that the 

pathogenic AS events have lower average ASA values, and therefore tend to be buried 

inside the core protein structures.  

 

Protein secondary structures 

In addition to protein tertiary structure, secondary structures serve to define the distinct 

characteristic local structural conformation of the proteins, and therefore hence also play 



 

important roles in protein function. In order to evaluate how the secondary structure 

states of the AS exons affect their disease-causing potential, we used SPINE-X to 

predict the three predominating states, helix, sheet and random coil, for all the disease-

causing and neutral AS events documented in our training data set. As with protein 

disorder and ASA measurement, for each amino acid residue in the exon, three scores 

were calculated indicating the probability of each of the three states (helix/sheet/coil) 

being adopted. For each AS event, 12 features were derived from the three probability 

scores for every amino acid residue encoded by the exon, including the maximum, 

average and minimum probabilities of all the residues associated with helix, sheet or coil 

states. In addition, the maximum, average and minimum probabilities of all the residues 

associated with the most probable secondary structure state are also included. We 

observed strong relationships between an exon’s secondary structure state and its 

disease association. All 12 secondary structure-derived features exhibited different 

distributions between disease-causing and neutral AS events, with significant p-values 

(K-S test, Figure 2C), but moderate D-values, ranging from 0.05 to 0.145. This suggests 

that secondary structures alone provide insufficiently strong discriminant power to predict 

the disease relevance of specific exons.  

 

We further examined whether protein secondary structures might provide additional 

information in separating pathogenic and neutral AS events in combination with tertiary 

structural features. We found that random coil structures on the protein surface area 

(with high ASA scores) are strongly associated with deleterious AS events (Figure 3A). 

Similar results were observed with the intrinsic disordered regions. Since random coil 

structures are often present at key protein-protein and protein-DNA/RNA interaction 

domains15, disrupting such regions can lead to detrimental phenotypic consequences. 

Taking the SPAST (spastin) gene as an example (Figure 3B), in the HGMD database, 



 

the mutation at chr2:32339706 locus is listed as altering the regulation of splicing 

regulation of the fifth exon (NM_014946:227:290), and leads to a disease called spastic 

paraplegia16. According to UniProtKB (Uniprot ID: Q9UBP0,NM_014946), this region of 

the protein encodes a random coil structure, and serves as an interaction site with 

microtubules. Such an observation strongly suggests that protein secondary structures 

complement the tertiary structure features, and should play a key role in prioritizing 

functional AS events.  

 

Disease-causing AS events are enriched for known protein family domains 

Aberrant alternatively spliced exons can disrupt protein function by breaking up protein 

family domains. For each AS event in the training set, we evaluated whether the exon 

overlapped with a putative protein family domain, predicted by searching its sequence 

against the profiles of hidden Markov models characterizing the documented protein 

families in the Pfam library17. For each exon, we calculated the proportion of predicted 

domains covered by the AS exon, and the proportion of the AS exon that overlapped 

with the predicted domains. Both features showed different distributions between the 

positive and negative datasets (Supplementary Figure 2), with disease-causing events 

displaying enriched overlap with predicted protein family domains.  

 

Disease-causing AS exons exhibit different PTM density comparing to neutral 

events 

Post-translational modifications (PTMs) are chemical changes on specific amino acid 

residues, which provide key molecular mechanisms for both diversifying and regulating 

the functions of proteins. Splicing variants of the exons containing the key PTM sites 

have the potential to influence the function and signaling of the protein. We hypothesized 

that pathogenic AS exons will would tend to contain a higher density of PTM sites since 



 

they may be enriched in signaling elements. For each AS exon, we define PTM density 

as the proportion of the amino acid residues that have documented an experimentally 

validated PTM site. Perhaps surprisingly, we observed a higher PTM density among the 

neutral AS events, the opposite of what we expected. This is likely to be due to the fact 

that disease-causing events tend to be buried inside within the protein structures (with 

lower ASA values), whereas PTM sites tend to be located on the surface of the protein 

structure. [YUNLONG: Have you asked whether, among the surface-located residues, 

those residues which are known PTM sites are more likely to be disease-associated than 

non-PTM sites? I would expect this to be so.] We therefore performed logistic regression 

analysis for modeling the group of AS exon (disease-causing or neutral) by using both 

the average ASA and the PTM density as independent variables. The PTM density 

received a positive coefficient (beta=0.037) with a p-value=0.02. This suggests that 

higher PTM density is associated with disease-causing potential when correcting the 

effect of the geometric loci of the exon, i.e. among the surface-located residues, those 

exons containing known PTM sites are more likely to be disease-associated than non-

PTM sites. Consistent with earlier results (Figure 2A), we observed a negative coefficient 

(beta=-0.078, p-value<1x10-16) for the average ASA, indicating that disease-causing 

events tend to have smaller ASA values.  

 

Relationships among various structural features 

Many of the features being evaluated are related to the tertiary structures of the proteins, 

and are therefore not independent. In order to examine the correlation structures of all 

the features, we performed principal component analysis (PCA) on the training set 

containing both deleterious and neutral AS events. As shown in the biplot (Figure 4), the 

first two principal components account for 47.6% of the total variations. The first principal 

component clearly aligns with most features derived from protein tertiary structures, 



 

including disorder scores, ASA scores, and protein family domains. Protein secondary 

structure-related features, however, contribute more to the second principal component. 

Clearly, the first principal component offers makes the largest effects incontribution 

toward separating the two groups of events, whereasile minimum random coil score and 

maximum ASA scores are the two features that point to the small group of disease-

causing events in the unstructured regions.  

 

Construction of a machine-learning model for prioritizing AS events on in relation 

to their disease relevance 

We built a predictive model, ExonImpact, for prioritizing disease-causing AS events 

using the Random Forest algorithm, which composes comprises of a collection of 

decision trees that vote on the output (deleterious or neutral). Two thirds of the events 

(1,776 disease-causing and 1,776 neutral events), randomly selected from the gold-

standard data set, were used to train the model, whereas the other one third (882 

disease-causing and 882 neutral events) were used for model validation. Based on the 

prediction results from the validation data set, ExonImpact yielded 0.83 for the AUC 

(Area Under the Curve) of the ROC (Receiver Operating Characteristic). Similar 

performance was achieved when all the experiments were replicated 100 times with 

random sampling from the gold-standard data set (Supplementary Figures 3A and 

3B).  To test if the resultant AUC could have been due to homologous genes in the 

training set, we used the HGNC gene family18 to cluster the disease-causing and neutral 

exons respectively retaining one gene in each family. This reduced the total number of 

positive and negative exons to 1,914 and 651 exons, respectively. Ten-fold cross- 

validation based on this reduced training data set yielded an AUC of 0.835, which 

suggests that homologous genes did not artificially boost the model performance. 

 



 

For each AS exon, the Random Forest model outputs a functional impact score (FIS) 

ranging from 0 to 1 that is equivalent to the posterior probability of the event falling into 

the disease-causing category. In order to select the cutoff FIS score with the desired 

statistical stringency, we calculated TPR (True Positive Rate), FPR (False Positive 

Rate), F1 score, and MCC (Matthews Correlation Coefficient) corresponding to different 

cutoffs (Figure 5C).  When controlling the FPR at 0.1, the cutoff score from Random 

Forest model was 0.82. At this FIS cutoff score, the corresponding True Positive Rate 

(TPR, or sensitivity), F1 score, and Matthews Correlation Coefficient (MCC) were 0.502, 

0.63 and 0.44, respectively. The FIS cutoff score for FPR at 0.05 was 0.91 with 

TPR=0.25, F1=0.32, and MCC=0.365.  

 

Exons containing 1,000 Genomes variants that alter splicing regulation tend to 

have smaller functional impact scores 

We evaluated all the common coding variants in the 1,000 Genomes Project in relation 

to their potential to disrupt splicing regulation using SPANR (Splicing-based Analysis of 

Variants)19, a bioinformatics tool that provides a score (ΔΨ) which characterizes the 

variant-induced changes in the proportion of transcripts with the exon spliced in. We 

hypothesized that the variants with the highest impact on exon inclusion (higher ΔΨ 

value) should reside within the exons with lowest functional impact scores (FIS), since 

the genotyped individuals of the 1,000 Genomes Project did not exhibit any apparent 

clinical phenotypes. We focussed our analysis on the common coding variants with MAF 

(Minor Allele Frequency) ≥ 5% that reside in the ±20bp exon region around the splice 

site. As shown in Figure 5, we observed sizable differences in the FIS scores for the 

exons containing variants with weak (|ΔΨ|<10%), intermediate (10%≤|ΔΨ|<20%) and 

strong (|ΔΨ|≥20%) impacts on splicing regulation. For the exons containing variants with 

weak regulation impact, 16.7% of the exons have FIS scores larger than 0.91 (cutoff for 



 

FPR≤0.05). As expected, theis percentage proportion decreaseds to 8.3% and 5.4% for 

the exons harboring variants with intermediate and strong impact on splicing regulation, 

respectively. The FIS scores of the events with strongly (|ΔΨ|≥20%) and weakly 

(|ΔΨ|<10%) impactingful variants showed significant differences with p-value=0.009 

(two-tailed Wilcoxon test). 

 

Independent test with ClinVar database  

We further tested the effectiveness of our algorithms on an independent data set 

documented in the ClinVar database12, a public archive of reports of relationship among 

medically important variants and phenotypes. Among the 1,032 exons containing 

deleterious splicing-altering variants, 498 (48%) were predicted to be pathogenic when 

using the FIS=0.91 cutoff (FPR ≤ 0.05). We further examined the exons that contain 

benign variants at splicing junction sites. These variants are very likely to change 

splicing outcome, but did not lead to pathogenic phenotypes. Among the 11 exons that 

fitted into this category, only 2 (18%) were predicted to be pathogenic (FIS ≥ 0.91, FPR ≤ 

0.05). The FIS scores for the pathogenic events are significantly higher than those for 

benign events (two-tailed Wilcoxon test p-value<0.02).  

 

We further examined the differences between exons containing pathogenic and neutral 

INDELs that are documented in ClinVar. The current ClinVar database contains 308 and 

5,554 benign and pathogenic INDELs, located in 36 and 1,652 exons respectively. In 

order to avoid the an evaluation bias due to the overlapping entries in the HGMD and 

ClinVar databases, we re-trained our model using the HGMD entries that were not 

included in the ClinVar database, and tested the prediction results on the pathogenic 

events derived from the ClinVar database. We found that the new model’s TPR was 

similar to the cross-validation results using HGMD only. When using cutoff FIS=0.82, 



 

which corresponds to a 10% False Positive Rate (FPR), 662 out of 1,652 pathogenic 

events (40.1%) were predicted to be functionally important. Similarly, the FIS scores on 

478 events (28.9%) were larger than 0.91, which is equivalent to 5% FPR. This 

proportion contrasts with the exons containing benign INDELs. None of the 36 benign 

exons are predicted to be functionally important when selecting the FIS cutoffs based on 

10% FPR. The overall distribution of the FIS scores for pathogenic and benign exons 

also showed significant differences (Supplementary Figure 4, two-tailed Wilcoxon test p-

value<1.8x10-14), with the scores for the benign group skewing to the left (lower FIS 

scores), whereas the pathogenic ones skew to the right (higher FIS scores).  

 

Exons with strong FIS scores have higher inclusion ratios in human brains 

In order to further evaluate the biological relevance of the predicted FIS scores, we 

examined whether there were differences in the exon inclusion ratios for the exons with 

high and low FIS scores. We hypothesized that higher inclusion ratios would be 

observed for the exons with high FIS scores since their functions are more likely to be 

essential. Using the MISO (Mixture of Isoforms) algorithm, we evaluated the inclusion 

ratios (percent-spliced-in, ψ) of 42,485 previously documented skipped exon (SE) events 

on 310 RNA-seq samples from 11 brain regions of 44 individuals, collected in the 

Genotype-Tissue Expression (GTEx) database. Among the 42,485 SE events, 

measurements of the ψ values on 1,909 events were reliably identified (the confidence 

interval for ψ value, CI≤0.1) in no fewer than 10 RNA-seq samples. Among these 

events, 1,852 events located to within the middle exons of protein coding genes. FIS 

scores for these events were calculated using the ExonImpact model. All events were 

categorized into three groups based on their FIS scores, FIS<0.82 (FPR>0.05) 0.82≤

FIS<0.91 (0.01<FPR≤0.05), and FIS≥0.91 (FPR≤0.01). We found that in the FIS≥



 

0.91 group, 93.8% of the events had a very high inclusion ratio (ψ>0.8), whereas this 

percentage dropped to 91.3% in the 0.82≤FIS<0.91 group, and to 71% in the FIS<0.82 

group (two-tailed Wilcoxon test between FIS<0.82 and FIS≥0.91, p-value =0.004, Figure 

6). This observation strongly supports our hypothesis that the events with higher 

functional impact scores are required by the organism, and therefore have much higher 

inclusion ratios.  



 

Discussion 

As an essential molecular mechanism that significantly contributes to proteome diversity, 

alternative pre-mRNA splicing selectively includes or excludes certain protein coding 

elements, thereby allowing the coding of proteins with distinct functionalities. With the 

increasing popularity of high-throughput sequencing technology in transcriptome-wide 

profiling, our ability to identify splicing variants has been greatly enhanced. Usually, 

hundreds or even thousands of alternatively spliced events can be identified when 

comparing different tissues5, and dozens to hundreds of events will be discovered when 

comparing the same tissue at different developmental stages20. Despite the large 

number of alternatively spliced exons with different cellular status, not all the changes in 

the exon inclusion ratio have obvious biological consequences. The variations in many 

of the splicing events simply reflect the differences in cellular conditions, and will not 

affect the functions of the proteins produced. Our earlier study on coding exonic 

INDELs7,21 also indicates that the addition or deletion of a short stretch of amino acid 

sequence does not guarantee pathological consequences.  

 

In this study, we systematically examined the protein structure features that distinguish 

pathogenic and from non-pathogenic AS events. Our results suggest that most protein 

structure-related features, including disorder score, ASA values, and Pfam prediction, 

differ significantly between the two groups of events. In addition, protein secondary 

structures, random coil in particular, also offer additional predictive power when the 

tertiary structure features fail to recognize the differences. The positions of the 

pathogenic events in the protein may reflect the locations of the interaction domains with 

other molecular components, such as DNA, RNA or other proteins.  

 



 

The proposed ExonImpact model uses features describing the secondary and tertiary 

structures of the candidate splicing events. Although such features can be acquired from 

various biochemical assays, such as X-ray crystallography or nuclear magnetic 

resonance technologies, they are only available for a small proportion of protein regions. 

In order to broaden the utility of our algorithm, we adopted prediction-based methods for 

deriving the protein structure-related features directly from a series of neural-network-

based SPINE techniques that make amino acid sequence-based predictions for protein 

secondary structures, ASA14, and disorder probability13 . Such a strategy was used in our 

early work for prioritizing the functions of exo-INDELs7,21. This allows us to prioritize the 

events whose experimentally determined structures are not available. 

 

For machine-learning-based prediction algorithms, the selection of training data set is 

critical, and may have a major influence on prediction accuracy. In this study, the 

positive (deleterious) and negative (neutral) events were selected from two resources. 

The positive events were selected from the exons containing disease-causing variants 

that have been determined to disrupt splicing outcome of the exon, as documented in 

the Human Gene Mutation Database. Selection of “negative” training sets (neutral 

exons) was more challenging, since there is no existing database documenting such 

events. We therefore selected exons containing micro-INDELs from the 1000 Genomes 

database as our putatively neutral data set. Since these INDELs were identified in 

apparently healthy individuals, the addition or removal of a few amino acids in these 

exons should not have generated deleterious phenotypes [YUNLONG: There is a major 

difference between being deleterious to health and being deleterious to protein function. 

The latter does not imply the former. Is it worth mentioning that we are nevertheless 

aware of this distinction?]. Since INDELs are in general shorter than the exons, we 

extended the “neutral” region to the entire exon. We consider that this exon is located 



 

within a functionally dispensable region. It is conceivable that the sequences outside of 

the INDEL regions (non-frameshift INDELs in particular) in these exons are functionally 

important. This will generate false negatives in our training set, thereby reducing the 

accuracy of the model’s prediction. This implies that our negative training set may 

contain data that should be part of the positive group, and if this is so, it may reduce the 

discriminant capacity of some key features between the two groups. Such inaccuracy, 

however, will potentially decrease the discriminant powers of the features, and therefore 

make the prediction more conservative.   

 

In order to increase the usability of our model, we provided two means for using 

ExonImpact, both through a web server (http://watson.compbio.iupui.edu/ExonImpact/), 

and a downloadable version (1.0, https://github.com/regSNPs/ExonImpact). Our tool 

accepts both BED format defining the alternatively spliced exon region and MISO event 

formats (examples can be found on the website).   

http://watson.compbio.iupui.edu/ExonImpact/


 

Methods 

Disease-causing and neutral alternatively spliced exons 

In order to systematically evaluate the impact of protein structure features that are 

associated with pathogenic and neutral AS events, we first constructed a database that 

contains a group of exons whose splicing outcomes have strong implications for various 

diseases (positive dataset), and others that are considered to be neutral (negative 

dataset). For a positive training set, we extracted 4,667 exons containing 7,639 

deleterious single nucleotide variants (SNVs) documented in the Human Gene Mutation 

Database (HGMD) that are responsible for causing human inherited disease by 

disrupting splicing regulation9 . The SNV-induced splicing abnormality associated with 

these exonic events has been previously demonstrated to cause documented 

phenotypic consequences. The negative training set, i.e. the alternatively spliced events 

that are presumed to be functionally neutral, were derived from the 1000 Genomes 

database, in which genotyped individuals do not exhibit any apparent clinical 

phenotypes. Since genotyping information from the 1000 Genomes Project does not 

provide the profiling of exonic splicing patterns, we turned our attention to the small 

exonic insertions/deletions (exo-INDELs, the length of the INDELs is less than xx10021 

nts), whose outcome at the protein level is the inclusion or exclusion of a stretch of 

amino acid residues. This consequence is similar to the results of alternative splicing. 

Although small exo-INDELs usually only represent a proportion of the entire exon, we 

constructed our negative training set by compiling all the INDEL-containing exons, 

assuming the fitness of the organisms are less sensitive to their status of being included 

or excluded from the protein product. It should be noted that this strategy might result in 

the inappropriate inclusion of deleterious events into the negative training data set, 

especially when the functional domains of the protein are encoded by part of the exon 



 

that lies outside of the exo-INDEL regions. Our overall training dataset contained 4,211 

and 2,664 exons in the positive and negative training groups, respectively.  

 

ClinVar test dataset 

An independent test dataset was collated from the NCBI ClinVar database. The test data 

set included 1,032 and 11 exons containing pathogenic and benign variants in the 

splicing sites (see Supplementary Table 2). In addition, the ClinVar database also 

documented 1,652 and 36 exons containing pathogenic and benign exo-INDELs, 

respectively. 

 

SPANR prediction 

Splicing-based Analysis of Variants (SPANR) was used to evaluate the roles of 1,000 

Genomes variants in disrupting splicing regulation. We used the maximum mutation-

induced change in PSI (percent-spliced-in) across 16 tissues that is reported by SPANR 

by default. 

 

MISO prediction 

In order to examine the inclusion ratios (ψ, percent-spliced-in) of the exons with high FIS 

(Functional Impact Scores), we ran MISO (mixture of isoforms) analysis on RNA-seq 

data from 310 brain samples across 11 brain regions, as documented in the GTEx 

(Genotype-Tissue Expression project)11, and downloaded from dbGaP. Without losing 

generalizability, we only analyzed the 42,485 skipped exons (SE) that were documented 

in the MISO annotation. For each event, MISO provides maximum likelihood estimation 

on the ψ for each sample, as well as its 95% confidence interval (CI). A wide CI indicates 

less accurate prediction. We therefore removed all the events with no more than 10 

samples containing CI≤0.1. After this filtering step, 1,909 events remained. After 



 

removing the first and last exons, and the exons in the non-coding genes, ExonImpact 

calculated FIS scores for 1,852 events. Default parameters were used for MISO 

calculation.  

 

Features 

Disorder, ASA, and secondary structure predictions 

For all the exon regions to be evaluated, a series of SPINE algorithms were used to 

derive its structure-related features. SPINE-D13 was used to predict the disorder 

probability, and SPINE-X14 was used to predict soluble accessible surface areas (ASA) 

and protein secondary structures (helix, sheet or coil). Default parameters were used for 

both algorithms. 

 

Pfam domains 

In order to quantify the level of overlap between the alternatively spliced exons and 

known protein family domains, Pfam (version 28.0) was used to predict the putative 

domains derived from amino acid sequences. We used two measurements as input 

features: the proportion of the exons that overlap with predicted protein family domains, 

and the proportion of predicted protein family domain that overlap with the candidate 

exon. If more than one domain was overlapped, we used the maximum percentage 

across all the domains.  

 

Post- Ttranslational Modification (PTM) 

PTM feature were derived from the dbPTM database22 and we only considered the 

experimentally-validated PTMs. The PTM feature was defined as the number of 

documented PTM sites in the exon, normalized by the exon length.  

 



 

Machine learning algorithm 

RandomForest algorithm23 was used for model training and prediction. Performance 

evaluation was performed using 10-fold cross-validation and bootstrapping (100 trees, 

mtry = 12). We found the performance of the RandomForest model was not sensitive to 

the selection of parameters. In addition, an independent test data set that hads not been 

used in training the model has beenwas used for to evaluateing the model performance.  
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Figures and Tables: 

 

Figure 1: The workflow of the study, which contains four major components: data 

collection, feature extraction, model training and model evaluation.  

 

Figure 2: Feature evaluation. (A) Probability density of each feature in pathogenic and 

neutral groups, respectively. (B) Probability cumulative density of each feature in HGMD 

and neutral groups, respectively. (C) Scatter plot of K-S test’s p-values and D-values for 

each category of features. X-axis shows the -log10 (p-value) and Y-axis is the D-value.  

 

Figure 3: (A) Scatter plot between the average ASA score and the minimum probability 

of random coil. (B) An example (NM_014946) demonstrating the relationship between 

protein secondary and tertiary structures.  

 

Figure 4: PCA biplot of all the features. Red and green dots represent pathogenic and 

neutral events, respectively. Each arrow line demonstrates one feature, and the color of 

the line indicates its category.  

 

Figure 5: (A) ROC curve on an independent test data set. (B) Employing the 1,000 

Genomes data set, the percentage of predicted high impact events (FIS ≥ 0.91) among 

the events with weak, intermediate and strong variants that disrupt the splicing are 

showned. (C) Relationship between True Positive Rate, False Positive Rate, F1 Score, 

MCC with cutoff, y=0.1 and x=0.82 is plotted to show the corresponding cutoff for the 

False Positive Rate = 0.1. 

 



 

Figure 6: Proportion (%) of events with different levels of inclusion ratio in human brains 

that have low, intermediate and high FIS scores.  

 

Supplementary Figure 1: The demonstration of disorder feature calculation. The example 

given is exon 11 of the ACC gene. The meanings of the twelve kinds of feature are given 

on the right of the Figure.  

 

Supplementary Figure 2: Probability density for each feature. Feature’s K-S test statistic 

is given at the top of each panel.  

 

Supplementary Figure 3: 10-fold cross- validation and 100 times bootstrap validation.  

 

Supplementary Figure 4: FIS’s probability density for exons contained in benign INDELs 

and pathogenic INDELs respectively.  

 

Supplementary Table 1: A brief description of each feature. 

 

Supplementary Table 2: Exons’ IDs that contain respectively benign and pathogenic 

SNPs in the splice junction site respectively.   


