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Abstract: Social robotics is an emerging field of robotics that focuses on the interactions between robots 

and humans. It has attracted much interest due to concerns about an aging society and the need for assistive 

environments. Within this context, this paper focuses on gaze control and eye tracking as a means for robot 

control. It aims to improve the usability of human–machine interfaces based on gaze control by developing 

advanced algorithms for predicting the trajectory of the human gaze. The paper proposes two approaches 

to gaze-trajectory prediction: probabilistic and symbolic. Both approaches use machine learning. The 

probabilistic method mixes two state models representing gaze locations and directions. The symbolic 

method treats the gaze-trajectory prediction problem similar to how word-prediction problems are handled 

in web browsers. Comparative experiments prove the feasibility of both approaches and show that the 

probabilistic approach achieves better prediction results. 

Keywords: Social robotics, human–robot interaction, eye tracking, gaze tracking, machine learning, 
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1. INTRODUCTION 

Recent advances in domestic and humanoid robots have 

transformed robotics from an area primarily concerned with 

industrial automation to a field that supports social interactions 

between humans and robots. Social robotics is an emerging 

field that focuses on the interactions between robots and 

humans. It is the study of robots that interact and communicate 

among themselves, with humans, and with the environment, 

within the social and cultural structure attached to their roles 

(Ge and Mataric, 2009). The challenge is to overcome the 

existing human–robot barrier by constructing robots that 

behave more like humans and understand commands in an 

intuitive way.  

 

The area of human–robot interaction benefits from a large 

range of sensors, including cameras, microphones, laser 

reading, and tactile sensors (Haibin, 2014). These sensors can 

be used for different perception tasks, including emotion 

recognition, object detection, face recognition, and human 

motion tracking. The scope of this paper is robot control using 

eye tracking. The use of gaze in the context of social robotics 

has been widely explored over the past decade. The use of gaze 

in teleoperation (Latif et al., 2008) and in the context of 

humanoid robots (Dickstein-Fischer et al., 2011) are some of 

the most well-known applications. 

 

The aim of this paper is to improve existing teleoperation 

interfaces by developing advanced algorithms for gaze 

trajectory prediction. Teleoperation consists of controlling a 

robot where a human uses his/her gaze to draw a trajectory that 

is then executed by the robot. Such a scenario is based on a 

domestic environment where a disabled or elderly person 

controls a robot with his or her gaze. Gaze prediction involves 

communicating and understanding commands based on a 

portion of a trajectory. A person does not need to complete the 

whole trajectory but only to start drawing its beginning for the 

robot to understand the entire trajectory. The approach is based 

on comparing real-time eye-tracking data with pre-recorded 

classes of gaze trajectory.  

 

The remainder of the paper is organized as follows. Section 2 

reviews the use of eye tracking in social robotics and discusses 

relevant approaches to gaze trajectory prediction. Section 3 

highlights the research objectives and introduces the 

teleoperation principle as well as the concept of gaze trajectory 

prediction. Section 4 outlines the algorithms developed to 

predict gaze trajectories. Section 5 presents the experiments 

used to validate the prediction algorithms. The results are 

discussed in Section 6. The final section concludes the paper. 

2. LITERATURE REVIEW 

2.1 Eye Tracking in the Context of Social Robotics 

The use of eye-tracking systems originates in the 1990s with 

the first eye-wink interfaces designed to assist severely 

disabled persons with their everyday activities (Shaw et al., 

1990; Crisman et al., 1991). More recent examples of using 

eye tracking include teleoperation in surgery applications 

(Staub et al., 2012), navigation, and exploration (Yu et al., 

2014; Latif et al., 2008, 2009a, b). In addition, eye-tracking 

systems are also used as therapeutic tools. For instance, 

Dickstein-Fischer et al. (2011) developed a humanoid robot 

designed to diagnose autism and interact with autism spectrum 

disorder (ASD) persons so that the robot could improve their 

social behavior. Another example is the gaze-sensitive virtual 

social interactive system for ASD children designed by Lahiri 

et al. (2011). The system uses a computer screen (instead of a 

humanoid robot) to interact in real time with ASD children. 
 



 

 

More sophisticated interfaces recently developed take into 

account gaze direction. For instance, the gaze communication 

system for amyotrophic lateral sclerosis (ALS) (Maehara et al., 

2003) uses a simple charge-coupled device (CCD) camera that 

tracks the user's gaze on a screen. In another advanced 

solution, the user uses his/her gaze to generate a trajectory and 

move a wheelchair in the real world (Antonya et al., 2011). 

2.2 Gaze Prediction 

Gaze prediction is a term with different meanings depending 

on the context of its use. It may refer to techniques used to 

improve eye tracking (Han, 2013); given eye-tracking data, it 

reduces the lag between the acquisition of the measure and its 

display. In this context, improving the prediction leads to 

improving the quality of the eye tracking. 

 

This term can also be used in the context of egocentric videos 

produced by wearable cameras, such as GoPro (Li et al., 2013). 

The gaze-fixation prediction is computed given the wearer's 

head motion, hand location, and a dynamic model of the gaze. 

 

In addition, the term is used in interactive media applications, 

such as bit allocation in streaming video based on region-of-

interest (Feng et al., 2013). The approach uses a gaze-

prediction system based on the Hidden Markov Model (HMM) 

where the states correspond to two of a human's intrinsic gaze 

behavioral movements (saccades and fixations). The 

parameters of the model are derived off-line from the visual 

saliency maps of the video. The principle of bit allocation is to 

allocate more bits to the regions of interest and less to other 

spatial regions. This is achieved so that both video 

compression and visual quality are improved. In exactly the 

same context, another gaze-location prediction application has 

been developed for broadcast football video (Cheng et al., 

2013). The method employs a Bayesian integration of bottom-

up features (motion measurements and saliency) and top-down 

information (ball, players, shot-type label). 

 

In contrast to previous approaches, the approach developed in 

this paper considers the gaze-prediction problem to be similar 

to time-series prediction. Instead of using image-processing 

techniques, it applies machine learning on eye-tracking data to 

predict the human gaze trajectory. 

2.3 Trajectory Prediction 

The trajectory-prediction problem has been investigated from 

two different perspectives. First, gaze-trajectory prediction can 

be seen as a time-series prediction problem. A survey of 

methods for long-term prediction by Hellbach et al. (2009) 

compares several time-series prediction methods applied to 

prediction problems in the field of mobile robots and human–

robot interaction. These include autoregressive models, local 

modeling, cluster-weighted modeling, and echo state 

networks. Experiments show that echo state networks (Yao et 

al., 2013) and local modeling (Oh et al., 2003) produce better 

results for long-term motion prediction. 

 

Second, probabilistic methods, such as Markov Chain Models 

(Ishikawa et al., 2004) and Hidden-Markov Models (Qiao et 

al., 2015) are widely used for trajectory prediction of moving 

objects and can be applied to this problem. This paper uses 

these methods in the development of the probabilistic 

algorithm. 

3. CONCEPTUAL MODEL 

Gaze control involves trajectory classification and trajectory 

prediction. This paper focuses on trajectory prediction. This 

section briefly describes teleoperation from the eye-data 

processing methods to the control of the robot. It then outlines 

the principle of gaze-trajectory prediction.  

3.1 Teleoperation 

As shown in Fig. 1, teleoperation consists of the execution by 

the robot of a scaled version of the trajectory drawn on a screen 

by a human user. The trajectory is displayed in real time on the 

computer screen.  

 

Fig. 1. Teleoperation scheme 

 

The acquisition method is based on cascading three 

algorithms: 

 The first algorithm filters the raw eye-tracking data. A 

double exponential filter is chosen because it is a good 

trade-off between precision and implementation 

simplicity. Furthermore, the fact that it is an infinite 

impulse response (IIR) filter makes it suitable for real-

time applications. 

 The second is a cartographic algorithm (Zhao and 

Saalfeld, 1997). This routine reduces the number of points 

and still conserves the topology of the trajectory. It is used 

to make the teleoperation more practical; indeed, the robot 

does not have to consider too many points. 

 The third algorithm is a fixation-detection algorithm. A 

fixation happens when the user stares at a specific area. It 

produces an undesirable noise that cannot be removed by 

the double exponential filter. The fixation-detection 

algorithm detects the fixations and removes the associated 

noise. This paper uses a fixation-detection method based 

on a dispersion threshold (Salvucci and Goldberg, 2000). 

 

The three algorithms are implemented in a cascade manner in 

real-time operation. Note that the method handles 3 known eye 

movement patterns: saccades, smooth pursuit movements, and 

fixations. Saccades generate rectilinear trajectories. Smooth 

pursuit movements imply more complex trajectories. Fixations 

are handled as explained before. When the trajectory is entirely 



 

 

drawn, it is sent to a planar robot over the network using the 

Transmission Control Protocol (TCP). The robot executes the 

trajectory point by point using a proportional-integral-

derivative (PID) controller. 

3.2 Trajectory Prediction 

Fig. 2 shows the principle of the gaze trajectory prediction. 

The scenario is very close to the teleoperation scheme in Fig.1. 

The only difference is that when the user draws a curve, the 

robot assesses which trajectory the user may want to draw. The 

user has the choice to continue with the trajectory or accept the 

prediction. 

 

Fig. 2. Trajectory-prediction scheme 

 

Several types or classes of trajectories are trained and recorded 

in a database. The trajectory is built using the inverse discrete 

cosine transform (IDCT) (for classification purposes, each 

class of trajectory is featured by DCT coefficients) and sent to 

the robot. The next section describes in detail the used 

prediction methods. 

 

4. GAZE TRAJECTORY PREDICTION USING EYE 

TRACKING 

4.1 Probabilistic Approach 

This approach is aimed at simplifying a Markov chain model 

in terms of compression. The rationale is to use marginal 

probabilities instead of conditional probabilities in order to 

reduce the required storage load per class. However, the model 

of a class has to represent a succession of events, and this is 

represented through the states transition matrix in the Markov 

model. It is decided for this reason to mix two state models. 

The first model represents the locations, where the states are 

the possible positions in the workspace. The second model 

represents the directions, and the states are the directions of the 

possible velocity vectors. The final model represents a 

succession of states and sufficiently describes the trajectory 

both in terms of location and direction.  

 Training  

The training step is performed off-line. Let 𝑃𝑃(𝑖) and 𝑃𝐷(𝑗) be, 

respectively, the probability of the robot being in position state 

𝑖 and the probability of being in direction 𝑗. For a class 𝐶, the 

goal of the training step is to compute 𝑃𝑃(𝐶, 𝑖) and 𝑃𝐷(𝐶, 𝑗) for 

each position or direction state (𝑖 or 𝑗). The training is the same 

for the two state models. Once the gaze trajectory has been 

acquired, one sweeps through the trajectory from the 

beginning to the end. For each model 𝑃 or 𝐷 and each state 𝑖 
or 𝑗, the probabilities are computed according to the following 

equations: 

𝑃𝑃(𝐶, 𝑖) =
𝑁𝑖

𝑁
 , 𝑃𝐷(𝐶, 𝑗) =

𝑁𝑗

𝑁
 ,   (1) 

 

where 𝑁𝑖 is the number of times the trajectory is in state i and 

N is the number of points of the curve. Thus, each class of 

trajectory is featured by two vectors of features 𝑉𝐶,𝑃 and 𝑉𝐶,𝐷 

of length 𝑁𝑃 and 𝑁𝐷, respectively, such that 

 𝑉𝐶,𝑃 = [𝑃𝑃(𝐶, 0) … 𝑃𝑃(𝐶, 𝑖) … 𝑃𝑃(𝐶, 𝑁𝑃 − 1)] , (2) 

𝑉𝐶,𝐷 = [𝑃𝐷(𝐶, 0) … 𝑃𝐷(𝐶, 𝑗) … 𝑃𝐷(𝐶, 𝑁𝐷 − 1)] . (3) 

 

 Prediction  

The prediction step is performed in real time. The idea is to 

compute at each iteration 𝑛 (each time a point is added to the 

trajectory) and for each class 𝐶 the probability that curve 𝑢 

belongs to class 𝐶 (𝑃𝑢∈𝐶(𝑛)). The predicted class is the class 

for which 𝑃𝑢∈𝐶(𝑛) is the maximum. 

 

To compute 𝑃𝑢∈𝐶(𝑛), let 𝑃𝑢∈𝐶(𝑚𝑜𝑑, 𝑛) be the probability that, 

at iteration 𝑛, trajectory 𝑢 belongs to class 𝐶 according to 

model 𝑚𝑜𝑑 (it can be the direction or the position). Then, the 

direction and position probabilities are combined using the 

geometric average: 

𝑃𝑢∈𝐶(𝑛) = √𝑃𝑢∈𝐶(𝑃, 𝑛). 𝑃𝑢∈𝐶(𝐷, 𝑛) .  (4) 

 

Computation of the probability 𝑃𝑢∈𝐶(𝑚𝑜𝑑, 𝑛) is processed as 

follows. At iteration 𝑛, if the trajectory is in state 𝑖 of 

model 𝑚𝑜𝑑, the intermediate probability 𝑝𝑚𝑜𝑑(𝐶, 𝑛) =
𝑝(𝑢 ∈ 𝑖|𝑚𝑜𝑑, 𝐶), which is the probability that the robot is in a 

state 𝑖 for class 𝐶 according to model 𝑚𝑜𝑑, is extracted from 

the training data. For each class 𝐶, the probability 

𝑃𝑢∈𝐶(𝑚𝑜𝑑, 𝑛) is the geometric average of the 

probabilities 𝑝𝑚𝑜𝑑(𝐶, 𝑛): 

𝑃𝑢∈𝐶(𝑚𝑜𝑑, 𝑛) = ∏ 𝑝𝑚𝑜𝑑(𝐶, 𝑖)𝑛
𝑖=1

1

𝑛 .  (5) 

 

The geometric average is used because it allows normalization 

of the probabilities. Indeed, if the probability is just the product 

of all the probabilities, it tends to zero when the trajectory 

length tends to infinity. Thus, the risk is that the probabilities 

are out of the boundaries of type “double.” Furthermore, the 

geometric average preserves the nature of the probability 

calculation; it is an increasing function and can be updated by 

the following recursive relation: 

𝑃𝑢∈𝐶(𝑚𝑜𝑑, 𝑛) = 𝑃𝑢∈𝐶(𝑚𝑜𝑑, 𝑛 − 1)
𝑛−1

𝑛 . 𝑝𝑚𝑜𝑑(𝐶, 𝑛)
1

𝑛 . (6) 

4.2 Symbolic Approach 

The objective behind the development of this approach is 

twofold. On the one hand, in terms of compression, it is 

efficient to feature time series by symbols. A character can be 

encoded with one byte, whereas a double is encoded with 8 

bytes. On the other hand, the problem is similar to the word-



 

 

prediction problem in web browsers, which is the original 

point of this approach. 

 Training  

The training step is also performed off-line. The idea is to 

assign a word to each trajectory class 𝐶. For this reason, the 

workspace is divided into equal area squares with one square 

standing for a letter. The training step is achieved by sweeping 

through the trajectory from the beginning to the end once the 

gaze trajectory has been acquired. Each trajectory is divided 

into equal-length segments; then, the average point of each 

segment is computed. The letter corresponding to a segment is 

the letter located the closest to the average point of the 

segment. As a result, each class 𝐶 is featured by a word 𝑊(𝐶). 

 Prediction  

The prediction step is performed when the user draws a 

trajectory. This step is similar to the previous approach for 

several reasons. First, it updates the prediction scores 𝑃𝑢∈𝐶(𝑖) 

for each class 𝐶 at each iteration 𝑖. For this approach, the 

updates happen when the length of the trajectory is greater than 

a certain threshold. Second, the predicted class is the one 

having the best prediction score. Third, the geometric average 

is used again for the same reasons as in the previous approach. 

However, for this approach, the probability computation does 

not come from descriptive probabilities but relies on the 

distance between letters. These distances are recorded in an 

interclass distance matrix M. 

 

The calculation of the prediction score for class C is as follows. 

The idea is to increasingly build a word to the curve 𝑢 being 

drawn. Based on the trajectory location, a new letter is 

concatenated each time the length of 𝑢 is greater than the 

threshold. If it is the 𝑖𝑡ℎ letter of the word, it is compared with 

the 𝑖𝑡ℎ letter of all the classes. For each class 𝐶, the 𝑖𝑡ℎ 

intermediate probability score is given by the following 

equation: 

𝑝(𝐶, 𝑖) =
𝐷𝑚𝑎𝑥−𝐷(𝐶,𝑖)

𝐷𝑚𝑎𝑥
 ,    (7) 

 

with 𝐷𝑚𝑎𝑥 = max (𝑀) and 𝐷(𝐶, 𝑖) the distance between the 

𝑖𝑡ℎ letter of class C and the 𝑖𝑡ℎ letter of the trajectory being 

drawn. This equation makes the intermediate probability score 

belonging to [0,1]. 

 

For each class 𝐶, at letter 𝑖, the prediction score is the 

geometric average of all the intermediate probabilities from 1 

to 𝑖. This geometric average is computed by the recursive 

relation below: 

𝑃𝑢∈𝐶(𝑖) = 𝑃𝑢∈𝐶(𝑖 − 1)
𝑖−1

𝑖 . 𝑝𝑚𝑜𝑑(𝐶, 𝑖)
1

𝑖  .  (8) 

5. EXPERIMENTS 

The aim of the experiments is to evaluate the added value of 

the gaze prediction feature, and assess the performance of the 

two algorithms.  

 

Smart Eye Pro software (2015) was used to acquire the raw 

data of the intersection between the user's gaze and the screen 

plane (Fig. 3). For the probabilistic approach, 15 position 

states and 8 direction states were used. For the symbolic 

approach, the workspace was divided into 28 equal-area 

squares. Thus, 28 different characters were used to build 

words. The choice of experimental parameters was made in an 

empirical way. The goal was to optimize the trade-off between 

prediction accuracy and storage load. The gaze prediction has 

to be efficient while ensuring a low storage load. 

 

 

Fig. 3. The interface developed and calibration of the Smart 

Eye Pro software 

 

Twelve classes of trajectory were trained in the model. The 

trajectories were chosen by trying to cover a large set of classes 

so that the experimental results could be generalized. A 

schematic representation of the classes is shown in Fig. 4. The 

black-filled dots and the arrows represent the starting points 

and the directions of the classes, respectively. 

 

 
 

Fig. 4. Schematic representation of the classes 

For each class and each approach, the prediction is checked 

three times. In order to check and compare the two approaches, 

two experimental values are used: 

 The percentage of the total length of the desired class from 

which the desired class is among the three best-ranked 

classes (measure M1). 

 The percentage of the total length of the desired class from 

which the desired class is the best-ranked class (measure 

M2). 

These experimental values were carefully chosen to enhance 

the added value of the gaze trajectory prediction feature. They 

give an indication of how accurate and fast the prediction is. If 

the right class is predicted just before the end of the 

acquisition, the added value of the prediction feature is 

considered low. In contrast, if the percentage values are low, 



 

 

Table 1. Average prediction of the symbolic and probabilistic algorithms 

Class Symbolic Probabilistic 

 Among the top three 

classes (%) 

Top class (%) Among the top three 

classes (%) 

Top class (%) 

A  4.2 17.4 9.2 14.6 

B 22.8 57.0 8.0 15.2 

C  5.6 30.0 17.0 56.4 

D 18.8 37.6  4.0 11.4 

E 12.0 22.6  4.2 24.0 

F 16.8 36.0  7.2 77.6 

G 20.8 33.8  3.2 39.8 

H 13.2 13.2 16.4 35.2 

I  3.8  6.8  1.0  1.0 

J 30.0 60.4 19.4 57.6 

K 35.0 65.6 15.2 24.2 

L 20.0 54.8 14.6 49.8 

 

the long-term prediction is efficient. Two measures (M1 and 

M2) are chosen instead of one (M2) because the interface 

shows to the user the three best-ranked classes. Thus, measure 

M1 gives an indication of the right prediction availability 

speed and measure M2 evaluates more rigorously the 

performance of the algorithms. 

6. RESULTS AND DISCUSSION 

Table 1 shows the average values of the percentages 

mentioned in the previous section for each approach 

(probabilistic and symbolic approaches). Column "Class" 

refers to the labels corresponding to the classes. The table 

indicates that both approaches produce satisfactory results for 

the 12 classes. Moreover, the results show that the probabilistic 

approach gives better results compared to the symbolic 

approach, as the percentage values are generally lower for the 

probabilistic method than those for the symbolic one. A 

comparison of the two approaches is presented in Table 2.

Table 2. A comparison of the two approaches 

Algorithm Maximal 

storage 

load 

Quality 

of 

updating 

3rd  1st  

Symbolic 45 bytes real time 

at every 

interval 

17.17% 36.27% 

Probabilistic 184 bytes real time 

at every 

point 

9.95% 33.90% 

 

Storage load stands for the maximal storage load required per 

class (in bytes) to be recorded in a database. For the symbolic 

approach, this corresponds to the longest word (class I) among 

all the classes even though it is theoretically infinite. Indeed, 

the storage load depends on the word length; however, there is 

no interest in executing very long trajectories since they can be 

drawn in several times and it is not practical for a human user 

to draw long trajectories. Thus, the rectangle trajectory is 

assumed to be the longest possible one. For the probabilistic 

approach, 23 (15 position states and 8 direction states) doubles 

per class are needed. Thus, as double numbers are coded with 

8 bytes, 23×8 = 184 bytes are required. As a consequence, in 

terms of storage, the symbolic approach is a better one. 

 

In terms of updating, the probabilistic approach is better in the 

sense that it updates the likelihood scores for every new point, 

whereas the updating is achieved every equal-length interval 

in the symbolic approach. A user who uses the interface with 

the symbolic algorithm would have to wait for the likelihood 

updates at each space interval. This partially explains why the 

results are better with the probabilistic algorithm since this 

approach is "more reactive." The third and fourth columns 

correspond to the averages of the percentages mentioned 

above. The results from the probabilistic algorithm are better 

since the percentages are lower than those obtained with the 

symbolic approach. This means that the correct prediction is 

computed more quickly with the probabilistic approach. Note 

that these results only show that for the set of the 12 classes 

attempted, the probabilistic approach outperforms the 

symbolic one. Even if this trend is true, it has to be confirmed 

by further experiments on larger datasets. 

 

7. CONCLUSION 

The main contribution of this paper is the development of a 

long-term gaze-trajectory prediction application using eye-

tracking data and machine-learning techniques. It is mainly 

designed for teleoperation purposes in a domestic 

environment. For example, a disabled or elderly person can 

control a robot located in another room. Two approaches have 

been developed. The first one, based on descriptive 

probabilities on kinematic models outperforms the symbolic 

approach. Nevertheless, the development of the symbolic 

approach shows that the gaze-trajectory prediction problem 

can be similar to the word-prediction problem in web 

browsers, which is itself very interesting. Furthermore, one 

cannot exclude any symbolic method since well-known word-

prediction algorithms were not tried in this study and well-

known long-term time-series prediction methods were not 

investigated. As a consequence, it would be interesting for 

future developments to compare well-known word-prediction 



 

 

and long-term time-series prediction algorithms with the 

probabilistic approach described in this paper. 
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