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SUMMARY

Adaptive immunity requires the generation of mem-
ory T cells from naive precursors selected in the
thymus. The key intermediaries in this process are
stem cell-likememory T (TSCM) cells, multipotent pro-
genitors that can both self-renew and replenishmore
differentiated subsets of memory T cells. In theory,
antigen specificity within the TSCM pool may be im-
printed statically as a function of largely dormant
cells and/or retained dynamically by more transitory
subpopulations. To explore the origins of immuno-
logical memory, we measured the turnover of TSCM
cells in vivo using stable isotope labeling with heavy
water. The data indicate that TSCM cells in both young
and elderly subjects are maintained by ongoing pro-
liferation. In line with this finding, TSCM cells dis-
played limited telomere length erosion coupled with
high expression levels of active telomerase and
Ki67. Collectively, these observations show that
TSCM cells exist in a state of perpetual flux throughout
the human lifespan.

INTRODUCTION

Antigen encounter drives the formation of heterogeneous mem-

ory T cell populations, which deploy various effector functions

with accelerated kinetics to ensure long-term protective immu-

nity (Chang et al., 2014; Farber et al., 2014). The recently

described stem cell-like memory T (TSCM) subset typically com-

prises 2%–3% of the circulating T cell pool and can be identi-

fied within a naive-like phenotype (CD45RA+CD45RO–CCR7+

CD62L+CD27+CD28+) by expression of the memory marker

CD95 (Gattinoni et al., 2011). In accordance with this definition,

TSCM cells mount anamnestic responses and display gene tran-

script profiles encompassing features of both naive T (TN) and
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central memory T (TCM) cells (Gattinoni et al., 2011). Moreover,

TSCM cells are endowed with considerable proliferative reserves

and can differentiate in vitro and in vivo to reconstitute the entire

spectrum of classically delineated memory T cells (Gattinoni

et al., 2011). These characteristics suggest an antecedent role

for TSCM cells in the complex antigen-driven processes that

ultimately capture and preserve immunological memories.

It is established that TSCM cells persist at stable frequencies

throughout the human lifespan (Di Benedetto et al., 2015). How-

ever, the mechanisms that underlie this remarkable longevity are

incompletely defined. Two mutually non-exclusive possibilities

exist: (1) TSCM cells may endure under conditions of relative

dormancy with prolonged survival; and/or (2) the TSCM pool

may be sustained by ongoing proliferation and cell turnover. In

this study, we provide evidence consistent with the latter sce-

nario and demonstrate that TSCM cells are maintained in a state

of dynamic flux.

RESULTS AND DISCUSSION

To investigate how TSCM cells aremaintained in humans, we con-

ducted a long-term (7-week) stable isotope (2H2O) labeling study

(Figure 1A). Deuterium (2H) enrichment of DNA extracted from

rigorously sort-purified T cell subsets (Figure 1B) was measured

at defined intervals using gas chromatography/mass spectrom-

etry (Neese et al., 2002; Busch et al., 2007). CD4+ andCD8+ TSCM
cells rapidly incorporated 2H during the labeling phase and lost
2H during the delabeling phase (Figures 1D and S1). Moreover,

the fractions of labeled CD4+ and CD8+ TSCM cells were higher

in themajority of subjects comparedwith the corresponding line-

age-defined CD45RA– and CD45RA+CD45RO+ memory T cells

(Figure 2). Consistent with previous reports (Hellerstein et al.,

2003; Ladell et al., 2008; Vrisekoop et al., 2008), we found only

low levels of 2H enrichment in the TN subset. These cells accu-

mulated further label after 2H2O administration was discontin-

ued, likely reflecting TN cell proliferation in lymphoid tissue with

delayed exit into the peripheral blood (Hellerstein et al., 2003).

Given that 2H is incorporated into newly synthesized DNA
rts 17, 2811–2818, December 13, 2016 ª 2016 The Authors. 2811
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Figure 1. Label Incorporation in Naive and Stem Cell-like Memory T Cells

(A) Schematic representation of the 2H2O-labeling protocol and sampling time points.

(B) Successive panels depict the flow cytometric gating strategy used to sort CD4+ andCD8+ TN and TSCM cells. Lymphocytes were identified in a forward-scatter

versus side-scatter plot, and single cells were resolved in a forward-scatter-height versus forward-scatter-area plot. Boolean gates were drawn for analysis only

to exclude fluorochrome aggregates. Live CD3+CD14–CD19– cells were assigned to the CD4+ or CD8+ lineage, and potentially naive CD27brightCD45RO– cells

were separated from memory T cells. Sort gates were then fixed on CCR7+CD95– TN cells and CCR7+CD95+ TSCM cells. Histogram overlays show expression of

CD28, CD45RA, CD57, and CD127 in the TN, TSCM, and memory subsets.

(C) Schematic representation of the mathematical models applied to the labeling data. In the depicted variation, a precursor compartment replenishes TN cells,

which do not proliferate. Two further variations were considered, one eliminating the precursor compartment, and the other assuming TN cell proliferation. Similar

results were obtained with all three variations.

(D) Experimental labeling data (black filled circles) andmodeled curve fits for subject DW01 (young adult). The curve fits for model 1 overlie the curve fits for model 2.
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Figure 2. Comparative Label Enrichment in Naive,

Stem Cell-like Memory and Other Memory T Cells

Experimental labeling data for TN, TSCM, CD45RA
– memory,

and CD45RA+CD45RO+ transitional memory T cells from

subjects DW01, DW09, DW10, and DW11 (young adults), and

DW04, DW03, and DW02 (elderly).
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Figure 3. Ki67 Expression in Naive, Stem Cell-like Memory, and Other Memory T Cells

(A) Intracellular Ki67 expression in the depicted T cell subsets from subject DW01 (young adult). Live CD3+CD14–CD19– lymphocytes within the CD4+ and CD8+

lineages were identified as shown in Figure 1B. Conservative gates were placed around CCR7+CD95– TN cells and CCR7+CD95+ TSCM cells within a naive-like

phenotype (CD45RAbrightCCR7+).

(B) Intracellular Ki67 expression in CD4+ (left) and CD8+ (right) T cell subsets from healthy adult volunteers and subject DW01 (young adult). Peripheral blood

mononuclear cells were stained in triplicate directly ex vivo. Horizontal bars represent mean values with SEs. TCM (CD45RA–CCR7+); TEMRA (CD45RA+CCR7–).

Significance was assessed using a two-tailed Mann-Whitney test. Asterisks indicate p < 0.001 for all comparisons.
generated during cell division, this dataset suggests that TSCM
cells are maintained in vivo by extensive proliferation.

To explore the source of label enrichment within the TSCM
pool, we considered four mathematical models of linear differ-

entiation (Figure 1C). Two scenarios were postulated for TSCM
cells (dividing or non-dividing), and two scenarios were postu-

lated for TN cells (differentiation is accompanied or not accom-

panied by division, with the latter assuming that one TN cell

gives rise to one TSCM cell). The model in which neither TN nor

TSCM cells were free to proliferate could be excluded on the ba-

sis of the labeling data (Figures 1D and S1). Although it was not

possible to separate the remaining models, all three indicated

considerable replacement rates for the TSCM population across

lineages and subjects (median, 0.02 per day; inter-quartile

range, 0.016–0.037 per day). These findings concur with the

empirical view that recurrent cell division sustains the TSCM
compartment.

To substantiate this conclusion, we measured the expression

of Ki67, which is limited to active phases of the cell cycle
2814 Cell Reports 17, 2811–2818, December 13, 2016
(Scholzen and Gerdes, 2000). High frequencies of Ki67+ TSCM
cells were detected in both the CD4+ and CD8+ lineages (Fig-

ures 3A and 3B). In contrast, Ki67+ events were rare in the

corresponding TN populations. A similar dichotomy prevails in

macaques (Lugli et al., 2013). It has been shown previously

that TN cells can divide and retain a naive-like phenotype (Hel-

lerstein et al., 2003; Ladell et al., 2008, 2015). Proliferation is

therefore not necessarily linked with differentiation, a finding

that also holds for TSCM cells in vitro under certain conditions

(Gattinoni et al., 2011). Moreover, TSCM cells stimulated with

the homeostatic cytokine interleukin (IL)-15 in vitro can divide

repeatedly over 10 days, whereas TN cells generally divide

once or twice up to a maximum of four times in the same period

(Gattinoni et al., 2011). These considerations support a model

of self-renewal within the TSCM pool.

To corroborate the finding that TSCM cells manifest higher

rates of turnover in vivo relative to TN cells, we used single

telomere length analysis (Baird et al., 2003) to determine the

replicative history of these distinct subsets (Figures 4A and
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Figure 4. Telomere Lengths in Naive and Stem Cell-like Memory T Cells

(A) Representative single telomere length analysis data from subjects DW02 (elderly), DW01 (young adult), and DW04 (elderly). Single telomere length analysis

was conducted at the XpYp telomere for CD4+ and CD8+ TN and TSCM cells. Mean values and telomere length differentials are shown (bottom).

(B) XpYp telomere length distributions as scatterplots. Significance was assessed using a two-tailed Mann-Whitney test.
S2A). Individual telomere lengths were distributed around a

significantly lower mean in the TSCM population compared

with the TN population (CD4+ T cells, p = 0.0002; CD8+ T cells,

p = 0.0007; two-tailed Mann-Whitney p values pooled by

Fisher’s method) (Figures 4B and S2B). Moreover, TSCM cells

displayed higher levels of telomerase activity than either TN or

other memory T cells (Figure S2C). In the absence of telomerase
activity, telomeres erode by 90 bp each time a population dou-

bles in size (Baird et al., 2003). The telomere length differentials

between TSCM and TN cells ranged from 370 to 1,489 bp

(mean, 787 bp; Figures 4A, 4B, S2A, and S2B), equivalent to a

maximum of almost 17 doublings at the population level. How-

ever, the true proliferative disparity will be substantially larger

because telomerase markedly slows the rate of telomere
Cell Reports 17, 2811–2818, December 13, 2016 2815



erosion. These data are again indicative of considerable turnover

within the TSCM compartment and further suggest a biological

requirement for self-maintenance.

It remains unclear whether the T cell differentiation pathway

is linear or bifurcated, with the latter model proposing that a

single TN cell gives rise to both a short-lived effector and a

long-lived memory T cell (Arsenio et al., 2015; Flossdorf

et al., 2015). There is some evidence for asymmetric division

within the TN pool (Chang et al., 2007; Arsenio et al., 2014),

whereas other reports ascribe stemness to the TCM pool

(Graef et al., 2014). Irrespective of this ongoing debate, TSCM
cells are ideally equipped to amplify and preserve clono-

typically encoded immunological memories (Gattinoni et al.,

2011). In simian immunodeficiency virus-infected macaques,

antigen-specific TSCM cells display a 10-fold greater capacity

to survive compared with TCM cells following the loss of

cognate antigen (Lugli et al., 2013). Similarly, vaccine-induced

TSCM cells can persist for decades with a naive-like profile

(Fuertes Marraco et al., 2015). The TSCM compartment is

also preserved in HIV-infected individuals on long-term anti-

retroviral therapy (Vigano et al., 2015), despite the presence

of a latent viral reservoir in the CD4+ lineage (Jaafoura et al.,

2014; Buzon et al., 2014). Further evidence attests to the pro-

liferative capacity of TSCM cells. In humans, the administration

of cyclophosphamide after allogeneic bone marrow transplan-

tation eradicates TSCM cells, but leaves the TN compartment

largely intact (Roberto et al., 2015). Moreover, immune recon-

stitution is preferentially driven by TSCM cells, at least in mice

(Gattinoni et al., 2011). It therefore seems likely that the rapid

turnover of TSCM cells at the whole-population level reflects a

composite of kinetically distinct subsets, potentially dissoci-

ated by transcriptional integration of variable antigenic stimuli

and other immune activation signals (Cartwright et al., 2014;

Lugli et al., 2013; Roychoudhuri et al., 2016). The data pre-

sented here are consistent with such divergent outcomes

and suggest that nascent immunological memory is encapsu-

lated within fluid cellular networks.

EXPERIMENTAL PROCEDURES

Human Samples

Seven healthy adults participated in the labeling study. Recruitment was strat-

ified to include both young (aged 29–47 years) and elderly (aged 64–83 years)

subjects, all of whom tested seropositive for cytomegalovirus and seronega-

tive for HIV. Further peripheral blood sampleswere obtained from healthy adult

volunteers. Approval was granted by the Cardiff University School of Medicine

and London-Chelsea Research Ethics Committees. All studies were conduct-

ed according to the principles of the Declaration of Helsinki.

In Vivo Labeling

Study participants ingested small doses of 70% deuterated water (2H2O) over

a 7-week period (50ml three times daily for 1 week, then twice daily thereafter).

Saliva samples were collected weekly for evaluation of body water labeling

rates. Peripheral blood was collected at baseline and then at weeks 1, 3, 5,

7, 8, 10, 14, and 18. In one case (DW01), two further samples were collected

(weeks 21 and 32).

Flow Cytometry and Cell Sorting

Peripheral blood mononuclear cells were isolated using standard density

gradient centrifugation and stained with Live/Dead Fixable Aqua (Life
2816 Cell Reports 17, 2811–2818, December 13, 2016
Technologies), and anti-CD14-V500 and anti-CD19-V500 (BD Horizon)

to exclude irrelevant signals from the analysis. The following monoclonal anti-

bodies (mAbs) were used in further stains: (1) anti-CD3-H7APC, anti-CD28-

APC, anti-CD45RA-PE, and anti-CD57-FITC (BD Pharmingen); (2) anti-CD4-

Cy5.5PE and anti-CD27-QD605 (Life Technologies); (3) anti-CD45RO-ECD

(Beckman Coulter); and (4) anti-CD8-BV711, anti-CD127-BV421, and anti-

PD-1-BV421 (BioLegend). Naive (CD27brightCD45RO–CCR7+CD95–), stem

cell-like memory (CD27brightCD45RO–CCR7+CD95+), transitional memory

(CD45RA+CD45RO+), and memory (CD45RA–) CD4+ and CD8+ T cells were

sorted at >98% purity using a custom-modified FACSAria II flow cytometer

(BD Biosciences). Intracellular expression of Ki67 was evaluated separately

using an Alexa Fluor 647-conjugated mAb in conjunction with a Cytofix/Cyto-

perm Kit (BD Biosciences). Data were analyzed with FlowJo software, version

9.7.6 (Tree Star).

Measurement and Analysis of 2H Enrichment in T Cell DNA

The stable isotope-based method for measuring T cell proliferation has been

described previously (Hellerstein et al., 1999; McCune et al., 2000; Neese

et al., 2001). Additional precautions and controls were incorporated to

ensure the accurate quantification of 2H enrichment in low-abundance sam-

ples (Busch et al., 2007). Briefly, DNA from sort-purified T cell subsets was

released by boiling and hydrolyzed according to standard protocols. Deoxy-

ribonucleosides were derivatized using pentafluorobenzyl hydroxylamine

(Sigma-Aldrich). Gas chromatography/mass spectrometry (Agilent 5873/

6980) was performed in negative chemical ionization mode using a DB-17

column (J&W Scientific; Agilent). The M+1/M+0 isotopomer ratio was moni-

tored at mass-to-charge (m/z) 436/435. To normalize for body water enrich-

ment, weekly saliva samples were analyzed for 2H2O content via calcium

carbide-induced acetylene generation, monitoring at m/z 27/26 (Previs

et al., 1996).

Single Telomere Length Analysis

DNA was extracted from 3,000 sort-purified T cells using a QIAmp DNA Micro

Kit (QIAGEN). Single telomere length analysis was carried out at the XpYp telo-

mere as described previously (Capper et al., 2007). Briefly, 1 mM of the Telor-

ette-2 linker was added to purified genomic DNA in a final volume of 40 mL per

sample. Multiple PCRs were performed for each test DNA in 10-mL volumes

incorporating 250 pg of DNA and 0.5 mM of the telomere-adjacent and Teltail

primers in 75 mM Tris-HCl pH 8.8, 20 mM (NH4)2SO4, 0.01% Tween-20, and

1.5mMMgCl2, with 0.5 U of a 10:1mixture of Taq (ABGene) and Pwo polymer-

ase (Roche Molecular Biochemicals). The reactions were processed in a

Tetrad2 Thermal Cycler (Bio-Rad). DNA fragments were resolved by 0.5%

Tris-acetate-EDTA agarose gel electrophoresis and identified by Southern hy-

bridization with a random-primed a-33P-labeled (PerkinElmer) TTAGGG repeat

probe, together with probes specific for the 1-kb (Stratagene) and 2.5-kb (Bio-

Rad) molecular weight markers. Hybridized fragments were detected using a

Typhoon FLA 9500 Phosphorimager (GE Healthcare). The molecular weights

of the DNA fragments were calculated using a Phoretix 1D Quantifier

(Nonlinear Dynamics).

Telomerase Activity

Sort-purified T cells were lyzed and assayed in two steps using a modified

SYBR Green real-time quantitative telomerase repeat amplification protocol

(Wege et al., 2003). Standard curves were obtained from serial dilutions of a

293T cell extract with known telomerase activity. Experimental telomerase

activity was calculated with reference to 293T cells and expressed as relative

telomerase activity (Ct293T/Ctsample).

Mathematical Modeling

Four mathematical models describing the relationship between TN and TSCM
cells were constructed using ordinary differential equations and fitted to the

labeling data in R. Two variations were also considered for eachmodel: (1) pro-

liferation was factored into the peripheral blood TN pool; and (2) the precursor

compartment was omitted for TN cells. None of these variants yielded better

predictions than the original models. The following equations were used to



describe the rate of change of the fraction of labeled DNA in the precursor and

TN compartments:

_FA = rAðcU� FAÞ

_FTN = ðd1 +DÞðFA � FTNÞ;

where rA represents the rate at which naive cells move from A to TN, d1 is the

disappearance rate of TN cells in the blood, D is the differentiation rate (asso-

ciated with proliferation in models 1 and 2) of TN into TSCM cells, c is the ampli-

fication factor for enrichment, and U is the function describing labeling and

delabeling in saliva. The following equations were used for the TSCM pool:

Model 1 : _FTSCM =
DTN

TSCM

ðcU+FNÞ+pcU�
�
2DTN

TSCM

+p

�
FTSCM

Model 2 : _FTSCM =
DTN

TSCM

ðcU+FN � 2FTSCMÞ

Model 3 : _FTSCM =
DTN

TSCM

FN +pcU�
�
DTN

TSCM

+p

�
FTSCM

Model 4 : _FTSCM =
DTN

TSCM

ðFN � FTSCMÞ;

where p is the rate of proliferation within the TSCM pool and TN=TSCM is the ratio

of the sizes of the TN and TSCM pools measured experimentally. Model fits

were compared using the corrected Akaike information criterion (Burnham

and Anderson, 2002).

Statistical Analysis

Telomere lengths between the TN and TSCM populations were compared using

a two-tailed Mann-Whitney test. The p values were pooled using Fisher’s

method.
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Supplemental Figure 1 (related to Figure 1): 
 

 
 
Supplemental Figure 1. Label incorporation in naïve and stem cell-like memory 

T cells. Experimental labeling data (black filled circles) and modeled curve fits for 

subjects DW09, DW10 and DW11 (young adults), and DW04, DW03 and DW02 

(elderly). 
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Supplemental Figure 2 (related to Figure 4): 

Supplemental Figure 2. Telomere lengths and telomerase activity in naïve and 

stem cell-like memory T cells. (A) Representative STELA data from subjects DW10 

and DW11 (young adults). STELA was conducted at the XpYp telomere for CD4+ and 

CD8+ TN and TSCM cells. Mean values and telomere length differentials are shown 

(bottom). (B) XpYp telomere length distributions as scatter plots. Significance was 



assessed using a two-tailed Mann-Whitney test. (C) Relative telomerase activity for 

CD4+ and CD8+ TN, TSCM and memory T (TM) cells from subjects DW02 and DW04 

(elderly). TM cells are segregated as CD57− (less differentiated) and CD57+ (more 

differentiated). Horizontal bars represent mean values with standard errors. 
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