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Abstract

We present a new construction of the Student and Student-like fractal activity time model for risky asset.

The construction uses the diffusion processes and their superpositions and allows for specified exact Student

or Student-like marginal distributions of the returns and for flexible and tractable dependence structure.

The fractal activity time is asymptotically self-similar, which is a desired feature seen in practice.

Key Words: Risky asset model; Student distribution; geometric Brownian motion; Fractal

activity time; reciprocal gamma diffusion; option pricing formula.

1 Introduction

The fit of the classical Black-Scholes-Merton (BSM) geometric Brownian motion (GBM) has been questioned

in the last decade based on real financial data. Empirically derived ‘stylized features’ of returns (logarithmic

asset returns) summarized by Granger [13] includes: good approximation of the returns by uncorrelated

identically distributed random variables, dependence of squared returns; and distributions that are heavier-

tailed and higher-peaked than Gaussian distributions. A number of models that incorporate non-Gaussian

distributions and/or dependence in returns have been proposed in [1; 8; 9; 14; 15; 16; 18; 20; 21], and

many others. The stochastic volatility model of Barndorff-Nielsen and Shephard [1] generalized GBM by

considering a continuous time stochastic volatility process constructed via superpositions of the Ornstein-

Uhlenbeck (OU) processes.
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In the present paper, we use a fractal activity time geometric Brownian motion (FATGBM) model, proposed

by Heyde [14] and elaborated on for Variance Gamma and Student distributions [8; 9; 19; 20; 21]. Models

with Variance Gamma and normal inverse Gaussian distributions of the returns were considered in [8; 9; 15;

19; 20; 21] using OU type and diffusion-type processes and their superpositions. In this paper, we consider

two constructions of activity time. First construction is based on the reciprocal gamma diffusion type

processes [15], [18]. This construction leads to stationary returns with exact Student marginal distribution.

Under short-range dependence of the returns, we obtain explicit pricing formula based on the asymptotic

self-similarity of the activity time. The second construction uses a superposition of two reciprocal gamma

diffusion type processes. The important advantages of the second construction are the ability to incorporate

more complicated dependence structure.

Some model for a risky assets with the heavy-tailed returns has been proposed by Borland [6], where the

random variable affecting returns had been modeled according to an anomalous Wiener process characterized

by a Tsallin distribution of index q, the so called q-Gaussian distribution. The q-Gaussian distribution is in

fact the Student distribution with different parametrization.

2 The Fractal Activity Time Model

Let Tt, t ≥ 0, be a random time change or fractal activity time, that is, positive nondecreasing process such

that T0 = 0, and let Wt, t ≥ 0, be a standard Brownian motion independent of the process Tt.

We consider the model for the stock price

Pt = P0e
µt+θTt+σWTt , t ≥ 0, (1)

where parameters µ ∈ R and σ > 0 reflect drift and diffusion, and θ ∈ R. It is known that under some set

of conditions, Pt, t ≥ 0, is the strong solution of the following stochastic differential equation (SDE) (see

Kobayashi [17])

dPt = µPtdt+ (θ + σ2/2)PtdTt + σPtdWTt
, t ≥ 0.

The increments over unit time are τt = Tt − Tt−1, t = 1, 2, . . . and the returns are given by

Xt = log

(

Pt

Pt−1

)

d
= µ+ θτt + στ

1
2
t W1, (2)

where
d
= denotes equality in distribution.

For our construction, the fractal activity time Tt is defined as follows (see Kerss et al [16]):

T0 = 0, Tt =

[t]
∑

i=1

τi + τ[t]+1(t− [t]), (3)

where {τs, s ≥ 0} is a stationary process with heavy-tailed marginal distribution.
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For modeling the increments over time τt with a stationary OU processes with Inverse Gamma, Inverse Gaus-

sian or Tampered Stable distribution, see Leonenko et al [16; 19]. These constructions modeled the returns

by stochastic processes with Student, Normal Inverse Gaussian or Normal Tempered Stable distribution

correspondingly.

In this paper we use two different models for the stationary process {τs, s ≥ 0}:
Model 1: Define τi = τ

(1)
i = Yi, i = 0, 1, 2, . . ., where {Yt, t ≥ 0} is an ergodic Markov process such that

dYt = −ω

(

Yt −
α

β − 1

)

dt+

√

2ω

β − 1
Y 2
t dWt, t ≥ 0, (4)

where ω > 0, α > 0, β > 1 and W = {Wt, t ≥ 0} is a standard Brownian motion.

The stochastic differential equation given by (4) has a unique Markovian weak solution and the diffusion

process Y that solves it is ergodic with reciprocal gamma RΓ (β, α) as invariant density (see [18] and formula

(5) below).

Model 2: Define

τi = τ
(2)
i = Y

(1)
i + Y

(2)
i , i = 0, 1, 2, ...,

where {Y (1)
t , t ≥ 0} and {Y (2)

t , t ≥ 0} are independent processes such that

dY
(j)
t = −ω(j)

(

Y
(j)
t − α(j)

β(j) − 1

)

dt+

√

2ω(j)

β(j) − 1
(Y

(j)
t )2 dW

(j)
t , j = 1, 2, t ≥ 0,

where W
(j)
t , j = 1, 2 are the independent copies of the standard Brownian motion.

In this paper we develop the distribution theory for the returns (2) in which the dynamic of τt is given by

one of these two models respectively and prove the asymptotic self-similarity of the fractal activity time Tt.

Concerning the associated stock price processes, we determine the relationship between some parameters in

order to achieve the martingatily of the discounted prices and recover a close options pricing formula that

improves in respect to the classical BSM formula the reproduction of the real option quotes. Note the idea

of superposition belongs to Barndorff-Nielsen and Sheppard (2001) [1] (see also [2] and [4]).

3 Distribution Theory

3.1 Results for model 1

For our first construction the increments of activity time process Tt defined in (3) have a reciprocal gamma

RΓ(β, α) stationary distribution with probability density function (pdf)

rg(x) =
αβ

Γ(β)
x−β−1e−

α
x Ix>0, (5)

where α > 0, β > 0, and I. is the indicator.
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We need to find for our first model the probability distribution function for the returns and show that this

construction leads to stationary returns with exact Student marginal distribution. Also we need to find

moments for the increments of activity time and for returns. It will be used for options pricing formula. We

also examine the auto-correlation structure of returns and make sure that returns are dependent.

Remark 1 If the distribution of τt is RΓ
(

ν
2 ,

δ2

2

)

, where δ > 0, ν > 0, then moment of the k-th order is

given by

E[τkt ] =

(

δ2

2

)k
Γ( ν2 − k)

Γ( ν2 )
,

ν

2
> k. (6)

Thus, we have the explicit expressions for the mean and variance of τt:

E[τt] =
δ2

ν − 2
, ν > 2, Var[τt] =

2δ4

(ν − 2)2(ν − 4)
, ν > 4. (7)

In the Model 1 assuming θ = 0 and σ = 1, the returns Xt given by (2) is stationary process with marginal

Student T (µ, δ, ν) distribution

f(x) =
Γ( ν+1

2 )

δ
√
πΓ( ν2 )

1

[1 + (x−µ
δ )2]

ν+1
2

, x ∈ R, (8)

where µ ∈ R is a location parameter, δ > 0 is a scaling parameter, ν > 0 is a tail index.

The moments of the returns Xt are given by

E{Xt − E[Xt]}n =
Γ(n+1

2 )Γ( ν−n
2 )

Γ( ν2 )
√
π

δnIν>n=2k, k∈N = Sn(ν)Iν>n=2k, k∈N,

where

Sn(ν) =
Γ(n+1

2 )Γ( ν−n
2 )

Γ( ν2 )
√
π

δn. (9)

If Y0 ∼ RΓ
(

ν
2 ,

δ2

2

)

, then Yt is a stationary process with marginal density RΓ
(

ν
2 ,

δ2

2

)

and the autocorrelation

function for Yt is given by

ρ(k) = Corr(Ys+k, Ys) = e−ωk, k ≥ 0, s ≥ 0.

Proposition 1 If Xt is a stochastic process given by (2), when τt as in model 1, then, for any integer k ≥ 0:

1.

Cov(Xt, Xt+k) =
2θ2δ4

(ν − 2)2(ν − 4)
e−ωk; (10)

in particular Covθ=0(Xt, Xt+k) = 0.

2.

Cov(X2
t , X

2
t+k) =

δ4

(ν − 2)(ν − 4)

[

2(σ2 + 2θµ)2

ν − 2
e−ωk+

θ4δ4
[

8

(ν − 4)(ν − 6)2(ν − 8)
e−ωk ν−4

ν−2 +
8

(ν − 2)(ν − 6)2
e−ωk

]

+ (θ2σ2 + 2θ3µ)
8δ2

(ν − 2)(ν − 6)
e−ωk

]

;

(11)
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in particular

Covθ=0(X
2
t , X

2
t+k) =

2δ4σ4

(ν − 2)2(ν − 4)
e−ωk.

Proof. For the covariance function, we obtain:

Cov(Xt, Xt+k) = Cov(µ+ θτt + σ
√
τtW

(1)
1 , µ+ θτt+k + σ

√
τt+kW

(2)
1 ) =

E[(θτt + σ
√
τtW

(1)
1 − θE[τt])(θτt+k + σ

√
τt+kW

(2)
1 − θE[τt+k])] =

= θ2(E[τtτt+k]− E[τt]E[τt+k]) = θ2Cov(τt, τt+k), (12)

where the second equation follows from the fact that E[Xt] = µ+θE[τt], and the third from the independence

between the two stochastic processes.

We have

Cov(X2
t , X

2
t+k) = (σ4 + 4θ2µ2 + 4θµσ2)Cov(τt, τt+k)+

θ4Cov(τ2t , τ
2
t+k) + (θ2σ2 + 2θ3µ)(Cov(τ2t , τt+k) + Cov(τt, τ

2
t+k)) =

(σ2 + 2θµ)2Cov(τt, τt+k) + θ2Cov(τ2t , τ
2
t+k) + 2(θ2σ2 + 2θ3µ)Cov(τ2t , τt+k). (13)

Moreover, τt is a reciprocal Gamma diffusion, then Corr(τt, τt+k) = e−ωk with variance given by (6). Using

an exact form of transition density of a reciprocal gamma diffusion obtained in [18], we have

E[τtτt+k] =
δ4

(ν − 2)2

(

2

(ν − 4)
e−ωk + 1

)

,

E[τ2t τ
2
t+k] =

δ8

(ν − 2)(ν − 4)

[

8

(ν − 4)(ν − 6)2(ν − 8)
e−ωk ν−4

ν−2 +
8e−ωk

(ν − 2)(ν − 6)2
+

1

(ν − 2)(ν − 4)

]

,

E[τtτ
2
t+k] = E[τ2t , τt+k] =

δ6

(ν − 2)2(ν − 4)

(

4

ν − 6
e−ωk + 1

)

.

(14)

Elaborating these expressions, we recover

Cov(τt, τt+k) =
2δ4

(ν − 2)2(ν − 4)
e−ωk,

Cov(τ2t , τ
2
t+k) =

δ8

(ν − 2)(ν − 4)

[

8

(ν − 4)(ν − 6)2(ν − 8)
e−ωk ν−4

ν−2 +
8

(ν − 2)(ν − 6)2
e−ωk

]

,

Cov(τ2t , τt+k) =
δ6

(ν − 2)2(ν − 4)

(

4

ν − 6
e−ωk

)

,

(15)

and thus, substituting (14), (15) back into (12), (13), we obtain (10), (11).
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3.2 Results for model 2

In order to increase the correlation of returns, we introduce the second model, in which τt is the sum of

two independent stochastic processes with reciprocal gamma marginal distributions. Indeed, let the activity

time process Tt be given by (3), in which τi = τ
(2)
i = Y

(1)
i + Y

(2)
i , i = 0, 1, 2, ..., where Y

(1)
t and Y

(2)
t are

independent stationary processes such that Y
(j)
t ∼ RΓ(βj , αj), j = 1, 2.

The stochastic process Y
(1)
t + Y

(2)
t , t ≥ 0 is stationary and its marginal density is a convolution of two

reciprocal gamma density.

Similarly to Kerss et al [16], our approach for option pricing formulas depends upon the knowledge of the

density function of the sum of two independent reciprocal gamma distribution.

An important result in this direction is given by Giron and Castillo [12], who had showed that under some

restrictions on the shape parameters the convolution of reciprocal gamma distributions is distributed as a

finite mixture of reciprocal gamma distributions all having the same scale parameter.

If Y
(1)
t ∼ RΓ

(

n+ 1
2 , α1

)

and Y
(2)
t ∼ RΓ

(

m+ 1
2 , α2

)

then the convolution of Y
(1)
t and Y

(2)
t is distributed as

the following mixture (see [12]):

Y
(1)
t + Y

(2)
t ∼

m+1
∑

i=1

piRΓ

(

n− 1

2
+ i, (

√
α1 +

√
α2)

2

)

, (16)

where the weights pi ≥ 0,
∑m+1

i=1 pi = 1 can be obtained from the following formula, derived in [12]:

pm+1 =

√
πΓ(n+m+ 1

2 )

Γ(n+ 1
2 )Γ(m+ 1

2 ))

(
√
α1)

n(
√
α2)

m

(
√
α1 +

√
α2)n+m

,

pj+1 = 22j+2Γ

(

n+
1

2
+ j

)





cγn+j

22j+2
√
π(
√
α1 +

√
α2)n+j

−
m+1
∑

i=j+2

pi

22jΓ(n− 1
2 + i)

(n+ 2j − 2− j)!

(n+ j)!(i− 1− j)!



 ,

j = 0, 1, 2, ...,m− 1,

where

c =
π

22(n+m)Γ(n+ 1
2 )Γ(m+ 1

2 )
,

γk = 22k
k
∑

i=0

(2n− i)!

(i)!(n− i)!

(2m− k + i)!

(k − i)!(m− k + i)!
(
√
α1)

i(
√
α2)

k−i, k = 0, 1, ..., n,

γn+k = 22(n+k)
n
∑

i=0

(2n− i)!

(i)!(n− i)!

(2m− n− k + i)!

(n+ k − i)!(m− n− k + i)!
(
√
α1)

i(
√
α2)

n+k−i, k = 0, 1, ...,m− n,

γm+k = 22(m+k)
n
∑

i=k

(2n− i)!

(i)!(n− i)!

(m− k + i)!

(m+ k − i)!(i− k)!
(
√
α1)

i(
√
α2)

m+k−i, k = 0, 1, ..., n.
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Remark 1 We obtain the density of the increments of activity time process Tt as follows:

if τi = Y
(1)
i + Y

(2)
i , i = 0, 1, 2, ..., then it is distributed as the mixture (16) with density

f
Y

(1)
t +Y

(2)
t

(x) =

m+1
∑

i=1

pifRΓ

(

n− 1

2
+ i, (

√
α1 +

√
α2)

2, x

)

, x > 0. (17)

Remark 2 Denoting

(
√
α1 +

√
α2)

2 =
δ2

2
, n− 1

2
+ i =

νi
2
, i = 1, 2, ...,m+ 1, (18)

then moments of all orders are given by

E[τkt ] =
m+1
∑

i=1

pi

(

δ2

2

)k
Γ
(

νi

2 − k
)

4Γ
(

νi

2

) ,
νi
2

> k.

In particular,

E[τt] =

m+1
∑

i=1

pi
δ2

νi − 2
, min
i=1,...m+1

νi > 2; Var[τt] =

m+1
∑

i=1

pi
2δ4

(νi − 2)2(νi − 4)
, min

i=1,...m+1
νi > 4. (19)

The characteristic function of the returns can be expressed in form of the mixture of the modified Bessel

function of the third kind, Kλ(x), as shown in the next statement.

Proposition 2 Let τt = Y
(1)
t + Y

(2)
t be a sum of two independent reciprocal gamma diffusions: Y

(1)
t ∼

RΓ
(

ν1

2 ,
δ21
2

)

, Y
(2)
t ∼ RΓ

(

ν2

2 ,
δ22
2

)

Then, the characteristic function of the returns 2 for θ = 0, σ = 1, is

given by

φX(ζ) = EeiζXt = eiζµ
m+1
∑

i=1

piφT (ζ, δ, νi), (20)

where φT (ζ, δ, νi) = Kνi/2(δ |ζ|)(δ |ζ|)νi/221−(νi/2)/Γ
(

νi

2

)

, i ∈ {1, 2, ...,m + 1} is the characteristic function

of the symmetric Student distribution.

The moments of returns Xt are of the form:

E{Xt − E[Xt]}n =

m+1
∑

i=1

piSn(νi)Iνi>n=2k, k∈N, t = 1, 2, ..., (21)

denoting Sn(νi) as in (9).

Proof. The characteristic function of the returns Xt
d
= µ +

√
ϑtZ, where the random variable Z has the

standard normal distribution N(0, 1) and ϑt is distributed as the mixture (16), is of the form:

φX(ζ) = eiζµ
∫

∞

0

e−( ζ2

2 )xfϑ(x)dx =

= eiζµ
∫

∞

0

e−( ζ2

2 )x
m+1
∑

i=1

pifRΓ

(

n− 1

2
+ i, (

√
α1 +

√
α2)

2

)

dx.

7



Using the Remark 2, we have

φX(ζ) = eiζµ
m+1
∑

i=1

pi

∫

∞

0

e−(ζ2/2)xfRΓ(
νi
2
,
δ2

2
)dx = eiζµ

m+1
∑

i=1

piKνi/2(δ |ζ|)(δ |ζ|)νi/221−(νi/2)/Γ
(νi
2

)

.

The moments of the returns Xt can be then obtained easily.

Remark 3 We obtained an explicit expressions for the first four central moments of the returns:

µ2 = E[(Xt − µ)2] =

m+1
∑

i=1

pi
δ2

νi − 2
, min

i=1,...m+1
{νi} > 2 µ3 = E[(Xt − µ)3] = 0,

µ4 = E[(Xt − µ)4] =

m+1
∑

i=1

pi
3δ4

(νi − 4)(νi − 2)
, min
i=1,...m+1

{νi} > 4.

Let τt = Y
(1)
t + Y

(2)
t be a sum of two independent reciprocal Gamma diffusions, Y

(j)
t ∼ RΓ

(

νj

2 ,
δ2j
2

)

with

correlation coefficients ωj , j = 1, 2. Let us find Cov(τt, τt+k), Cov(τ
2
t , τt+k) and Cov(τ2t , τ

2
t+k). We have

Cov(τt, τt+k) = Cov(Y
(1)
t + Y

(2)
t , Y

(1)
t+k + Y

(2)
t+k) = Cov(Y

(1)
t , Y

(1)
t+k) + Cov(Y

(2)
t , Y

(2)
t+k),

Cov(τ2t , τ
2
t+k) = Cov

(

(Y
(1)
t + Y

(2)
t )2, (Y

(1)
t+k + Y

(2)
t+k)

2
)

=

Cov
(

(Y
(1)
t )2 + (Y

(2)
t )2 + 2Y

(1)
t Y

(2)
t , (Y

(1)
t+k)

2 + (Y
(2)
t+k)

2 + 2Y
(1)
t+kY

(2)
t+k

)

=

Cov
(

(Y
(1)
t )2, (Y

(1)
t+k)

2
)

+Cov
(

(Y
(2)
t )2, (Y

(2)
t+k)

2
)

+ 4E[Y
(2)
t ][E[(Y

(1)
t )2Y

(1)
t+k]− E[Y

(1)
t ]E[(Y

(1)
t )2]]

+4E[Y
(1)
t ][E[(Y

(2)
t )2Y

(2)
t+k]− E[Y

(2)
t ]E[(Y

(2)
t )2]] + 4E[Y

(1)
t Y

(1)
t+k]E[Y

(2)
t Y

(2)
t+k)]− 4E[Y

(1)
t ]2E[Y

(2)
t ]2.

The mixed covariance is calculated in the same way and it is given by:

Cov(τ2t , τt+k) = Cov(τt, τ
2
t+k) =

Cov
(

(Y
(1)
t )2, Y

(1)
t+k

)

+Cov
(

(Y
(2)
t )2, Y

(2)
t+k

)

+ 2E[Y
(2)
t ]Cov

(

Y
(1)
t , Y

(1)
t+k

)

+ 2E[Y
(1)
t ]Cov

(

Y
(2)
t , Y

(2)
t+k

)

.

Using (14), (15) and (7) for diffusions Y
(1)
t and Y

(2)
t , we can get

Cov(τt, τt+k) = e−ω1k
2δ41

(ν1 − 2)2(ν1 − 4)
+ e−ω2k

2δ42
(ν2 − 2)2(ν2 − 4)

, (22)

Cov(τ2t , τ
2
t+k) =

=
δ81

(ν1 − 2)(ν1 − 4)

[

8

(ν1 − 4)(ν1 − 6)2(ν1 − 8)
e−ω1k

ν1−4
ν1−2 +

8e−ω1k

(ν1 − 2)(ν1 − 6)2

]

+

+
δ82

(ν2 − 2)(ν2 − 4)

[

8

(ν2 − 4)(ν2 − 6)2(ν2 − 8)
e−ω2k

ν2−4
ν2−2 +

8e−ω2k

(ν2 − 2)(ν2 − 6)2

]

+

+
4δ22

ν2 − 2

[

δ61
(ν1 − 2)2(ν1 − 4)

(

4

ν1 − 6
e−ω1k

)]

+
4δ21

ν1 − 2

[

δ62
(ν2 − 2)2(ν2 − 4)

(

4

ν2 − 6
e−ω2k

)]

+

+
4δ41δ

4
2

(ν1 − 2)2(ν2 − 2)2

(

4

(ν1 − 4)2(ν2 − 2)2
e−(ω1+ω2)k +

2

(ν1 − 4)2
e−ω1k +

2

(ν2 − 4)2
e−ω2k

)

;

(23)
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Cov(τ2t , τt+k) =

=
δ61

(ν1 − 2)2(ν1 − 4)

(

4

ν1 − 6
e−ω1k

)

+
δ62

(ν2 − 2)2(ν2 − 4)

(

4

ν2 − 6
e−ω2k

)

+

4δ22δ
4
1e

−ω1k

(ν2 − 2)(ν1 − 2)2(ν1 − 4)
+

4δ21δ
4
2e

−ω2k

(ν1 − 2)(ν2 − 2)2(ν2 − 4)
. (24)

Using (12) and (13) we can easy get the correlation structure of the stochastic process Xt for model 2, as

shown in the next proposition.

Proposition 3 If Xt is the stochastic process given by (2), when τt = Y
(1)
t +Y

(2)
t is a sum of two independent

reciprocal Gamma diffusions as in model 2, then, for any integer k ≥ 0 we have:

1.

Cov(Xt, Xt+k) = θ2Cov(τt, τt+k) = θ2
(

e−ω1k
2δ41

(ν1 − 2)2(ν1 − 4)
+ e−ω2k

2δ42
(ν2 − 2)2(ν2 − 4)

)

,

in particular Covθ=0(Xt, Xt+k) = 0;

2. Cov(X2
t , X

2
t+k) can be expressed as (13), where Cov(τt, τt+k), Cov(τ

2
t , τt+k), Cov(τ

2
t , τ

2
t+k) are given

by (22), (23), (24) correspondingly; in particular

Covθ=0(X
2
t , X

2
t+k) = σ4Cov(τt, τt+k) = σ4

(

e−ω1k
2δ41

(ν1 − 2)2(ν1 − 4)
+ e−ω2k

2δ42
(ν2 − 2)2(ν2 − 4)

)

.

3.3 Asymptotic self-similarity of the activity time process

Let D[0, 1] be the Skorokhod space (see [5]). We will show that the activity time process Tt is asymptoti-

cally self-similar in both models. We remain that the standard Brownian motion is self-similar with Hurst

parameter H = 1/2, that is Wat
d
=

√
aWt, for any a > 0, t ≥ 0.

Proposition 4 For M = 1, 2 and t ∈ [0, 1] :

1

cM
√
N

(T[Nt] − E[T[Nt]]) ⇒ Wt, as N → ∞ t ∈ [0, 1] (25)

in the sense of weak convergence ”⇒” in the space D[0, 1] with Skorokhod topology. The normalizing constant

is given by

c21 =
2δ4

(ν − 2)2(ν − 4)

eω1 + 1

eω1 − 1
, M = 1, (26)

for the first model and by

c22 =

m+1
∑

i=1

pi
2δ4

(νi − 2)2(νi − 4)

eω2 + 1

eω2 − 1
, M = 2,

for the second model.
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Proof. If M = 1, then τt = τ
(1)
t = Yt, t = 0, 1, 2, ..., is a strong mixing process. We note that the strong

mixing condition with exponential mixing rate for a class of mean-reversing diffusions are proven in [11].

Moreover in [18] these conditions are checked for inverted gamma mean-reversing diffusion processes. Thus,

the stochastic process Yt, t = 0, 1, 2, ..., satisfies the strong mixing condition with exponential mixing rate

and according to Theorem 20.1 (see [5]) we obtain (25) with normalizing constant (26).

Really in this case (τ1 = τ) :

Var[

N
∑

i=1

τi] = Var(τ)

N
∑

i=1

N
∑

j=1

Corr(τi, τj) =

= Var(τ)N

N−1
∑

r=−(N−1)

(1− |r|
N

)Corr(τ0, τr),

and since
∞
∑

r=−∞

|Corr(τ0, τr)| < ∞,
∞
∑

r=−∞

Corr(τ0, τr) 6= 0,

we have as N → ∞

lim
1

N
Var[

N
∑

i=1

τi] = Var(τ)

∞
∑

r=−∞

Corr(τ0, τr) =

= Var(τ)[1 + 2

∞
∑

r=1

Corr(τ1, τr+1)] =

= Var(τ) + 2

∞
∑

i=1

Cov(τ1, τi+1) = c21,

where

c21 =
2δ4

(ν − 2)2(ν − 4)
+ 2

2δ4

(ν − 2)2(ν − 4)

∞
∑

i=1

e−ω1i =
2δ4

(ν − 2)2(ν − 4)

eω1 + 1

eω1 − 1
.

For the model 1 and model 2, τ
(1)
t and τ

(2)
t , t = 0, 1, 2, ..., are strong mixing processes with exponential

mixing rates. Sum of two strong mixing processes is also strong mixing processes (see [10]), and weak

convergence in D[0, 1] holds by standard arguments. The constant can be computed using the distribution

theory for model 2. Namely,

c22 =

m+1
∑

i=1

pi
2δ4

(νi − 2)2(νi − 4)
+ 2

m+1
∑

i=1

pi
2δ4

(νi − 2)2(νi − 4)

∞
∑

j=1

e−ω2j =

=

m+1
∑

i=1

pi
2δ4

(νi − 2)2(νi − 4)

eω2 + 1

eω2 − 1
.

Therefore, the asymptotic self-similarity with Hurst parameter H = 1
2 holds for both models.

The asymptotic self-similarity established in the previous section can be used to compute prices of the

European call options.
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4 Option Pricing

Let C(Y,K) be the price of a European call option with expiry Y (time to mature) and strike price K. Let

r be the interest rate. Using approach known as skew-correcting martingale (see [15]), one can prove the

following statement.

Proposition 5 Let C(Y,K) be the price of an European call option with strike price K and time to mature

Y , let the market evolves with the following dynamics for the risky and non-risky asset price with interest

rate r:

Pt = P0e
µt+θTt+σWTt , t ≥ 0, Bt = B0e

rt,

where Tt is positive, nondecreasing stochastic process.

Then the price C(Y,K) is given by:

C(Y,K) =

∫

∞

0

(P0Φ(d1)−Ke−rY Φ(d2))fTY
(t) dt, (27)

where

d1 =
log P0

K + rY + 1
2σ

2t

σ
√
t

, d2 =
log P0

K + rY − 1
2σ

2t

σ
√
t

(28)

are both functions of t, and Φ(·) is a standard normal cumulative distribution function. The density fTY
for

model 1 can be taken approximately as the density of the random variable:

1√
Y
fRΓ

(

u− E[τ
(1)
1 ](

√
Y − Y )√

Y
,
ν

2
,
δ2

2

)

, (29)

where E[τ
(1)
1 ] is given by (7). The density fTY

for model 2 can be taken approximately as the density of the

random variable:
1√
Y

m+1
∑

i=1

pifRΓ

(

u− E[τ
(2)
1 ](

√
Y − Y )√

Y
,
νi
2
,
δ2

2

)

, (30)

where E[τ
(2)
1 ] is given by (19).

Proof. The proof is based on the ideas of the paper [15]. We need to show that {e−rtPt} is a martingale,

where Pt is the price of a risky asset and e−rt is the discounting factor. Consider the σ-algebra Fs of the

information available up until time s: Fs = σ{{B(u), u ≤ Ts}, {Tu, u ≤ s}}. Then we have

E(e−rtPt|Fs) = e−rsPse
(µ−r)(t−s)E(e(θ+

1
2σ

2)(Tt−Ts)|Fs),

as shown in Finlay and Seneta (2006). Start with a real-world model with no θ parameter (θ = 0), and

introduce θ in the form θ = − 1
2σ

2 to price options. Then e−rtPt is a martingale as desired. This is a

”skew-correcting martingale” because θ determines skewness. Under this risk-neutral model, the European

call option price is determined by (27). Given P0,K, Y, r, σ, and fTY
, expectation (27) can be numerically
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evaluated. Note that we have made no assumptions about the distribution of TY , so as long as our model

has the subordinator structure and all expectations are finite, then this pricing formula is valid. The

approximation of density fTY
is based on the asymptotic self-similarity of TY . As showed in [15] using

self-similarity (25), the density fTY
can be taken as the density of Y E[τ1] +

√
Y (T1 − E[τ1]) approximately.

Thus, for model 1 the distribution of T1
d
= τ

(1)
1 is RΓ(x, ν

2 ,
δ2

2 ) and therefore we get (29). In the same spirit

one can prove that for the model 2 the density fTY
is approximated by (30).

Remark 2 If TY = t, then (27) reduces to the classical BSM formula.

Remark 3 The put option price comes from call-put parity relation:

put price = call price− stock price+ present value of exercise price.

5 Conclusion

The paper developed a FATGBM model with the following features of stock returns, which are quite well

documented in the financial and econometric literature: i) the stochastic processes have continuous paths;

ii) the returns processes is uncorrelated; iii) dependence is presented in squared returns; iv) the returns have

Student or Student like empirical distribution; v) the fractal activity time has a self-similar limit.

The proposed models with properties i)-v) are different from the models in existing literature ([1], [6],[8],

[9], [10], [14], [15], [16], [19], [20], [21]). For instance, the models based on the Ornstein-Uhlenbeck processes

and their superpositions ([19],[21]) do not satisfy the property i), while the model proposed in [6] uses the

Student distribution with time-dependent parameters. The model in [8], [15] uses the Student distribution

with only two parameters. Moreover, the number of degrees of freedom is an integer.

How the models are actually fitted the real financial data is future work beyond the scope of the present

paper.
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