

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/96982/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Subramanian, Leena, Bracht, Tobias, Jenkins, P., Choppin, S., Linden, David Edmund Johannes , Phillips, G. and Simpson, B. A. 2016. Clinical improvements following bilateral anterior capsulotomy in treatment-resistant depression. Psychological Medicine 47 (6) , pp. 1097-1106. 10.1017/S0033291716003159

Publishers page: https://doi.org/10.1017/S0033291716003159

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1	Clinical improvements following bilateral anterior capsulotomy in treatment-resistant depression			
2	Leena Subramanian, PhD ^{1,2} , Tobias Bracht, MD ² , Peter Jenkins, FRCPsych ³ , Sabine Choppin, MD ⁴ ,			
3	David E.J. Linden, MD ^{1,2,5} , Gwen Phillips, DipClinPsych ⁵ , Brian A. Simpson, MD, FRCS ⁵			
4				
5	1) MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological			
6	Medicine & Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK			
7	2) Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University,			
8	Cardiff, UK			
9	3) Cyncoed Consulting Rooms, Cardiff, UK			
10	4) Universite Pierre et Marie Curie, Paris, France			
11	5) Cardiff and Vale University Health Board, Cardiff, UK			
12				
13	Abstract:			
14	Background: The purpose of the present study was to evaluate a programme of lesion surgery			
15	carried out on patients with treatment-resistant depression (TRD).			
16	Methods: This was a retrospective study looking at clinical and psychometric data from 45 patients			
17	with TRD who had undergone bilateral stereotactic anterior capsulotomy surgery over a period of 15			
18	years, with the approval of the Mental Health Act Commission (MHAC), (37 with unipolar depression			
19	and eight with bipolar disorder). The Beck Depression Inventory (BDI) before and after surgery was			
20	used as the primary outcome measure. The Montgomery Asberg Depression Rating Scale (MADRS)			
21	was administered and cognitive aspects of executive and memory functions were also examined. We			
22	carried out a paired samples t-test on the outcome measures to determine any statistically			
23	significant change in the group as a consequence of surgery.			
24	Results: Patients improved on clinical measure of depression after surgery by -21.20 points on the			
25	BDI with a 52% change. There were no significant cognitive changes post-surgery. Six patients were			

26	followed up in 2013 by phone interview and reported a generally positive experience. No major
27	surgical complications occurred.
28	Conclusions: With the limitations of an uncontrolled, observational study, our data suggest that
29	capsulotomy can be an effective treatment for otherwise TRD. Performance on neuropsychological
30	tests did not deteriorate.
31	
32	Keywords: (1) Anterior capsulotomy, (2) Depression, (3) Mood disorder, (4) Stereotactic
33	neurosurgery, (5) Treatment resistance
34	
35	INTRODUCTION:
36	Current first line treatments for depression are antidepressant medication and psychotherapy, but
37	70% of patients do not respond to the first choice of treatment (Carvalho et al. 2014). Non-response
38	to two or more antidepressant regimes of adequate duration and dosage is considered to denote a
39	"treatment-refractory" depression (El-Hage et al. 2013). Several lines of pharmacological
40	augmentation are available, but even with optimal drug regime and augmentation 10-30% of
41	patients remain refractory (Rakofsky et al. 2009). Many of these patients will still get – at least
42	temporary – relief from electroconvulsive therapy (ECT) (UK ECT Review Group, 2003). However,
43	some patients will not respond to any of these interventions even after years of treatment
44	(Schlaepfer et al. 2013). For such completely treatment-refractory patients, neurosurgical
45	approaches can be considered. With such invasive approaches, which entail a lesion or implantation
46	of a device without previous demonstration of underlying brain pathology, careful evaluation of
47	risk/benefit ratios, patients' consenting capacity, ethical aspects and national legal regulation are
48	paramount (Nuttin et al. 2014).
49	

50 Over the last decade deep brain stimulation (DBS), first developed for pain, later mainly for
51 movement disorders and then for OCD, has emerged as a possible invasive treatment for depression

52 (Mayberg *et al.* 2005). The main DBS target sites for treating psychiatric disorders have been in the 53 anterior limb of the internal capsule, nucleus accumbens, subgenual cingulate gyrus and the medial 54 forebrain bundle (MFB) (Schlaepfer *et al.* 2013). Most studies of DBS for depression have reported 55 responder rates between 50-60% and remission rates around 35%. However, lack of control 56 conditions in the studies published so far, limited follow-up and a number of surgical and psychiatric 57 side effects need to be taken into consideration when evaluating the clinical scope of this method 58 (Schlaepfer *et al.* 2014; Kocabicak *et al.* 2015).

59

60 The other surgical approach is based on stereotactic lesions to key components of the corticalsubcortical networks. Stereotactic lesions of the cingulum bundle (cingulotomy) and anterior limb of 61 62 the internal capsule (capsulotomy) have been performed on many hundreds of patients, mainly for 63 the indication of OCD (Greenberg et al. 2010). The main stereotactic procedure for depression has 64 been subcaudate tractotomy (Schoene-Bake et al. 2010). All these stereotactic procedures disrupt 65 connections between frontal and subcortical/limbic areas of the brain (Greenberg et al. 2010; Rauch, 66 1995). One common feature of all these approaches may be that they disrupt the MFB, which carries 67 the dopaminergic projections from the midbrain to the frontal lobe (Schoene-Bake et al. 2010; 68 Coenen et al. 2011).

69

70 The success rates (significant improvement) for inferior frontal (subcaudate and orbitomedial) 71 tractotomy in depression in older studies have varied between 34% and 72.7% (Göktepe et al. 1975; 72 Hodgkiss et al. 1995; Sachdev & Sachdev, 2005). A more recent study included 33 patients with 73 depression who had all undergone bilateral cingulotomy. About 75% of patients were classified as 74 partial or full responders. In addition, this study included formal clinical rating scales and found a 75 significant improvement on the BDI (Shields et al. 2008). In a cingulotomy case series of eight 76 depressed patients from Dundee, Scotland, two patients had responded and three remitted after 77 one year (Steele et al. 2008).

79	Capsulotomy for depression has been studied in fewer and smaller studies. After an initial positive
80	report from Sweden (Herner, 1961), there was a publication gap of half a century until a group in
81	Scotland (Christmas et al. 2011) published their series of 20 cases from 1992-1999. Their generally
82	positive clinical impression was supported by significant and long-term improvements on clinical
83	ratings of depression severity. However, not all measures were available for the same patients pre-
84	and post-operatively and thus had to be imputed. Another smaller study of 8 patients was published
85	by the Vancouver Limbic Surgery Group (Hurwitz et al. 2012) and their main finding was the
86	reduction or abolition of suicidal ideation experienced by all the patients. In the present study we
87	report on the other British case series of capsulotomy, covering 45 operations conducted in Cardiff,
88	Wales, between 1993 and 2008.
89	
90	METHODS:
91	Design and Patients: We carried out a retrospective study on 45 patients who underwent bilateral
92	stereotactic anterior capsulotomy at the University Hospital of Wales (UHW), Cardiff from 1993-
93	2008 for TRD. This surgery is regulated under the Mental Health Act, 1983, which ensures that all
94	other appropriate treatment has been exhausted. All patients had received adequate periods of
95	treatment with a tricyclic antidepressant, an SSRI, a monoamine oxidase inhibitor, augmentation
96	strategies and ECT (except for 2 patients) with no or insufficient benefit. Patients were referred by
97	psychiatrists across the UK and assessed by the psychiatrist and neurosurgeon on the team and if
98	suitable referred to the Mental Health Act Commission (MHAC), as required by UK law (Mental
99	Health Act 1983, Section 57). Once assessed and approved by the MHAC panel (comprising a
100	psychiatrist and two non-medical members who reviewed all the case notes and conferred with the
101	referring consultant and with two other professionals involved with the case, and interviewed the
102	patient, before confirming that the surgery was appropriate, and consent was freely given and fully
103	informed) patients gave their written consent for the surgery.

104	Patients were discharged back to the care of the referring psychiatrist 1-2 weeks after surgery and
105	followed up clinically at one, three, six months and one year where possible and some (9 patients)
106	up to 6 years for clinical assessment. Psychometric assessment was carried out in most cases
107	between 6 and 12 months after surgery.
108	Here we report on the audit and clinical follow-up of this capsulotomy programme. Because of the
109	nature of the evaluation, the local Research and Development Office confirmed that this study was
110	exempt from ethical approval.
111	
112	Staging of treatment resistant depression:
113	All patients who underwent surgery were diagnosed as treatment-resistant by the clinical team. For
114	this study we applied the Maudsley staging method which was used to determine the level of
115	treatment resistance. This method takes into consideration the duration of the presenting
116	depressive episode, symptom severity and treatment failures (Table 1).
117	
118	Surgical procedure:
119	All patients were operated at the UHW by neurosurgeon BAS. Under general anaesthesia and with a
120	Leksell stereotactic frame applied, computerised tomographic (CT) guidance located the targets in

121 the anterior limbs of the internal capsules. Anatomical variation/asymmetry required bespoke

122 coordinates. These were based on the foramen of Monro – posterior commissure (FMPC) plane. Via

- 123 twist-drill holes, a stack of three (two in the first four cases) radiofrequency-generated
- thermocoagulative lesions was made bilaterally at a single operation. Electrode tip 4mm x 1.6mm;
- each lesion 75 degrees C (first 12 cases) or 80 degrees C (later cases) for 60 seconds (40 seconds in
- the first seven cases). The 12mm column of targets was centred on the middle third (in the axial
- 127 plane) of the anterior limb of the internal capsule. The depth was increased during the series: in the
- 128 later cases the deepest target was 12mm below FMPC, 5mm deeper than in the early cases. This

129	would have been approximately 4 to 7mm below the anterior commissure (AC) level (the relation to
130	AC was not specifically recorded).
131	Second Operations:
132	Eleven of the 45 patients (of whom six are included in the psychometric analysis group; see

- 133 Statistical Analysis) had a second operation. All of them had initially experienced post-operative
- 134 improvement in their depression but this was lost, typically after approximately six to eight weeks.
- 135 This may reflect the effects of perilesional oedema and neuropraxia and their subsequent resolution.
- 136 In these 11 cases magnetic resonance (MR) scanning at six months post-operatively indicated one or
- 137 more lesions, on one or both sides, to be significantly smaller than the others or even not visible,
- 138 emphasised by any left-right asymmetry. These lesions were then enlarged at a second operation
- 139 after obtaining MHAC approval.
- 140
- 141 Clinical imaging:
- 142 All patients underwent CT scanning approximately one week post-operatively for an initial
- assessment of lesion position, reactive oedema and any haemorrhage. Clinical MRI (T1 and T2
- sequences) was performed at six months follow-up (Fig. 1).

146 **Clinical and Cognitive Measures:**

- 147 Pre- and post-surgical data were available on the BDI, Montgomery Asberg Depression Rating Scale
- 148 (MADRS) and Beck Anxiety Inventory (BAI) for subgroups of patients (see Table 2). A
- 149 neuropsychological battery of tests was also administered before and after surgery for some
- 150 patients. Measures used were the Wechsler Abbreviated Scale of Intelligence (WASI), Adult Memory
- and Information Processing Battery, test of verbal fluency and tests of attention and concentration.
- 152 With a sample size of N=17 (which is our largest sample for complete cognitive data: verbal fluency

153	category) we had 80% power to detect medium effects on cognitive functioning (estimated required
154	effect size for one-tailed t-test: 0.53). (See Supplementary material Table 1S for all available data on
155	the clinical and cognitive measures).

157 Statistical Analysis:

158 Of the 45 operated patients demographic details, basic clinical information (Table 1) and adverse

159 outcomes are reported for all while psychometric measures are reported for 30 patients, as no

160 psychometric files were available for the remaining (early) cases.

161

162 The time of post-surgery psychometric follow-up varied for the measures. Follow-up MADRS

163 evaluations were performed between from one year and 4 years after surgery (except for 3 patients

164 who had follow-up of 3-6 months). Post-surgery BDI scores were from 3-6 months for half of the

patients and > 6 months follow-up for the other half of the patients. Follow-up of the other cognitive

- 166 measures varied from 3 months to >1 year.
- 167 For patients who had undergone a second operation where BDI pre and post-surgery scores were
- available (four patients) the later scores were used in the analysis.
- 169 The outcome measures were analysed using the SPSS statistical package (IBM SPSS Statistics Version
- 170 20). For all measures we computed % change from pre to post surgery and confidence intervals
- 171 (Table 2). We also carried out a paired samples t-test on the outcome measures to determine any
- 172 statistically significant change in the group as a consequence of surgery.

173

174 **RESULTS**:

The Maudsley treatment resistant staging shows that all patients were categorised as having moderately to severely treatment-resistant depression (Table 1). It is likely that our retrospective staging process underestimated the severity of treatment resistance because information on duration of current episode and medication treatment was incomplete for the patients classified as moderately treatment resistant.

We compared the duration of illness and age at time of surgery between the patients with and without psychometric measures using an independent samples t test. There was no difference in the duration of illness (t (43) = -.94; p = .35) although those without psychometric measures were older at the time of surgery (t (43) = -2.03; p = .05). As shown in Table 1, the groups with and without psychometric data did not differ on any relevant parameter. For example, a Chi-Square test for severity of treatment refractoriness yields $x^2(1) = .207$, p = .65 and thus no significant group difference.

187

188 Even for the thirty patients for whom we had the psychometric files, data are in some cases

189 incomplete. This was due to difficulties in motivating them to attend to the full battery of tests.

190 Patients often requested testing to be terminated resulting in incomplete acquisition of data. Table 2

191 gives a summary of the psychometric analysis.

192 *Clinical outcomes:*

Pre and post-operative BDI scores were available for 24 patients. These showed an improvement by
-21.20 points (95% confidence interval -28.37 to -14.03) which represents a -52% change. A paired
samples t-test (2 tailed) showed a statistically significant difference between pre and post-surgery
BDI scores (t (23) = -6.12, p = .00).

Based on the BDI scores, 10 improved over 75%, 3 improved between 51 and 75%, 5 improved
between 26 and 50%, 3 improved by 25% or less. Three patients were worse than before surgery, by
3%, 14% and 38%.

200

201 This subgroup of 24 patients incorporated a stepwise increase in lesion depth. Initially, one lesion 202 was placed 5mm above the FM-PC plane and two deep to it. However, over time the lesions were 203 placed more deeply; in the later cases the highest was on the FM-PC plane, one 6mm below and one 204 12mm below. Of the last 10 patients (those with the deepest lesion sites), improvement by more 205 than 75% was seen after one operation in six; in the first 10 (those with the highest lesion sites) this 206 occurred in one after one operation, and subsequently in two more following a second operation. 207 We regard this as anecdotal evidence for an effect of lesion depth although our data do not allow for 208 a more formal investigation of a relationship between lesion depth and clinical improvement. 209 The BAI, available pre- and post-surgery for 13 patients, showed an improvement of 49% which was 210 significant (t (12) = -3.27, p = .007) (Table 2).

211 Neuropsychological outcomes:

212 Measures of executive functions, memory, concentration and attention showed no significant

213 change after surgery except for a small decline of digit span but very few patients (N= 5) were

included in the digit span analysis (Table 2).

215 Adverse events (Table 3):

One, chronically anorectic, patient died from pneumonia within a month of surgery. No motor or
sensory deficits occurred. One patient had transient focal seizures but one with medically-controlled
epilepsy had no seizures after either of his two operations. Another exhibited mildly increased
muscle tone and "cogwheeling" in both upper limbs for several months, which did not recur after a

220	second operation 16 months later and was not related to antipsychotic medication. Some patients
221	showed transient and mild confusion, transient incontinence of urine, fatigue and weight gain
222	(similar to the Dundee series (Christmas et al. 2011)). Data beyond 12 months are incomplete.
223	Phone interviews:
224	Psychiatrist DL conducted phone interviews with six patients who responded to letters from the
225	neurosurgeon inviting them for follow-up interviews in 2013. All had surgery for unipolar depression
226	except one (unipolar + comorbidity). These covered patients' experience between 5 and 15 years
227	post-surgery. This group reported a generally positive experience. Their mood symptoms had
228	improved considerably, and they had required many fewer hospital admissions than before the
229	operation, if any. Most of them did not need further ECT, although all of them continued to take
230	antidepressant medication. Memory problems and fatigue were reported as important side effects
231	(Table 4).

232

233 **DISCUSSION:**

234 The clinical outcome data from the capsulotomy series show considerable improvement of 235 depression and anxiety symptoms in this group of patients with otherwise treatment-refractory 236 depression. We found an improvement of 20 points on the BDI, which is similar to, or even larger 237 than, the effects commonly observed for ECT (Feliu et al. 2008) which is regarded to be the most 238 effective antidepressant treatment. It is thus remarkable that we found these antidepressant 239 benefits from capsulotomy in the present sample of patients who had been refractory to ECT. 240 Importantly, anxiety symptoms improved to a similar extent. Anecdotally, increasing lesion depth 241 improved the outcomes.

The profile of intra- and post-operative side effects was relatively favourable. There were no surgical
deaths and no motor or sensory deficits. One patient had focal seizures transiently, controlled with

244 medication. This incidence of seizures was similar to that reported after implantation of DBS 245 electrodes (Pouratian et al. 2011). One patient experienced transient extrapyramidal features. The 246 only infection, in a patient with diabetes, was superficial. Transient post-operative confusion and 247 urinary incontinence were relatively common. We did not detect deterioration in executive 248 functions, attention and concentration or memory functions on formal psychometric testing, but 249 cannot rule out changes in other cognitive domains (Dalgleish et al. 2004). Some patients reported 250 fatigue, memory problems and lack of motivation, which had also been commonly reported 251 problems in previous studies of psychiatric surgery. Although we did not have formal long-term 252 follow-up data, the relatively high rate of memory complaints at the follow-up phone interviews 253 suggests that cognitive deficits may develop late.

Anhedonia, the core symptom of inability to experience pleasure, may be linked to a dysregulation 254 255 of networks of the reward system including the MFB and the anterior thalamic radiation (ATR). Both 256 these pathways are likely to be affected by anterior capsulotomy (Coenen et al. 2011; Bracht et al. 257 2014). The MFB is traditionally considered as the major "reward pathway" and the adjacent ATR may 258 mediate the experience of "grief" (Coenen et al. 2011). There is also some evidence for altered structural connectivity of the MFB (Bracht et al. 2014) and ATR (Henderson et al. 2013) in 259 260 depression. DBS targeting the MFB led to remarkable clinical improvements in treatment-refractory 261 patients with major depressive disorder (Schlaepfer et al. 2013). Clinical improvement of patients 262 with depression following surgical interventions affecting these pathways may therefore be an effect 263 of rebalancing activation between the reward and grief system (Schlaepfer et al. 2013). 264 Diffusion Tensor Imaging (DTI)-based fibre-tracking enables the in vivo reconstruction of connection

pathways of the human brain (Catani *et al.* 2002) and may therefore be used for preoperative

planning and postoperative evaluation of putatively dissected pathways (Schlaepfer *et al.* 2013). In

267 three patients of our data set pre- and postoperative DTI data were available. We demonstrate and

268 discuss the potential use of DTI-data for future operations in a separate supplementary material (see269 supplementary material).

270

271	Although patients with depression who do not respond to any non-invasive treatment continue to
272	pose a considerable clinical challenge, the number of patients undergoing surgery for depression
273	worldwide is at present very low. Cost and local availability of the procedures, evaluation of
274	risk/benefit ratios, lack of knowledge about this treatment modality for severely refractory patients
275	and fear of a potentially irreversible intervention are likely to contribute to this relatively low
276	uptake. However, the recent development of several DBS procedures for depression and other
277	mental disorders is likely to boost the interest in psychiatric surgery amongst patients and clinicians.
278	The published evidence base for DBS (Delaloye et al. 2014) and stereotactic lesion surgery for
279	depression is broadly similar -clinical improvements in uncontrolled studies with an acceptable side
280	effect profile, but with little supporting evidence from randomized controlled studies. The failure of
281	a recent DBS trial (Dougherty et al. 2015) to demonstrate superiority over sham stimulation in
282	depression may further rekindle interest in the results of ablative surgery.
283	The present study contributes a well-documented patient sample for the evaluation of adverse
284	events of psychiatric surgery and suggests that capsulotomy can be effective in the long term for
285	patients with otherwise refractory depression.
206	

286

287 Supplementary material:

288 The supplementary material for this article can be found at

289 https://doi.org/10.1017/S0033291716003159.

290

291 Acknowledgements:

292	The authors were funded by Cardiff & Vale University Health Board, Cardiff University, and grants			
293	from the Wales Office of Research and Development (WORD) (Grant number SG02/012) and the			
294	Swiss National Science Foundation (SNF) (Grant number PBBEP3_144797). The funders had no			
295	involvement in the study.			
296 297	Declaration of interest:			
298	None.			
299				
300	REFERENCES:			
301	1	Bracht T, Horn H, Strik W, Federspiel A, Schnell S, Hofle O, Stegmayer K, Wiest R, Dierks T,		
302		Muller TJ, Walther S (2014): White matter microstructure alterations of the medial		
303		forebrain bundle in melancholic depression. Journal of Affective Disorders 155, 186–93.		
304	2	Carvalho AF, Berk M, Hyphantis TN, McIntyre RS (2014): The Integrative Management of		
305		Treatment-Resistant Depression: A Comprehensive Review and Perspectives. Psychotherapy		
306		and Psychosomatics 83 , 70-88.		
307	3	Catani M, Howard RJ, Pajevic S, Jones DK (2002): Virtual in vivo interactive dissection of		
308		white matter fasciculi in the human brain. <i>NeuroImage</i> 17 , 77–94.		
309	4	Christmas D, Eljamel MS, Butler S, Hazari H, MacVicar R, Steele JD, Livingstone A,		
310		Matthews K (2011): Long term outcome of thermal anterior capsulotomy for chronic,		
311		treatment refractory depression. Journal of Neurology, Neurosurgery & Psychiatry 82, 594-		
312		600.		
313	5	Coenen VA, Schlaepfer TE, Maedler B, Panksepp J (2011): Cross-species affective functions		
314		of the medial forebrain bundle-implications for the treatment of affective pain and		
315		depression in humans. Neuroscience and Biobehavioural Reviews 35 , 1971–81.		

316	6	Dalgleish T, Yiend J, Bramham J, Teasdale JD, Ogilvie AD, Malhi G, Howard R (2004):
317		Neuropsychological processing associated with recovery from depression after stereotactic
318		subcaudate tractotomy. American Journal of Psychiatry 161, 1913-1916.
319	7	Delaloye S, Holtzheimer PE (2014): Deep brain stimulation in the treatment of depression.
320		Dialogues in Clinical Neuroscience 16 , 83–91.
321	8	Dougherty DD, Rezai AR, Carpenter LL, Howland RH, Bhati MT, O'Reardon JP, Eskandar EN,
322		Baltuch GH, Machado AD, Kondziolka D, Cusin C, Evans KC, Price LH, Jacobs K, Pandya M,
323		Denko T, Tyrka AR, Brelje T, Deckersbach T, Kubu C, Malone DA (2015): A Randomized
324		Sham-Controlled Trial of Deep Brain Stimulation of the Ventral Capsule/Ventral Striatum for
325		Chronic Treatment-Resistant Depression. <i>Biological Psychiatry</i> 78, 240–248.
326	9	El-Hage W, Leman S, Camus V, Belzung C (2013): Mechanisms of antidepressant resistance.
327		Frontiers in Pharmacology 4:146 , 1-23.
328	10	Feliu M, Edwards CL, Sudhakar S, McDougald C, Raynor R, Johnson S, Byrd G, Whitfield K,
329		Jonassaint C, Romero H, Edwards L, Wellington C, Hill BK, Sollers J, Logue PE (2008):
330		Neuropsychological effects and attitudes in patients following electroconvulsive therapy.
331		Neuropsychiatric Disease and Treatment 4 , 613–17.
332	11	Göktepe EO, Young LB, Bridges PK (1975): A further review of the results of sterotactic
333		subcaudate tractotomy. British Journal of Psychiatry 126, 270–80.
334	12	Greenberg BD, Rauch SL, Haber SN (2010): Invasive Circuitry-Based Neurotherapeutics:
335		Stereotactic Ablation and Deep Brain Stimulation for OCD. Neuropsychopharmacology
336		<i>Reviews</i> 35 , 317–36.
337	13	Henderson SE, Johnson AR, Vallejo AI, Katz I, Wong E, Gabbay E (2013): A preliminary study
338		of white matter in adolescent depression: relationships with illness severity, anhedonia, and
339		irritability. Frontiers in Psychiatry 4, Article 152.
340	14	Herner T (1961): Treatment of Mental Disorders with Frontal Stereotaxic Thermo-Lesions. A

341 Follow-up of 116 cases. *Acta Psychiatrica Scandinavica* **36** (Suppl 158).

342	15	Hodgkiss AD, Malizia AL, Bartlett JR, Bridges PK (1995): Outcome after the psychosurgical
343		operation of stereotactic subcaudate tractotomy, 1979-1991. Journal of Neuropsychiatry
344		and Clinical Neurosciences 7 , 230–34.
345	16	Hurwitz TA, Honey CR, Allen J, Gosselin C, Hewko R, Martzke J, Bogod N, Taylor P (2012):
346		Bilateral anterior capsulotomy for intractable depression. Journal of Neuropsychiatry and
347		Clinical Neurosciences 24 , 176-182.
348	17	Kocabicak E, Temel Y, Hollig A, Falkenburger B, Tan SKH (2015): Current perspectives on
349		deep brain stimulation for severe neurological and psychiatric disorders. Neuropsychiatric
350		Disease and Treatment 11, 1051-66.
351	18	Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM,
352		Kennedy SH (2005): Deep brain stimulation for treatment-resistant depression. Neuron 45,
353		651-660.
354	19	Nuttin B, Wu H, Mayberg H, Hariz M, Gabriels L, Galert T, Merkel R, Kubu C, Vilela-Filho O,
355		Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun
355 356		Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R,
355 356 357		Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R, Ruiz P, Chang JW, Cosyns P, Lipsman N, Voges J, Cosgrove R, Li Y, Schlaepfer T (2014):
355 356 357 358		Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R, Ruiz P, Chang JW, Cosyns P, Lipsman N, Voges J, Cosgrove R, Li Y, Schlaepfer T (2014): Consensus on guidelines for stereotactic neurosurgery for psychiatric disorders. <i>Journal of</i>
355 356 357 358 359		Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R, Ruiz P, Chang JW, Cosyns P, Lipsman N, Voges J, Cosgrove R, Li Y, Schlaepfer T (2014): Consensus on guidelines for stereotactic neurosurgery for psychiatric disorders. <i>Journal of</i> <i>Neurology, Neurosurgery and Psychiatry</i> 0 , 1–6.
355 356 357 358 359 360	20	Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R, Ruiz P, Chang JW, Cosyns P, Lipsman N, Voges J, Cosgrove R, Li Y, Schlaepfer T (2014): Consensus on guidelines for stereotactic neurosurgery for psychiatric disorders. <i>Journal of</i> <i>Neurology, Neurosurgery and Psychiatry</i> 0, 1–6. Pouratian N, Reames DL, Frysinger R, Elias WJ (2011) : Comprehensive analysis of risk
355 356 357 358 359 360 361	20	Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R, Ruiz P, Chang JW, Cosyns P, Lipsman N, Voges J, Cosgrove R, Li Y, Schlaepfer T (2014): Consensus on guidelines for stereotactic neurosurgery for psychiatric disorders. <i>Journal of</i> <i>Neurology, Neurosurgery and Psychiatry</i> 0, 1–6. Pouratian N, Reames DL, Frysinger R, Elias WJ (2011) : Comprehensive analysis of risk factors for seizures after deep brain stimulation surgery. <i>Journal of Neurosurgery</i> 115, 310–
 355 356 357 358 359 360 361 362 	20	Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R, Ruiz P, Chang JW, Cosyns P, Lipsman N, Voges J, Cosgrove R, Li Y, Schlaepfer T (2014): Consensus on guidelines for stereotactic neurosurgery for psychiatric disorders. <i>Journal of</i> <i>Neurology, Neurosurgery and Psychiatry</i> 0, 1–6. Pouratian N, Reames DL, Frysinger R, Elias WJ (2011) : Comprehensive analysis of risk factors for seizures after deep brain stimulation surgery. <i>Journal of Neurosurgery</i> 115, 310– 15.
 355 356 357 358 359 360 361 362 363 	20	Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R, Ruiz P, Chang JW, Cosyns P, Lipsman N, Voges J, Cosgrove R, Li Y, Schlaepfer T (2014): Consensus on guidelines for stereotactic neurosurgery for psychiatric disorders. Journal of Neurology, Neurosurgery and Psychiatry 0, 1–6. Pouratian N, Reames DL, Frysinger R, Elias WJ (2011) : Comprehensive analysis of risk factors for seizures after deep brain stimulation surgery. Journal of Neurosurgery 115, 310– 15. Rakofsky JJ, Holtzheimer PE, Nemeroff CB (2009): Emerging targets for antidepressant
 355 356 357 358 359 360 361 362 363 364 	20	Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R, Ruiz P, Chang JW, Cosyns P, Lipsman N, Voges J, Cosgrove R, Li Y, Schlaepfer T (2014): Consensus on guidelines for stereotactic neurosurgery for psychiatric disorders. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> 0, 1–6. Pouratian N, Reames DL, Frysinger R, Elias WJ (2011) : Comprehensive analysis of risk factors for seizures after deep brain stimulation surgery. <i>Journal of Neurosurgery</i> 115, 310– 15. Rakofsky JJ, Holtzheimer PE, Nemeroff CB (2009): Emerging targets for antidepressant therapies. <i>Current Opinion in Chemical Biology</i> 13, 291-302.
 355 356 357 358 359 360 361 362 363 364 365 	20 21 22	Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R, Ruiz P, Chang JW, Cosyns P, Lipsman N, Voges J, Cosgrove R, Li Y, Schlaepfer T (2014): Consensus on guidelines for stereotactic neurosurgery for psychiatric disorders. <i>Journal of</i> <i>Neurology, Neurosurgery and Psychiatry</i> 0, 1–6. Pouratian N, Reames DL, Frysinger R, Elias WJ (2011) : Comprehensive analysis of risk factors for seizures after deep brain stimulation surgery. <i>Journal of Neurosurgery</i> 115, 310– 15. Rakofsky JJ, Holtzheimer PE, Nemeroff CB (2009): Emerging targets for antidepressant therapies. <i>Current Opinion in Chemical Biology</i> 13, 291-302. Rauch SL (1995): Psychosurgery. <i>Neurosurgery Clinics of North America</i> 6, 167–76.
 355 356 357 358 359 360 361 362 363 364 365 366 	20 21 22 23	Matthews K, Taira T, Lozano AM, Schechtmann G, Doshi P, Broggi G, Regis J, Alkhani A, Sun B, Eljamel S, Schulder M, Kaplitt M, Eskandar E, Rezai A, Krauss JK, Hilven P, Schuurman R, Ruiz P, Chang JW, Cosyns P, Lipsman N, Voges J, Cosgrove R, Li Y, Schlaepfer T (2014): Consensus on guidelines for stereotactic neurosurgery for psychiatric disorders. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> 0, 1–6. Pouratian N, Reames DL, Frysinger R, Elias WJ (2011) : Comprehensive analysis of risk factors for seizures after deep brain stimulation surgery. <i>Journal of Neurosurgery</i> 115, 310–15. Rakofsky JJ, Holtzheimer PE, Nemeroff CB (2009): Emerging targets for antidepressant therapies. <i>Current Opinion in Chemical Biology</i> 13, 291-302. Rauch SL (1995): Psychosurgery. <i>Neurosurgery Clinics of North America</i> 6, 167–76. Sachdev PS, Sachdev J (2005): Long-term outcome of neurosurgery for the treatment of

368	24	Schlaepfer TE. Bewernick BH. Kayser S. Madler B. Coenen VA (2013): Rapid Effects of Deep
369		Brain Stimulation for Treatment-Resistant Major Depression. <i>Biological Psychiatry</i> 73 , 1204-
370		12
271	25	Schlagnfor TE Rowernick RH Kower S. Hurlemann R. Coopen VA (2014): Deen Brain
5/1	25	Schaepier TE, bewernick BH, kayser S, Hunemann K, Coenen VA (2014). Deep Brann
372		Stimulation of the Human Reward System for Major Depression-Rationale, Outcomes and
373		Outlook. Neuropsychopharmacology 39 , 1303–14.
374	26	Schoene-Bake JC, Parpaley Y, Weber B, Panksepp J, Hurwitz TA, Coenen VA (2010).
375		Tractographic analysis of historical lesion surgery for depression. Neuropsychopharmacology
376		35 , 2553–63.
377	27	Shields DC, Asaad W, Eskandar EN, Jain FA, Cosgrove GR, Flaherty AW, Cassem EH, Price
378		BH, Rauch SL, Dougherty DD (2008): Prospective assessment of stereotactic ablative surgery
379		for intractable major depression. <i>Biological Psychiatry</i> 64 , 449–54.
380	28	Steele JD, Christmas D, Eljamel MS, Matthews K (2008): Anterior cingulotomy for major
381		depression: clinical outcome and relationship to lesion characteristics. Biological Psychiatry
382		63 , 670–77.
383	29	UK ECT Review Group (2003): Efficacy and safety of electroconvulsive therapy in depressive
384		disorders: a systematic review and meta-analysis. Lancet 361 , 799-808.
385		
386		
387		
388		
389		
390		

391 <u>Tables:</u>

392 **Table 1:** Demographics and Treatment resistance according to the Maudsley staging method: N=45

Demographics	Patients w	ith Psychometr	ic data		Patients without Psychometric data						
	Unipolar	Unipolar +	Bipolar	Bipolar +	Unipolar	Unipolar +	Bipolar				
		Comorbidity		Comorbidity		Comorbidity					
Number of Patients	16	11	2	1	6	4	5				
Male	1	5	1	1	3	1	3				
Female	15	6	1	0	3	3	2				
Age at time of surgery i	n years					•	•				
Median	45.50	0 41 46.50 34 55.50		55.50	35.50	69					
Interquartile Range	13.50	14	18.50	0	13.25	9.75	20.50				
Last follow-up after sur	gery in mon	ths		1	1	1					
Median	30	24	36	72	66	45	39				
Interquartile Range	57	52	24	0	73.25	160.50	46				
Total duration of illness	in years										
	1	1	1	1	1		1				
Median	20	20	16.75	10	16.50	17.50	35				
Interquartile Range	15.50	11	10.25 0		26	17	31				
History regarding Suicid	le	1	I	1	1						
Attempts	13	5	1	1	3 2		2				
Ideation	3	2	0	0	0	1	2				
None	0	0	0	0	0	0	0				
Not known	0	3	1	0	3	1	1				
Treatment resistance: N	Aaudsley sta	ging	1	1	1						
Symptom severity:											
Severe without	13	10	2	1	6	4	4				
psychosis											
Severe with psychosis	3	3 1 0 0		0	0	0	1				
Duration of current epis	sode:	<u> </u>	1	<u> </u>	1]	1				
Acute	1	0	1	0	0	0	0				
Sub-acute	5	3	0	0	2	2	2				

Chronic	10	5	0	1	4	2	2
Not known	0	3	1	0	0	0	1
Treatment failures:							
Antidepressants (No. o	f medicati	ons):					
3-4	10	8	2	0	4	2	3
5-6	6	2	0	1	2	0	1
7-10	0	0	0	0	0	1	0
>10	0	1	0	0	0	1	1
Augmentation: Used	16	11	2	1	6	4	5
Electroconvulsive	16	9	2	1	6	4	5
therapy (ECT): Used							
Known Psychological	14	7	1	1	1	1	0
therapies							
Severity category::							
Moderate	4	4	2	0	1	1	2
				1	E	2	2

Table 2: Pre and Post-surgery clinical and cognitive measures:

Measures	N ^a	Pre-	± SE	Treatment	± SE	95% CI	%	t	Р (2-
		surgery		change (Post -			change ^h		tailed)
		Mean		Pre surgery					
				Mean					
				wear					
Clinical Rating Scales	:								
BDI ^b	24	41.17	2.0	-21.20	3.46	-28.37 to -14.03	-52	-6.12	.000
BAI ^d	13	27.38	3.04	-13.61	4.15	-22.66 to -4.56	-49	-3.27	.007
Cognitive Measures:		I				1	I		I
General intelligence	(WAS	5I) ^e :							
Verbal IQ	11	100.36	5.88						
Performance IQ	11	96.82	5.59						
Full Scale IQ	9	96.11	6.50						
Executive functions:			<u> </u>						<u> </u>
Verbal fluency	17	33.76	3.64	-3.35	2.53	-8.73 to 2.02	-10	-1.32	.20
Similarities	5	8.40	1.74	1.40	2.58	-5.76 to 8.56	17	.54	.61
Attention and conce	ntrati	on:				1			
Speed processing	9	36.67	2.42	6.11	4.64	-4.59 to 16.81	17	1.31	.22
Information	12	45.83	4.98	2.58	3.21	-4.49 to 9.66	6	.80	.43
processing									
Digit span (scaled	5	8	1.81	1.20	.37	.16 to 2.23	15	3.20	.03
scores)									
Digit symbol (scaled	6	5.83	.40	.50	.50	78 to 1.78	9	1.0	.36
scores)									
Memory: Immediate	and	delayed:	1	1	1	1	1	1	1
List learning	12	41.83	3.34	-3.50	2.48	-8.96 to 1.96	-8	-1.40	.18
Story IR ^f	19	27.47	2.14	1.10	3.04	-5.28 to 7.49	4	.36	.72

Story DR ^g	19	21.53	2.32	2.0	3.06	-4.44 to 8.44	9	.65	.52
Figure IR	18	58.61	6.33	4.72	4.68	-5.16 to 14.60	8	1.00	.32
Figure DR	18	54.39	6.34	.50	6.33	-12.86 to 13.86	1	.07	.93

405	Footnote: a) N = number	r of patients; b) BDI =	Beck Depression	Inventory; d) BAI = Be	ck Anxiety Inventory; e)
	,			1, 1	1 1 1 1

406 WASI = Wechsler Abbreviated Scale of Intelligence; f) IR= Immediate Recall; g) DR = Delayed Recall.

407 h) A negative score on the clinical scales indicates an improvement and for the cognitive measures a positive

- 408 score indicates an improvement.

Table 3: Frequency and duration of adverse effects: N = 45

Adverse Events	Patients w	vith Psychometi	Patients w Psychome	Total			
	Unipolar	Unipolar + Comorbidity	Bipolar	Bipolar + Comorbidity	Unipolar	Unipolar + Comorbidity	
Seizures:							1
Up to 1 week	0						
Up to 1 year	1						
>1 year	0						
Extrapyramidal S/E:							1
Up to 1 week	0						
Up to 1 year	1						
>1 year	0						
Infection ^a :							1
Up to 1 week					1		
Up to 1 year					0		
>1 year					0		
Urinary incontinence:							24
Up to 1 week	9	5	1	1	5	2	
Up to 1 year	1	0	0	0	0	0	
>1 year	0	0	0	0	0	0	
Confusion/disorientation:							24
Up to 1 week	7	8	2	1	5	1	
Up to 1 year	0	0	0	0	0	0	
>1 year	0	0	0	0	0	0	
Tiredness/Fatigue:							14
Up to 1 week	1	0	0		2	1	
Up to 1 year	4	2	2		0	1	
>1 year	0	1	0		0	0	
Short term memory problems:							10
Up to 1 week	1	0		0	0	0	

Up to 1 year	3	1	1	0	0	
>1 year	2	0	0	1	1	
Weight gain:						3
Up to 1 week	0	0		1		
Up to 1 year	1	0		0		
>1 year	0	1		0		
Personality change:						2
Up to 1 week	0					
Up to 1 year	0					
>1 year	2					
Lack of motivation:						6
Up to 1 week	0				1	
Up to 1 year	1				0	
>1 year	4				0	
Impaired attention & concentration:						4
Up to 1 week	0	0				
Up to 1 year	0	1				
>1 year	3	0				

Footnote: a) A superficial pin-site infection occurred in a type-1 diabetic.

426 Data beyond 1 year are incomplete

Table 4: Interviewed patients:

Age at interview/ year of surgery	Pre-OP history	Outcome	Antidepressant Medication	Side effects
63/ 2004	10 years	"I think it was wonderful" – whole life has improved – she became a "different person" as if waking from "deep sleep"	Yes	Memory problems
63/ 2003	35 years	"Transformed my life" – does not feel depressed any longer – but "would not recommend it" because of side effects	Yes	Weight gain, fatigue, lost ability to visualise places
53/ 2001	12 years	"Quite pleased" but has not stopped depression	Yes	Memory problems
62/2000	3 years	Depressive episodes have become much less frequent, "highs" more frequent	Mood stabilisers	Memory problems
67/ 2008	23 years	Depression and nihilistic thoughts went immediately	Yes	Memory problems, lack of motivation
59/ 1998	5.5 years	Has made a difference, although benefits becoming smaller as time moves on – would have the procedure again	Yes	None

Figure 1: T2 weighted MRI coronal scans: left: unoperated; right: 6 months post-surgery.

440 **Supplementary Material:**

- 441 **Table 1S:** The pre- and post-surgical clinical and cognitive psychometric scores which were available for 30
- 442 patients. Subjects not in surgical date order.

Measures							S	ubjects							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
BDI-Pre	40	15 (HADS)	17 (HADS)	49	42	59	23	32	38	42	49		51	43	56
BDI-Post	24	13 (HADS)	4 (HADS)	14	18	9	3	6	39	29	9	39	5	1	53
MADRS-Pre		((22						
MADRS-Post		24			14	12	5	9	4					18	40
BAI-Pre		15	13	30	26	14	25	35	25	17	28			10	
BAI-Post		(HADS) 16	(HADS) 15	29	17	1	2	4	26	27	15				23
V-IQ	118	(HADS)	(HADS) 97				126	91		95			129	76	
P-IQ	89		91				133	108		108			84	63	
FS-IQ			94				133	90		102				69	
VF-Pre		37	58	21	23	13	57	41	36	24	34				
VF-Post		24	42	12	28	23	56	35	34	29	15	28	42		21
S-Pre	13	7		10		6	15	11		9			15	5	
S-Post	9	6				17						11			8
SP-Pre				48	5	30	42		33	41	31				
SP-Post				43		60	58	50	28	29	30	36	47	35	41
IP-Pre				50	29	35	79	44	28	38	23				
IP-Post				60	30	54	101	46	30	40	10	65	60	33	34
DS-Pre	12	5	7	6		10							6	6	
DS-Post		5	9			11						13			8
DSy-Pre	6	6	7						5					2	
DSy-Post	5	6	9												
LL-Pre				39		29	56	49	36	38				20	
LL-Post				30	43	35	40	35	34	40			40	30	37
S_IR-Pre	36	29	28	32	5	10	35	24	18	24	26		30	34	
S_IR-Post	39	19	32	14	38	30	22	44	26	25	10	39	23	29	35
S_DR-Pre	31	21	24	22	3	3	35	16	16	16	15		21	23	
S_DR-Post	36	6	30	0	37	20	25	38	24	21	2	36	25	21	26
F_IR-Pre	49	75	38	67	3	55	90	75	41	96	26		51	56	
F_IR-Post	33	90	53	63	70	65	97	84	34	92	21	61	80	38	48
F_DR-Pre	59	43	38	63	0	60	90	59	42	93	25		36	38	
F_DR_Post	33	38	44	0	70	61	97	68	34	95	18	50	81	33	56
Measures							S	ubjects							
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
BDI-Pre	42		26	32	56	37	37	25	47	29	52	34	30		42
BDI-Post	23	40	36	24	54	42	25		5	5	25	25	1		4
MADRS-Pre		40										25			23
MADRS-Post	11	21	21	11					13		22			12	6
BAI-Pre	50		35			41		0	40	12					18
BAI-Post	2		23	36	17	18	25			4					11
V-IQ	82				1	107			1	111		1	72	1	1
P-IQ	102				l	97			l	110		1	80	1	1
FS-IQ	88				l	102			l	113		1	74	1	1
VF-Pre	19		11	39	l	45		17	l	51		1	18	1	47
VF-Post	22		12	36	24	21	38			44		23	33		51
S-Pre	9		4			12		6	12	38		_	4		
S-Post	-	11				11							6		
SP-Pre							40	54		25			-		40
SP-Post							44			47					46
IP-Pre	61						65	44		38					60
IP-Post	50						53			45					62
DS-Pre	8		6			14		8					4		
DS-Post		13	~			15	6	Ť					6		
DSv-Pre	10	1.5	4			6	L.	2			ł		6		1
DSv-Post	10		4			6	6	-					8		<u> </u>
II-Pre	43		33		<u> </u>	5	5	30	<u> </u>	50	49				60
II-Post	27		2/		<u> </u>			33	<u> </u>	55	42				63
LL-F USL	ے د		2 4	I		1	1	1		در	44				03

S_IR-Pre	20		25	44		36		17	36		32	42
S_IR-Post	21	39	18		10	25	24		41		40	47
S_DR-Pre	14		18			28		16	37		25	41
S_DR-Post	6	36	15	44	7	23	26		38		35	45
F_IR-Pre	95		18			53		97			84	83
F_IR-Post	94		27	75	30	46	59				67	85
F_DR-Pre	95		18			58		89			78	84
F_DR_Post	95		28	83	26	46	59				67	80

444	Footnote: Footnote: BDI = Beck Depression Inventory; HADS = Hospital anxiety and depression scale (these
445	scores were available for 2 patients and replace the BDI (HADS depression scale) and BAI (HADS anxiety scale)
446	where indicated); MADRS = Montgomery Asberg Depression Rating Scale; BAI = Beck Anxiety Inventory; I =
447	Imputed; V = Verbal; P = Performance; FS = Full Scale; VF = Verbal Fluency; S = Similarities; SP = Speed
448	Processing; IP = Information Processing; DS = Digit Span; DSy = Digit Symbol; LL = List Learning; S = Story; F =
449	Figure; IR= Immediate Recall; DR = Delayed Recall.
450	
451	Diffusion Tensor Imaging:
452	The potential use of DTI-based fibre tracking
453	Diffusion Tensor Imaging (DTI)-based fibre-tracking enables the in vivo reconstruction of connection
454	pathways of the human brain (Catani et al. 2002). Previous research suggests that white matter
455	microstructure of the medial forebrain bundle (MFB) and the anterior thalamic radiation (ATR),
456	pathways that are likely to be interrupted during anterior capsulotomy, are altered in depression (Jia
457	et al. 2014; Bracht et al. 2014). Based on a recent review these changes are most pronounced in
458	MDD patients with severe/ treatment-resistant depression (Bracht et al. 2015). Thus the MFB and
459	ATR may be of particular relevance regarding the clinical effects of anterior capsulotomy. Pre-
460	operative DTI-based identification of target fibre tracts that may underlie depression
461	symptomatology may therefore potentially represent an important step forward in psychiatric
462	surgery. Furthermore, DTI fibre tracking may be used for evaluation of surgical outcome, and to link
463	side effects to the lesioning of specific pathways. In three patients pre- and postoperative DTI data
464	were available and analyzed.

465 Methods:

466 Diffusion Tensor Imaging (DTI):

467 Data were acquired on a clinical GE Medical System 1.5 Tesla scanner with the following parameters:

468 24 diffusion encoding directions with a b-value of 1000 s/mm2, 1B0 image without diffusion

- 469 weighting, 30 slices, voxel size 2x2x5 mm. Pre and post diffusion-MRI data were available for three
- 470 patients.
- 471 Imaging Analysis:

472 Data were pre-processed and analysed using the software package *ExploreDTI* (Leemans *et al.* 2009).

473 Regions of interest of connection pathways were chosen from the automated anatomical labelling

474 (AAL) atlas (Tzourio-Mazoyer et al. 2002), implemented in ExploreDTI (Leemans et al. 2009). We

475 hypothesized the thalamo-orbitofrontal cortex (OFC) connection pathway to be interrupted by the

476 operation. For reconstruction of this pathway the thalamus and Brodmann areas 10 and 11 were

477 chosen as seed regions. The thalamo-primary motor cortex (PMC) connection was reconstructed as a

478 comparison tract which we did not expect to be affected by the operation. These two connection

479 pathways were separately reconstructed for individual pre-surgical and post-surgical datasets.

480 *Results:*

- 482 Figure 1S: Fibre connections between the thalamus and orbitofrontal cortex pre and post-surgery
- 483 (left panel) and fibre connections between the thalamus and primary motor cortex pre and post-
- 484 surgery (right panel). BDI clinical scores for the 3 patients: Row 1: Pre-42, Post-4, 90% change; Row
- 485 2: Pre-42, Post-29, 31% change; Row 3: Pre-49, Post-9, 82% change.

In all pre-surgery DTI scans both bilateral thalamo-OFC connection pathways travelling through the
anterior limb in the internal capsule and bilateral thalamo-PMC pathways running through the
cortico-spinal tract could be identified reliably.

490 In the post-operative DTI scans in one participant no fibres connecting thalamus and OFC could be

491 identified (row 1, Figure 1B). In two participants DTI-fibre-tracking revealed sparse unilateral

492 connection pathways between the OFC and the thalamus running through the external capsule (row

493 2 and row 3, Figure 1B). These fibres had not been reconstructed before the operation. Bilateral

thalamo-PMC connections remained unchanged in comparison to the pre-operative DTI scan.

495 Discussion

At present diffusion MRI is the only available method for in vivo reconstruction of fibre pathways and thus offers unique opportunities in psychiatric surgery and stimulation studies. Our DTI-fibre tracking results support the assumption that pathways connecting the thalamus and OFC have been successfully interrupted. DTI fibre tracking results of the thalamo-PMC comparison pathway remained unchanged after the operation, indicating that the surgical intervention had no effect on more posterior thalamo-cortical connections.

502 We suggest that DTI-fibre tracking will find more widespread use in future applications of psychiatric 503 surgery. It may be used to reconstruct pathways before the operation and serve as guidance to 504 specifically modulate pathways of interest; postoperative DTI-fibre tracking may validate surgery 505 outcome; follow-up studies could link the lesioning of specific pathways to treatment outcome and 506 side effects. This may contribute to the development of more specific and less invasive surgery, 507 potentially being associated with fewer side effects. DTI-based tractography has already informed 508 new protocols for DBS (Coenen et al. 2011) and is being used to localize stimulation targets 509 (Schlaepfer et al. 2013).

- 511 References:
- 512 1 Bracht T, Horn H, Strik W, Federspiel A, Schnell S, Hofle O, Stegmayer K, Wiest R, Dierks T, Muller
- 513 **TJ, Walther S** (2014): White matter microstructure alterations of the medial forebrain bundle in
- melancholic depression. *Journal of Affective Disorders* **155**, 186–93.
- 515 2 Bracht T, Linden DEJ, Keedwell P (2015). A review of white matter microstructure alterations of
- 516 pathways of the reward circuit in depression. *Journal of Affective Disorders* **187**, 45–53.
- 517 3 Catani M, Howard RJ, Pajevic S, Jones DK (2002): Virtual in vivo interactive dissection of white
- 518 matter fasciculi in the human brain. *NeuroImage* **17**, 77–94.
- 519 4 Coenen VA, Schlaepfer TE, Maedler B, Panksepp J (2011): Cross-species affective functions of the
- 520 medial forebrain bundle-implications for the treatment of affective pain and depression in humans.
- 521 *Neuroscience and Biobehavioural Reviews* **35**, 1971–81.
- 522 5 Jia Z, Wang Y, Huang X, Kuang W, Wu Q, Lui S, Sweeney JA, Gong Q (2014) : Impaired
- 523 frontothalamic circuitry in suicidal patients with depression revealed by diffusion tensor imaging at
- 524 3.0 T. Journal of Psychiatry and Neuroscience **39**, 170–7.
- 525 6 Leemans A, Jeurissen B, Sijbers J, Jones D (2009) : ExploreDTI: a graphical toolbox for processing,
- 526 analyzing and visualizing diffusion MR data. *Proceedings of the International Society for Magnetic*
- 527 *Resonance in Medicine 17th Annual Meeting*; April 18-24, 2009; Honolulu, Hawaii, **3536**.
- 528 7 Schlaepfer TE, Bewernick BH, Kayser S, Madler B, Coenen VA (2013): Rapid Effects of Deep Brain
- 529 Stimulation for Treatment-Resistant Major Depression. *Biological Psychiatry* **73**, 1204-12.
- 530 8 Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B,
- 531 **Joliot M** (2002) : Automated anatomical labeling of activations in SPM using a macroscopic
- anatomical parcellation of the MNI MRI single-subject brain. *NeuroImage* **15**, 273–89.