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CHAPTER 1

COMPUTING GLOBAL SHAPE MEASURES

Paul L. Rosin

School of Computer Science, Cardiff University
P.O. Box 916, Cardiff, CF24 3XF, UK

E-mail: Paul.Rosin@cs.cf.ac.uk

Global shape measures are a convenient way to describe regions. They are generally simple
and efficient to extract, and provide an easy means for high level tasks such as classification
as well as helping direct low-level computer vision processes such as segmentation. In this
chapter a large selection of global shape measures (some from the standard literature as
well as other newer methods) are described and demonstrated.

1. Introduction

Formed by the eye and therefore, like the eye,
Full of strange shapes, of habits and of forms,
Varying in subjects as the eye doth roll
To every varied object in his glance

Love’s Labour’s Lost, Shakespeare

Shape is an important aspect of visual interpretation, and over the years many schemes
have been proposed for representing the shape of objects (see reviews in Refs. 1, 2, 3, 4).
Sometimes the goal is to recover three dimensional information from shape content present
in the two dimensional scene (see examples in both computer vision

��� �
and human vision

�
),

but in many instances full 3D recovery is not essential for interpretation. In fact, as Bieder-
man and Ju showed

�
, the human visual system performs very well even in the absence of

many cues such as intensity, colour, texture, etc. In computer vision there are many uses for
2D shape analysis. These range from high level applications such as content based image
retrieval; even the earliest systems such as QBIC

�
used circularity, eccentricity, moment

invariants, etc., while more recent systems (particularly those aimed for trademarks and
logos) use many more shape measures

�	�
. At the other end of the spectrum, shape analysis

can be incorporated as a component in low level computer vision processes to direct image
segmentation

�
�
, line grouping

���
, etc.

While some techniques focus on the interior components (e.g. pixels) of a region, and
others prefer to analyse the boundary (see Pavlidis

�
), both provide essentially the same in-

1
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formation if only binary regions are considered (i.e. interior colour and texture are ignored),
and we will not distinguish between the two.

2. Shape Decomposition

One approach to analyse shape is to break up the region into simpler parts such as triangles,
convex polygons, etc. An example of partitioning is shown in Fig. 1 where the global shape
measure of convexity has provided the criterion for selecting appropriate dividing cuts. The
overall convexity of the decomposition (into a specified number of parts) is maximised,
although individual parts need not be perfectly convex.

Fig. 1. The gray lines indicate the cuts used to partition the shapes into a pre-specified number of roughly convex
parts.

Fig. 2. The original curve is approximated in turn by straight line segments, circular arcs, and parabolic arcs.
Breakpoints (i.e. the ends of primitives) are marked by crosses.

More often, segmentation is applied to the boundary which is broken up into a sequence
of basic curve primitives. A popular scheme is polygonal approximation, which is straight-
forward and efficient, but other primitives are possible. Examples are shown in Fig. 2 of
approximation by straight lines, circular arcs

��

, and parabolic arcs

�	�
. All approximations

are found by recursively splitting the curve at the point of maximum deviation from the
fitted primitive (no parameters are required).

It can be useful to represent the boundary by multiple primitive types. For example,
roughly straight sections are represented by straight line segments, and curved sections by
arcs. This results in a more compact representation which may also be more effective for
matching. Since the different representations generally yield different selected breakpoints
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Fig. 3. The polygonal approximation in Fig. 2 is post-processed to replace appropriate sequences of lines by
circular arcs, and by elliptic arcs.

the results in Fig. 2 cannot be easily merged. An approach that circumvents this difficulty
is to sequentially find each representation, starting with approximating the pixel data by
the lowest level primitive type, and then replacing primitive sequences by higher level
representations. The results of this are shown in Fig. 3 where circular or elliptical arcs have
been substituted for sequences of lines if they provide a better fit.
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Fig. 4. The curvature extrema (marked by crosses) and point of inflection (boxes) are detected in the input data
(top row). Each curve section is fitted by straight line segments, elliptical arcs, and superelliptical arcs (second
row). The curvature extrema can also be used to determine codon labels (bottom row). The results of adaptive
smoothing are also shown in the bottom row; line thickness is proportional to degree of smoothing.



May 11, 2004 16:51 WSPC/Trim Size: 9.75in x 6.5in for Review Volume rosin

4 P.L. Rosin

An alternative approach is to determine the breakpoints by a fixed rule such as points of
inflection as shown in Fig. 4. This enables all sections of curve to be easily represented by
all the curve primitives (in this case straight line segments, elliptical arcs, and superelliptical
arcs)

���
.

The curvature extrema can be used to decompose the curve. One example is Asada and
Brady’s curvature primal sketch

���
which analyses the scale space tree of curvature extrema

of a region’s boundary to extract the following curve primitives: corner, smooth join, crank,
end, and bump. Another well known scheme is the set of codons which were defined by
Hoffman and Richards

� �
as sections terminating in curvature minima, and divided into

five types depending on the curvature extrema within the section. Their catalogue of codon
types was extended by Rosin

���
to incorporate straight sections and endings, and an example

of the application of this extended codon set is given in Fig. 4.

Fig. 5. The global natural scales of the original pixel data (left). The second natural scale was used for processing
in Fig. 4.

Detecting curvature extrema requires some filtering to eliminate responses due to noise.
One possibility is to determine adaptively an appropriate degree of smoothing for local sec-
tions of curve. This can be done in a similar manner to fitting curve primitives as described
above

���
, and results are shown in Fig. 4. Alternatively, rather than represent each part of

the curve at a single scale multiple scales can be employed. The results of representing the
hand data at its “natural scales”

���
are presented in Fig. 5. The curve has been smoothed

over a range of scales, and those scales maximising a significance measure are considered
to contain the most useful information, and are retained.

3. Global Shape Measures

Although the multiple component shape representations described above provide a detailed
shape description they have the disadvantage that matching such descriptions is compli-
cated. The same applies to other representations such as medial axes, shock graphs

�
�
, etc.

Algorithms such as dynamic programming, interpretation trees, multiple cliques in associa-
tion graphs, etc. are often used to find the correspondences between subparts, based on their
multiple properties (e.g. orientation, position, curvature) and the spatial inter-relationships
between groups of subparts.

In contrast, describing regions by global shape measures enables much simpler match-
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ing to be used (e.g. a Euclidean distance classifier), and the many standard property based
classifiers in the literature can be directly used without modification (e.g. support vector
machines, neural networks, etc.). Global shape measures (sometimes called global scalar
transforms) just return a single value to describe a region, and therefore they obviously
do not provide a one-to-one mapping between shapes and values; for example, there are
infinitely many perfectly convex shapes, all of which should yield the same value for any
given convexity measure. Nevertheless, if a region is described by a combination of shape
measures this should be sufficient to provide discrimination between different categories
of shapes. The main disadvantage of global shape measures is that they do not cope well
with occlusion, since this can change the global nature of a region’s shape to an arbitrary
degree.

There are many standard global shape measures in the literature, e.g. moments, Fourier
descriptors, auto-regressive models. These types of approaches have been proven to be ef-
fective, although a downside is that their values are often not easily understandable. In many
applications it is preferable if the region descriptors can be analysed by the domain experts,
as this aids validation and development of the computer vision system. In this chapter we
shall concentrate on descriptors that have direct intuitive meanings, e.g. convexity.

A wide variety of global shape measures are described in the following sections, and
a variety of methods have been used in their construction. They are generally based on
the deviation (in some sense) of a region from the best matching perfect instance of the
shape. However, while it is usually straightforward to determine whether a region satisfies
a shape type or not (e.g. is a region convex, or is a region a rectangle?) there are no univer-
sally accepted standard methods for measuring the discrepancy between the region and the
canonical form. Nevertheless, since real data tends to be noisy and distorted it is necessary
to be able to cope with errors, and so continuous shape measures are required rather than
binary shape tests.

Some of the approaches use a combination of primary measurements of the region such
as perimeter, area, and diameter (for which there are accepted precise definitions although
there may still be difficulty in estimating the values in the presence of noise). From these
primary measurements the shape measures can be built, e.g. by defining them as algebraic
combinations of the primary measurements. Other approaches explicitly fit a model to the
data (using least squares, moments, Fourier transform, etc.) and measure the discrepancy of
the fit using the geometric distance between the points and the model or between parameters
(e.g. Fourier descriptors) of the fitted model and the region. In the extreme case, similarity
can even be measured by determining how many pixels need to be moved, and how far, to
change one shape into another

���
.

One of the goals of the shape measures is to be able to capture a class of forms which
may be fairly general, but also to be specific enough to discriminate against other shapes. A
shape measure needs to be invariant under certain transformations, but the particular type of
invariance will depend on the application. For instance, a convexity measure should ideally
be invariant under any perspective projection. On the other hand, a shape measure to enable
digits “6” to be distinguished from “9” in an OCR application should not be rotationally
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invariant.
A further requirement is that the shape measures should be robust in the presence of

noise. In other words, small changes to a region’s form should have small effects on the
values computed by the shape measures. As we shall see, several of the standard shape
measures fail on this count.

3.1. Eccentricity and Elongatedness

There are various formulations which measure some notion of the aspect ratio of a region,
and they go under several names such as eccentricity, elongatedness, etc. A common and
convenient measure uses the central moments ����� , and is computed as the ratio of the

lengths of the axes of the image ellipse
�����
��������� � !"�����$#%������& � � � � � '�'� ��� ��� ��� #�� !"� ��� #%� ��� & � � � � � '�' , which can be simpli-

fied and reformulated as ( )*� �
�,+ � ���.- �0/21 � � ����3 )4� ��� / � �5��- to provide a measure in the
range 6 798�:$; .

Alternatively, an example of the boundary based techniques is to compute the ratio of
the region’s width and diameter. This requires determining the diameter (i.e. the longest
chord between pairs of boundary points), which can be done in linear time

�
�
. The width

which is the longest chord perpendicular to the diameter can then be easily found. Alterna-
tives such as the ratio of the shortest Feret diameter to the longest chord perpendicular to it
are also used.

Fig. 6. The spike in the rectangular region on the left makes it appear less elongated than the shell on the right
according to the aspect ratio measure, but not according to the moments based measure.

Because the aspect ratio is based on maximum distances it is more sensitive to narrow
area spikes than the moments based measure, as is demonstrated in Fig 6.

3.2. Circularity

The most common approach to measuring circularity (also called compactness, shape fac-
tor, etc.) is to compute < �= where > and ? are the perimeter and area of the region. Low
values correspond to circular shapes (

1A@
in the limit).

Although this is a convenient formulation, there are problems due to the artifacts caused
by digitisation

��
$� �
�
, and moreover, since perimeter estimates are extremely sensitive to

noise (prone to overestimation), then in such cases the value of the measure becomes in-
flated, incorrectly assigning non-circular values to noisy circles.

An alternative that avoids this problem was suggested by Haralick
���

. Given the distanceB
between the centre and any point on the perimeter his measure is

�DCE C , where high values
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correspond to circular shapes. Note that the centre should be calculated as the centroid of
the polygon and not the average boundary coordinate values, as otherwise it will be biased
in the event of noise being unevenly distributed along the boundary.

Figure 7 demonstrates how the < �= measure is confused by the circle’s boundary texture,
and incorrectly estimates the pear as the more circular of the two regions, Although the
undulation superimposed on the circle causes its value of

� CE C to decrease compared to a
perfect circle it is still higher than the pear’s value, which is therefore correctly estimated
as the less circular of the regions.

Fig. 7. The undulations on the circle cause it to be measured as less circular than the pear according to F �G , but
not according to H CI C .

3.3. Squareness

Squareness is not such a common shape measure in computer vision, but it is straightfor-
ward to define such a measure in various ways. One approach is to use complex Fourier
descriptors

���
. If the boundary of the region is given by the points )*JLKA8
MNK - then the coordi-

nates are represented by complex numbers O K,P J K /RQ M K and applying the discrete Fourier
transform leads to the complex coefficients comprising the descriptors S�T PVU T /WQ�X T P�YWZ Y[]\ � O [_^�`ba ) + Q	c�@�dfe 3�g - . Just the magnitude will be used h�T P ( U � T /iX �T , and it
can be shown that h � represents the region’s centroid, and h � indicates the size of the re-
gion. To make the descriptors scale invariant they are normalised as jkT P hNT 3 h � . Bowman
et al.

� �
use j # 
 to measure squareness. Here we modify this approach slightly to include

the harmonics and also divide to take into account the remaining harmonics which do not
contribute to squareness: )*j # 
 / j # � / j # ��� /ml�l�l - 3 Zon�p	qrts # ��� ��� �
u j p . Computing the
FFT takes vw) gyx{z}|~g - time.

3.4. Ellipticity

Voss and Süße describe a method for fitting geometric primitives by the method of
moments

���
. The data is normalised into a canonical frame (which for an ellipse they take

as the unit circle), by applying an affine transformation. Applying the inverse transforma-
tion to the primitive (i.e. the circle) produces the fitted ellipse. An ellipticity measure can
be calculated as the RMS of the differences between the normalised moments of the data
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(
d��p K ) and the moments of the canonical primitive (

d p K ) where only the moments not used

to determine the normalisation are included: : 3�� : / Z p � K$� � ) d��p K + d p K - ��� l
Alternative approaches to fitting exist, and in Ref. 29 a Least Median of Squares

(LMedS) approach is taken. Minimal subsets (i.e. five points) of the data are selected from
the boundary at random and used to generate the ellipses through them. The ellipse with
the lowest median error over the full data set is retained as the best fit. The boundary point
errors are approximated using the orthogonal conic distance approximation method


��
since

the true Euclidean distance from each point to the ellipse requires solving a quartic equa-
tion. The LMedS is robust to outliers, and enables the ellipse to be fitted more reliably. It
is then refitted to the inliers by Fitzgibbon et al.’s ellipse-specific least squares algorithm


��
to increase the accuracy.

The summed errors of the ellipse fit � P Z Yp \ ��� p , where � p are the conic distance
approximations of the g boundary points to the ellipse to the ellipse, need to be made
scale invariant. This is done by weighting by the square root of the region’s area ? , giving
the ellipticity measure



�
: : 3 � : / �Y,� = � � l

Fig. 8. The region is shown with the fitted ellipse using the LMedS method (inliers plotted bold) and Voss and
Süße’s moments method.

Fig. 9. The two regions show discrepancies between the two ellipticity measures. The LMedS method rates the
cat as more elliptical while Voss and Süße’s method considers the zigzag region to be more elliptical.
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As shown in Figs. 8–9 the two approaches fit quite different ellipses. In the first example
(Fig. 8) this does not substantially affect the measured ellipticity values – the overall errors
of fit are similar. Figure 9 shows more difference where the LMedS fits most of the cat fairly
closely, and therefore assigns it a higher ellipticity value than the zigzag region, whereas
Voss and Süße’s method ranks the zigzag region as more elliptical than the cat.

3.5. Triangularity

Triangles remain triangular under affine transformations, and this naturally leads to affine
moment invariants being employed to measure triangularity. We will describe the methods
for computing moments based on the region’s interior pixels





, but similar methods are

available that operate directly on the region boundary (line moments).


�

To avoid using higher order moments (which are less reliable) we use the simplest affine
moment invariant



�
of the triangle to characterise it: � � P � ��� � ��� #%� � '�'�N���� , where ����� are the

central moments. For all triangles it can be shown that � � P ��	�5� . The triangularity measure
defined in Ref. 32 is normalised to 6 798�:�; as :�7A�}� � if � �k� ����5� and

����5��� ' otherwise.
A second approach fits a geometric triangle model to the data, and measures the error

between the model and data. Fitting is performed by finding a three line polygonal approx-
imation of the boundary. The summed error � of points along the boundary is computed,
and the final triangularity measure is defined in the same manner as the previous ellip-
ticity measure: : 3 � : / �Y,� = � � . The computation complexity of this measure depends
on which polygonal approximation algorithm is used; complexities range from linear tovw) g 
 - .

Fig. 10. The moment based triangularity measure incorrectly ranks the bird between the two triangles, but the
polygonal approximation algorithm does not.

A weakness of the moment based approach is that other shapes can yield the same
moment invariant (since an infinite number of moments are required to encode all the in-
formation in a region). This can leads to errors in the shape measure as shown in Fig. 10.

3.6. Rectangularity

The standard approach to measuring rectangularity is to use the ratio of the area of the
region � to the area of its minimum bounding rectangle (MBR), i.e. ������� !"�]&���5�	� !{�]����& . The MBR
of a convex polygon can be calculated in linear time by Toussaint’s


��
“rotating caliper”

method. Since the convex hull of a simple polygon can be found in linear time the overall
algorithm remains linear.
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A weakness of the MBR is its sensitivity to narrow protrusions (while it is relatively
insensitive to intrusions). If a modified MBR is found that need contain only most of
the region then it should be more robust in the presence of small area deviations in the
boundary


���� 
 �
. This robustified MBR is fitted by iteratively minimising the functional���5�	� !"�]�9� q �]&*� ������� !"� q �]���%&���5�	� !{�]���]�9�%& . The set operations can be done in vw) g�x"zA|~g - time


��
. The

functional provides a trade-off between forcing the rectangle to contain most of the data
while keeping the rectangle as small as possible. The resulting functional is subtracted
from one and provides a rectangularity measure in 6 798�:$; .

Fig. 11. Two regions with their bounding boxes, both the standard MBR and the robustified MBR.

Figure 11 demonstrates how the MBR fitted by the robust method is a more appropriate
description of the gross shape of the regions, and consequently leads to more intuitively
correct results. The robustified MBR measure ranks the cat as more rectangular while the
standard MBR measure ranks the zigzag region are more rectangular since the cat’s stan-
dard MBR needs to be very large (compared to the size of the cat) to include the protruding
limbs.

3.7. Rectilinearity

Fig. 12. Although all the polygon’s angles are very close to ������� the polygon should not be considered as
rectilinear.

A relatively new shape measure is rectilinearity – which is the degree to which a poly-
gon’s angles conform to �k }7�¡ . However, directly measuring angles can lead to counter-
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intuitive results (see Fig. 12), and so Žunić and Rosin

��

defined the following measure.
Let us denote the perimeter of � under the ¢ � and ¢ � norms as £ � )4� - and £ � )*� - .
That is, for each straight line segment ¤ P 6")4J � 8
M � - 8�)*J � 8
M � - ; making up the boundary
of � its length is calculated as ¥ � )4¤ - P§¦ J ��+ J � ¦ / ¦ M ��+ M � ¦ for the ¢ � norm and¥ � )�¤ - Pm( )*J � + J � - �0/ )*M � + M � - � for the ¢ � norm.

Now let £ � )4�_8
¨ - be the ¢ � perimeter obtained by first rotating � by the an-
gle ¨ with the origin as the centre of rotation. It can be shown that � is rectilinear
if and only if £ � )*�R8
¨ - P � c £ � )*� - for some ¨ . This leads to a measure of rec-
tilinearity ©«ª `¬ rb­ ��� ��®N¯0° ' !"� � ¬A&� � ° ��!"�]& which is normalised to obtain a value in the range )4798�:�; :®® # � � �²±³©«ª `¬ rb­ ��� �
®N¯ ° ' !"� � ¬}&� � ° �$!{�´& + �5� �®yµ . While it is possible to solve for ¨ symbolically it is

more straightforward to numerically maximise the measure over 6 7�8 c�@ ; which can be per-
formed efficiently by multi-resolution sampling of ¨ .

3.8. Sigmoidality

A sigmoidality measure determines how much a region is S-shaped. The methods described
here preprocess the region to extract a single centreline curve which is the focus of all fur-
ther analysis. This is easily performed by smoothing the region until the skeleton (obtained
by any thinning algorithm) is non-branching.

A modified version
���

of Fischer and Bunke’s
���

technique is to fit the cubic M P¶U J 
 /X J / S after the centreline is first rotated so that its principal axis lies along the X axis.
The correlation coefficient · is used to measure the quality of fit. Inverse correlation is not
expected, and so the value is truncated at zero.

We now describe an alternative method for computing sigmoidality based on a less
restrictive characteristic of the sigmoid, namely its single, central point of inflection. For
perfect data its presence would be easy to test, but in practise, with real data the sensitivity
of curvature estimation to noise makes this difficult. Therefore, instead of identifying zero
crossings of curvature the overall distribution of curvature values along the curve is anal-
ysed. The curvature at each point is estimated as ¸ p using kernels of the Gaussian function
and its first two derivatives. Separating the positive and negative curvature values as¸ �p P³¹ 7 if ¸ p�º 7¸ p otherwise

¸ #p P³¹ 7 if ¸ p�» 7+ ¸ p otherwise

then the positive and negative curvature values are summed over the curve to the left and
right respectively of the midpoint

Y � . In addition the total curvature is computed for nor-
malisation purposes:

? � P½¼ �¾ p \ � ¸ �p ? # P Y¾p \ ¼ �
¸ #p ¿ P Y¾ p \ � ¦ ¸ p ¦ l

The sections of positive and negative curvature should be restricted to either side of the
inflection point and so the quantity ? � / ? # should be large. Also, the amount of positive
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curvature on the left should equal the (absolute) value of the negative curvature on the right,
and the discrepancy is measured by ¦ ? � + ? # ¦ . These values are scaled and combined to
obtain the following measure 6 c )*? � / ? # - 3}¿ + :$;�6À: + ¦ ? � + ? # ¦ 3}¿ ; l To cope with
the curve bending in either direction it is analysed both for ¸ p and + ¸ p , and the larger of
the two values returned.

Fig. 13. The regions are shown with their extracted centrelines. Next to each region is its centreline (aligned
with the Y axis) and the fitted cubic. The cubic fit measure rates the fish more sigmoidal than the “5”.

The weakness of the cubic fit is demonstrated in Fig. 13 in which it rates the fish as more
sigmoidal than the digit “5”. This is because the fish’s centreline is well fit by a cubic, even
though it is almost straight, while the shape of the digit does not conform to the smooth,
symmetric cubic. The curvature method correctly assigns the digit a higher sigmoidality
value since its model is more general.

3.9. Convexity

In a similar approach to the MBR method for rectangularity, convexity can be measured
with respect to its convex hull. If we denote the convex hull of region � by Á´ÂÃ)*� - then
the standard convexity measure is defined as ���5�	� !{�´&�$���	� !"Ä�Å�!"�]&*& . The convex hull of a simple
polygon can be found in linear time

�5�
and so the overall computational complexity of the

measure is linear.
Again, like the MBR, the convex hull is sensitive to protrusions but not indentations,

and so would estimate the left region in Fig. 14 as more convex then the right region even
though the former has greater deviations from the underlying rectangle.

Fig. 14. The convex hull based convexity measure considers the left shape to be the more convex, while Žunić
and Rosin’s measure more correctly determines the right shape to be the more convex.
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Žunić and Rosin
��


proposed a scheme based on perimeter rather than area measure-
ments that responds more equally to intrusions and protrusions. Instead of being based on
the convex hull it utilises the minimal rectangle with edges parallel to the coordinate axes
which includes � , denoted by Æ_)4� - . Also, let ÆR)*�R8
¨ - be the minimal rectangle with
edges parallel to the coordinate axes which includes � rotated by an angle ¨ around the
origin. � is convex if and only for any choice of the coordinate system the ¢ � perimeter
of � equals the perimeter of the minimal rectangle whose edges are parallel to the coor-
dinate axes and which includes � , i.e., £ � )�>]8
¨ - P £ � )�ÆR)�>]8
¨ -�- for any ¨ÈÇÉ6 7�8 c�@ ; .
This leads to the following convexity measure: ©�Ê{Ë¬ rb­ ��� ��®N¯t° � !{Ì]!"� � ¬A&*&° ' !"� � ¬A& whose values are in the

range 6 7�8�:�; . There is a vw) g � - procedure for the analytic computation of the measure, but
like the rectilinearity measure it is convenient to estimate it numerically.

3.10. Symmetry

There are many schemes for detecting and quantifying symmetry
�
��� �5�

. A simple scheme
for measuring Í -fold rotation symmetric is to measure the amount of overlap between the
region and rotated versions of itself. This can be averaged over Í + : rotations by increments
of

��®Î radians. If the result of rotating � by ¨ is Ï²)*�_8�¨ - then the symmetry measure is�Î�Ð ���5�	� !{�´& Z Î�# �p \ � U h�¤ U )*�ÒÑkÏÓ)4�_8 ��® pÎ -�- . The easiest approach is to use the centroid of � as
centre of rotation, but of course for imperfectly symmetric regions this may not be the best
centre. An alternative is to optimise the symmetry measure as a function of the centre of
rotation, although this is considerably more computationally expensive. Even without the
optimisation stage this approach to symmetry detection is more expensive than the previous
measures encountered so far since the polygon intersection stage takes vw) g � - time


��
.

The two measures of symmetry (with and without optimisation of the centre of rota-
tion) are demonstrated in Fig. 15. Both successfully detect the leftmost region as perfectly
symmetric. However, the occlusion in the middle region causes the centroid (shown as the
white circle) to be a poor estimate of the centre of rotation and therefore rates this region as
less symmetric than the rightmost region. The iterative fitting method correctly determines
the centre of rotation (shown as the black circle) and consequently rates this region as more
symmetric than the rightmost region.

Fig. 15. Both measures of symmetry assign the leftmost region maximal values. For the middle region the
centroid (white circle) is a poor estimate of the centre of rotation (black circle) and therefore its use leads to this
region being rated as less symmetric than the rightmost region. The iterative fitting method correctly determines
the centre of rotation and determines the middle region to be more symmetric than the rightmost region.
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3.11. Chirality

Chirality is the degree of left or right handedness of a region, and is a useful mea-
sure in many disciplines

�5�
apart from computer vision

� �
. A chiral region cannot be

superimposed on its mirror image, and this directly leads to a measure of chiral-
ity similar to the symmetry measure above. Since the axis of mirror symmetry is
not known the overlap is maximised over all possible orientations through the centre,
which as above can also be optimised. If the mirror image of � with the line of re-
flection through )*J�Ô�8
MAÔ - at angle ¨ is ÕV)4�_8
¨08�J%Ô�8�MtÔ - then the chirality measure is©«ª ` ¬ � Ö.×
� Ø�×�Ù : + U h�¤ U )*�VÑ�ÕV)*�R8
¨08�J Ô 8
M Ô -�-5Ú since chiral shapes have minimal overlap.
Like symmetry detection this measure is computationally expensive.

Fig. 16. The left hand region is chiral while the other two regions are not.

Figure 16 shows three regions whose chirality was measured with and without optimi-
sation of the centre of line of reflection. The leftmost region gets a high score from both
since there is no mirror reflection that produces any significant overlap with the region. Al-
though the centroid of the middle figure is displaced due to occlusion both measures give
zero chirality values. Reflecting about the horizontal line through the centroid is sufficient
to get perfect overlap. Finally, the noisy boundaries in the rightmost region cause a fairly
small chirality value (0.027) to be initially estimated using the centroid. The chirality value
is subsequently refined to zero (to six decimal places) by optimising the centre of line of
reflection.

4. Conclusions

Many shape measures have been described in this chapter, but this is not an exhaustive list.
Many alternative measures for these shapes exist, as well as measures for other, specialised
shapes. The majority of the measures have linear computational complexity in the num-
ber of (boundary or interior) points. Some are sensitive to noise or small area protrusions;
while more robust methods are available (and were described) they are often more com-
putationally expensive. As can be seen, not all measures are specific, but can also produce
their peak response for shapes other than their target shape (e.g. compare the two triangu-
larity measures). Deciding on the most appropriate measures depends on their suitability
for particular applications.

To conclude, Figs. 17–27 demonstrate applying all the shape measures described in
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this chapter to a variety of regions. The regions are presented ranked into descending order
according to each measure, except for width/diameter and < �= which are put into ascending
order for easier interpretation. These results help provide a qualitative understanding of the
performances of the measures; more quantitative comparisons are given in the context of
using the shape measures for classification in Refs 10, 32, 37, 39, 40, 43, 48.

Û Ü"Ý�Þàß�áÃÝAß	Þ�â Þ�ãwä Ý Þ å�å�æ Ü{ÝtÞàß ã Ýtß	Þ�â

width/diameter

Fig. 17. Eccentricity and Elongatedness

ç Þ�æ	è

Haralick’s
Ý�é æ5ê é

measure

Fig. 18. Circularity
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normalised ëíìbî and harmonics
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