
May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Chapter 1

Cellular Automata as a

Tool for Image Processing

Paul L. Rosin and Xianfang Sun

School of Computer Science & Informatics, Cardiff University

Cardiff, CF24 3AA, UK

E-mail: {Paul.Rosin,Xianfang.Sun}@cs.cf.ac.uk

An overview is given on the use of cellular automata for image pro-
cessing. We first consider the number of patterns that can exist in a
neighbourhood, allowing for invariance to certain transformation. These
patterns correspond to possible rules, and several schemes are described
for automatically learning an appropriate rule set from training data.
Two alternative schemes are given for coping with gray level (rather
than binary) images without incurring a huge explosion in the number
of possible rules. Finally, examples are provided of training various types
of cellular automata with various rule identification schemes to perform
several image processing tasks.

1.1 Introduction

Cellular automata (CA) consist of a regular grid of cells, each of which can be in

only one of a finite number of possible states. The state of a cell is determined

by the previous states of a surrounding neighbourhood of cells and is updated

synchronously in discrete time steps. The identical rule contained in each cell is

essentially a finite state machine, usually specified in the form of a rule table with

an entry for every possible neighbourhood configuration of states.

Cellular automata are discrete dynamical systems, and they have been found

useful for simulating and studying phenomena such as ordering, turbulence, chaos,

symmetry-breaking, etc, and have had wide application in modelling systems in

areas such as physics, biology, and sociology.

Over the last fifty years a variety of researchers (including well known names such

as Stanislaw Ulam [Ulam (1962)] and John von Neumann [von Neumann (1966)],

John Holland [Holland (1970)], Stephen Wolfram [Wolfram (1994)], and John Con-

1

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

2 P.L. Rosin & X. Sun

way [Gardner (1970)]) have investigated the properties of cellular automata. Par-

ticularly in the 1960’s and 1970’s considerable effort was expended in developing

special purpose hardware (e.g. CLIP) alongside developing rules for the application

of the CAs to image analysis tasks [Preston and Duff (1984)]. More recently there

has been a resurgence in interest in the properties of CAs without focusing on mas-

sively parallel hardware implementations, i.e. they are simulated on standard serial

computers. By the 1990’s CAs could be applied to perform a range of computer

vision tasks, such as:

• calculating distances to features [Rosenfeld and Pfaltz (1968)],

• calculating properties of binary regions such as area, perimeter, convex-

ity [Dyer and Rosenfeld (1981)],

• performing medium level processing such as gap filling and template match-

ing [de Saint Pierre and Milgram (1992)],

• performing image enhancement operations such as noise filtering and sharp-

ening [Hernandez and Herrmann (1996)],

• performing simple object recognition [Karafyllidis et al. (1997)].

Cellular automata have a number of advantages over traditional methods of

computations:

• Although each cell generally only contains a few simple rules, the combi-

nation of a matrix of cells with their local interaction leads to more so-

phisticated emergent global behaviour. That is, although each cell has an

extremely limited view of the system (just its immediate neighbours), lo-

calised information is propagated at each time step, enabling more global

characteristics of the overall CA system.

• This simplicity of implementation and complexity of behaviour means that

CA can be better suited for modelling complex systems than traditional ap-

proaches. For example, for modelling shell patterns, CA were found to avoid

the considerable numerical problems inherent with partial differential equa-

tion based models, and were also substantially faster to compute [Kusch and

Markus (1996)].

• CA are both inherently parallel and computationally simple. This means

that they can implemented very efficiently in hardware using just AND/OR

gates and are ideally suited to VLSI realisation [Chaudhuri et al. (1997)].

• CA are extensible; rules can easily be added, removed or modified.

1.2 Relating the Number of Cell States to the Number of Rules

For a 3× 3 neighbourhood with cells taking 256 possible intensities there are 2568

possible neighbourhood patterns (not considering the central cell’s value). However,

for many image processing tasks this number can be reduced by considering symme-

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Cellular Automata as a Tool for Image Processing 3

A B C
D
ABC

D
A B A

A A
B

B
B

A B A

D D
CC

E
Fig. 1.1 Patterns of a 3 × 3 neighbourhood that remain invariant under ±90◦ rotation, 180◦

rotation, and mirror symmetry through a vertical line of reflection respectively.

tries, e.g. the same rule should apply even if the pattern is rotated. To determine

the number of distinct patterns after removing equivalent symmetric versions the

Pólya-Burnside counting lemma [Roberts and Tesman (2005)] can be applied. If G

is a set of permutations of a set A, then the number of equivalence classes is

N =
1

|G|

∑

g∈G

|Fix(g)| (1.1)

where Fix(g) is the number of elements of A that are invariant under g. Figure 1.1

shows the patterns which are invariant under examples of the following transforma-

tions: ±90◦ rotation, 180◦ rotation, and mirror symmetry through a vertical line

of reflection respectively. Thus, the number of distinct patterns N in terms of the

number of possible intensities n is

N =
n8 + 2n2 + n4 + 4n5

8
(1.2)

where the terms in the numerator correspond to: the identity transformation (i.e.

0◦ rotation), two rotations (±90◦), a single rotation (180◦), and four rotations

corresponding to mirror symmetry through horizontal, vertical, and diagonal lines

of reflection.

Given that even after eliminating symmetries the number of patterns still scales

as O(n8), it can be seen that considering all n = 256 intensities leads to a prohibitive

number of possible rules (N > 2×1018). Therefore, much of the previous application

of cellular automata to image processing has been restricted to binary images. In

this case, there are only 28 = 256 possible patterns or rules, which reduces to

N = 51 rules after eliminating symmetries – see figure 1.2.

1.3 Threshold Decomposition

In order to extend binary image CA methods to apply to gray level images without

incurring the combinatorial explosion in the number of rules, Rosin [Rosin (2006)]

proposed using threshold decomposition, a technique used extensively in image

processing for rank order filtering [Fitch et al. (1984)]. This involves decomposing

the gray level image into the set of binary images obtained by thresholding at all

possible gray levels.1 If a filter has the “stacking property” then it can be applied to
1Since threshold decomposition using all intensity levels incurs a substantial computation cost,

a subset of intensity levels can be used instead to produce a faster approximation.

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

4 P.L. Rosin & X. Sun

Fig. 1.2 The complete rule set for a 3 × 3 neighbourhood of binary values with a central black
pixel contains 51 patterns after symmetries and reflections are eliminated. The black central pixel

is flipped to white after application of the rule. The neighbourhood pattern of eight white and/or
black (displayed as gray) pixels which must be matched is shown.

each binary image, and when the set of processed binary images are summed then

the result is identical to applying the filter to the original intensity image. A set of

CA rules do not in general satisfy the stacking property2, nevertheless applying this

methodology is still useful since it allows intensity images to be processed. There

is no equivalence of the results using the binary CA to those of a full intensity CA,

but experimental results showed that results were still good.

In Rosin’s initial work the CA were trained to perform denoising on a single

binary image and subsequently the learnt rule set was reapplied to a gray level

image using threshold decomposition. This idea was subsequently developed [Rosin

(2010)] to take the more computationally expensive approach of training the CA on

gray level images. That is, a search is made for a set of rules that when applied to

the elements of the threshold decomposed input image and reconstructed produces

a gray level image that provides a good match to the gray level target image. This

has the advantage that it directly optimises the desired error function unlike the

first approach which does not use threshold decomposition in the training phase

but only during the subsequent application phase.

1.4 A 3-State Representation

An alternative approach to reducing the number of cell states was proposed by

Rosin [Rosin (2010)] to enable more efficient training and application of CA to

intensity images. It is based on the texture unit texture spectrum (TUTS) method

2Since CA can perform rank order filtering [Jagadish and Kailath (1989)] then it follows that at

least some CA rules do possess the stacking property.

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Cellular Automata as a Tool for Image Processing 5

of texture analysis [Wang and He (1990)]. This involves using a pixel’s value as a

threshold for its eight neighbours. That is, for a central pixel value vc its neighbours

vi are thresholded as

v′i =

0 if vi < vc

1 if vi = vc

2 if vi > vc

(1.3)

Each neighbourhood can then be represented by a code formed from the eight

ternary values:
∑

8

i=1
v′i3

i, and histograms of the 38 = 6561 different texture unit

codes (the so called texture spectrum) make up the textural description of an image

(or sub-image).

This local thresholding approach can be used in the context of our CA to reduce

the large number of neighbourhood patterns. The basic idea is to maintain at each

cell the image intensity as its primary state, but during the rule matching phase

to consider the ternary pattern of the neighbourhood determined relative to the

central cell’s state. The CA rules are defined in terms of the 3 states rather than

256 states, and so from eqn. 1.2 we find that 954 patterns need be considered.

ternary
neighbourhood
pattern

pixel
intensity

activated
rule

an
y

m
at

ch
in

g
ru

le
?

decrease
increase or

intensity

thresholding
local

Fig. 1.3 The CA is represented using both pixel intensities for cell states as well as ternary
neighbourhood patterns. Transition rules involve changing a cell’s intensity sufficiently such that
the ternary neighbourhood pattern changes.

The scheme is as follows, and is illustrated in figure 1.3. The rules are applied to

all the matching cells in parallel at each time step. This involves 1/ first generating

at each cell its ternary neighbourhood pattern by thresholding the neighbourhood

according to eqn 1.3, 2/ at each cell check for any rule that matches its ternary

neighbourhood pattern, 3/ if a rule matches then apply it to update the central

cell. In a standard binary CA, application of a rule inverts the cell’s state. In the

3-state system despite using ternary rules it is the cell’s intensity that needs to be

updated. This is done by modifying its value such that its ternary neighbourhood

changes. The minimal modification in either direction is to either increase its inten-

sity to its closest neighbourhood intensity value, or alternatively to decrease it to

its closest neighbourhood value. Thus for each pattern there are two possible rules

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

6 P.L. Rosin & X. Sun

(i.e. increasing or decreasing types). Note that for each type of rule there are cer-

tain neighbourhood patterns that preclude the use of that rule type. That is, there

are 51 of the 954 basic patterns without any neighbourhood pixel intensity greater

than the central pixel, and the same number without a smaller value. Therefore,

the total number of rules in this CA system is 2× (954− 51) = 1806.

Two variations to the scheme are possible. The first allows all 1806 rules to be

learnt independently. Thus, if the results of processing image I are f(I), there is no

constraint that f(−I) = −f(I), which can be useful in some situations. The sec-

ond variation enforces the constraint by treating the “increasing” and “decreasing”

versions of a rule, Rinc
TUi

and Rdec
TUi

, as equivalent when applied to inverted neigh-

bourhood intensities. That is, for a neighbourhood N , Rinc
TUi

(N) ≡ Rdec
TUi

(−N) and

Rinc
TUi

(−N) ≡ Rdec
TUi

(N), and so there are only 903 rules to be learnt.

One of the features of the TUTS (and LBP) schemes is that they provide a

textural description that is invariant to a wide range of gray level transformations.

Thus, for the 3-state CA this means that f(T (I)) = T (f(I)) where T is a mono-

tonic, non-linear mapping that is information preserving in the sense that separate

intensities are not collapsed into single values. In some situations this could be

beneficial, but in others a lot of important information is lost by discarding quanti-

tative information, and so the 3-state CA is not suited to solve certain quantitative

tasks, e.g. computing edge magnitudes.

1.5 Training Strategies

Most of the literature on cellular automata studies the effect of applying manually

specified transition rules. However, this is not a convenient way in which to build

an image processing system, and a more automated approach is required. Ideally, it

should be possible to automatically learn the rules given 1/ a set of training images,

2/ a set of corresponding target (i.e. ideal) output images, and 3/ an objective

function for evaluating the quality of the actual images produced by the CA, i.e. the

error between the target output and the CA output. However, the inverse problem

of determining appropriate rules to produce a desired effect is hard [Ganguly et al.

(2003)]. In general an optimal selection of rules cannot be guaranteed without

an exhaustive enumeration of all combinations [Cover and Campenhout (1977)],

and this is clearly generally not feasible. We shall describe three more practical

approaches for learning appropriate rule sets from training data.

1.5.1 Genetic Algorithms

The most common approach in the literature is to use evolutionary algorithms, and

in particular genetic algorithms (GAs). Most of this work is applied to a single,

somewhat artificial, example which is a version of the density classification problem

on a 1D grid. Given a binary input pattern, the task is to decide if there are a

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Cellular Automata as a Tool for Image Processing 7

majority of 1s or not, i.e, a single binary outcome. For CAs with rules restricted

to small neighbourhoods this is a non-trivial task since the 1s can be distributed

through the grid, and so it requires global coordination of distant cells that can-

not communicate directly. Early work by Mitchell et al. [Mitchell et al. (1994)]

encountered several difficulties with the GA learning: 1/ breaking of symmetries in

early generations for short-term gains, and 2/ the training data became too easy

for the CAs in later generations of the GA. Juillé and Pollack [Juillé and Pollack

(1998)] tackled the latter problem using GAs with co-evolution. To encourage bet-

ter learning the training set was not fixed during evolution, but gradually increased

in difficulty. Thus, once initial solutions for simple versions of the problem were

learnt, they would be extended and improved by evolving the data to become more

challenging. Instead of GAs Andre et al. [Andre et al. (1996)] used a standard

genetic programming framework. Since this was computationally expensive it was

run in parallel on 64 PCs. Extending the density classification task to 2D grids,

Jiménez Morales et al. [Morales et al. (2001)] again applied standard GA to learn

rules.

Applying GAs remains a dominant theme in research into learning CA rules [Bull

and Adamatzky (2007); Terrazas et al. (2007)], although progress is limited. There

are still papers attempting to solve the trivial task of binary image boundary detec-

tion using genetic algorithms and CA [Batouche et al. (2006); Slatnia et al. (2007)].

Another example at the same level attempts (with limited success) to generate sim-

ple shapes such as a square, circle, etc., again using genetic algorithms [Chavoya

and Duthen (2006)]. Craiu and Lee [Craiu and Lee (2006)] use a minimum descrip-

tion length criterion to automatically learn both neighbourhood size and rules for

stochastic CA to perform the task of synthesising binary patterns. However, the

system exhaustively considers first all neighbourhood sizes and then all rule param-

eters, and so they could only demonstrate results on very small CA examples.

1.5.2 Greedy Selection

In comparison to such evolutionary methods, deterministic feature selection meth-

ods are extensively used for building classifier systems. In particular, we describe a

popular approach called the sequential floating forward search (SFFS) [Pudil et al.

(1994)] which was found to perform best compared to fourteen other feature selec-

tion algorithms (including a genetic algorithm) [Jain and Zongker (1997)]. SFFS

was first used for training CA for image processing tasks by Rosin [Rosin (2006)].

The advantages of deterministic feature selection methods over evolutionary meth-

ods are that

• they tend to be extremely simple to implement

• their runtime is significantly less

• the quality of their results is as good or better

• being deterministic rather than randomised means that the results are re-

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

8 P.L. Rosin & X. Sun

peatable (which is particularly helpful for other researchers attempting to

duplicate published results)

• they do not require the many parameters necessary for genetic algorithms.

The SFFS algorithm can be described as follows. Let Ri denote the rule set at

iteration i and its score be J (Ri). In our case, J (Ri) is computed by applying the

CA with the rule set Ri to the input image, and returning the error computed by

one of the objective functions described in the next section. The initial rule set R0

is empty. At each iteration i all rules are considered for addition to the rule set

Ri−1. Only the rule giving the best score is retained, to make Ri. This process is

repeated until no improvements in score are gained by adding rules (an alternative

termination rule is when a known desired number of rules has been found). This

describes the sequential forward search, which is extended to the sequential floating

forward search by interleaving between each iteration the following test. One at

a time, each rule in Ri is removed to find the rule whose removal provides the

candidate rule set R′

i−1
with the best score. If this score is better than J (Ri−1)

then Ri is discarded, Ri−1 is replaced by R′

i−1
, and the process continues with the

addition of the i’th rule. Otherwise, R′

i−1
is discarded, and the process continues

with the addition of the (i+ 1)’th rule to Ri.

1.5.3 Identification Algorithms

Genetic algorithms or greedy selection methods can be used to learn CA rules from

training data pairs effectively, but the learning procedure is very time-consuming.

If only input/output data pairs (representing start/end CA states) are available,

and multiple steps of CA evolution from the start to the end states are required,

the above introduced CA rule learning methods are still the state-of-the-art ones.

However, if the start and the end together with their intermediate CA states are

available, or only one step is needed to evolve from the start to the end states, fast

CA learning methods exist. Recent development in CA rule extraction for the cases

with intermediate CA states involves parameter estimation methods from the field

of system identification [Adamatzky (1994); Billings and Yang (2003a); Billings and

Mei (2005); Zhao and Billings (2007); Sun et al. (2011); Billings and Yang (2003b)].

The basic idea underlying identification algorithms for CA rule learning is as

follows. CA rules are modelled as a linear-in-parameter model, and the model

parameters are estimated based on some error minimisation criterion using the

start, the intermediate, and the end states. The model together with the estimated

parameter values is then used to retrieve the CA rules. Not only are such approaches

fast, but are also effective for larger neighbourhood sizes than are practical for the

previous methods. The current fastest CA identification algorithm was developed

by Sun et al. [Sun et al. (2011)], and the following is a brief description of the

algorithm.

Let xi(t) be the state value of cell ci at evolution step t, and xl
i(t)(l = 1, . . . ,m)

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Cellular Automata as a Tool for Image Processing 9

be the state values of the cells in ci’s neighbourhood at step t. The state value of

ci at step t+ 1 is then given by

xi(t+ 1) =
2
m
−1

∑

j=0

θjQ
j
i (t) + ǫi(t), (1.4)

where Q
j
i (t) is the value of jth neighbourhood pattern defined by

Q
j
i (t) =

m
∏

l=1

blj(x
l
i(t)), (1.5)

and blj is defined as the coefficient of 2l−1 in j when j is written as a binary number.

θj is either 0 or 1, and θj = 0 represents the CA rule that when the neighbourhood

state combination is pattern Q
j
i (t), xi(t + 1) takes value 0, while θj = 1 means

that xi(t + 1) takes value 1. ǫi(t) is a noise term, which is to be minimised in the

estimation of the parameters.

Note that here m is the neighbourhood size and the number of neighbourhood

patterns is 2m. Although in the context of image processing in this chapter, the

neighbourhood size is 9 (including the central cell), and the number of patterns

is reduced from 29 = 512 to 51 × 2 = 102 when considering rotation and mirror

symmetry, we used all the 512 original patterns in Eqn. 1.4 in the identification

experiments in this chapter. However, the readers can easily generalise Eqn. 1.4 to

the case of 102 patterns.

When noise variance is used as the minimisation criterion, the parameter esti-

mation problem is solved by

{θ̂j} = argmin
1

TC

T
∑

t=1

C
∑

i=1

xi(t+ 1)−

2
m
−1

∑

j=0

θjQ
j
i (t)

2

, (1.6)

where T is the number of evolution steps, and C the number of cells.

Considering that xi(t+ 1), θj and Q
j
i (t) always take values 0 or 1, the solution

of Eqn. 1.6 is reduced to

θ̂j =

{

1, if rj > 0,

0, if rj ≤ 0,
(1.7)

where

rj =
1

TC

T
∑

t=1

C
∑

i=1

(xi(t+ 1)− x̄i(t+ 1))Qj
i (t), (1.8)

and x̄i(t+ 1) denotes the logical NOT of xi(t+ 1).

Sun et al. [Sun et al. (2011)] also discussed automatic selection of the CA neigh-

bourhood size and gave an incremental neighbourhood algorithm that uses the

Bayesian information criterion. The readers are referred to the original paper [Sun

et al. (2011)] for details.

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

10 P.L. Rosin & X. Sun

1.5.4 Objective Functions

Whichever optimisation method is used, an objective function is required, and its

quality obviously has a crucial effect on the final results. For binary images the sim-

plest objective function is the Hamming distance, or for images with more intensity

values then the root mean square (RMS) error between the input and target image

is a straightforward measure.

However, it is well known that RMS (and related) values have limitations. In

particular, given that they do not involve inter-pixel relationships they often do not

capture perceptual similarity. One possible improvement which incorporates spatial

information into the comparison of binary images A and B is to use the Hausdorff

distance

H(A,B) = max
a∈A

min
b∈B

||a− b||.

For grey level images a well known image similarity measure is the Structural Simi-

larity index (SSIM) [Wang et al. (2004)]which takes luminance, contrast and struc-

ture into account:

SSIM(A,B) =
(2µAµB + C1)(2σAB + C2)

(µ2

A + µ2

B + C1)(σ2

A + σ2

B + C2)
.

where the constants are set to C1 = (0.01×255)2 and C2 = (0.03×255)2. The SSIM

index is then applied locally using an 11×11 circular-symmetric Gaussian weighting

function, and the mean over the image is used as the final similarity measure.

1.6 Applications of Cellular Automata to Image Processing

1.6.1 Binary Image Denoising

The effectiveness of the CA is first demonstrated on binary image denoising. To

demonstrate the differences between the three training strategies described in sec-

tion 1.5, each was applied to learn the rule sets for the five input conditions (corre-

sponding to three types/levels of noise).

The GA used in our study was a simple steady state GA [Syswerda (1989);

Mumford-Valenzuela et al. (2003)]. During crossover, the first parent is selected

deterministically in sequence, but the second parent is selected uniformly, at ran-

dom. If new offspring duplicate existing values for the objective function, then they

automatically “die”. The GA was run for a fixed number of generations (100) and

the population size was set to 100. For each image, the GA was run ten times with

different initialisations of the random number generator.

For the identification algorithm, we considered two cases: one uses the 3 × 3

neighbourhood with size m = 9 which includes neighbours {c(i, j) : |i−i0|, |j−j0| ≤

1} corresponding to the central cell c(i0, j0), and the other uses the neighbourhood

with size m = 13 which includes neighbours {c(i, j) : |i− i0|+ |j − j0| ≤ 2}.

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Cellular Automata as a Tool for Image Processing 11

Table 1.1 RMS errors of filtered versions of the binary test image corrupted by

salt and pepper noise with probabilities p = 0.01, 0.1, 0.3; black squares containing a
white central pixel; and black ‘T’s and white bars. For the GA the mean RMS over
the ten runs is given with the standard deviation in brackets. For the median filter

the RMS is given for the number of iterations (which is indicated in brackets) that
gave the best results on the test image.

noise original CA median

type image GA SFFS Identification filter

m = 9 m = 13

S & P, p = 0.01 17.9 14.6 (0.3) 14.1 14.1 12.7 42.5 (1)

S & P, p = 0.1 57.0 41.2 (0.4) 32.4 32.3 30.6 45.0 (1)

S & P, p = 0.3 99.0 49.5 (1.0) 47.6 49.2 49.0 53.3 (2)

B & W square 55.7 48.9 (5.6) 32.0 32.0 25.8 55.7 (0)

‘T’s and bars 64.1 65.5 (1.9) 48.2 54.3 44.1 64.1 (0)

Two large binary images (1536 × 1024 pixels) were constructed, one each for

training and testing, and consisted of a composite of several 256 × 256 subimages

obtained by thresholding standard images. Different types and levels of noise were

added, and a set of rules learnt for each. Salt and pepper noise was added with

probabilities p = 0.01, 0.1, 0.3. The next two types of noise are non-standard, and

were included to demonstrate how the CA can learn good rules as long as it has

good training data. Black squares (3×3) containing a single white central pixel were

added; the final noise type consisted of added black ‘T’s and white bars. Examples

of these noise types are shown in figure 1.4.

In all instances the rules were run for up to 100 iterations. For comparison,

results of filtering are providing using a 3×3 median filter with the optimal number

of iterations determined for the test image, giving the median a favourable bias.

As table 1.1 shows, for small amounts of noise the median filter degrades the

image rather than improves it. Likewise, it is unable to cope with the unusual noise

types (squares and ‘T’s/bars). In comparison, the CA (when trained using SFFS or

the identification algorithm) consistently succeeds in denoising the images, and also

improves on the median filter’s results in all cases. The results are demonstrated

visually on a small image window in figure 1.4.

For the lowest level of salt and pepper noise (p = 0.01) the CA learns to use a

single rule to remove isolated pixels: . As the noise level increases the number

of rules required increases. For p = 0.1 the rules are: and the rules for

p = 0.3 are: . For noise consisting of the black square with

white central pixel the following rules were learnt: .

Unlike the salt and pepper noise in which the rules also applied in their inverted

versions (i.e. swapping the roles of black and white), the learnt rules for square

were (automatically) determined only to operate when the central pixel was black.

For the black ‘T’s and white bars noise the rules learnt for patterns with a black

central pixel were: and one further rule to be applied for white

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

12 P.L. Rosin & X. Sun

(A)

(B)

(C)

(D)

(a) (b) (c) (d) (e)

Fig. 1.4 Examples of binary image denoising. Rows show (A) the input images, and the results
after denoising using (B) CA trained by SFFS , (C) CA generated by identification algorithm (D)
median filtering. Columns (a)–(e) show different noise conditions: salt and pepper p = 0.01, salt
and pepper p = 0.1, salt and pepper p = 0.3, added black square with white central pixel, added

black ‘T’s and white bars. One iteration of the median filter was applied except for (c) for which
two iterations were applied.

central pixels: .

Table 1.1 shows that the GA was not competitive with the other training meth-

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Cellular Automata as a Tool for Image Processing 13

Table 1.2 Timings (in seconds) for learning the rules

for the binary image filtering tasks.

noise CA

type GA SFFS Identification

S & P, p = 0.01 1427 46 8

S & P, p = 0.1 8717 290 8

S & P, p = 0.3 14230 843 8

B & W square 2776 2493 8

‘T’s and bars 25030 4483 8

ods, generating much worse results. Furthermore, it can be seen from table 1.2 that

its runtime is much greater. From these experiments it is evident that identification

algorithm generally performed the best out of the three training methods, both in

terms of accuracy and computational efficiency.

1.6.2 Gray Level Denoising

Table 1.3 RMS errors of filtered versions of the gray level test image
corrupted by Gaussian noise, single pixel salt and pepper noise, salt
and pepper noise affecting 3× 3 pixel blocks, and randomly recoloured
stripes.

noise original CA shock AM

type TD 3-state filter

Gaussian, σ = 25 23.7 13.9 13.9 16.1 18.9

S & P, p = 0.6 113.5 25.0 20.9 58.5 18.8

3× 3 S & P, p = 0.01 43.1 14.7 11.8 37.9 12.1

stripe, p = 0.8 83.3 54.0 35.4 62.7 65.1

Using either of the two techniques described in section 1.5 the CA for binary

image denoising can be extended to perform gray level denoising. Results of ex-

periments are shown here along with a comparison made with the complex shock

filter [Gilboa et al. (2004)]3 and the adaptive median (AM) filter [Hwang and Had-

dad (1995)]. The CA was trained and tested on the grey level versions of the

1536× 1024 image mosaics used for the binary image denoising experiments in sec-

tion 1.6.1. The SFFS training strategy and the RMS objective function were used,

and the number of rule iterations was set to 100.

Various types of noise were added: salt and pepper, and 3 × 3 blocks of salt

and pepper. As with the binary image denoising a non-standard noise was included

to show the capabilities of learning noise specific rules. This structured noise was

created by randomly replacing (with probability p) each row or column in the im-

age with a random intensity (constant along the stripe). Thus the probability of

3Gilboa’s code for his complex shock filter was used with its default parameters: number of

iterations = 30, |λ| = 0.1, λ̃ = 0.2 and a = 2.

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

14 P.L. Rosin & X. Sun

(A)

(B)

(C)

(D)

(a) (b) (c) (d)

(E)

(a) (b) (c) (d)

Fig. 1.5 Examples of grey level image denoising. Rows show (A) the input images, and the

results after denoising using (B) CA with threshold decomposition, (C) 3-state CA, (D) complex
shock filter, and (E) the adaptive median filter. Columns (a)–(d) show different noise conditions:
Gaussian σ = 25; salt and pepper p = 0.6, single pixel; salt and pepper, 3 × 3 block, p = 0.01;
stripe p = 0.8.

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Cellular Automata as a Tool for Image Processing 15

corrupting a pixel is p−
(

p
2

)2
.

The RMS errors resulting from denoising are listed in table 1.3, and examples of

the results from applying the various methods are displayed in figure 1.5. The CA

generally performs well, and the 3-state CA gives lower errors than the threshold

decomposition CA. For the case of Gaussian noise it outperforms the shock filter

and adaptive median, although there certainly exist other denoising methods that

work better on this type of noise (although not so well on other noise types), e.g.

the hidden Markov trees (HMT) applied to wavelet coefficients [Romberg et al.

(2001)] that were previously compared against CA for denoising in [Rosin (2010)].

The adaptive median is well suited to salt and pepper noise (i.e. where the noise

is at the extreme ends of the intensity range) but does not do so well for the stripe

noise which consists of random intensities.

1.6.3 Edge Detection

(a) (b)

Fig. 1.6 Training data for edge detection task. (a) input image, (b) target image.

We now demonstrate the training and application of CA to edge detection. To

create a good set of training data a 750× 750 image mosaic was created using sub-

images from the University of South Florida data set which contains images along

with manually generated ground truth edges – see figure 1.6. Since there is likely

to be some positional error in the ground truth edges (which are one pixel wide)

the target edge map was dilated twice, with the new edges set each time to an

increasingly lower intensity. This process is similar to blurring the edge map whilst

avoiding creating local intensity maxima at junctions.

Since the 3-state CA representation discards most of the intensity magnitude

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

16 P.L. Rosin & X. Sun

(a) (b) (c) (d) (e)

Fig. 1.7 Edge detection using the threshold decomposition CA. (a) input image, (b) results from

CA, (c) noisy input image, (d) results of filtering figure 1.7c using a CA trained on corrupted
version of figure 1.6a, (e) results of filtering figure 1.7c using the Sobel edge detector.

information there is insufficient information to compute edge magnitudes, and there-

fore this approach is not appropriate for performing edge detection. However, the

threshold decomposition method works well as demonstrated in figure 1.7b which

used the SFFS training strategy and RMS objective function.

In fact, the rule set is exceedingly simple, consisting of a single rule, specifying

that any white pixel in a 3 × 3 homogeneous (i.e. all white) neighbourhood is

flipped. For each of the binary images that the input is decomposed into, this

causes all white pixels to be replaced by black except for pixels adjacent to black

pixels in the input image. Thus, a black image is formed containing a one pixel wide

white strip along the original black/white transitions, which when summed at the

reconstruction stage of the threshold decomposition produces the edge magnitudes.

An advantage of the CA methodology is that rules can be combined to perform

multiple tasks. This is demonstrated by adding noise to the training image in

figure 1.6a, specifically 3 × 3 blocks of white pixels. Retraining the CA produces

rules that simultaneously perform denoising whilst detecting edges. The results of

applying the new rules to the noisy image in figure 1.7c are shown in figure 1.7d.

In comparison to the Sobel edge detector the CA is much more successful in being

able to robustly detect the edges, the results being only minimally affected by the

salt and pepper noise.

1.7 Conclusions and Discussion

As demonstrated in this chapter, it is possible to automatically learn rules for

cellular automata that can effectively perform image processing tasks. Examples

have been given here for image denoising and edge detection, and further examples

(convex hull, connected set morphology, ridge detection) were shown in [Rosin (2006,

2010)]. A benefit of the CA approach is that it is flexible, and can easily be applied

to a variety of tasks; the same architecture can be used, and the CA just needs

retraining with new data.

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Cellular Automata as a Tool for Image Processing 17

It is crucial to have good methods for automatically learning the CA rules, and

we have described those that are currently popular in the literature. Although

genetic algorithms are the most commonly used they were shown to be the worst

choice, being both slow and providing relatively poor solutions. In comparison,

the greedy algorithms (such as sequential floating forward search) were faster and

gave better results. Under certain circumstances, the system identification type

algorithm was able to perform very well, with substantially reduced computation

time. However, it assumes the availability of training data containing the desired

outputs at intermediate iterations of the CA, which are unlikely to be available for

the image processing tasks. Therefore, the system identification algorithm is most

effective for image processing when the number of iterations required for the task

is small (ideally one).

Another important factor is the objective function used for optimisation by

the rule selection algorithms. Although several possibilities were considered, it

has not been shown that the more sophisticated functions that incorporate spatial

information provided significant benefits over the simpler functions such as root

mean square error [Rosin (2006, 2010)].

There are several directions for future research:

• Although both the threshold decomposition and the 3-state approaches

to extending the binary state cellular automata to operate on gray level

images were effective, it would be worthwhile investigating alternatives that

are better able to capture the gray level information while maintaining

reasonable computational complexity.

• The system identification algorithm is very promising, and if it could be

extended to cope with missing input/output data pairs this would greatly

increase its usefulness.

• Most of the results described here and in the literature used small neigh-

bourhoods (e.g. 3 × 3). It would be of interest to experiment with larger

neighbourhoods which definitely provide the possibility of better results.

However, this would also increase the cost in terms of storage require-

ments, computation time, and would need larger amounts of training data

for effective rule identification.

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Bibliography

Adamatzky, A. (1994). Identification of Cellular Automata (Taylor & Francis, London,
UK), ISBN 0-7484-0172-5.

Andre, D., III, F. B. and Koza, J. (1996). Discovery by genetic programming of a cellular
automata rule that is better than any known rule for the majority classification
problem, in Proc. 1st Conf. on Genetic Programming (MIT Press), pp. 3–11.

Batouche, M., Meshoul, S. and Abbassene, A. (2006). On solving edge detection by emer-
gence, in Int. Conf. on Industrial, Engineering and Other Apps. of Applied Intelligent

Systems, Vol. LNAI 4031, pp. 800–808.
Billings, S. and Yang, Y. (2003a). Identification of probabilistic cellular automata, IEEE

Transactions on Systems Man and Cybernetics, Part B: Cybernetics 33, 2, pp. 225–
236.

Billings, S. and Yang, Y. (2003b). Identification of the neighborhood and CA rules from
spatio-temporal CA patterns, IEEE Trans. on Systems, Man and Cybernetics, Part

B 33, 2, pp. 332–339.
Billings, S. A. and Mei, S. S. (2005). A new fast cellular automata orthogonal least-squares

identification method, International Journal of Systems Science 36, 8, pp. 491–499.
Bull, L. and Adamatzky, A. (2007). A learning classifier system approach to the identifi-

cation of cellular automata, J. Cellular Automata 2, 1, pp. 21–38.
Chaudhuri, P., Chowdhury, D., Nandi, S. and Chattopadhyay, S. (1997). Theory and

Applications: Additive Cellular Automata (IEEE Press).
Chavoya, A. and Duthen, Y. (2006). Using a genetic algorithm to evolve cellular automata

for 2D/3D computational development, in Genetic and Evolutionary Comp. Conf.,
pp. 231–232.

Cover, T. and Campenhout, J. V. (1977). On the possible orderings in the measurement
selection problem, IEEE Trans. on Systems, Man and Cybernetics 7, 9, pp. 657–661.

Craiu, R. and Lee, T. (2006). Pattern generation using likelihood inference for cellular
automata, IEEE Trans. on Image Processing 15, 7, pp. 1718–1727.

de Saint Pierre, T. and Milgram, M. (1992). New and efficient cellular algorithms for image
processing, CVGIP: Image Understanding 55, 3, pp. 261–274.

Dyer, C. and Rosenfeld, A. (1981). Parallel image processing by memory-augmented cel-
lular automata, IEEE Transactions on Pattern Analysis and Machine Intelligence

3, 1, pp. 29–41.
Fitch, J., Coyle, E. and Gallagher, N. (1984). Median filtering by threshold decomposition,

Acoustics, Speech and Signal Processing, IEEE Transactions on 32, 6, pp. 1183–
1188.

Ganguly, N., Sikdar, B., Deutsch, A., Canright, G. and Chaudhuri, P. (2003). A survey on

19

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

20 P.L. Rosin & X. Sun

cellular automata, Tech. Rep. 9, Centre for High Performance Computing, Dresden
University of Technology.

Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game
“life”, Scientific American , pp. 120–123.

Gilboa, G., Sochen, N. and Zeevi, Y. (2004). Image enhancement and denoising by complex
diffusion processes, IEEE Trans. on Pattern Analysis and Machine Intelligence 26,
8, pp. 1020–1036.

Hernandez, G. and Herrmann, H. (1996). Cellular automata for elementary image en-
hancement, Graphical Models and Image Processing 58, 1, pp. 82–89.

Holland, J. (1970). Logical theory of adaptive systems, in A. Burks (ed.), Essays in Cellular

Automata (University of Illinois Press).
Hwang, H. and Haddad, R. (1995). Adaptive median filters: new algorithms and results,

IEEE Trans. on Image Processing 4, 4, pp. 499–502.
Jagadish, H. and Kailath, T. (1989). Primitive cellular automata, threshold decomposition,

and ranked order operations, IEEE Trans. Comput. 38, pp. 148–149.
Jain, A. and Zongker, D. (1997). Feature-selection: Evaluation, application, and small

sample performance, IEEE Trans. on Pattern Analysis and Machine Intelligence

19, 2, pp. 153–158.
Juillé, H. and Pollack, J. (1998). Coevolving the ideal trainer: Application to the discovery

of cellular automata rules, in Proc. 3rd Conf. on Genetic Programming (Morgan
Kaufmann), pp. 519–527.

Karafyllidis, I., Ioannidis, A., Thanailakis, A. and Tsalides, P. (1997). Geometrical shape
recognition using a cellular automaton architecture and its VLSI implementation,
Real-Time Imaging 3, pp. 243–254.

Kusch, I. and Markus, M. (1996). Mollusc shell pigmentation: cellular automaton simula-
tions and evidence for undecidability, J. Theor. Biol. 178, pp. 333–340.

Mitchell, M., Hraber, P. and Crutchfield, J. (1994). Evolving cellular automata to perform
computation: Mechanisms and impedients, Physica D 75, pp. 361–391.

Morales, F. J., Crutchfield, J. and Mitchell, M. (2001). Evolving two-dimensional cellular
automata to perform density classification: a report on work in progress, Parallel
Computing 27, pp. 571–585.

Mumford-Valenzuela, C., Vick, J. and Pearl, Y. (2003). Heuristics for large strip packing
problems with guillotine patterns: An empirical study, in D. Du and P. Pardalos
(eds.), Metaheuristics: Computer Decision-Making (Kluwer Academic Press).

Preston, K. and Duff, M. (1984). Modern Cellular Automata-Theory and Applications

(Plenum Press).
Pudil, P., Novovicova, J. and Kittler, J. (1994). Floating search methods in feature-

selection, Pattern Recognition Letters 15, 11, pp. 1119–1125.
Roberts, F. and Tesman, B. (2005). Applied Combinatorics (Pearson/Prentice-Hall).
Romberg, J., Choi, H. and Baraniuk, R. (2001). Bayesian tree-structured image modeling

using wavelet domain hidden markov models, IEEE Trans. on Image Processing 10,
7, pp. 1056–1068.

Rosenfeld, A. and Pfaltz, J. (1968). Digital distance functions on digital pictures, Pattern
Recognition 1, 1, pp. 33–61.

Rosin, P. (2006). Training cellular automata for image processing, IEEE Trans. on Image

Processing 15, 7, pp. 2076–2087.
Rosin, P. (2010). Image processing using 3-state cellular automata, Computer Vision and

Image Understanding 114, 7, pp. 790–802.
Slatnia, S., Batouche, M. and Melkemi, K. (2007). Evolutionary cellular automata based-

approach for edge detection, in Int. Workshop on Fuzzy Logic and Applications, Vol.

May 24, 2013 14:27 World Scientific Book - 9.75in x 6.5in book

Bibliography 21

LNAI 4578, pp. 404–411.
Sun, X., Rosin, P. and Martin, R. (2011). Fast rule identification and neighborhood se-

lection for cellular automata, IEEE Transactions on Systems Man and Cybernetics,

Part B: Cybernetics 41, 3, pp. 749–760.
Syswerda, G. (1989). Uniform crossover in genetic algorithms, in Proc. Third Int. Conf.

on Genetic Algorithms (Lawrence Erlbaum Associates), pp. 2–9.
Terrazas, G., Siepmann, P., Kendall, G. and Krasnogor, N. (2007). An evolutionary

methodology for the automated design of cellular automaton-based complex sys-
tems, J. Cellular Automata 2, 1, pp. 77–102.

Ulam, S. (1962). On some mathematical problems connected with patterns of growth of
figures, in Proc. Symp. Appl. Math., Vol. 14, pp. 215–224.

von Neumann, J. (1966). Theory of Self-Reproducing Automata (University of Illinois
Press).

Wang, L. and He, D. (1990). Texture classification using texture spectrum, Pattern Recog-

nition 23, pp. 905–910.
Wang, Z., Bovik, A., Sheikh, H. and Simoncelli, E. (2004). Image quality assessment: from

error visibility to structural similarity, IEEE Trans. on Image Processing 13, 4, pp.
600–612.

Wolfram, S. (1994). Cellular Automata and Complexity Collected Papers (Addison-
Wesley).

Zhao, Y. and Billings, S. (2007). The identification of cellular automata, Journal of Cellular
Automata 2, 1, pp. 47–65.

