
Learning Predictive Categories Using
Lifted Relational Neural Networks

Gustav Šourek1, Suresh Manandhar2, Filip Železný1, Steven Schockaert3, and
Ondřej Kuželka3

1 Czech Technical University, Prague, Czech Republic
{souregus,zelezny}@fel.cvut.cz

2 Department of Computer Science, University of York, York, UK
suresh.manandhar@york.ac.uk

3 School of CS & Informatics, Cardiff University, Cardiff, UK
{SchockaertS1,KuzelkaO}@cardiff.ac.uk

Abstract. Lifted relational neural networks (LRNNs) are a flexible neural-
symbolic framework based on the idea of lifted modelling. In this paper
we show how LRNNs can be easily used to specify declaratively and solve
learning problems in which latent categories of entities, properties and
relations need to be jointly induced.

1 Introduction

Lifted models, such as Markov logic networks (MLNs [13]), are first-order rep-
resentations that define patterns from which specific (ground) models can be
unfolded. For example, in a MLN we may express the pattern that friends of
smokers tend to be smokers, which then constrains the probabilistic relationships
between specific individuals in the derived ground Markov network. Inspired by
this idea, in [16] we introduced a method that uses weighted relational rules for
learning feed-forward neural networks, called Lifted Relational Neural Networks
(LRNNs). This approach differs from standard neural networks in two impor-
tant ways: (i) the network structure is derived from symbolic rules and thus has
an intuitive interpretation, and (ii) the weights of the network are tied to the
first-order rules and are thus shared among different neurons.

In this paper, we first show how LRNNs can be used to learn a latent category
structure that is predictive in the sense that the properties of a given entity can
be largely determined by the category to which that entity belongs, and dually,
the entities satisfying a given property can be largely determined by the category
to which that property belongs. This enables a form of transductive reasoning
which is based on the idea that similar entities have similar properties. We
then extend this model into a relational setting, in which entities not only have
properties but can also be linked by arbitrary relations.

The proposed approach is similar in spirit to [7], which uses crisp clustering
based on second-order MLNs instead. However, the use of LRNNs has several
important advantages for learning latent concepts. First, LRNNs do not need to

2 Šourek et al.

invoke costly EM algorithms and can therefore be more efficient than probabilis-
tic models with latent variables. Second, the learned soft clusters can naturally
be interpreted as vector space embeddings of entities, properties and relations.
Finally, the flexibility of LRNNs means that the considered form of transductive
reasoning can be extended in a natural way to take into account various forms of
prior domain knowledge, as well as alternative types of heuristic reasoning (e.g.
reasoning by analogy, modelling persistence or periodic behaviour).

The remainder of this paper is structured as follows. In Section 2 we briefly
describe the LRNN framework from [16], after which we introduce a technique
to deal with recursive rules in LRNNs. We describe the predictive model for
the non-relational setting in Section 3.1 and for the relational setting in Section
3.2. Next, in Section 4, we describe a simple model encoded as a LRNN which
is based on similarity-based reasoning. In Section 5 we evaluate the method
experimentally. Finally, we discuss related work in Section 6 and conclude the
paper in Section 7

2 Lifted Relational Neural Networks

2.1 The Basic Framework

A lifted relational neural network (LRNN) N is a set of weighted definite first-
order clauses4. Let HN be the least Herbrand model of the classical theory
{α : (α,w) ∈ N}, withN a LRNN. We define the grounding of N asN = {(hθ ←
b1θ ∧ · · · ∧ bkθ, w) : (h← b1 ∧ · · · ∧ bk, w) ∈ N and {hθ, b1θ, . . . , bkθ} ⊆ HN }.

Definition 1. Let N be a LRNN, and let N be its grounding. Let g∨, g∧ and
g∗ be functions5 from

⋃∞
i=1 Ri to R. The ground neural network of N is a feed-

forward neural network constructed as follows.

– For every ground atom h occurring in N , there is a neuron Ah with activation
function g∨, called atom neuron.

– For every ground fact (h,w) ∈ N , there is a neuron F(h,w), called fact neu-
ron, which has no input and always outputs the constant value w.

– For every ground rule (hθ ← b1θ ∧ · · · ∧ bkθ, w) ∈ N , there is a neuron
Rhθ←b1θ∧···∧bkθ with activation function g∧, called rule neuron. It has the
atom neurons Ab1θ, . . . , Abkθ as inputs, all with weight 1.

– For every rule (h ← b1 ∧ · · · ∧ bk, w) ∈ N and every hθ ∈ HN , there is
a neuron Agghθ(h←b1∧···∧bk,w) with activation function g∗, called aggregation
neuron. Its inputs are all rule neurons Rhθ′←b1θ′∧···∧bkθ′ where hθ = hθ′ with
all weights equal to 1.

– Inputs of an atom neuron Ahθ are the aggregation neurons Agghθ(h←b1∧···∧bk,w)

and fact neurons F(hθ,w), with the input weights determined by the outputs
of the aggregation and fact neurons.

4 Established notions such as ”rule” are further used also for their weighted analogies.
5 These represent aggregation operators that can take a variable number of arguments.

Learning Predictive Categories with LRNNs 3

Depending on the used families of activation functions g∧, g∨ and g∗, we can
obtain neural networks with different behavior. In this paper we will use:

g∧(b1, . . . , bk) = sigm
(k∑
i=1

bi − k + b0

)
g∨(b1, . . . , bk) = sigm

(k∑
i=1

bi + b0

)
g∗(b1, . . . , bm) =

1

m

m∑
i=1

bi

Where sigm denotes a sigmoid function such as the logistic sigmoid sigm(x) =
1

1+(e−x) . Note that g∧ and g∨ are closely related to the conjunction and disjunc-

tion from Lukasiewicz logic [6], which is in accordance with the intuition that
g∧ should only have a high output if all its inputs are high, while g∨ should be
high as soon as one of the inputs is high.

2.2 Handling Recursion in LRNNs

As originally introduced in [16], LRNNs did not support rules which could lead
to recursion, in order to avoid the potential need to work with recurrent neural
networks, as these are more difficult to train than feed-forward neural networks.
In general, recursive rules do not necessarily pose a problem to the basic LRNN
models as long as they do not induce directed cycles in the resulting ground
neural networks. For instance, rules defining directed paths in acyclic graphs
would not lead to directed cycles in the resulting ground neural networks, despite
being recursive. One minor complication caused by allowing LRNNs to have
recursion, even in the absence of directed cycles, is that weights may be shared
among neurons that lie on a directed path from the input to the output of the
network. This makes the computation of gradients slightly more complicated
than in the normal case, although weights in such LRNNs, whose groundings are
still feed-forward neural networks, can still be learned using Stochastic Gradient
Descent (SGD).

In this paper we will use recursive rule sets that may potentially lead to
recurrent neural networks. In order to maintain the feed-forward nature of the
resulting ground neural networks, we modify the strategy for constructing ground
networks as follows. First we construct the ground network exactly as described
in Section 2. If this network contains directed cycles, we then proceed as follows.
Let Q be a given ground query atom6. We find the respective atom neuron
corresponding to Q in the ground network. If no such atom neuron exists, the
output value for Q is 0. If there is such an atom neuron, we perform a breadth-
first search from this atom neuron (traversing the connections between neurons in
reverse, i.e. from output to input) and whenever we find an edge pointing from an
already visited atom neuron, we delete it. The resulting ground neural network
is then feed-forward. While this process enables us to stick with feed-forward

6 In general LRNNs support non-ground query atoms but in this paper we will not
need them. Therefore we assume only ground query atoms for simplicity.

4 Šourek et al.

neural networks, it comes at the price of a slightly less intuitive semantics, in
which the inferences and outputs for non-query atom neurons may also depend
on the used queries. This will not be problematic in any of the applications
considered in this paper, as non-query atoms will not be considered.

3 Learning predictive categories

In this section, we introduce a class of LRNN models that are aimed at learning
predictive categories of entities, properties and relations. We first introduce a
model for attribute-valued data in Section 3.1, which is then extended to cope
with relational data in Section 3.2.

3.1 Predictive Categories for Attribute-valued Data

Let a set of entities be given, and for each entity, a list of properties that it
satisfies. The basic assumption underlying our model is that there exist some
(possibly overlapping) categories, such that every entity can be described ac-
curately enough by its soft membership to each of these categories. We fur-
thermore assume that these categories can themselves be organised in a set of
higher-level categories. The idea is that the category hierarchy should allow us
to predict which properties a given entity has, where the properties associated
with higher-level categories are typically (but not necessarily) inherited by their
sub-categories. To improve the generalization ability of our method, we assume
that a dual category structure exists for properties. The main task we consider
is to learn these (latent) category structures from the given input data.

To encode the above described model in a LRNN, we proceed as follows. We
use HasProperty(e, p) to denote that the entity e has the property p. For every
entity e and for each category c at the lowest level of the category hierarchy, we
construct the following ground rule:

wec : IsA(e, c)

Note that weight wec intuitively reflects the soft membership of e to the category
c; it will be determined when training the ground network. Similarly, for each
category c1 at a given level and each category c2 one level above, we add the
following ground rule:

wc1c2 : IsA(c1, c2)

In the same way, ground rules are added that link each property to a property
category at the lowest level, as well as ground rules that link property categories
to higher-level categories. To encode the idea that entity categories should be
predictive of properties, we add the following rule for each entity category ce
and each property category cp:

wcecp : HasProperty(A,B)← IsA(A, ce), IsA(B, cp).

Learning Predictive Categories with LRNNs 5

The weights wcecp encode which entity categories are related to which property
categories, and will again be determined when training weights of the LRNN.
To encode transitivity of the is-a relationship, we simply add the following rule:

wisa : IsA(A,C)← IsA(A,B), IsA(B,C).

Training examples are encoded as a set of facts of the form (HasProperty(e, p),
l) where l ∈ {0, 1}, 0 denoting a negative example and 1 a positive example. We
train the model using SGD as described in [16]. In particular, in a LRNN, there
is a neuron for any ground literal which is logically entailed by the rules and facts
in the LRNN and the output of this neuron represents the truth value of this
literal. Therefore if we want to train the weights of the LRNN, we just optimize
the weights of the network w.r.t. a loss function such as the mean squared error,
where the loss function is computed from the desired truth values of the query
literals and the outputs obtained from the respective atom neurons

3.2 Predictive Categories for Relational Data

The model from Section 3.1 can be extended to cope with relational facts. Similar
to our encoding of properties, we will use a reified representation of relational
facts, writing e.g. Relation(ParentOf, e1, e2) to denote that e1 is the parent of
e2. In this way, we can induce predictive relation categories, similar to the entity
and property categories considered in Section 3.1.

To this end, analogously as for entity and property categories, for every
relation r and every (latent) relation category c we add the following ground
rule:

wrc : IsA(r, c)

For each relation category c1 at a given level and each category c2 one level
above, we add the following ground rule:

wc1c2 : IsA(c1, c2).

Note that a rule encoding transitivity of the IsA relation was already added
in the first part of the model. Finally we encode that, like properties, relations
among entities are typically determined by their categories. Specifically, for each
triple consisting of a pair of (not necessarily distinct) entity clusters ce, c

′
e and

a relation cluster cr, we add the following ground rule:

wcrcec′e : Relation(R,A,B)← IsA(R, cr), IsA(A, ce), IsA(B, c′e) (1)

The LRNNs defined in this way will be referred to as fully-connected, as they
contain rules for every relation-entity-entity triple. Obviously, when a high num-
ber of clusters is used, the number of rules of the form (1) may be prohibitively
high. To address this, we can limit the triples for which such rules are added.
In particular, we will consider LRNNs which restrict such rules to those of the
following form:

wcrc2ic2i+1
: Relation(R,A,B)← IsA(R, cr), IsA(A, c2i), IsA(B, c2i+1) (2)

6 Šourek et al.

where c1, c2, . . . , cn are entity concepts. In fact the LRNNs with rules of this
form can learn anything that can be learned by LRNNs with rules of the form
(1) as long as they have enough rules.

In addition, to help the model learn symmetric and transitive relations (e.g.
the “same-political-bloc” relation), we also add rules of the following form:

wcrc′ic′i : Relation(R,A,B)← IsA(R, cr), IsA(A, c′i), IsA(B, c′i) (3)

Note that we do not need to explicitly consider these in the fully-connected
model, as they are a special case of (1).

4 Prediction Using Learned Similarities

In this section we describe a LRNN model based on similarity degrees, for the
same predictive task that was considered in the previous section. While the sim-
ilarity degrees could be obtained from any source, we will use similarity degrees
that have been obtained from the model described in the previous section, by
taking advantage of the fact that the cluster membership degrees can be inter-
preted as defining a vector-space embedding. Rather than using the membership
degrees directly, we will use the weights of the respective ground IsA(e, c) rules,
which, unlike the membership degrees, may also be negative7. In particular, the
similarity degree between two entities is defined as the cosine similarity between
the vector representation of these entities, with the coordinates of these vectors
the soft memberships of the entity in each of the categories.

For each pair of entities (e1, e2) with similarity degree s, we add the following
ground fact:

1.0 : Similar(e1, e2, s)

We furthermore add rules which encode a learnable transformation of the simi-
larities into a score which is useful for the given predictive task:

w−1 : Similar(X,Y)← Similar(X,Y, S), S ≥ −1.0

w−0.9 : Similar(X,Y)← Similar(X,Y, S), S ≥ −0.9

...

w0.9 : Similar(X,Y)← Similar(X,Y, S), S ≥ 0.9

Finally we add one rule of the following type for every relation r:

wr : Relation(r,X, Y)← Relation(r, V,W),Similar(X,V),Similar(Y,W).

Taking into account the aggregative nature of the used family of activation func-
tions (cf. Section 2), these rules encode the intuition that in order to predict if

7 The membership degrees are simply obtained as applying sigmoids on the respective
weights in this particular case, so the two representations essentially bear the same
information

Learning Predictive Categories with LRNNs 7

X and Y are in relation r, we could check how similar on average the entities
known to be in this relation are to X and Y .

Naturally, not all relations can be accurately predicted by a model like the
one described in this section. However, this similarity based approach is quite
natural, and serves as an important illustrative example of how other strategies
could be encoded (e.g. interpolation/extrapolation or reasoning by analogy).

5 Evaluation

5.1 Evaluation of the Model from Section 3.1

To evaluate the potential of the model proposed in Section 3.1, we have used the
Animals dataset8, which describes 50 animals in terms of 85 Boolean features,
such as fish, large, smelly, strong, and timid. This dataset was originally created
in [11], and was used among others for evaluating a related learning task in [7].
For both entities and properties, we have used two levels of categories, with in
both cases three categories at the lowest level and two categories at the highest
level.

Recall that we can view the category membership degrees as defining a vector-
space embedding. Figures 1 and 2 show the first two principal components of this
embedding for a number of entities and properties. We can see, for instance, that
sea mammals are clustered together, and that predators tend to be separated
from herbivores. In Figure 2, we have highlighted two types of properties: colours
and teeth types. Note that these do not form clusters (e.g. a cluster of colours)
but they represent, as prototypes, different clusters of properties which tend to
occur together. For instance, blue is surrounded by properties which typically
hold for water mammals; white and red occur together with stripes, nocturnal,
pads; gray occurs together with small and weak; etc. We also evaluated the
predictive ability of this model. We randomly divided the facts from the dataset
in two halves, trained the model on one half and tested it on the other one,
obtaining AUC ROC of 0.77. We also performed an experiment with a 90-10
split, in order to be able to directly compare our results with those from [7]; we
obtained the same AUC PR 0.8 as reported in [7] (and AUC ROC 0.86).

5.2 Evaluation of the Model from Section 3.2

In order to evaluate the relational method proposed in Section 3.2 we performed
experiments with two relational datasets:9 Nations and UMLS. These datasets
have previously been used to evaluate statistical predicate invention methods
in [7]. The Nations dataset contains a set of relations between pairs of nations
and their features [15]. It consists of relations such as ExportsTo and GivesEc-
onomicAidTo, as well as properties such as Monarchy. The dataset contains 14

8 Downloaded from https://alchemy.cs.washington.edu/data/animals/.
9 Downloaded from https://alchemy.cs.washington.edu/data/nations/ and from
https://alchemy.cs.washington.edu/data/umls/.

8 Šourek et al.

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

lion

zebra

seal sheep

grizzlybear

humpbackwhale
persiancat

gorilla

hippopotamus

rabbit

giraffe

hamster

fox

buffalo

chihuahua

ox

walrus

skunk

polarbear

chimpanzee

killerwhale

leopard

giantpanda

moose

pig

seal

humpbackwhalebluewhale

walrus

killerwhale
dolphin

deer

zebra

elephant

sheep

hippopotamus

girafferhinoceros

buffalo

antelope

horse

ox

cow

leopard

pig

moose

giantpanda

mouse

mole
beaver

rabbit

rat

hamster

squirrel

wolf

liondalmatian
grizzlybeargermanshepherdbobcat

fox

collie

chihuahua

skunk

weasel
polarbear

tiger

raccoon

leopard

otter

siamesecat

Fig. 1. Embedding of entities (animals, only a subset of entities is displayed). Several
homogeneous groups of animals are highlighted: sea mammals (blue), large herbivores
(green), rodents (violet), and other predators (red).

nations, 56 relations and 111 properties. There are 2565 true ground atoms. The
UMLS dataset contains data from the Unified Medical Language System, which
is a biomedical ontology [8]. It contains 49 relations and 135 biomedical entities.
There are 6529 true ground atoms in this dataset.

Initial experiments have revealed two trends. First, accuracy consistently
improved when we increased the size of the LRNNs (contrarily to our expectation
that overfitting might be a problem when increasing the size). Second, for a fixed
number of entity, property and relation categories, adding the layer of more
general concepts helps, but it also increased memory consumption and runtime.
Therefore, in the experiments, we created LRNNs as large as possible which still
fitted in memory. A consequence of this strategy is that the LRNNs with more
than one layer of categories had fewer categories in total than their single-layer
counterparts. Similar effects also took place for fully-connected LRNNs when
compared to LRNNs with isolated rules of the form (2) and (3); therefore we
did not consider fully connected LRNNs in our experiments.

For the Nations dataset, the largest single-layer LRNN which fitted in 40GB
of memory had 100 property categories, 100 entity categories and 50 relation
categories. The cross-validated AUC ROC was 0.89 and AUC PR 0.74, which
is within the standard error margin of the results obtained in [7]. The largest
two-layer LRNN learned on this dataset had 20 property categories, 20 entity
categories and 10 relation categories. Its cross-validated AUC ROC was 0.88
and AUC PR 0.7. For comparison, we also trained a single-layer LRNN with the

Learning Predictive Categories with LRNNs 9

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

meat

hairless

bush

scavenger

skimmer

buckteethpatches

agility
tree

nestspot nocturnaldomestic
insects

furry

water

muscle
brown

plains

coastal

active

forager

strong

fish

horns

oceanswims
gray

flippers

bipedal

chewteeth

tunnels

hunter

fierce

lean

mountains

bulbous

orange

white

weak

stripes

planktonblue

red

brown

black

gray

orange

white
buckteeth

meatteethchewteeth

strainteeth

Fig. 2. Embedding of properties (only a subset of properties is displayed). Two rep-
resentative groups of properties are shown in colour: colours (blue) and teeth-type
(red).

exact same number of each type of categories, which achieved AUC ROC 0.86
and AUC PR 0.67, which agrees with the above described general trends.

The first two principal components of the embeddings of the states are dis-
played in Figure 3. When interpreting this embedding, note that this dataset
relates to the political situation of 1950s.

For the UMLS dataset we used a LRNN with 100 entity categories and 50
relation categories. Due to the size of the dataset, consisting of a total of 893k
ground facts and memory limitations, we only performed experiments with a
largely subsampled training set, obtaining test AUC ROC 0.97 and AUC PR
0.76. This is a lower AUC PR than obtained by the method from [7], but it is
close to the second-best method tested there and is better than the reported
results for MLN structure learning.

5.3 Evaluation of the Model from Section 4

The evaluation of the model introduced in Section 4 primarily serves to estimate
the usefulness of the embeddings learned by LRNNs. We have particulary focused
on the embedding of countries, whose first two principal components are shown in
Figure 3. First, we have split the nations dataset [15] into equally large training
and testing parts. We trained the relational model described in Section 3.2,
extracted the learned cluster membership degrees as vector embeddings, and

10 Šourek et al.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

israel

netherlands

uk

usa

brazil

burma
egypt

india
indonesia

jordan

china

cuba

poland

ussr

Fig. 3. Embeddings of countries as induced by learning from their geopolitical relations
captured in the historical dataset [15]. A possible interpretation of the projection is
displayed in colors, dividing them into communist (red), western (blue), and developing
nations (green).

calculated their pairwise cosine similarities. We included these similarities as
ground facts, together with all the true statements from the training part of the
dataset. On top of these facts, we added the transformation and inference rules
to form the model described in Section 4. We then trained this composite model
on the same training part of the nations dataset that we used to obtain the
embeddings, and evaluated its generalization ability on the remaining testing
part. We obtained AUC ROC of 0.85 and 0.49 AUC PR, which is lower than the
crossvalidated performance reported for the best models, but indirectly proves
that the previously learned embeddings indeed carry useful information that
may be subsequently reused for different predictive scenarios.

5.4 An Experiment with Real-Life Data from NELL

We have also evaluated the method on a real-life dataset. The main idea here was
to analyse whether the LRNN models described in this paper could be used in an
NLP pipeline to fill gaps in a knowledge base. To test this idea we downloaded a
collection consisting of about 29k actors from NELL [10] with all their parental
categories. For the experiments, we have subsampled the dataset to 2k actors.
In the end, the number of different parental categories assigned to actors in this
dataset turned out to be quite small. There were only 20 different categories
such as comedian or celebrity, resulting into a dataset of 4k true ground facts,

Learning Predictive Categories with LRNNs 11

which we completed with their negative complement under the closed world
assumption for evaluation. We have tested the method described in Section 3.1
and obtained a test-set AUC ROC 0.84 and AUC PR 0.43. This suggests that
the LRNN method is indeed able to discover plausible properties of entities in
datasets obtained from text. This could be quite useful for suggesting properties
or relations in settings like NELL’s where feedback from users is also used to
validate the predictions.

6 Related Work

The proposed model essentially relies on the assumption that similar entities
tend to have similar properties, for some similarity function which is learned
implicitly in terms of category membership degrees. It is possible to augment
this form of inference with other models of plausible reasoning, such as reasoning
based on analogical (and other logical) proportions [9,12]. Moreover, as in [2], we
could take into account externally obtained similarity degrees, using rules such
as those in Section 4.

The model considered in this paper is related to statistical predicate invention
[7] which relies on jointly clustering entities and relations. The dual represen-
tation of entity and property categories is also reminiscent of formal concept
analysis [5]. LRNNs themselves are also related to the long stream of research
in neural-symbolic integration [1], previous work on using neural networks for
relational learning [3], and more recent approaches such as [14,4].

7 Conclusions and Future Work

We have illustrated how the declarative and flexible nature of LRNNs can be
used for easy encoding of non-trivial learning scenarios. The models that we
considered in this paper jointly learn predictive categories of entities, their prop-
erties and relations between them. The main strength of this approach lies in
the ease with which the model can be extended to more complicated settings,
which is mainly due to the declarative nature of LRNNs. It seems remarkable
that such a declarative approach is able to obtain results which are close to
the state-of-the-art method from [7], without tailoring any part of the learning
method to this particular problem setting.

Our main direction for future work will focus on making LRNNs more scal-
able, which, as indicated by the performed experiments, should also lead to
improved predictive performance.

Acknowledgments GS and FZ acknowledge support by project no. 17-26999S
granted by the Czech Science Foundation. OK is supported by a grant from
the Leverhulme Trust (RPG-2014-164). SS is supported by ERC Starting Grant
637277. Computational resources were provided by the CESNET LM2015042
and the CERIT Scientific Cloud LM2015085, provided under the programme
”Projects of Large Research, Development, and Innovations Infrastructures”.

12 Šourek et al.

References

1. Sebastian Bader and Pascal Hitzler. Dimensions of neural-symbolic integration-a
structured survey. arXiv preprint cs/0511042, 2005.

2. Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Garrette, Katrin Erk, and Ray-
mond Mooney. Montague meets Markov: Deep semantics with probabilistic logical
form. In Proc. *SEM, pages 11–21, 2013.

3. Hendrik Blockeel and Werner Uwents. Using neural networks for relational learn-
ing. In ICML-2004 Workshop on Statistical Relational Learning and its Connection
to Other Fields, pages 23–28, 2004.

4. William W Cohen. Tensorlog: A differentiable deductive database. arXiv preprint
arXiv:1605.06523, 2016.

5. Bernhard Ganter, Gerd Stumme, and Rudolf Wille. Formal concept analysis: foun-
dations and applications, volume 3626. springer, 2005.

6. Petr Hájek. Metamathematics of fuzzy logic, volume 4. Springer Science & Business
Media, 1998.

7. Stanley Kok and Pedro Domingos. Statistical predicate invention. In Proceedings
of the 24th International Conference on Machine Learning, pages 433–440, 2007.

8. Alexa T McCray. An upper-level ontology for the biomedical domain. Comparative
and Functional Genomics, 4(1):80–84, 2003.

9. Laurent Miclet, Sabri Bayoudh, and Arnaud Delhay. Analogical dissimilarity: def-
inition, algorithms and two experiments in machine learning. Journal of Artificial
Intelligence Research, 32:793–824, 2008.

10. Tom M. Mitchell, William W. Cohen, Estevam R. Hruschka Jr., Partha Pratim
Talukdar, Justin Betteridge, Andrew Carlson, Bhavana Dalvi Mishra, Matthew
Gardner, Bryan Kisiel, Jayant Krishnamurthy, Ni Lao, Kathryn Mazaitis, Thahir
Mohamed, Ndapandula Nakashole, Emmanouil Antonios Platanios, Alan Ritter,
Mehdi Samadi, Burr Settles, Richard C. Wang, Derry Tanti Wijaya, Abhinav
Gupta, Xinlei Chen, Abulhair Saparov, Malcolm Greaves, and Joel Welling. Never-
ending learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 2302–2310, 2015.

11. Daniel N Osherson, Joshua Stern, Ormond Wilkie, Michael Stob, and Edward E
Smith. Default probability. Cognitive Science, 15(2):251–269, 1991.

12. Henri Prade and Gilles Richard. Reasoning with logical proportions. In Twelfth
International Conference on the Principles of Knowledge Representation and Rea-
soning, 2010.

13. Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learn-
ing, 62(1-2):107–136, 2006.

14. Tim Rocktäschel and Sebastian Riedel. Learning knowledge base inference with
neural theorem provers. In NAACL Workshop on Automated Knowledge Base
Construction (AKBC), 2016.

15. Rudolph J Rummel. The dimensionality of nations project: attributes of nations
and behavior of nations dyads, 1950-1965. Number 5409. Inter-University Consor-
tium for Political Research, 1976.

16. Gustav Šourek, Vojtěch Aschenbrenner, Filip Železný, and Ondřej Kuželka. Lifted
relational neural networks. In Proceedings of the NIPS Workshop on Cognitive
Computation: Integrating Neural and Symbolic Approaches, 2015.

	Learning Predictive Categories Using Lifted Relational Neural Networks

