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Introduction

The study of the existence of stochastic models with some prescribed distribu-
tional properties has a long tradition in the theory of probability and various
fields of application. Let {Xt}t∈T be a stochastic process on some index set
T (which may be finite or infinite with some topological structure). Typically,
a real-valued summary statistic κ(X)(s, t) of the distribution of (Xs, Xt) is of
particular interest for all pairs (s, t) ∈ T ×T . The question is whether for some
prescribed function κ on T ×T a stochastic model {Xt}t∈T exists that realizes
κ, i.e. if κ(X) = κ. Recent accounts and surveys on such realization prob-
lems with an emphasis on {0, 1}-valued processes (or random sets, two-phased
media, binary processes) include Torquato (2002), Quintanilla (2008), Emery
(2010), Lachieze-Rey and Molchanov (2015) and Lachièze-Rey (2015). Also
from a statistical point of view realization problems are important, namely for
consistent inference.

As pointed out by Lachieze-Rey and Molchanov (2015), the question of
realizability usually leads to a (possibly infinite and even in finite setups huge)
set of positivity conditions for the quantity of interest, and secondly, to a set
of regularity conditions if the topology of the underlying space is of interest
as well. These positivity conditions are needed in statistical applications to
correct estimators κ̂(X) for κ(X) to an admissible function.

Let us consider a classical example. Assuming that the second moments
of a real-valued stochastic process {Xt}t∈T exist at each locaction t ∈ T , the
process possesses a covariance function C(X)(s, t) = Cov(Xs, Xt). It is well-
known that C = C(X) must be positive semi-definite, i.e. C(s, t) = C(t, s)
and

m∑
i=1

m∑
j=1

aiajC(ti, tj) ≥ 0 ∀ (t1, . . . , tm) ∈ Tm, (a1, . . . , am) ∈ Rm, m ∈ N.

(1)

Conversely, for any such function C, there exists a stochastic process {Xt}t∈T
with covariance function C(X) = C. The stochastic process {Xt}t∈T is not
unique, but it may be chosen to be a centered Gaussian process as can be eas-
ily checked by Kolmogorov’s extension theorem. Such a process on the space T
(if additionally equipped with some topology), may have very uncomfortable
regularity properties. Several authors have established connections between
the regularity of the covariance function C and the existence of a correspond-
ing stochastic process with a certain sample path regularity, cf. e.g. Adler
(1990) for an overview in case of continuity. In statistical applications, the
development of efficient non-parametric estimators for the covariance function
that ensure positive semi-definiteness can be a challenging task, cf. e.g. Hall
et al (1994) and Politis (2011).

When it comes to the extreme values in the upper quantile regions of a
real-valued stochastic process {Xt}t∈T , summary measures like the covariance
function often do not exist and would be genuinely inappropriate to charac-
terize dependence. Instead, among several other summary statistics that have
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emerged in an extreme value context (cf. for instance Beirlant et al (2004)
Section 8.2.7), the following bivariate quantity

χ(X)(s, t) := lim
τ→τup

P(Xs > τ |Xt > τ), s, t ∈ T,

which we call tail correlation function (TCF) (Strokorb et al, 2015), has re-
ceived particular attention. As commonly done and in accordance with station-
arity assumptions, we assume here and hereafter that {Xt}t∈T has identical
one-dimensional marginal distributions with upper endpoint τup (which may
be ∞).

Dating back to Geffroy (1958/1959), Sibuya (1960) and Tiago de Oliveira
(1962/63), the TCF enjoys steady popularity among practitioners and scholars
in order to account for tail dependence, albeit frequently reported under differ-
ent names. The insurance, finance, economics and risk management literature
knows it mainly as (upper) tail dependence coefficient (Frahm et al, 2005), coef-
ficient of (upper) tail dependence (McNeil et al, 2003) or simply as (upper) tail
dependence (Patton, 2006). In environmental contexts it has been additionally
addressed as χ-measure (Coles et al, 1999). Spatial environmental applications
tend to prefer the equivalent quantity 2−χ, referred to as extremal coefficient
function. Among many others, the references Blanchet and Davison (2011),
Engelke et al (2015) and Thibaud and Opitz (2015) use it as an exploratory
tool for testing the goodness of fit. In the context of stationary time series,
the TCF constitutes a special case of the extremogram (Davis and Mikosch,
2009). Moreover, the standard classification of the random pair (Xs, Xt) as
exhibiting either asymptotic/extremal independence (when χ(X)(s, t) = 0) or
asymptotical/extremal dependence (when χ(X)(s, t) ∈ (0, 1]) is based on the
TCF χ.

Even though the TCF is a ubiquitous quantity within the extremes litera-
ture, surprisingly little is known about the class of TCFs and even less when it
comes to the interplay of TCFs and their realizing models. This is the central
theme of the present text. That is, we are aiming at giving at least partial
answers to the following questions:

(A) Can we decide if a given real-valued function χ : T × T → R is the TCF
of a stochastic process {Xt}t∈T ?

(B) If this is the case, can we find a specific stochastic process {Xt}t∈T with
χ(X) = χ?

We also address the following regularity question.

(C) Does the continuity of a TCF χ imply the existence of a stochastic process
realizing χ that additionally satisfies some regularity property?

A satisfactory answer to Question (A) is desirable in a statistical context
in order to decide whether estimators of the TCF produce admissible TCFs as
an outcome. This concerns specifically spatial applications where one is bound
to encounter very high-dimensional observations and therefore only partial
low-dimensional information (such as the TCF) can be taken into account
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for inference. A first attempt to include properties of the class of TCFs to
improve statistical inference can be found in Schlather and Tawn (2003). The
TCF χ = χ(X) is a non-negative correlation function. That is, χ is positive
semi-definite in the sense of (1) with χ(s, t) ≥ 0 and χ(t, t) = 1 for all s, t ∈ T
(cf. e.g. Schlather and Tawn (2003), Davis and Mikosch (2009) and Fasen et al
(2010)). However, even though TCFs are non-negative correlation functions,
not all such functions are TCFs. For instance, η := 1 − χ has to satisfy the
triangle inequality

η(s, t) ≤ η(s, r) + η(r, t) r, s, t ∈ T (2)

(Schlather and Tawn, 2003). In the context of {0, 1}-valued stochastic pro-
cesses, it is well-known that the respective covariance functions obey this
triangle inequality and implications are addressed e.g. in Matheron (1988),
Markov (1995) and Jiao et al (2007). If T = Rd and the underlying process
is stationary, then the function h 7→ χ(o, h) (with o ∈ Rd being the origin)
cannot be differentiable unless it is constant.

The simplest TCFs are the constant function χ(s, t) = 1 realized by a
process of identical random variables, and the function χ(s, t) = δst := 1s=t

realized by a process of independent random variables. Another example for
χ(X)(s, t) = δst is a Gaussian process X on T , whose correlation function ρ on
T × T attains the value 1 only on the diagonal {(t, t) : t ∈ T} (Sibuya, 1960,
Theorem 3). While Gaussian processes do not exhibit tail dependence, the class
of max-stable processes naturally provides rich classes of non-trivial TCFs. For
instance, any function of the form χ(s, t) =

∫
[0,∞)

exp (−λ‖s− t‖)Λ(dλ) will

be the TCF of a max-stable process on T = Rd, if Λ is a probability measure on
[0,∞) (Strokorb et al, 2015). Beyond the realizability question, Kabluchko and
Schlather (2010) and Wang et al (2013) establish some connections between
mixing properties of X and decay properties of its TCF χ(X) when T = Rd
and X = {Xt}t∈Rd is stationary and max-stable. It is natural to ask whether
even further TCFs will arise if we do not restrict ourselves to the max-stable
class, since an affirmative answer would imply a first important reduction for
the questions (A)-(C).

(D) Is the set of TCFs stemming from max-stable processes properly contained
in the set of all TCFs or do these sets coincide?

Finally, realization problems are usually intimately connected with the
question of admissible operations on the quantities of interest. To illustrate
this again by means of covariance funcions, note that the product and convex
combination of two covariance functions and the pointwise limit of a sequence
of covariance functions is again a covariance function. We ask the same ques-
tion for TCFs.

(E) Is the set of TCFs closed under basic operations such as
taking (pointwise) products, convex combinations and limits?
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In order to deal with the questions above, we establish close connections
with {0, 1}-valued processes, polytopes, partitions of sets and combinatorics.
Recent developments indicate that such tools may appear more frequently in
the analysis of extremes, cf. Molchanov (2008), Yuen and Stoev (2014), Wang
and Stoev (2011), Embrechts et al (2015) and Thibaud et al (2015).

We divide the text into two parts.

Part I deals with the realization problem of TCFs of stochastic processes
{Xt}t∈T on arbitrary base spaces T . Close connections with {0, 1}-valued pro-
cesses will be established and enter the subsequent considerations. We give an-
swers to Questions (D) and (E), partial answers to the Questions (A), (B) and
(C) and reduce Question (A) to infinitely (countably) many finite-dimensional
problems (in case our base space T is countable).

Part II deals with these finite-dimensional problems, that is, the realiza-
tion problem of TCFs of random vectors {Xt}t∈T on finite base spaces T with
|T | = n for some n ∈ N. We are aiming at establishing a (reduced) system
of necessary and sufficient conditions for deciding whether a given function is
a TCF or not and study the geometry of the set of TCFs. Arguments used
in this part will be related to the study of polytopes, are often of combinato-
rial nature or are based on additional software computations. The latter is a
typical phenomenon for realization problems of this kind.

More detailed descriptions are given at the beginning of each part. Finally,
we end with a discussion of our results. The appendix contains all tables.

Part I

The realization problem for TCFs on arbitrary sets T

To start with, Section 1 reviews some preparatory results on max-stable pro-
cesses, extremal coefficient functions and a particular subclass of max-stable
processes, which we called Tawn-Molchanov (TM) processes (Strokorb and
Schlather, 2015). These processes are important for our analysis, since it turns
out that any TCF can be realized by (at least one) TM process, our main
result in Section 2 and a substantial reduction of the realization problem of
TCFs. Section 2 also reveals a close connection between the class of TCFs
and the class of correlation functions of {0, 1}-valued stochastic processes and
addresses the existence of stochastic processes for a prescribed TCF χ with
some minimal regularity properties if χ is at least continuous. Subsequently,
Section 3 collects some immediate consequences concerning closure properties
of the set of TCFs and the characterization of the set of TCFs by means of
finite-dimensional inequalities, our starting point for Part II.
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1 Max-stable processes, extremal coefficients and TM processes

A stochastic process X = {Xt}t∈T is simple max-stable, if it has unit Fréchet
margins (meaning P(Xt ≤ x) = exp(−1/x) for all t ∈ T and x > 0), and
if the maximum process

∨n
i=1X

(i) of independent copies of X has the same
finite dimensional distributions (f.d.d.) as the process nX for each n ∈ N. The
crucial point in the realization problem for TCFs will be the close connection
of the TCF χ(X) of a simple max-stable process X = {Xt}t∈T to the extremal
coefficient function (ECF) θ(X) of the respective process X. Therefore, let
F(T ) denote the set of finite subsets of the space T . The ECF θ(X) of a simple
max-stable process X on T is a function on F(T ) that is given by θ(X)(∅) := 0
and

θ(X)(A) := −τ logP
( ∨
t∈A

Xt ≤ τ
)
, τ > 0,

in case A 6= ∅. The r.h.s. is indeed independent of τ > 0 and lies in the interval
[1, |A|], where |A| denotes the number of elements in A. In fact, the value
θ(X)(A) can be interpreted as the effective number of independent random
variables in the collection {Xt}t∈A (cf. Smith (1990); Schlather and Tawn
(2002)). We call the set of all possible ECFs of simple max-stable processes

Θ(T ) =
{
θ(X) : F(T )→ R : X a simple max-stable process on T

}
. (3)

The bounded ECFs will be denoted

Θb(T ) = { θ ∈ Θ(T ) : θ is bounded } . (4)

In fact, the set of ECFs Θ(T ) can be completely characterized by a property
called complete alternation (cf. Theorem 5 below). Using the notation and
definition from Molchanov (2005), we set for a function f : F(T ) → R and
elements K,L ∈ F(T )

(∆Kf) (L) := f(L)− f(L ∪K).

Then a function f : F(T )→ R is called completely alternating on F(T ) if for
all n ≥ 1, {K1, . . . ,Kn} ⊂ F(T ) and K ∈ F(T )

(∆K1
∆K2

. . . ∆Kn
f) (K) =

∑
I⊂{1,...,n}

(−1)|I| f

(
K ∪

⋃
i∈I

Ki

)
≤ 0. (5)

This condition can be slightly weakened as in Lemma 2 below. Its proof uses
the following auxiliary argument.

Lemma 1 Let M be a finite set and f : F(M) → R be a function on the
subsets of M . Let K,L ⊂M with K ∩ L = ∅. Then∑

I⊂L
(−1)|I|+1f(K ∪ I) =

∑
J⊂(K∪L)c

( ∑
I⊂L∪J

(−1)|I|+1f((L ∪ J)c ∪ I)
)
. (6)
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Proof Each set (L∪ J)c ∪ I occuring on the r.h.s. can be written as a disjoint
union K ∪A∪B, with A ⊂ L,B ⊂ (K ∪L)c. Let us consider the terms on the
r.h.s. with fixed A ⊂ L and fixed B ⊂ (K ∪ L)c. If B = ∅, the only possible
I and J leading to such a situation are I = A and J = (K ∪ L)c, i.e., one
obtains the term on the l.h.s. with I = A. If B 6= ∅, the possibilities can be
listed as I = A ∪ (B \ C) and J = (K ∪ L ∪ C)c for some C ⊂ B. Summing
these terms over all C ⊂ B yields

∑
C⊂B(−1)|A|+|B\C|+1f(K ∪ A ∪ B) =

(−1)|A|+1(1− 1)|B|f(K ∪A ∪B) = 0.

It follows that for finite sets M (instead of arbitrary T ) complete alter-
nation can be formulated by bounding the value f(M) by lower order values
f(L) for L ⊂M as follows (cf. also Schlather and Tawn (2002), Ineq. (12)).

Lemma 2 a) A function f : F(T )→ R is completely alternating on F(T ) if
and only if for all ∅ 6= L ∈ F(T ) and K ∈ F(T ) with K ∩ L = ∅∑

I⊂L
(−1)|I|+1f (K ∪ I) ≥ 0. (7)

b) Let M be a non-empty finite set. Then f : F(M)→ R is completely alter-
nating if and only if (7) holds for all ∅ 6= L ⊂ M and K = Lc, which is
equivalent to∨

L⊂M
|L| odd

∑
I⊂L
I 6=L

(−1)|I|f (Lc ∪ I) ≤ f(M) ≤
∧

∅6=L⊂M
|L| even

∑
I⊂L
I 6=L

(−1)|I|+1f (Lc ∪ I) .

(8)

Proof a) Note that F(T ) forms an abelian semigroup w.r.t. the union op-
eration that is generated already by the singletons {t} for t ∈ T and
that ∆{t}∆{t} = ∆{t}. Therefore, it suffices already to require (5) only
for Ki = {ti} for pairwise distinct elements ti ∈ T (i = 1, . . . , n) (cf. Berg
et al (1984), Proposition 4.6.6). Set L = {t1, . . . , tn}. Hence f is completely
alternating on F(T ) if and only if for all ∅ 6= L ∈ F(T ) and K ∈ F(T )
the inequality (7) holds. Secondly, the expression on the l.h.s. of (7) equals
automatically 0 if K ∩ L 6= ∅.

b) Because of (6), it suffices to check (7) for ∅ 6= L ⊂ M and K = Lc.
Separating f(M) and summarizing the cases where |L| is odd and where
|L| is even yields the second equivalence.

The following example shows that the concept of complete alternation is
closely linked to the distributions of {0, 1}-valued processes.

Example 3 (Molchanov (2005), p. 52) Let Y = {Yt}t∈T be a stochastic pro-
cess with values in {0, 1} and let the function C(Y ) : F(T ) → [0, 1] be given
by C(Y )(∅) = 0 and C(Y )(A) = P(∃ t ∈ A such that Yt = 1). Then C(Y ) is
completely alternating. Conversely, if C : F(T ) → [0, 1] is completely alter-
nating with C(∅) = 0, then C determines the f.d.d. of a stochastic process
Y = {Yt}t∈T with values in {0, 1}, such that C(Y ) = C.
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Remark 4 (Molchanov (2005), p. 10) From the perspective of the theory of
random sets it is more natural to define a functional CΞ(K) = P(Ξ ∩K 6= ∅)
for a random closed set Ξ on compact sets K. In this case, CΞ will be termed
the capacity functional of the random closed set Ξ and is not only completely
alternating on compact sets, but also upper semi-continuous in the sense that
CΞ(Kn) ↓ CΞ(K) for Kn ↓ K. These properties ensure that Ξ can be de-
fined on a sufficiently regular probability space. A priori our considerations
below do not include any regularity constraints. However, we will come back
to Question (C) in Corollary 11 and Remark 12.

Theorem 5 (Strokorb and Schlather (2015), Theorem 8)
Let θ : F(T )→ R be a function on the finite subsets of T . Then

θ ∈ Θ(T ) ⇐⇒

 θ is completely alternating,
θ(∅) = 0,
θ({t}) = 1 for t ∈ T.

If θ ∈ Θ(T ), then there exists a simple max-stable process X = {Xt}t∈T on T
with ECF θ(X) = θ, whose f.d.d. are given by

− log P (Xti ≤ xi , i = 1, . . . ,m) =
m∑
k=1

∑
1≤i1<···<ik≤m

−∆{ti1} . . . ∆{tik}θ ({t1, . . . , tm} \ {ti1 , . . . , tik})
∨

j∈{i1,...,ik}

x−1j .

If a process {Xt}t∈T has the f.d.d. stated in Theorem 5, then it is called
Tawn-Molchanov process (TM process) associated with the ECF θ henceforth.
Note that this convention and the notation from Molchanov and Strokorb
(2015) differ in the sense that Molchanov and Strokorb (2015) consider TM
processes with at least upper-semi continuous sample paths. By construction,
the class of f.d.d.’s of TM processes on a space T is in a one-to-one cor-
respondence with the set of ECFs Θ(T ). In fact, if θ ∈ Θ(T ) and X is an
associated TM process, the process X takes a unique role among simple max-
stable processes sharing the same ECF θ in that it provides a sharp lower
bound for the f.d.d. (Strokorb and Schlather, 2015, Corollary 33).

Corollary 6 (Strokorb and Schlather (2015), Corollaries 13 and 14)
The set of ECFs Θ(T ) is convex and compact w.r.t. the topology of pointwise
convergence on RF(T ).

The connection of the TCF χ(X) to the second-order extremal coefficients of
a simple max-stable process X is given by

χ(X)(s, t) = 2− lim
τ→∞

1− P (Xs ≤ τ,Xt ≤ τ)

1− P (Xt ≤ τ)

= 2− logP (Xs ≤ τ,Xt ≤ τ)

logP (Xt ≤ τ)
= 2− θ(X)({s, t}). (9)
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Therefore, it will be convenient to introduce the following map

ψ : RF(T ) → RT×T , ψ(F )(s, t) := 2− F ({s, t}), (10)

such that (9) reads as χ(X) = ψ(θ(X)). Note that ψ is continuous if we equip
both spaces RF(T ) and RT×T with the topology of pointwise convergence.
Finally, we restate a continuity result from Strokorb and Schlather (2015) in
terms of TCFs (instead of ECFs as in the reference).

Corollary 7 (Strokorb and Schlather (2015), Theorem 25)
Let X = {Xt}t∈T be a TM process and χ(X) its TCF. Then the following
statements are equivalent:

(i) χ(X) is continuous.
(ii) χ(X) is continuous on the diagonal {(t, t) : t ∈ T}.

(iii) X is stochastically continuous.

Remark 8 In fact, a TM process X = {Xt}t∈T is always stochastically contin-
uous with respect to the semimetric ηX(s, t) = 1− χ(X)(s, t).

2 TCFs are realized by TM processes

In order to simplify the realization problem for TCFs (termed as Questions
(A) to (E) in the introduction) it is desirable to find a subclass of stochastic
processes which can realize any given TCF χ. We denote the set of all TCFs
and certain subclasses as follows:

TCF(T ) :=

{
χ(X) :

X a stochastic process on T with identical
one-dimensional margins and existing χ(X)

}
,

TCF∞(T ) :=
{
χ(X) ∈ TCF(T ) : X with essential supremum ∞

}
,

MAX(T ) :=
{
χ(X) ∈ TCF(T ) : X simple max-stable

}
,

TM(T ) :=
{
χ(X) ∈ TCF(T ) : X a TM process

}
.

Remark 9 The class TCF∞(T ) represents the TCFs of processes whose mar-
gins have no jump at the upper endpoint. To see this, first note that a distri-
bution function F : R→ [0, 1] has no jump at its upper endpoint u ∈ (−∞,∞]
if and only if there exists a continuous strictly increasing transformation
f : (−∞, u) → R such that F ◦ f−1 is a distribution function with upper
endpoint ∞, and secondly, χ(X) = χ(f◦X) if X is a stochastic process with
marginal distribution F and TCF χ(X).

A priori it is clear that

TM(T ) ⊂ MAX(T ) ⊂ TCF∞(T ) ⊂ TCF(T ). (11)
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Further, let us introduce the class of uncentered and normalized covariance
functions of binary processes

BIN(T ) :=

(s, t) 7→ P(Ys = 1|Yt = 1) :
Y a stochastic process on T with
identical one-dimensional margins
with values in {0, 1} and EYt 6= 0

 ,

(12)

which is closely related to the above classes. By definition of TCF(T ) and
considering the processes Yt = 1Xt>τ indexed by τ > 0, we observe

TCF(T ) ⊂ sequential closure of BIN(T ), (13)

where the sequential closure is meant w.r.t. pointwise convergence. The fol-
lowing theorem gives an affirmative answer to the question whether TCF(T )
and MAX(T ) coincide (Question (D) in the Introduction) and yields also the
connection to the other classes. In fact, the class of TM processes can realize
already any given TCF.

Theorem 10 a) For arbitrary sets T the following classes coincide

BIN(T ) = ψ(Θb(T )), (14)

TCF(T ) = TCF∞(T ) = MAX(T ) = TM(T ) = ψ(Θ(T ))

= sequential closure of BIN(T ) = closure of BIN(T ), (15)

where the map ψ is from (10), Θ(T ) and Θb(T ) are from (3) and (4),
respectively, and the (sequential) closure is meant w.r.t. pointwise conver-
gence.

b) For infinite sets T the inclusion BIN(T ) ( TCF(T ) is proper.
c) For finite sets M the equality BIN(M) = TCF(M) holds.

Proof a) First, we establish BIN(T ) = ψ(Θb(T )):
Let f ∈ BIN(T ) and let Y be a corresponding process with values in {0, 1}
as in the definition of BIN(T ) (cf. (12)). Let the function C(Y ) : F(T ) →
[0, 1] be given by C(Y )(∅) = 0 and C(Y )(A) = P(∃ t ∈ A such that Yt =
1) as in Example 3. Then C({t}) = EYt lies in the interval (0, 1] and is
independent of t ∈ T due to identical one-dimensional margins. Further, the
function f is given by f(s, t) = P(Ys = 1 | Yt = 1) = 2− C({s, t})/C({t}).
Now, set θ(A) := C(A)/C({t}) for A ∈ F(T ). Then θ satisfies ψ(θ)(s, t) =
2− θ({s, t}) = f(s, t) and θ is clearly bounded by 1/C({t}). It follows from
Example 3 and Theorem 5 that θ lies in Θ(T ). Hence, f ∈ ψ(Θb(T )).
Conversely, let θ ∈ Θb(T ) be bounded, say by κ. Clearly, κ ≥ θ({t}) = 1.
Set C(A) := θ(A)/κ. Then C satisfies all requirements of Example 3 to
determine the f.d.d. of a binary process Y with values in {0, 1} with C(Y ) =
C. The process Y has identical one-dimensional margins since θ({t}) = 1
for t ∈ T , and EYt = 1/κ > 0. So Y fulfills the requirements of a process in
the definition of BIN(T ). Finally, note that the corresponding function in
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BIN(T ) is given by P(Ys = 1 | Yt = 1) = 2− C({s, t})/C({t}) = ψ(θ)(s, t)
as desired.
Secondly, the equality MAX(T ) = TM(T ) = ψ(Θ(T )) follows directly from
Theorem 5. On the one hand this implies

BIN(T ) = ψ(Θb(T )) ⊂ ψ(Θ(T )) = TM(T ),

and on the other hand, we obtain that TM(T ) is compact, as it is the image
of the compact set Θ(T ) (Corollary 6) under the continuous map ψ. Now,
the assertion (15) follows from

TCF(T )
(13)
⊂ sequential closure of BIN(T ) ⊂ closure of BIN(T )

⊂ closure of TM(T ) ⊂ TM(T )
(11)
⊂ MAX(T )

(11)
⊂ TCF∞(T )

(11)
⊂ TCF(T ).

b) Let T be an infinite set and let χ(s, t) := δst. Indeed χ is an element of
MAX(T ) realized by the simple max-stable process X on T , where the
variables {Xt}t∈T are i.i.d. standard Fréchet random variables. Suppose
that χ ∈ BIN(T ). Then P(Ys = 1, Yt = 1) = 0 for all s, t ∈ T with s 6= t.
Thus, P(

⋃
s∈S{Ys = 1}) =

∑
s∈S P(Ys = 1) =∞ for any countably infinite

subset S ⊂ T , a contradiction.
c) If M is finite, elements of Θ(M) are automatically bounded by |M | and

thus, Θ(M) = Θb(M).

The latter result does not include any regularity considerations beyond the
product topology that is somewhat unnatural in infinite-dimensional stochastic
contexts. However, in view of Corollary 7, it is possible to identify the role of
continuous TCFs in this realization problem and hence address Question (C)
as follows.

Corollary 11 Let χ ∈ TCF(T ). Then the following statements are equivalent.

(i) χ is continuous.
(ii) χ is continuous on the diagonal {(t, t) : t ∈ T}.

(iii) There exists a stochastically continuous stochastic process {Xt}t∈T with
TCF χ(X) = χ.

Remark 12 In fact, any TM process X with continuous TCF χ(X) is stochas-
tically continuous. It follows from de Haan’s (1984) construction that any
simple max-stable process on Rd (or any other locally compact second count-
able Hausdorff space) that is continuous in probability, can be realized on
a sufficiently regular probability space. Hence, this applies to TM processes
with continuous TCFs, since they are simple max-stable and continuous in
probability by the preceding corollary.

Remark 13 Lachieze-Rey and Molchanov (2015) discuss regularity conditions
on the two-point covering function of a random set, or equivalently, a unit
covariance function (cf. Section 6.4) that ensure the existence of a realizing
closed set, or equivalently, a realizing {0, 1}-valued process with upper semi-
continuous paths. Here, we do not know which regularity conditions on the
TCF ensure the existence of a realizing upper semi-continuous process.



12 Ulf-Rainer Fiebig et al.

3 Basic closure properties and characterization by inequalities

Finally, we collect some immediate and important consequences concerning
operations on the set of TCFs and the characterization of the set of TCFs by
means of finite-dimensional projections.

Even though not all non-negative correlation functions are TCFs, both
classes have some desirable properties in common as we shall see next. Well-
known operations on (non-negative) correlation functions include convex com-
binations, products and pointwise limits. Interestingly, the same operations
are still admissible for TCFs (answering Question E).

Corollary 14 The set of tail correlation functions TCF(T ) is convex, closed
under pointwise multiplication and compact w.r.t. pointwise convergence.

Proof These closure properties follow from Theorem 10. Convexity and com-
pactness of TCF(T ) = ψ(Θ(T )) are immediate taking additionally Corollary 6
into account. Moreover, let χ1 and χ2 be in TCF(T ) = TCF∞(T ) with corre-
sponding processes X(1) and X(2) with upper endpoint τup = ∞. We choose
them to be independent and set X(3) := X(1) ∧ X(2), which then also has
upper endpoint ∞ and satisfies

P(X(3)
s ≥ x |X(3)

t ≥ x) = P(X(1)
s ≥ x |X(1)

t ≥ x) · P(X(2)
s ≥ x |X(2)

t ≥ x).

Consequently, the TCF χ3 of X(3) is the product χ3 = χ1 · χ2.

Secondly, the set of TCFs can be characterized through finite-dimensional
projections.

Corollary 15 A real-valued function χ : T ×T → R is an element of TCF(T )
if and only if the restriction χ|M×M belongs to TCF(M) for all non-empty
finite subsets M of T .

Proof If χ ∈ TCF(T ), then necessarily χ|S×S ∈ TCF(S) for any subset S ∈ T .
To show the reverse implication, let χ|M×M ∈ TCF(M) for all M ∈ F(T ) \
{∅}. Since TCF(T ) ⊂ [0, 1]T×T is closed, to prove χ ∈ TCF(T ) it suffices to
show that U ∩ TCF(T ) 6= ∅ for any open neighborhood U of χ in [0, 1]T×T .
Given U , there is a finite subset of T × T , which we may assume to be of the
form M ×M , and open sets A(i,j) ⊂ [0, 1], (i, j) ∈ M ×M , such that χ ∈⋂

(i,j)∈M×M pr−1(i,j)

(
A(i,j)

)
⊂ U (where pr(s,t) : [0, 1]T×T → [0, 1] denotes the

natural projection). Since χ|M×M trivially extends to an element χ̃ ∈ TCF(T )
(e.g. copy one of the random variables), we have χ̃ ∈ U ∩ TCF(T ) 6= ∅.

In Part II of this exposition, we will see that for a finite set M , the set
of TCFs TCF(M) constitutes a convex polytope in R|M |×|M | that can be
described by means of a finite system of (affine) inequalities. In this regard
Corollary 15 shows that for an arbitrary set T , the class TCF(T ) may also be
completely characterized by a system of (affine) inequalities. This is not evident
since elements of TCF(T ) are defined a priori through a limiting procedure.
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Part II

The realization problem for TCFs on finite sets

In view of Corollary 15 it suffices to study TCF(M) for finite sets M if one is
interested in a complete characterization of the space TCF(T ) for arbitrary T .
Therefore, we focus on a non-empty finite set M = {1, . . . , n} in this section
and set

TCFn := TCF({1, . . . , n}).

To begin with, we show that TCFn can be viewed as a convex polytope in Sec-
tion 4. Its geometry will be studied subsequently. Here, we start off with some
basic observations and low-dimensional results in Section 5. Section 6 collects
more sophisticated results on TCFn with deeper insights into the rapidly grow-
ing complexity of TCFn as n grows, including connections between TCFn and
TCFn′ for n′ > n. Thereby, some obervations from Section 5 will be uncovered
as low-dimensional phenomena. At least, it is possible to identify the precise
relation of TCFn to the so-called cut- and correlation-polytopes as well as to
the polytope of unit covariances. To complement these general observations,
Section 7 reports all results relying on software computations and, in particu-
lar, all combinatorial considerations that were necessary in order to push the
entire description of the vertices and facets of TCFn up to n ≤ 6. Finally, we
pursue some open questions on the geometry on TCFn in Section 8.

4 TCFn is a convex polytope

Elements of TCFn are functions on {1, . . . , n}×{1, . . . , n}, that is to say, they
are n × n matrices. Since TCFs are symmetric and take the value 1 on the
diagonal, we may regard TCFn for n ≥ 2 as a subset of

REn ∼= R(n
2) = Rn(n−1)/2,

where En is the set of edges of the complete graph Kn with vertices Vn =
{1, . . . , n}. It will be convenient to interpret elements of TCFn as an edge
labelling of Kn, which is why we call Kn the support graph for TCFn. Due to
Theorem 10 and (12) we know already

TCFn = BINn :=

χ ∈ REn :
χij = E(YiYj)/EYj where
Y1, . . . , Yn take values in {0, 1}
and EY1 = . . . = EYn > 0

 . (16)

The following lemma is a reformulation of this fact and will be useful later on.

Lemma 16 An element χ ∈ REn belongs to TCFn if and only if it can be
written as

χij = P(Ai|Aj), 1 ≤ i < j ≤ n
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for some (finite) probability space (Ω,A,P) and measurable subsets A1, . . . , An ∈
A which satisfy P(A1) = · · · = P(An) > 0.

Remark 17 In Lemma 16 we may assume that P(A1) = · · · = P(An) = c for
any constant 0 < c ≤ 1/n: Otherwise enlarge Ω, such that A :=

⋃n
i=1Ai 6= Ω.

On A define the measure Q := c/P(A1) · P|A. Then Q(A) ≤ 1 and, thus, Q
extends to a probability measure on Ω with Q(Ai) = c and Q(Ai|Aj) = χij .

Likewise, we set

Θn := Θ({1, . . . , n})

and, since θ∅ = 0 and θi = 1 for i = 1, . . . , n, we may regard Θn for n ≥ 2 as
a subset of

RF
(2)
n ∼= R2n−n−1,

where F (2)
n is the set of subsets of Vn with at least two elements. Remember

from (10) that

TCFn = ψn(Θn) where ψn : RF
(2)
n → REn , ψn(θ)ij = 2− θij , (17)

and note that ψn = 2 − prEn
is essentially a projection onto the

(
n
2

)
coordi-

nates of REn . Before we proceed, we need to revise some notation for convex
polytopes.

Notation and facts concerning convex polytopes (cf. Ziegler (1995)).
A subset P ⊂ Rp is a convex polytope if P is bounded and can be represented
as P = {x ∈ Rp : Cx ≤ c} for a q×p matrix C and a q-vector c for some q ∈ N
(where ≤ is meant componentwise). The rows of C and c represent hyperplanes
in Rd and the inequality ≤ determines the corresponding halfspace to which P
belongs. The system Cx ≤ c will be called an H-representation (or halfspace
representation) of P .

An H-representation will be called a facet representation if it is minimal
in the sense that none of the rows in C and c can be deleted in order to define
P , i.e. P 6= {x ∈ Rp : C−ix ≤ c−i} for all i = 1, . . . , q, where C−i and c−i are
the modified versions of C and c with the i-th row removed. In fact, an H-
representation Cx ≤ c is a facet representation if every row of C and c yields
in fact a facet inducing inequality of P , where an inequality Cix ≤ ci is facet
inducing if dim(P∩{x ∈ Rp : Cix = ci}) = dim(P )−1. The latter is equivalent
to the existence of dim(P ) affinely independent points x1, . . . , xdim(P ) ∈ P
solving the equation Cix = ci. By a slight abuse of notation, we will usually
refer to the inequality Cix ≤ ci as a facet of P if it induces a facet (instead of
calling the set P ∩ {x ∈ Rp : Cix = ci} a facet).

Equivalently, a subset P ⊂ Rp is a convex polytope if P equals the convex
hull of a finite subset S ⊂ Rp. Then S will be called a V-representation of P . A
minimal V-representation, with respect to set inclusion, will be called a vertex
representation. In fact, the vertex representation is unique and given by the
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set Ex(P ) of extremal points, or vertices, of P , i.e. the points of P that cannot
be decomposed non-trivially as a convex combination of two other points of
P . Note that in general a V-representation of P may consist of more points
than the vertex set Ex(P ).

Moreover, if P ⊂ Rp is a convex polytope and π : Rp → Rp′ is an affine
map x 7→ Ax+b, then the image π(P ) is again a convex polytope and secondly,
any intersection of P with an affine subspace of Rp is a convex polytope.

Corollary 18 For all n ∈ N the sets Θn and TCFn are convex polytopes.

Proof For Θn this property is evident from Theorem 5 and (8). But then the
affine map ψn maps Θn to the convex polytope TCFn = ψn(Θn).

Now, that we know that TCFn is a convex polytope, we seek to understand its
geometric structure. At best, we would like to determine its vertex and facet
representation (and we will indeed do so in Section 7 up to n ≤ 6). To repeat
the terminology adopted from convex geometry in this context, note that anH-
representation of TCFn (and in particular, a facet representation) allows one
to check whether a given matrix is indeed a TCF, since any H-representation
of TCFn constitutes a set of necessary and sufficient conditions for being
a TCF. In a facet representation no condition is obsolete. Complementary,
a V-representation (and in particular, a vertex representation) of TCFn is
more useful if one wants to generate valid TCFs. Any TCF can be obtained
as a convex combination of the elements of a V-representation. In a vertex
representation no point is obsolete.

5 Basic observations and low-dimensional results for TCFn

This section comprises two first general observations. First, every polytope
TCFn satisfies a certain system of inequalities (to be called hypermetric in-
equalities) and, second, we identify its {0, 1}-valued vertices as so-called clique
partition points. With regard to the explicit vertex and facet structure of TCFn
in low dimensions, both findings might lead to tempting conjectures on the ge-
ometry of TCFn eventually refuted by the more sophisticated methods applied
in Section 6.

Hypermetric inequalities Remember that we identified the set of all TCFs

on Vn = {1, . . . , n} with a subset of REn = R(n
2) while it originally was inter-

preted as a set of symmetric n × n matrices with 1’s on the diagonal. In the
sequel we will identify points x = (xij)1≤i<j≤n ∈ REn with n × n matrices
(xij)1≤i,j≤n via xji = xij and xii := 1.
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Let b = (b1, . . . , bn) ∈ Zn. The point (xij)1≤i<j≤n ∈ REn satisfies the
hypermetric inequality defined by b if∑

1≤i,j≤n

bibjxij ≥
n∑
i=1

bi

or, equivalently,
∑

1≤i<j≤n

(−bibj)xij ≤
1

2

n∑
i=1

bi(bi − 1). (18)

Remark 19 In Deza and Laurent (1997) the inequalities
∑

1≤i<j≤n bibjxij ≤ 0
with

∑
1≤i≤n bi = 1 are termed hypermetric. All these inequalities are valid

for the cut polytope CUT�
n to be introduced here in Section 6.4 (Deza and

Laurent, 1997, Lemma 28.1.3). For TCFn the variant (18) is an appropriate
“counterpart”.

Lemma 20 All hypermetric inequalities (in the sense of (18)) are valid for
elements of TCFn.

Proof Let Y1, . . . , Yn be a {0, 1}-valued stochastic model for χ ∈ TCFn. Set
a := E(Y1) > 0. Then for b ∈ Zn∑
1≤i,j≤n

bibjχij =
∑

1≤i,j≤n

bibj
E(YiYj)

a
=

1

a
E
[ n∑
i=1

biYi

]2
≥ 1

a
E
[ n∑
i=1

biYi

]
=

n∑
i=1

bi,

as for any integer k we have k2 ≥ k.

Clique partition polytopes A subset {C1, . . . , Ck} of the powerset of Vn =

{1, . . . , n} is a partition of Vn if k ≥ 1, Cr∩Cs = ∅ for r 6= s and
⋃k
r=1 Cr = Vn.

A partition of Vn defines a clique partition point γ({C1, . . . , Ck}) ∈ {0, 1}En

by

γ({C1, . . . , Ck})ij =

k∑
r=1

1{i,j}⊂Cr
, 1 ≤ i < j ≤ n.

The clique partition polytope is defined as the convex hull of the clique partition
points (Grötschel and Wakabayashi, 1990) in REn

CPPn := conv ({γ({C1, . . . , Ck}) : {C1, . . . , Ck} partition of Vn}) .

Being {0, 1}-valued, the clique partition points are automatically the extremal
points of their convex hull:

Ex (CPPn) = ({γ({C1, . . . , Ck}) : {C1, . . . , Ck} partition of Vn}) .

It turns out that all {0, 1}-valued vertices of TCFn are precisely the clique
partition points.

Proposition 21 TCFn ∩ {0, 1}En = Ex(CPPn) for all n ∈ N. In particular
CPPn ⊂ TCFn.
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Proof Since TCFn ∩ {0, 1}En ⊂ Ex(TCFn) it suffices to show the first state-
ment. For n = 2 we have TCF2 = [0, 1] and {0, 1} = Ex(CPP2). For n ≥ 3
the points in TCFn have to satisfy the triangle-inequalities (all permutations
of χ1,2 + χ2,3 − χ1,3 ≤ 1, see (2) and also (18) with b = (1,−1, 1, 0, . . . , 0)).
For points χ ∈ TCFn ∩ {0, 1}En , viewed via the support graph Kn, this im-
plies for any triple of nodes i, j, k, where the edges {i, j} and {j, k} have value
1, that also the edge {i, k} has value 1. Thus, a simple inductive argument
shows: for any pair of nodes i, j, which are connected by a path of edges with
value 1, the edge from i to j has also value 1. This shows that the points in
TCFn∩{0, 1}En are clique partition points. In order to see that any clique par-
tition point γ({C1, . . . , Ck}) belongs to TCFn∩{0, 1}En choose Ω = {1, . . . , k}
with uniform distribution P and Ai = {ri}, 1 ≤ i ≤ n, with ri uniquely deter-
mined by i ∈ Cri and apply Lemma 16.

For n ≤ 4 the clique partition polytope and TCFn even coincide.

Proposition 22 TCFn = CPPn for n ≤ 4.

Proof For n ≤ 4 we computed explicitly that Ex(TCFn) = Ex(CPPn) from
the characterization (17) (Strokorb, 2013, Tables 3.1 and 3.3) and confirmed
this result using the software polymake. This implies TCFn = CPPn for n ≤ 4.

Low-dimensional phenomena Even though for n ≤ 4 the polytope TCFn
and the clique partition polytope CPPn coincide, the property TCFn = CPPn
will turn out to be a low-dimensional phenomenon. Starting from n = 5 the
vertices of TCFn are not {0, 1}-valued anymore (see Corollary 28 in Section 6),
in particular CPPn ( TCFn for n ≥ 5. Still, up to n ≤ 5 all facet inducing
inequalities of TCFn turn out to be hypermetric and one might be tempted to
believe that certain hypermetric inequalities provide an H-representation for
TCFn also in higher dimensions. Again, this property constitutes only another
low-dimensional phenomenon. Starting from n = 6 not all facets of TCFn are
hypermetric anymore (see Proposition 32 in Section 6).

6 Sophisticated results on the geometry of TCFn

A fundamental observations in this section concerns the lifting of vertices and
facets to higher dimensions (Section 6.1). It means that vertices (and facets)
of TCFn will also appear as vertices (and facets) of TCFn′ for n′ > n if the
coordinates (or coefficients) are filled up with zeros at appropriate places. Note
that both statemenents are not evident, but a deep structural result only re-
vealed by some delicate combinatorial arguments. Subsequently, we prove that
every rational number in the interval [0, 1] will appear as coordinate value in
the vertex set of TCFn starting from a sufficiently large n (Proposition 27 in
Section 6.2) and that TCFn possesses non-hypermetric facets starting from
n ≥ 6 (Proposition 32 in Section 6.3). Taken together, these results give in-
sights into the rapidly growing complexity of TCFn as n grows and confound
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the aim of a full description of vertices and facets of TCFn for arbitrary n. Fi-
nally, Section 6.4 provides an alternative (“dual”) description of the polytope
TCFn (which we recognized already as the projection of the polytope Θn) as
an intersection with the so-called correlation polytope or, equivalently, with
the so-called cut-polytope.

6.1 Lifting of vertices and facets to higher dimensions

First, we deal with connections between TCFn and TCFn+1. A particularly
important feature is the lifting property. That is every vertex of TCFn will
appear again in the list of vertices of TCFn+1 with some zeros added.

Lemma 23 (Projections and liftings of points and vertices)
For χ ∈ TCFn+1 let χ|Kn denote the restriction of χ to the subgraph Kn ⊂
Kn+1 (delete all χi,n+1, 1 ≤ i ≤ n). Conversely, let χ0 ∈ REn+1 denote the
extension of a point χ ∈ TCFn by

χ0
i,n+1 = 0, 1 ≤ i ≤ n.

a) The assignment χ 7→ χ|Kn maps TCFn+1 onto TCFn.
b) The assignment χ 7→ χ0 embeds TCFn into TCFn+1 and Ex(TCFn) into

Ex(TCFn+1).
c) If χ ∈ Ex(TCFn+1) and χi,n+1 = 0 for all 1 ≤ i ≤ n, then χ|Kn

∈
Ex(TCFn).

Proof a) Let Y1, . . . , Yn+1 be a binary process that models χ. Simply deleting
Yn+1 gives a model for χ|Kn

∈ TCFn. Surjectivity follows from b).
b) Let Y1, . . . , Yn be a binary process that models χ. Let a = E(Y1). Add

a disjoint point ω0 to the underlying probability space Ω and replace the
probability measure P by 1

1+a ·P|Ω+ a
1+a ·δω0

. Extend Y1, . . . , Yn by 0 on ω0,

let Yn+1 = 1{ω0}. Now, Y1, . . . , Yn+1 is a model for χ0, since YiYn+1 = 0,
1 ≤ i ≤ n. If χ0 /∈ Ex(TCFn+1), there is a representation χ0 = λy+(1−λ)z,
with y, z ∈ TCFn+1, 0 < λ < 1, y 6= z. Since χ0 is zero on the new edges,
the points y, z also have to be zero on the new edges, so y|Kn

6= z|Kn
and

y|Kn
, z|Kn

∈ TCFn by a). Thus, χ = χ0|Kn
/∈ Ex(TCFn).

c) If χ|Kn /∈ Ex(TCFn), then χ|Kn = λy + (1 − λ)z, with y, z ∈ TCFn,
0 < λ < 1, y 6= z. By b) we know y0, z0 ∈ TCFn+1. Since χi,n+1 = 0 for all
1 ≤ i ≤ n, we have χ = (χ|Kn

)0 = λy0 + (1− λ)z0 /∈ Ex(TCFn+1).

We call χ0 a lifting of χ. The following lemma generalizes the lifting of vertices
and will be applied to deduce Proposition 27.

Lemma 24 (Lifting of vertices arising from partitions)
Let C1, . . . , Ck ⊂ Vn be disjoint subsets of the vertex set Vn = {1, . . . , n} each
containing at least two elements of Vn. For 1 ≤ r ≤ k let χr ∈ Ex(TCF(Cr)).
Similarly to the interpretation of TCFs on Vn = {1, . . . , n} as elements of



The realization problem for tail correlation functions 19

REn , we interpret χr as an element of RE(Cr), where E(Cr) is the set of edges
of the complete graph with vertex set Cr ⊂ Vn. Define χ ∈ REn by

χij =

{
χrij if {i, j} ⊂ Cr for some 1 ≤ r ≤ k,
0 else.

Then χ ∈ Ex(TCFn).

Proof Because of the lifting property (Lemma 23), it suffices to consider the

case Vn =
⋃k
r=1 Cr, where Cr = {i(r)1 , . . . , i

(r)
|Cr|}. First, we show that χ ∈

TCFn. To this end, choose (finite) set models

(Ωr,Pr), Ar
i
(r)
1

, . . . , Ar
i
(r)

|Cr|
⊂ Ωr, 1 ≤ r ≤ k

for χr as in Lemma 16 such that χ
(r)
ij = P(Ari |Arj). By Remark 17 these models

can be chosen such that Pr(Ari ) does not depend on r. Then a stochastic model
for χ is obtained through the normalized disjoint union of these models, i.e.
where Ω =

⋃k
r=1Ωr, P = 1

k

∑k
r=1 Pr(· ∩ Ωr) and Ai = Ari if i ∈ Cr. (Note

that for each i ∈ Vn there exists a unique r with i ∈ Cr, since the sets Cr are
disjoint and cover Vn.)

Now, we show that χ ∈ Ex(TCFn). Suppose not. Then χ = λy + (1− λ)z
with 1 < λ < 0 and y, z ∈ TCFn with y 6= z. Necessarily yij = 0 and zij = 0
whenever χij = 0. Thus, y|Kr

n
6= z|Kr

n
for some 1 ≤ r ≤ k when Kr

n denotes
the complete subgraph of Kn defined by Cr. Since y|Kr

n
, z|Kr

n
∈ TCF(Cr)

by Lemma 23, we obtain χr = χ|Kr
n

= λy|Kr
n

+ (1 − λ)z|Kr
n

contradicting
χr ∈ Ex(TCF(Cr)).

In order to deduce the lifting property also for inequalities and facets, we
adapt ideas from (Deza and Laurent, 1997, Lemma 26.5.2). We show that,
starting from n = 3, no facet inducing inequality will ever become obsolete as
n grows. For instance, the triangle inequality (2) cannot be deduced from a
set of other valid inequalities for TCFn. One needs n ≥ 3, since the inequality
χ12 ≤ 1, although facet-inducing for n = 2, is no longer facet-inducing for
n ≥ 3, see Table 3 and Proposition 25 b).

Proposition 25 (Lifting of valid inequalities and facets)
Suppose that

a0 + a1,2χ1,2 + . . .+ an−1,nχn−1,n ≥ 0 (19)

is a valid inequality for TCFn. The lifting of this inequality to REn+1 is the
corresponding inequality which is extended by

ai,n+1 = 0, 1 ≤ i ≤ n.

a) Every lifting of a valid inequality of TCFn defines a valid inequality of
TCFn+1.

b) For n ≥ 3, the lifting of a facet of TCFn defines a facet of TCFn+1.
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Proof a) The lifting of a valid inequality for TCFn is always valid for TCFn+1,
even for n = 2, since the lifted equation applied to χ ∈ TCFn+1 returns
the same value as the orginal equation applied to χ|Kn

, which is a point of
TCFn, see Lemma 23.

b) Now suppose that (19) is a facet for TCFn. By the above, its lifting is a
valid inequality for TCFn+1. We show that it defines a facet if n ≥ 3. First,
note that there has to be a coefficient ai,j 6= 0. Since n ≥ 3, there is some
index k /∈ {i, j}. To simplify notation, we assume k = 1 < i < j ≤ n.
Further, let m :=

(
n
2

)
and let a = (a0, a1,2, a1,3, . . . , an−1,n) ∈ Rm+1 de-

note the vector of coefficients that appear in the inequality (19). Since
(19) induces a facet of TCFn, there exist m affinely independent points
χk ∈ TCFn ⊂ Rm, 1 ≤ k ≤ m that solve the inequality (19) as an equa-
tion. Affine independence of the m points χk means that the m points
(1, χk) ∈ Rm+1 are linearly independent in Rm+1. By assumption, they
solve 〈(1, χk), a〉 = 0, 1 ≤ k ≤ m. Let W ⊂ Rm+1 denote the vector space
spanned by (1, χk), 1 ≤ k ≤ m. Then dim(W ) = m and W ⊥ a.
Since ai,j 6= 0 for some 1 < i < j, a non-zero entry occurs after the nth en-
try of a. Thus, a suitable unit vector shows Un := {0}n⊕Rm+1−n 6⊂ {a}⊥.
Since W ⊥ a, the inclusion W ∩Un ⊂ Un is necessarily strict, which entails
dim(W∩Un) ≤ m−n. Let pr : W → Rn denote the projection onto the first
n coordinates. By elementary linear algebra and since Ker(pr) = W ∩Un by
definition, dim(Im(pr)) = dimW −dim(Ker(pr)) ≥ m−(m−n) = n. Thus,
pr(W ) = Rn and the set {pr((1, χk))}1≤k≤m = {(1, χk1,2, . . . , χk1,n)}1≤k≤m
contains n linearly independent vectors, which we may assume to be in-
dexed by 1 ≤ k ≤ n (reordering the χk if necessary).
Finally, we construct

(
n+1
2

)
affinely independent solutions in TCFn+1 for

the lifted equation

a0 + a1,2χ1,2 + . . .+ an,n+1χn,n+1 = 0, with ai,n+1 = 0, 1 ≤ i ≤ n.

To simplify notation, assume that the new coordinates χ1,n+1, . . . , χn,n+1

are added to the right of the previous coordinates χ1,2, . . . , χn−1,n. We
show that the m+ n =

(
n+1
2

)
points (recall m :=

(
n
2

)
)

(a) (χk, 0, . . . , 0) ∈ Rm+n, 1 ≤ k ≤ m, (with n 0’s added),

(b) (χk,pr((1, χk))) ∈ Rm+n, 1 ≤ k ≤ n,

solve the lifted equation, belong to TCFn+1 and are affinely independent.
The first statement follows from the choice of the χk. The points in (a) be-
long to TCFn+1 by Lemma 23. For (b), let Y1, . . . , Yn be a stochastic model
for χk. Extend this model to n + 1 variables Y1, . . . , Yn, Yn+1 by Yn+1 :=
Y1. Since pr((1, χk)) = (1, χk1,2, . . . , χ

k
1,n), this yields (χk,pr((1, χk))) ∈

TCFn+1.
Linear independence of the m+ n points

{(1, χk, 0, . . . , 0)}1≤k≤m ∪ {(1, χk,pr((1, χk)))}1≤k≤n
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follows from the independence of pr((1, χk)), 1 ≤ k ≤ n and the choice of
the χk.

Remark 26 By a slight abuse of notation, we will also call any vertex in the
permutation orbit of χ0 a lifting of the vertex χ and any facet in the permu-
tation orbit of a lifted facet a lifting of the respective facet.

6.2 Unboundedness of denominators

The following proposition shows that every rational number in the interval
[0, 1] will appear as coordinate value in the vertex set of TCFn starting from a
sufficiently large n. The result is even sharper in that it detects a single vertex,
whose coordinate values comprise a given finite subset of [0, 1]-valued rational
numbers.

Proposition 27 (Unboundedness of denominators)
For each finite subset Q ⊂ Q ∩ [0, 1] of rational numbers in the interval [0, 1]
there exists an n ∈ N and a point χ ∈ Ex(TCFn) whose coordinate-values
(χij)1≤i<j≤n include the set Q.
(By the lifting property, this holds for all n′ ≥ n, too.)

Proof By Lemma 24 it suffices to consider singletons Q = {q}, q ∈ Q ∩ [0, 1].
The proof only uses the following properties of χ ∈ TCFn:

– “Positivity” χij ≥ 0 and
– the permutations of the valid inequalities

r∑
i=1

χi,r+1 −
∑

1≤i<j≤r

χi,j ≤ 1, r ≥ 2

which are hypermetric with b-vector b = (1, . . . , 1,−1, 0, . . . , 0) (with r ≥ 2
times the entry 1), in particular permutations of the “triangle inequality”
χ1,3 +χ2,3 −χ1,2 ≤ 1. The validity of these inequalities has been shown in
Lemma 20.

The cases q = 0 and q = 1 are trivial.
(I) We show that for rationals q = 1

m and q = m−1
m it suffices to choose

n = 2m+ 1. Let Ω = {ω1, ω2,1, . . . , ω2,m, ω3,1, . . . , ω3,m} be a set with 2m+ 1
elements and define a positive function g on Ω by

g(ω1) =
1

m
; g(ω2,i) =

m− 1

m
and g(ω3,i) =

1

m
, 1 ≤ i ≤ m.

Normalizing g by c := m2+1
m yields a probability measure P on Ω by P({ω}) =

g(ω)/c. Now, we define 2m+ 1 subsets of Ω as follows:

A1,i = {ω1, ω2,i}, A2,i = {ω2,i, ω3,i}, 1 ≤ i ≤ m, A3,1 = {ω3,1, . . . , ω3,m}.
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Since all of these 2m + 1 sets have the same probability 1/c, they define a
point χ ∈ TCF2m+1 as in Lemma 16.

When viewed as an edge labelling χ can be described as follows: Let
{v1,1, . . . , v1,m, v2,1, . . . , v2,m, v3,1} denote the nodes of the support graph of χ.
A pair of nodes vi1,i2 , vj1,j2 is connected by an edge with label χ(i1,i2),(j1,j2) =
P(Ai1,i2 |Aj1,j2). Draw the nodes {v1,1, . . . , v1,m} at the bottom level, they
form a complete subgraph, all edges labelled by 1

m . Above them draw the
nodes v2,1, . . . , v2,m, where v2,i is connected to v1,i with an edge labelled m−1

m .
Finally, the top node v3,1 is connected to each v2,1, . . . , v2,m with an edge
labelled 1

m .
We show now that χ ∈ Ex(TCF2m+1). To this end, consider a representa-

tion χ = λy+(1−λ)z, 0 < λ < 1, y, z ∈ TCF2m+1. Whenever χ satisfies a valid
inequality as an equality, the same has to be true for y and z. Consider y. All χ-
edges with label 0 have label 0 for y, too. Denote the unknown label y(1,1),(2,1)
of the y-edge from v1,1 to v2,1 by 1− a ∈ [0, 1]. Note that χ satisfies a triangle
inequality as an equality at v2,1, v1,1, v1,2, since m−1

m + 1
m−0 = 1. This enforces

y(1,1),(1,2) = a. Now the triangle v1,1, v1,2, v2,2 enforces y(1,2),(2,2) = 1− a. Re-
peating this argument gives y(1,i),(2,i) = 1 − a for all 1 ≤ i ≤ m. From this,
again just using triangles, it follows y(1,i),(1,j) = a for all 1 ≤ i < j ≤ m and
y(2,i),(3,1) = a for all 1 ≤ i ≤ m. Finally, observe that χ satisfies the hypermet-
ric inequality given by b = (0, . . . , 0, 1, 1, . . . , 1,−1), with m 1’s, as an equality∑m
i=1 χ(3,1),(2,i) −

∑
1≤i<j≤m χ(2,i),(2,j) = m · 1

m − 0 = 1. Applied to y, this
forces m · a = 1, thus a = 1/m. This shows y = χ. The same argument applies
to z. Hence y = χ = z and χ ∈ Ex(TCF2m+1).

(II) Now let q = k
m for some 1 ≤ k ≤ m − 1. We modify the above

construction to obtain a χ ∈ Ex(TCF2m+3) with some coordinate value equal
to q. Extend Ω by two points to Ω′ := Ω ∪ {ω3,m+1, ω3,m+2}. Extend g by

g(ω3,m+1) =
k

m
and g(ω3,m+2) =

m− k
m

.

Normalizing g defines now P′. Use the same definitions for the sets Ai,j as
above and add the two sets

A3,2 = {ω3,1, . . . , ω3,m−k, ω3,m+1} and A3,3 = {ω3,m+1, ω3,m+2}.

All sets have the same probability (the inverse of the normalizing constant)
and thus, they define a point χ ∈ TCF2m+3. Its support graph has two more
nodes v3,2, v3,3, corresponding to A3,2 and A3,3. The new edges are

χ(2,i),(3,2) =
1

m
, 1 ≤ i ≤ m− k, χ(3,1),(3,2) =

m− k
m

, χ(3,2),(3,3) =
k

m
.

Repeating the arguments from the first part shows y = χ on the “old” edges.
Now, using the new triangles at v3,2, v2,i, v1,i for 1 ≤ i ≤ m− k, we get

y(2,i),(3,2) =
1

m
, 1 ≤ i ≤ m− k.
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Note that a permutation of the hypermetric inequality b = (1, . . . , 1,−1, 0, . . . , 0)
with m−k+1 leading 1‘s is fulfilled by χ as an equality, if the−1 corresponds to
v3,2 and the 1’s correspond to v2,1, . . . , v2,m−k, v3,3. Applied to y, this yields
(m − k) · 1

m + y(3,2),(3,3) = 1, thus y(3,2),(3,3) = k
m . Finally, the triangle at

v3,1, v3,2, v3,3 implies y(3,1),(3,2) = m−k
m . Thus, y = χ and the same argument

applies to z. Hence, χ ∈ Ex(TCF2m+3).

For n ≤ 4 we have seen that CPPn = TCFn (Proposition 22). This is comple-
mented by the following result.

Corollary 28
For n ≥ 5 we have Ex(TCFn) 6⊂ {0, 1}En and, in particular, CPPn ( TCFn.

Proof By the lifting of extremal points (Lemma 23) it suffices to prove this
for n = 5. For q = 1

2 the construction (I) in the proof of Proposition 27 yields
an example with n = 5.

Remark 29 For q = 1
2 the above construction (I) is optimal: it gives the small-

est possible n for the occurence of q as the coordinate value of a vertex of
TCFn. To realize q = 1

3 the construction (I) uses n = 7, but a coordinate
value 1

3 already occurs for n = 6, as the computation of Ex(TCF6) in Sec-
tion 7 shows.

6.3 Non-hypermetric facets of TCFn for n ≥ 6

We give a proof for the existence of non-hypermetric facets. First, we provide
two simple necessary conditions for hypermetricity. Of course, multiplying a
given (affine) inequality by some constant q 6= 0 does not change the halfspace
it describes. Thus, one is often interested, if a given inequality is hypermetric
up to a suitable multiplication.

Lemma 30 Suppose that an inequality
∑

1≤i<j≤n cijxij ≤ c0 (with rational
coefficients) is equivalent to a hypermetric inequality, i.e., it becomes a hyper-
metric inequality defined by some b ∈ Zn after multiplication with a suitable
constant q ∈ Q \ {0}. Then we have:

a) The edges {i, j} ⊂ En with cij 6= 0 form a complete subgraph of the support
graph Kn.

b) The vectors v1 := (c1,3, . . . , c1,n) and v2 := (c2,3, . . . , c2,n) are linearly de-
pendent.

Proof a) By assumption cij = −q−1 · bibj for some q ∈ Q \ {0}. Thus, the
non-zero cij correspond to the edges of the complete subgraph with nodes
{1 ≤ i ≤ n | bi 6= 0}.

b) Again, cij = −q−1 · bibj . If b2 = 0, then v2 = 0, thus, v1, v2 are dependent.
If b2 6= 0, then v1 = (b1/b2) · v2.
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Remark 31 Note that criterion a) of Lemma 30 also implies: if there is at least
one 0-coefficient, there have to be at least n 0-coefficients, and if the first n−1
coefficients c1,2, . . . , c1,n are positive, all have to be positive.

The following proposition shows the existence of non-hypermetric facets of
TCFn starting from n ≥ 6. It was inspired by the 2nd inequality of Generator
7 in Table 5.

Proposition 32 (Non-hypermetric facets of TCFn for n ≥ 6)
For n ≥ 6 there are non-hypermetric facets of TCFn.
An example, for arbitrary n ≥ 6, is given by the facet inducing inequality

5∑
i=1

xi,6 −
4∑
i=1

xi,i+1 − x1,5 ≤ 2.

Proof By the lifting of facets (Proposition 25), it suffices to consider the case
n = 6. We start with a simple observation for 0-1-vectors of even length: For
y ∈ {0, 1}2k, k ∈ N, the inequality

2k−1∑
i=1

yi · (y2k − yπ(i)) ≤ (k − 1) · y2k (20)

holds, where π is the cyclic permutation of 1, . . . , 2k − 1, i.e., π(i) = i + 1,
i < 2k − 1 and π(2k − 1) = 1. The observation is trivial if y2k = 0. To handle
the case y2k = 1 observe that yi(1 − yπ(i)) = 1 if and only if yi = 1 and
yπ(i) = 0. There can be at most k − 1 occurrences of the word “10” in the
string y1, . . . , y2k−1, y1. Applying (20) to arbitrary binary random variables
Y1, . . . , Y2k and taking expectations yields

2k−1∑
i=1

E(YiY2k)−
2k−1∑
i=1

E(YiYπ(i)) ≤ (k − 1)E(Y2k).

If, additionally, a := E(Y1) = . . . = E(Y2k) > 0, dividing by a gives the
following valid inequality for TCF2k, where xi,j := 1

aE(YiYj),

2k−1∑
i=1

xi,2k −
2k−1∑
i=1

xi,π(i) ≤ (k − 1) (21)

(which has a very simple supporting graph when we identify x2k−1,1 with
x1,2k−1). Assume now k ≥ 3. Since the coefficients of x1,2 and x2,3 are −1 and
the coefficient of x1,3 is 0, the non-zero coefficients do not define a complete
subgraph of the support graph. Thus, Lemma 30 a) shows that the above
inequality is not hypermetric for k ≥ 3.
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Finally, we show that for k = 3, the inequality (21) defines a facet for
TCF6 ⊂ RE6 : To this end, we define |E6| = 15 points xr, yr, zr ∈ {0, 1}E6 ,
1 ≤ r ≤ 5 by

(a) xri,j = 1 :⇔ {i, j} ⊂ Ar := {r, π2(r), 6},
(b) yri,j = 1 :⇔ {i, j} ⊂ Br := {r, π(r), π3(r), 6},
(c) zri,j = 1 :⇔ ({i, j} ⊂ Br or {i, j} = {π2(r), π4(r)}).

Note that these points are clique partion points and thus belong to the set
TCF6 by Proposition 21. Using the support graph of (21) for k = 3, it can
be easily seen that they solve (21) for k = 3 as an equality. Moreover, these
15 points are affinely independent, since they are even linearly independent as
the determinant of the corresponding 15× 15 0-1-matrix is −2 6= 0.

6.4 Embedding TCFn into the Correlation and Cut polytopes

We saw already in the proof of Corollary 18 that the polytope TCFn can
be viewed essentially as a projection of the convex polytope Θn onto several
coordinates as in (17). In this section we will see that the polytope TCFn
can be embedded into the so-called correlation polytope (or, equivalently, the
so-called cut polytope, see Proposition 37 below). Thereby, we obtain a “dual”
description of TCFn as the intersection of a polytope with an affine subspace.

To this end, we need to review some notation and results from Deza and
Laurent (1997). Remember that En denotes the set of edges of the complete
graph Kn with vertices Vn = {1, . . . , n}. For R ⊂ Vn we define a correlation
vector π(R) ∈ {0, 1}Vn∪En by

π(R)i = 1i∈R, 1 ≤ i ≤ n and π(R)ij = 1i∈R1j∈R, 1 ≤ i < j ≤ n.

The correlation polytope is then defined as the convex hull of these 2n corre-
lation vectors in RVn∪En

COR�
n := conv ({π(R) : R ⊂ Vn}) .

Lemma 33 (Deza and Laurent (1997) Prop. 5.3.4)

A point p ∈ RVn∪En belongs to COR�
n if and only if it can be written as

pi = P(Ai), 1 ≤ i ≤ n and pij = P(Ai ∩ Aj), 1 ≤ i < j ≤ n for some
probability space (Ω,A,P) and measurable subsets A1, . . . , An ∈ A.

Secondly, let S ⊂ Vn+1. A cut vector δ(S) ∈ {0, 1}En+1 is defined through

δ(S)ij = 1|S∩{i,j}|=1, 1 ≤ i < j ≤ n+ 1.

Since δ(S) = δ(Sc), there are, in fact, 2n+1/2 = 2n different points δ(S). The
cut polytope is defined as the convex hull of these cut vectors in REn+1

CUT�
n+1 := conv ({δ(S) : S ⊂ Vn+1}) .
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Being {0, 1}-valued, the correlation vectors and the cut vectors are automati-
cally the extremal points of their convex hulls

Ex
(

COR�
n

)
= {π(R) : R ⊂ Vn} and Ex

(
CUT�

n+1

)
= {δ(S) : S ⊂ Vn+1}.

It is a well-known result that COR�
n ⊂ RVn∪En and CUT�

n+1 ⊂ REn+1 can be
transformed into each other by a linear bijection.

Proposition 34 (Deza and Laurent (1997), Section 5.2))
The covariance mapping ζn : RVn∪En → REn+1 , which maps p ∈ RVn∪En to
ζn(p) = x ∈ REn+1 via

xi,n+1 = pi, 1 ≤ i ≤ n and xij = pi + pj − 2pij , 1 ≤ i < j ≤ n,

induces a linear bijection

ζn : COR�
n → CUT�

n+1.

Remark 35 In (Deza and Laurent, 1997) the inverse ξn := ζ−1n is termed co-
variance mapping. For us, it was more instructive to work with ζn instead of
ξn.

A probabilistic description of CUT�
n+1 is as follows. Here the symmetric

difference between sets A and B will be denoted by A4B = (A\B)∪ (B \A).

Lemma 36 A point x ∈ REn+1 belongs to the cut polytope CUT�
n+1 if and

only if one of the following two equivalent statements holds true:

(i) xi,n+1 = P(Ai), 1 ≤ i ≤ n and xij = P(Ai4Aj), 1 ≤ i < j ≤ n for some
probability space (Ω,A,P) and measurable subsets A1, . . . , An ∈ A.

(ii) xij = P(Bi4Bj), 1 ≤ i < j ≤ n+ 1 for some probability space (Ω,A,P)
and measurable subsets B1, . . . , Bn+1 ∈ A.

Proof The equivalence to (i) is an immediate consequence of Lemma 33 and
Proposition 34. The equivalence of (i) and (ii) can be seen as follows: (i) ⇒
(ii): Set Bi = Ai, 1 ≤ i ≤ n and Bn+1 = ∅. (ii) ⇒ (i): Set Ai = Bi4Bn+1,
1 ≤ i ≤ n and use that (C4D)4(E4D) = C4E for any triplet of sets
C,D,E.

Finally, this enables us to interpret TCFn as an intersection of COR�
n (resp.

CUT�
n+1) with an affine subspace of RVn∪En (resp. REn+1) in the following

sense.

Proposition 37 (Embedding TCFn into the correlation polytope)
The injective affine map ιn : REn → RVn∪En which maps χ ∈ REn to ιn(χ) =
p ∈ RVn∪En via

pi =
1

n
, 1 ≤ i ≤ n and pij =

χij
n
, 1 ≤ i < j ≤ n,

induces a bijection

ιn : TCFn → COR�
n ∩

{
p ∈ RVn∪En : pi =

1

n
, i = 1, . . . , n

}
.
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Proof The map ιn is injective by definition. First, we show that ιn(TCFn) ⊂
COR�

n . Because of Lemma 16 and Remark 17, a point χ ∈ TCFn has a
stochastic model A1, . . . , An with P(A1) = · · · = P(An) = 1/n and χij =
P(Ai ∩ Aj)/P(Aj). Lemma 33, applied to A1, . . . , An and P, shows that ιn
maps TCFn to COR�

n . Now, suppose that p ∈ COR�
n ∩

⋂n
i=1{pi = 1/n}. By

Lemma 33 there is a stochastic model with sets A1, . . . , An, P(A1) = . . . =
P(An) = 1/n, P(Ai ∩Aj) = pij . Thus, χ = (n · pij)1≤i<j≤n is a preimage of p
in TCFn.

Note that we just established the following equivalences

χ ∈ TCFn ⇔ ιn(χ) ∈ COR�
n ⇔ ζn ◦ ιn(χ) ∈ CUT�

n+1.

In particular, one can pull back facets from CUT�
n+1 to COR�

n with the co-
variance mapping ζn, and further, we obtain an H-representation for TCFn
using ζn ◦ ιn. Thus, any H-representation of COR�

n or CUT�
n+1 yields an H-

representation of TCFn as follows.

Proposition 38 (Pulling back H-representations)

a) (Deza and Laurent (1997) Prop. 26.1.1, p. 402)

The covariance mapping ξn := ζ−1n maps a valid inequality for CUT�
n+1

(resp. facet of CUT�
n+1) ∑

1≤i<j≤n+1

cijxij ≤ c0 (22)

to the following valid inequality COR�
n (resp. facet of COR�

n )∑
1≤i≤n

bipi +
∑

1≤i<j≤n

(−2cij)pij ≤ c0 with bi =
∑

1≤s<i

csi +
∑

i<s≤n+1

cis.

(23)

b) The above valid inequality (resp. facet) of CUT�
n+1 induces the following

valid inequality for TCFn via ζn ◦ ιn∑
1≤i<j≤n

(−2cij)χij ≤ n · c0 − 2
∑

1≤i<j≤n

cij −
n∑
i=1

ci,n+1. (24)

If applied to all elements of an H-representation of CUT�
n+1 (e.g. all facets

of CUT�
n+1), this gives an H-representation for TCFn.

Proof b) It suffices to replace xij in Inequality (22) by

(ζn ◦ ιn(χ))ij =

{
1
n j = n+ 1,
2
n −

2
nχij 1 ≤ i < j ≤ n.

and to reorder the resulting terms.
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Dual views on TCFn Summarizing, we obtain two complementary views on
the polytope TCFn which may be illustrated as follows.

Θn

ψn

����
TCFn

� �

ιn
// COR�

n ζn

// CUT�
n+1

RF(2)
n

ψn ����
REn �

�

ιn
// RVn∪En

ζn

// REn+1

Here ψn is given by the “projection” map (17), the map ιn is the embed-
ding from Proposition 37 and ζn the covariance mapping from Proposition 34.
While any V-representation of Θn easily yields a V-representation of TCFn
essentially by a projection, any H-representation of CUT�

n+1 easily yields an
H-representation of TCFn essentially by an intersection. Unfortunately, Θn
is a priori given by its facets (an H-represenation), while CUT�

n+1 is a priori
given by its vertices (a V-representation) and not the other way around, such
that both views come along with certain drawbacks. At least the facets of
CUT�

n+1 are classified to some extent.

The facets of CUT�
n+1 and their generators (Deza and Laurent, 1997,

Part V) Let us consider the following two kinds of actions on REn+1 . On the
one hand the symmetric group Sn+1 acts on REn+1 by node permutations:
(σ(x))ij := xσ(i)σ(j) for σ ∈ Sn+1. These actions are simply called permu-
tations. On the other hand each of the 2n cut vectors δ(S) acts on REn+1

by

(δ(S)(x))ij =

{
1− xij if δ(S)ij = 1,
xij otherwise,

for any S ⊂ Vn+1 = {1, . . . , n + 1}, i.e. coordinates xij corresponding to the
edges of the cut beween S and Sc are replaced by 1 − xij . These actions
are called switchings. Note that δ(S) ◦ δ(R) = δ(S4R) and that δ(S) ◦ σ =
σ ◦δ(σ(S)). In fact, both kinds of actions can be restricted to the cut polytope

CUT�
n+1. For any σ ∈ Sn+1 and any S ⊂ Vn+1

σ(x) ∈ CUT�
n+1 ⇔ x ∈ CUT�

n+1 ⇔ δ(S)(x) ∈ CUT�
n+1.

These permutations and switchings on the polytope CUT�
n+1 induce, of course,

corresponding actions on its facets. First, it is not surprising that (22) is a facet

inducing inequality of CUT�
n+1 if and only if∑

1≤i<j≤n+1

cσ(i)σ(j)xij ≤ c0

is facet inducing for CUT�
n+1. Second, any facet inducing inequality (22) can be

switched by a cut vector δ(S) to another facet inducing inequality of CUT�
n+1

which is given by∑
1≤i<j≤n+1

(1− 2δ(S)ij)cijxij ≤ c0 −
∑

1≤i<j≤n+1

δ(S)ijcij .
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Let OSP (g, c0) denote the full orbit of a facet g(x) ≤ c0 under all possible finite
applications of switchings and permutations to g(x) ≤ c0. The set of all facets

of CUT�
n+1 splits into finitely many such orbits, say OSPi , i ∈ I. Choosing one

facet g(i)(x) ≤ c(i)0 from each orbit OSPi yields a set of representatives g(i)(x) ≤
c
(i)
0 , i ∈ I, of the facets of CUT�

n+1, up to switchings and permutations. In

this way generators for the facets of CUT�
n+1 are given in the literature. It is a

feature of the cut polytope that it always has a set of homogeneous generators,

i.e. with c
(i)
0 = 0, i ∈ I (Deza and Laurent, 1997, Section 26.3.2).

The facets of CUT�
n+1 and corresponding generators are known for n ≤ 7

(Deza and Laurent, 1997, p. 504). In Table 6 (Appendix A) we list the 11

generators of the 116 764 facets of CUT�
7 that will be used to derive the facets

of TCF6.

Relations to unit covariances In their works on McMillan’s (1955) real-
ization problem concerning covariances of binary processes Quintanilla (2008),
Lachieze-Rey (2013); Lachièze-Rey (2015) and Shepp (1963, 1967) considered
{−1, 1}-valued random vectors (U1, . . . , Un) (instead of {0, 1}-valued vectors)
and studied the set of unit covariances

Un :=

{
u ∈ REn :

uij = E(UiUj) where
U1, . . . , Un take values in {−1, 1}

}
.

As a consequence of Lemma 36 (ii) (set Bi = {Ui = 1} therein) the cut

polytope CUT�
n and the set of unit covariances Un are affine equivalent via

the bijective mapping gn : REn → REn , gn(x) = 1
2 (1− x) through

CUT�
n = gn(Un). (25)

Let us further denote for c ∈ [0, 1] as in Shepp (1963)

Un(c) :=

u ∈ REn :
uij = E(UiUj) where
U1, . . . , Un take values in {−1, 1}
and P(U1 = 1) = · · · = P(Un = 1) = c

 .

It is immediate that Un(c) = Un(1−c) and repeating an argument from Shepp
(1963), p. 10, it is not difficult to see that Un(c), 0 ≤ c ≤ 1/2 are increasing
towards Un(1/2) = Un. The latter equality follows from the fact that the
unit covariance of a {−1, 1}-valued random vector remains unchanged after
multiplication with an independent {−1, 1}-valued zero mean variable. The
affine equivalence (25) can be refined to

CUT�
n (c) = gn(Un(c)), c ∈ [0, 1] (26)

if we set

CUT�
n (c) := prn(CUT�

n+1 ∩ {x ∈ REn+1 : xi,n+1 = c, 1 ≤ i ≤ n})
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and prn : REn+1 → REn is the projection onto the edges not containing the

vertex n+ 1. A probabilistic description of the polytopes CUT�
n (c), c ∈ [0, 1]

follows from the equivalence (i) in Lemma 36 (set Ai = {Ui = 1}) and thereby
proves the refinement (26) as follows.

Lemma 39 A point x ∈ REn belongs to CUT�
n (c) if and only if can be written

as xij = P(Ai4Aj), 1 ≤ i < j ≤ n for some probability space (Ω,A,P) and
measurable subsets A1, . . . , An ∈ A satisfying P(Ai) = c, 1 ≤ i ≤ n.

A direct connection of unit covariances to TCFn can be obtained from
Lemma 16 and Remark 17 (set Ui = 2 · 1Ai − 1 therein) as

fn(TCFn) = Un(1/n),

where fn : REn → REn is the bijective affine mapping fn(x) = 4
nx −

4
n + 1.

It can be easily checked that the following diagram commutes if ζn and ιn are
the respective affine mappings from Propositions 34 and 37.

TCFn
� � ζn◦ιn //

fn

��

CUT�
n+1

prn
����

Un(1/n)
gn
// CUT�

n (1/n)

REn �
� ζn◦ιn //

fn
��

REn+1

prn����
REn

gn
// REn

We remark the simple form of the mapping (gn ◦ fn)(x) = 2
n (1 − x). The

following lemma shows that the polytopes CUT�
n (c), 0 < c ≤ 1/n and Un(c),

0 < c ≤ 1/n are also affine isomorphic.

Lemma 40 For λ ∈ [0, 1] we have

CUT�
n (λ/n) = λ · CUT�

n (1/n)

Un(λ/n) = λ · Un(1/n) + (1− λ).

Proof The second relation follows from the first by applying the map gn. We
prove the first statement using Lemma 39 for both inclusions (“⊂” and “⊃”),
where we may assume that A :=

⋃n
i=1Ai 6= Ω (otherwise add a point to Ω).

An element x ∈ CUT�
n (λ/n) admits the representation xij = P(Ai4Aj) for

sets A1, . . . , An with P(Ai) = λ/n. It follows that P(A) ≤ λ and we can extend
P′ := (1/λ) · P|A to a probability measure on Ω which gives xij = λP′(Ai4Aj)
with (P′(Ai4Aj))1≤i<j≤n ∈ CUT�

n (1/n). Conversely, x ∈ CUT�
n (1/n) admits

the representation xij = P(Ai4Aj) for sets A1, . . . , An with P(Ai) = 1/n and
we can extend the measure P′ := λ · P|A to Ω which gives λ ·xij = P′(Ai4Aj)
with (P′(Ai4Aj))1≤i<j≤n ∈ CUT�

n (λ/n).

Together with (gn ◦ fn)−1(y) = 1 − n
2 y this identifies the polytope TCFn

as

TCFn = 1− 1

2c
CUT�

n (c) = 1− 1

4c
(1− Un(c)) , for any c ∈ (0, 1/n]. (27)

Hence, any better understanding on one of the polytopes in (27) will automat-
ically transfer to all the other ones.
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7 Computational results

We computed the vertices and facets of TCFn for n ≤ 6 using the software
R (R Core Team, 2013) and polymake (Gawrilow and Joswig, 2000). Their
explicit representatives are documented in the tables of Appendix A. In order
to obtain the vertices and facets of TCF6, we had to use both views on TCF6

described at the end of Section 6.4: a V-representation of TCF6 was obtained
via the polytope Θ6, the reduction to the vertex representation Ex(TCF6)
took extra efforts. An H-representation for TCF6 was obtained via the em-
bedding into CUT�

7 (using the known facet-representation), from which we
extracted a facet-representation of TCF6 using the previously computed ver-
tices Ex(TCF6). Below we give a detailed description of our methods.

The vertices and facets of TCFn for 2 ≤ n ≤ 5
For n ≤ 4 the vertices and facets of TCFn were computed already in Strokorb
(2013) p. 62. In particular, all vertices are {0, 1}-valued, hence clique partition
points (cf. Proposition 22).

The vertices and facets of TCF5 have been obtained directly using R and
polymake via the two different approaches presented in Section 6.4 (leading to
the same result): via the polytope Θ5 and the embedding into the correlation

polytope COR�
5 (defined by its vertices). Here, for n = 5, the software R was

simply used to generate the input for polymake. From these computations we
see that TCF5 has 214 vertices in 11 permutation orbits as listed in Table 2
(Appendix A). While 52 vertices in 7 permutation orbits are {0, 1}-valued (the
expected clique partition points), for the first time also {0,1⁄2}-valued vertices
turn up (162 in 4 permutation orbits).

Representatives for the permutation orbits of the facets of TCFn for each
2 ≤ n ≤ 5 are listed in Table 3 in the Appendix A. Since all facets turned
out to be hypermetric, we describe them by their defining vectors b ∈ Zn. In
particular, we obtain the following result.

Proposition 41 For n ≤ 5 all facets of TCFn are hypermetric.

Let us now turn to the case n = 6, which needed additional arguments to
reduce the computational burden.

The vertices of TCF6

According to our computational results, the polytope TCF6 possesses 28895
vertices in 88 permutation orbits, whose representatives are listed in Table 4 in
the Appendix A. For the first time, also {0,1⁄3,2⁄3}-valued vertices occur, more
precisely,

– 203 vertices in 11 orbits are {0, 1}-valued,
– 4662 vertices in 16 orbits are {0,1⁄2}-valued,
– 2430 vertices in 11 orbits are {0,1⁄2, 1}-valued,
– 21600 vertices in 50 orbits are {0,1⁄3,2⁄3}-valued.
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It was not feasible to use the simple embedding of TCF6 into CUT�
6 from

Section 6.4 and polymake to compute the vertices by common standard hard-
ware in reasonable time. Instead, we used the projection of the Θ6 polytope in
(17) to obtain a V-representation for TCF6, from which - with some additional
efforts - we extracted the vertex representation.

1st step: Computing a V-representation of TCF6.
With R we generated the input for polymake (63 inequalities with 58 coef-
ficients each) to define the polytope Θ6 in R57. Then polymake computed
the 200 214 extremal points of Θ6 in less then 20 minutes by standard
hardware. We projected the extremal points of Θ6 onto the 15 coordinates
for TCF6, applied the coordinatewise 2 − x-transformation, and removed
duplicates. This gave us 168 894 points in [0, 1]15 with convex hull TCF6

(a V-representation of TCF6). Their coordinate values were all fractions
a
b , 0 ≤ a ≤ b ≤ 9.

2nd step: Reduction to a vertex representation of TCF6.
It was not feasible to extract the subset of extremal points directly by
polymake. Using R we determined the 521 permutation orbits of these
168 894 convex hull points and chose 521 representatives. These represen-
tatives included the 11 well-known representatives for Ex(TCF6)∩{0, 1}15
(i.e., the clique partition points of the complete graph K6, see Proposi-
tion 21), and the 4 liftings of the 4 representatives for Ex(TCF5)∩{0, 1/2}10
described above (see Table 2 in the Appendix A). This gave us a list of 15
representatives known to be extremal and 506 undecided ones.
The extremal ones among them were identified as follows.
a) First, we took the union of the full permutation orbits of the 15 known
representatives, a set of 1175 points, and added the undecided 506 candi-
dates. The resulting list of 1681 points was handed over to polymake, which
computed the 1259 extremal points of their convex hull (among them the
previously mentioned set of 1175 points). Any candidate from the 506-list
not appearing among these 1259 extremal points is a strict convex combi-
nation of points from TCF6, thus not extremal. This left us with the 15
representatives known to extremal plus only 84 = 1259 − 1175 undecided
representatives from the previous list of 506.
b) For each of the remaining 84 undecided representatives we computed
with polymake, if there is a hyperplane positively separating this selected
representative from the union of all orbits of the 15 representatives known
to extremal and the 83 other undecided representatives (in each case roughly
30000 points). If so, the selected representative is extremal, otherwise not.
For a proof of this statement see the following Lemma 42. In this way we
found 73 extremal representatives among the 84 undecided ones, which led
to the 15+73= 88 representatives for Ex(TCF6) in Table 4 (Appendix A).

In order to justify the last step, the following lemma is needed.

Lemma 42 Let A ⊂ Rn and B ⊂ Rn be two disjoint finite sets with the
property that either B ⊂ Ex(A ∪ B) or B ∩ Ex(A ∪ B) = ∅ (property (∗) in
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the proof). Let x be a point from B. Then x ∈ Ex(A ∪ {x}) if and only if
x ∈ Ex(A ∪B).

(Our application in mind is A ⊂ R(n
2), a union of Sn-orbits, B ⊂ R(n

2) another
Sn-orbit. Then the above condition (∗) holds, since Sn acts via invertible linear
maps.)

Proof Note that the following identities hold trivially for a finite set A ⊂ Rn:
Ex(A) ⊂ A (∗1) and conv(A) = conv(Ex(A)) (∗2). Hence, the assertion is a
consequence of the following.

“⇐”: x 6∈ Ex(A ∪ {x}) (∗1)⇒ Ex(A ∪ {x}) ⊂ A
(∗2)⇒ x ∈ conv(A), thus x is a

convex combination of points from A (which are different from x, since x ∈ B,
A ∩B = ∅), thus x 6∈ Ex(A ∪B).

“⇒”: x 6∈ Ex(A ∪B)
(∗)⇒ B ∩ Ex(A ∪B) = ∅ (∗1)⇒ Ex(A ∪B) ⊂ A (∗2)⇒ conv(A ∪

B) ⊂ conv(A)⇒ x ∈ conv(A), as above now x 6∈ Ex(A ∪ {x}) follows.

The facets of TCF6

It turned out that TCF6 has 18720 facets which split into 67 permutation
orbits. For an annotated complete list see Table 5 in the Appendix A. The 67
representatives for TCF6 are grouped into 11 classes, according to their “ances-
tral cut polytope generator” (see below). The first 6 generators led to 6 classes
with 17 representatives for TCF6, which are all hypermetric. A list of the
corresponding 17 b-vectors is given in Table 7 (Appendix A). The remaining
5 generators induced 50 representatives and all of them are non-hypermetric
(this is easily checked using Lemma 30 and Remark 31 for all but the 7th
inequality derived from generator 9, for this one the vectors c2,4, c2,5, c2,6 and
c3,4, c3,5, c3,6 are independent and the same reasoning as for criterion (b) of
Lemma 30 works). Thus, the number of hypermetric orbits is 17 out of 67 (
≈ 25.4%), with 858 hypermetric facets out of 18720 (just ≈ 4.6%).

We obtained this list of representatives for the facets of TCF6 in using known
results about the cut polytope CUT�

7 (Section 6.4), the previously computed
vertex set Ex(TCF6) and the software R:

1st step: Choose one of the 11 homogeneous generators gi ≤ 0, i ∈ {1, . . . , 11}
for the facets of the cut polytope CUT�

7 (see Table 6 (Appendix A) and

Section 6.4). Compute the list of all facets of CUT�
7 generated by gi w.r.t.

switchings and permutations (cf. Section 6.4). This results in an ai × 22
matrix with ai ≤ 40320 for all i (see also Deza and Laurent (1997) Fig-
ure 30.6.1).

2nd step: Apply the simple map from Proposition 38 to all rows of the matrix
from step 1. This yields a set of valid inequalities for TCF6 (an ai × 16
matrix), which is permutation invariant by construction. Choose represen-
tatives of the permutation orbits (the largest count was 93 representatives).

3rd step: Use the 28 895 precomputed vertices in Ex(TCF6) to decide for each
representative from step 2, if it defines a facet of TCF6. For that, first de-
termine which vertices from Ex(TCF6) solve the inequality as an equality.
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Then check if the rank of the matrix of solutions with an added 1-column
in front is at least 15. We used the vertex set 6 · Ex(TCF6) to make all
computations integer valued, so the rank-checking procedure should be
computationally reliable in this case. This gives a list of representatives for
certain permutation orbits of TCF6-facets “stemming from the cut poly-
tope generator gi”.

4th step: If done for all 11 generators, the union of the 11 lists obtained in
step 3 gives a complete list of representatives of the facets of TCF6. This
holds true, since the set of all valid inequalities obtained in the second step
for all 1 ≤ i ≤ 11 defines TCF6 by Proposition 38, thus we know that the
facets of TCF6 are a subset. Finally, we checked that representatives from
different lists have different permutation orbits. Thus, the 11 lists partition
a minimal set of facet representatives for TCF6 according to the unique
“ancestral cut polytope generator”.

Remark 43 It is feasible to generate all 116 764 facets of CUT�
7 in step 1, and

go through steps 2 and 3 (testing 391 representatives from step 2), to just
obtain the 67 facet representatives, but then relating them to the different cut
polytope generators needs extra bookkeeping.

Remark 44 One can exploit the interaction of the permutation group actions
on CUT�

n+1 and TCFn to avoid the large row counts in step 1 and 2. Starting

from a list hj ≤ cj , j ∈ J of facet representatives for the cut polytope CUT�
n+1

w.r.t. permutations (|J | = 108 in the case n = 6) there is a way to immediately
compute a list of at most (n+1) · |J | valid inequalities for TCFn that contains
a complete collection of facet representatives for TCFn as a sublist (details
omitted). This might get interesting if one wants to investigate TCFn for

n ≥ 7 using knowledge about CUT�
n+1.

8 Some open questions on the geometry of TCFn

Finally, we pursue some questions which arose while studying the convex poly-
tope TCFn that remained open to us. To this end, let PSDn ⊂ REn be the
space of symmetric and positive semi-definite n × n matrices in the sense of
(1). As mentioned in the introduction, it is well-known that all elements of
TCFn are positive semi-definite, that is

TCFn ⊂ PSDn.

It is natural to ask whether certain subsets of inequalities from facets of
TCFn imply already positive semi-definiteness. A simple candidate for such
a question could be all facets at the exposed vertices v0 = (0, 0, . . . , 0) and
v1 = (1, 1, . . . , 1) of TCFn. Let us denote the polytope which is defined by
these facets by TCFn(v0, v1). The following problem can be seen in a similar
vein to Matheron’s conjecture (Matheron, 1993).

(F) For which values of n does TCFn(v0, v1) ⊂ PSDn hold?
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Therefore, let us take a closer look at the facets of TCFn at the exposed vertices
v0 and v1. The facets at v0 = (0, 0, . . . , 0) are just the positivity inequalities
χij ≥ 0, which are hypermetric with b = 1{i,j}. To investigate the facets of
TCFn at v1 = (1, 1, . . . , 1), the following simple lemma is helpful.

Lemma 45 A hypermetric inequality given by b ∈ Zn is satisfied as an equal-
ity by v1 if and only if

∑n
i=1 bi ∈ {0, 1}.

Proof
∑

1≤i,j≤n bibj · 1 =
∑n
i=1 bi if and only if (

∑n
i=1 bi)

2 =
∑n
i=1 bi.

A hypermetric inequality is pure hypermetric if its corresponding b-vector sat-
isfies b ∈ {−1, 0, 1}n. Using this lemma and inspecting Tables 3, 5 and 7 we
derive the following proposition.

Proposition 46 (Facets of TCFn at v1)

a) For n = 2 the (exceptional) facet at v1 is pure hypermetric
with

∑n
i=1 bi = 0.

b) For 3 ≤ n ≤ 5 the facets at v1 are pure hypermetric with
∑n
i=1 bi = 1.

c) For n = 6 the facets at v1 are hypermetric with
∑n
i=1 bi = 1.

Some are not pure.

Thus, the pure hypermetricity of the hypermetric facets at v1 is another low-
dimensional phenomenon: For n = 6 there exist non-pure hypermetric facets
at v1. By the lifting property for n ≥ 3 (Proposition 25), the same holds true
for n ≥ 7. However, we may ask (cf. also Lemma 45):

(G) Are there non-hypermetric facets at v1 for n ≥ 7 ?
Are there hypermetric facets at v1 with

∑n
i=1 bi = 0 for n ≥ 7 ?

Let TCFhyp
n (v0, v1), resp. TCFpure

n (v0, v1), be given by the hypermetric, resp.
pure hypermetric, facets at v0 and v1.

Remark 47 By definition TCFn(v0, v1) ⊂ TCFhyp
n (v0, v1) ⊂ TCFpure

n (v0, v1).
All these sets are polytopes, since positivity (= the facets of TCFn at v0) and
triangle inequalities (which are certainly among the pure hypermetric facets
of TCFn at v1 for n ≥ 3) suffice already to imply TCFpure

n (v0, v1) ⊂ [0, 1]En

(which also holds true for n = 2), i.e., all of these sets are bounded and thus
indeed polytopes. These polytopes are called spindles, since each facet contains
one of the two vertices v0, v1.

The following proposition collects some partial answers to Question (F).

Proposition 48 (Partial answers to Question (F))

a) For 2 ≤ n ≤ 5 we have
TCFn(v0, v1) = TCFhyp

n (v0, v1) = TCFpure
n (v0, v1) ⊂ PSDn.

b) For n = 6 we have TCF6(v0, v1) = TCFhyp
6 (v0, v1) 6= TCFpure

6 (v0, v1).
c) For n ≥ 6 we have TCFhyp

n (v0, v1) 6⊂ PSDn.
In particular TCF6(v0, v1) 6⊂ PSD6.
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Proof a) The equalities follow from Table 3. The inclusion TCFpure
n (v0, v1) ⊂

PSDn has been solved by hand in Strokorb (2013) Proposition 3.6.5. for the
cases n ≤ 4. The idea for n = 4 was to compute the extremal points of the
polytope defined by positivity and triangle inequalities and to check p.s.d.
for them. This suffices since PSDn is convex. For n = 5 we used polymake to
compute the extremal points of the polytope defined by positivity, triangle
and pentagonal inequalities (see Table 3), and R to check p.s.d.

b) This follows from Proposition 46.
c) For n ≥ 6 consider the point x ∈ REn with xin = 0.5, 1 ≤ i ≤ n−1; xij = 0

otherwise. Let X denote the associated matrix. For b = (b1, . . . , bn) ∈ Zn
and s :=

∑n
i=1 bi we have

bXbt =

n∑
i=1

b2i + bn

n−1∑
i=1

bi =

n−1∑
i=1

b2i + bn · s.

This shows bXbt ≥ s for s ∈ {0, 1}, for s = 1 use
∑n−1
i=1 b

2
i +bn ≥

∑n−1
i=1 bi+

bn = 1. Thus, all hypermetric inequalities with
∑n
i=1 bi ∈ {0, 1} are satis-

fied, in particular those at v1 (c.f. Lemma 45), and x is non-negative. On
the other hand, x is not positive semi-definite: For a = (1, . . . , 1,−2) the
above formula shows aXat = (n− 1)− 2(n− 3) = 5− n ≤ −1.

Thus, we expect “if and only if n ≤ 5” to be the answer to Question F.

Our final question is motivated by the following observation. Let HYPn de-
noted the set of points x = (xij)1≤i<j≤n ∈ REn that satisfy all hypermetric
inequalities (cf. Section 5).

Lemma 49 For all n ≥ 2 the inclusions TCFn ⊂ HYPn ⊂ PSDn hold.

Proof The first inclusion is a reformulation of Lemma 20. Now let x ∈ HYPn.
By assumption we have

∑
1≤i,j≤n bibjxij ≥

∑n
i=1 bi for all b = (b1, . . . , bn) ∈

Zn. This holds for b and −b. Thus,
∑

1≤i,j≤n bibjxi,j ≥ 0 for all b ∈ Zn.
Division by integers extends this to Qn, and continuity to Rn.

Remark 50 By Proposition 41 the sets TCFn and HYPn even coincide for
n ≤ 5. This is no longer true for n ≥ 6. A point x ∈ HYP6 \ TCF6 is given
by xi,6 = 1/2, 1 ≤ i ≤ 5, x1,2 = x2,3 = x3,4 = x4,5 = x1,5 = 1/2, and xi,j = 0

otherwise. Indeed, since (
∑5
i=1 xi,6)−x1,3−x3,5−x2,5−x2,4−x1,4 = 2.5 > 2, the

point x does not satisfy a permutation of the TCF6-facet from Proposition 32.
We omit the computations showing x ∈ HYP6. By lifting, this extends to
examples x0 ∈ HYPn \ TCFn for all n ≥ 6.

(H) Do the inequalities of all hypermetric facets of TCFn define a polytope,
say TCFhyp

n , already contained in PSDn?

This holds true for n ≤ 5 by Proposition 48, and remains open for n ≥ 6. Note
that TCFhyp

n is a polytope by TCFhypn ⊂ TCFhypn (v0, v1) and Remark 47.
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Discussion

In this article, we deal with the realization problem for the tail correlation
function (TCF), which is an omnipresent bivariate tail dependence measure in
the extremes literature. We make this specific by formulating Questions (A)-
(E) in the introduction. Here, we discuss our contribution to these questions.
In doing so we address Questions (A)-(E) partially in reversed order according
to their growing complexity.

Questions (E) and (D) can be answered fully and affirmatively by Corol-
lary 14 and Theorem 10, respectively. That is, convex combinations, prod-
ucts and pointwise limits are admissible operations on the set of TCFs and
Theorem 10 shows that the class of TM processes, a subclass of max-stable
processes, is rich enough to realize any given TCF. Concerning the regular-
ity of the corresponding TM process, we identify continuity of its TCF as a
necessary and sufficient condition for its stochastic continuity (Corollary 11),
which contributes to Question (C). Theorem 10 also opens up links to binary
({0, 1}-valued) processes and thereby provides a substantial reduction of Ques-
tions (A) and (B). Corollary 15 reduces them even further to the study of TCFs
on finite base spaces. Together with Corollary 18, we reveal that membership
in the set of TCFs (even on infinite spaces) can be completely characterized
by a system of affine inequalities, which – if known – would provide a complete
answer to Question (A).

To identify and classify these affine inequalities, a better understanding of
the geometry of the polytope TCFn of n×n tail correlation functions (matri-
ces) for arbitrary n is needed. Its facet inducing inequalities constitute such
a list (actually, an H-representation would suffice already). Lemma 20 con-
tributes to Question (A) in that it provides a rich class of necessary conditions
(all hypermetric inequalities) for membership in TCFn, whereas Proposition 21
identifies any clique partition point to be an admissible TCF. In Section 6.4, we
discuss that the polytope TCFn can be viewed either as an affine projection of
the polytope Θn (whose facets are well-understood) or as an affine intersection
with the correlation polytope (whose vertices are well-understood). Both views
immediately suggest algorithms that can be easily implemented in order to ob-
tain the vertices and facets of TCFn that in theory would work “for arbitrary
n”. This would solve Question (A) computationally. Due to the complexity
of the problem, software computations lead to a full description of facets and
vertices of TCFn only up to n = 6 (Section 7).

Indeed, several of our results reveal the rapidly growing complexity of Ques-
tion (A) as n grows. Starting from n = 3, no facet inducing inequality of
TCFn will ever become obsolete (Proposition 25). For instance, the triangle
inequality (2) cannot be deduced from any other set of valid inequalities for
TCFn. By contrast, all facet inducing inequalities that define the polytope
of ECFs Θn become obsolete for Θn′ for higher n′ > n, and still Θn has 2n

facets in dimension n. Starting from n ≥ 6 there exist (actually plenty of)
non-hypermetric facets of TCFn (Proposition 32). Moreover, we derived the

facets of TCF6 from the facets of the cut polytope CUT�
7 which had 11 gen-
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erators for 116 764 facets. The next step would take into account the polytope
CUT�

8 , which has already more than 217 million facets which can be subdi-
vided into 147 orbits under permutations and switchings (Deza and Laurent,
1997, p. 505). It is even possible to choose n sufficiently large, such that a given
finite set of rational numbers from the interval [0, 1] turns up as coordinate
values of a single vertex of TCFn (Proposition 27). Altogether, these results
confound the aim of a full answer to Question (A).

Finally, if Question (A) is already so difficult to answer, what more can be
eventually said about Question (B)? That is, given a TCF χ, say on a finite
space, how to construct a specific stochastic model that realizes χ? Again,
from our dual views on TCFn as affine “projection of” or “intersection with”
other polytopes, it is easy to formulate naive ad-hoc algorithms providing an
entire convex polytope of solutions to such a problem, cf. Strokorb (2013),
p. 65. Perhaps more interestingly, in case of T = Rd, Strokorb et al (2015)
characterize subclasses of radially symmetric and monotonously decreasing
TCFs with some sharp bounds on membership in the class of TCFs on Rd
(cf. Table 2 therein) and recover realizing max-stable models. Surprisingly
often, it is possible to obtain explicitly several such realizing models sharing
an identical TCF, but with rather different spectral profiles. In this sense,
the reader should not overrate the finding of a specific model meeting a given
TCF even though the TM models helped us here to approach the realization
problem.

To conclude with, independently of our research (Fiebig et al, 2014) and
motivated from an insurance context, Embrechts et al (2015) dealt with almost
the same questions (in particular Questions A and B) for random vectors with
an emphasis on the construction of realizing copulas as we learned on the EVA
2015 in AnnArbor. Our approach offers (at least theoretically) an algorithm
that can solve Questions A and B for random vectors completely (even though
the feasibilty of such an algorithm breaks down very quickly as the dimension
grows and we have doubts on its practical use in higher dimensions). This
answers one of the questions raised in the discussion of Embrechts et al (2015).
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distributions and Brown-Resnick processes. Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 77(1):239–265 3
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A Tables

Vertex and facet counts

TCFn Θn

n 2 3 4 5 6 2 3 4 5 6

# vertices 2 5 15 214 28 895 2 6 42 1292 200 214
# facets 2 6 22 110 18 720 2 7 15 31 63
# permutation orbits of vertices 2 3 5 11 88 2 4 10 45 583
# permutation orbits of facets 2 2 3 7 67 2 3 4 5 6

COR�
n CUT�

n+1

n 2 3 4 5 6 2 3 4 5 6

# vertices 4 8 16 32 64 4 8 16 32 64
# facets 4 16 56 368 116 764 4 16 56 368 116 764
# permutation orbits of vertices 3 4 5 6 7 2 3 3 4 4
# permutation orbits of facets 3 5 10 29 428 2 2 5 11 108
# perm./switch. orbits of vertices 1 1 1 1 1
# permu./switch. orbits of facets 1 1 2 3 11

Table 1 Vertex and facet counts for the polytope of tail correlation functions TCFn ⊂

R
(
n
2

)
, the polytope of extremal coefficient functions Θn ⊂ R2n−n−1, the correlation poly-

tope COR�
n ⊂ Rn+

(
n
2

)
and the cut polytope CUT�

n ⊂ R
(
n+1
2

)
. For Θn the number of

facets (2n − 1) and orbits of facets (n) follow from Lemma 2. Since COR�
n and CUT�

n+1
are linearly equivalent, they have the same number of vertices (2n by definition) and facets
(see Deza and Laurent (1997) p. 503-505 for the respective numbers as well as for the per-
mutation/switching orbits of CUT�

n+1). All other numbers rely on computations using the
software R and polymake. The counts for TCFn and Θn in case n ≤ 4 have been obtained
previously “by hand” in Strokorb (2013) p. 62-63.
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Vertices of TCF5

7 {0, 1}-valued representatives

0 0 0 0 0 0 0 0 0 0 1 five 1-cliques
0 0 0 0 0 0 0 0 0 1 10 one 2-clique
0 0 0 0 0 0 0 1 1 1 10 one 3-clique
0 0 0 0 0 0 1 1 0 0 15 two 2-cliques
0 0 0 0 1 1 1 1 1 1 5 one 4-clique
0 0 0 1 1 1 0 1 0 0 10 one 2-clique and one 3-clique
1 1 1 1 1 1 1 1 1 1 1 one 5-clique

4 {0,1⁄2}-valued representatives

0 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 30
0 0 1/2 1/2 1/2 0 1/2 1/2 1/2 1/2 60
0 0 0 1/2 1/2 1/2 0 1/2 1/2 1/2 60

1/2 0 0 1/2 1/2 0 0 1/2 0 1/2 12

Table 2 The 11 representatives (χ1,2, . . . , χ4,5) for the 214 elements of Ex(TCF5).
Columns (1)-(10) list the coordinates χ1,2, . . . , χ4,5, Column (11) gives the orbit length
under permutations and the last column is a comment on the generating clique partition
(see Section 5).

Facets of TCFn for 2 ≤ n ≤ 5

n = 2 b = (1, 1) positivity inequality x1,2 ≥ 0 (× 1) 2 facets v0
b = (1,−1) x1,2 ≤ 1 (this facet disappears for n ≥ 3) (× 1) v1

n = 3 b = (1, 1, 0) lifting of positivity ineq. (× 3) 6 facets v0
b = (1, 1,−1) triangle inequality (× 3) v1

n = 4 b = (1, 1, 0, 0) lifting of positivity ineq. (× 6) 22 facets v0
b = (1, 1,−1, 0) lifting of triangle ineq. (×12) v1
b = (1, 1, 1,−1) tetrahedron inequality (× 4)

n = 5 b = (1, 1, 0, 0, 0) lifting of positivity ineq. (×10) 110 facets v0
b = (1, 1,−1, 0, 0) lifting of triangle ineq. (×30) v1
b = (1, 1, 1,−1, 0) lifting of tetrahedron ineq. (×20)
b = (1, 1, 1, 1,−1) pyramid inequality (× 5)
b = (1, 1, 1, 1,−2) 2-weighted variant of pyramid ineq. (× 5)
b = (1, 1, 1,−1,−1) pentagonal inequality (×10) v1
b = (2, 1, 1,−1,−1) 2-weighted variant of pentagonal ineq. (×30)

Table 3 Permutation orbit representatives for the facets of TCFn for 2 ≤ n ≤ 5. Since all
facets are hypermetric, they can be described by their corresponding b-vector (see Section 5).
The number in brackets is the orbit length. The last column indicates whether the respective
facet contains one of the exposed vertices v0 = (0, 0, . . . , 0) or v1 = (1, 1, . . . , 1).
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Vertices of TCF6

7 {0, 1}-vd. repr’tives (liftings from TCF5)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 15
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 20
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 45
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 15
0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 60
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 6

4 new {0, 1}-vd. repr’tives (not liftings)

0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 15
0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 15
0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 {0,1⁄2}-vd. repr’tives (liftings from TCF5)

0 0 0 0 0 0 0 0 1/2 1/2 1/2 0 1/2 1/2 1/2 360

0 0 0 0 0 0 0 1/2 1/2 1/2 0 1/2 1/2 0 0 72

0 0 0 0 0 0 0 1/2 1/2 1/2 0 1/2 1/2 1/2 1/2 360

0 0 0 0 0 0 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 180

12 new {0,1⁄2}-vd. repr’tives (not liftings)

0 0 0 0 1/2 0 1/2 1/2 0 1/2 1/2 1/2 1/2 0 0 360

0 0 0 0 1/2 0 1/2 1/2 0 1/2 1/2 1/2 1/2 0 1/2 720

0 0 0 0 1/2 0 1/2 1/2 0 1/2 1/2 1/2 1/2 1/2 1/2 360

0 0 0 1/2 1/2 0 1/2 0 1/2 1/2 1/2 0 0 0 1/2 360

0 0 0 1/2 1/2 0 1/2 0 1/2 1/2 1/2 0 1/2 1/2 1/2 120

0 0 0 1/2 1/2 1/2 1/2 0 0 1/2 0 0 1/2 1/2 1/2 180

0 0 0 1/2 1/2 1/2 1/2 0 0 1/2 1/2 1/2 1/2 1/2 1/2 90

0 0 0 1/2 1/2 1/2 1/2 0 1/2 1/2 0 1/2 1/2 1/2 1/2 360

0 0 0 1/2 1/2 1/2 1/2 0 1/2 1/2 1/2 0 1/2 1/2 0 360

0 0 0 1/2 1/2 1/2 1/2 0 1/2 1/2 1/2 0 1/2 1/2 1/2 360

0 0 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 60

0 0 1/2 1/2 1/2 1/2 0 1/2 1/2 1/2 0 1/2 1/2 1/2 1/2 360

11 new {0,1⁄2, 1}-vd. repr’tives (not liftings)

0 0 0 0 1/2 1 1/2 1/2 0 1/2 1/2 0 1/2 1/2 1/2 180

0 0 0 0 1/2 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0 1/2 360

0 0 0 1 1/2 1/2 1/2 0 0 1/2 0 1/2 0 1/2 1/2 180

0 0 0 1/2 1/2 1 1/2 0 1/2 1/2 0 1/2 1/2 0 0 180

0 0 0 1/2 1/2 1 1/2 0 1/2 1/2 0 1/2 1/2 1/2 1/2 360

0 0 0 1/2 1/2 1 1/2 1/2 1/2 1/2 1/2 1/2 0 0 1/2 180

0 0 0 1/2 1/2 1 1/2 1/2 1/2 1/2 1/2 1/2 0 1/2 1/2 360

0 0 0 1/2 1/2 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 180

0 0 1 1/2 1/2 1/2 0 1/2 1/2 0 1/2 1/2 1/2 1/2 1/2 90

0 0 1/2 1/2 1/2 1/2 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 180

0 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1/2 1/2 180

50 new {0,1⁄3,2⁄3}-vd. repr’tives (not liftings)

0 0 0 0 1/3 1/3 1/3 1/3 0 2/3 2/3 2/3 2/3 2/3 2/3 120

0 0 0 0 1/3 1/3 1/3 1/3 2/3 2/3 2/3 0 2/3 1/3 1/3 360

0 0 0 0 1/3 2/3 2/3 2/3 1/3 2/3 2/3 1/3 2/3 2/3 2/3 180

0 0 0 0 2/3 1/3 1/3 1/3 1/3 2/3 2/3 0 2/3 0 1/3 360

0 0 0 0 2/3 2/3 2/3 2/3 0 2/3 2/3 1/3 2/3 1/3 1/3 120

0 0 0 1/3 1/3 1/3 1/3 0 2/3 2/3 2/3 1/3 2/3 1/3 1/3 360

0 0 0 1/3 1/3 1/3 1/3 2/3 2/3 2/3 0 1/3 1/3 1/3 2/3 720

0 0 0 1/3 1/3 2/3 2/3 0 2/3 2/3 1/3 2/3 1/3 2/3 1/3 360

0 0 0 1/3 1/3 2/3 2/3 1/3 1/3 2/3 1/3 2/3 2/3 2/3 2/3 720

0 0 0 1/3 1/3 2/3 2/3 1/3 2/3 2/3 1/3 2/3 2/3 1/3 1/3 360

0 0 0 1/3 2/3 1/3 1/3 0 1/3 2/3 2/3 0 2/3 0 0 360

0 0 0 1/3 2/3 1/3 1/3 2/3 1/3 2/3 0 0 1/3 0 1/3 360

0 0 0 1/3 2/3 1/3 1/3 2/3 1/3 2/3 1/3 0 1/3 1/3 1/3 720

0 0 0 1/3 2/3 2/3 2/3 0 0 2/3 1/3 0 1/3 1/3 1/3 720

0 0 0 1/3 2/3 2/3 2/3 1/3 0 2/3 1/3 1/3 2/3 1/3 1/3 720

0 0 0 1/3 2/3 2/3 2/3 1/3 1/3 2/3 1/3 1/3 2/3 0 0 360

0 0 0 1/3 2/3 2/3 2/3 1/3 1/3 2/3 2/3 1/3 2/3 1/3 1/3 360

0 0 0 2/3 2/3 2/3 2/3 0 1/3 2/3 1/3 1/3 1/3 1/3 2/3 360

0 0 1/3 1/3 1/3 1/3 0 1/3 1/3 2/3 2/3 2/3 2/3 2/3 2/3 180

0 0 1/3 1/3 1/3 1/3 0 2/3 2/3 2/3 1/3 1/3 1/3 1/3 2/3 360

0 0 1/3 1/3 1/3 2/3 0 1/3 2/3 1/3 1/3 2/3 2/3 1/3 1/3 720

0 0 1/3 1/3 1/3 2/3 1/3 1/3 1/3 1/3 2/3 2/3 2/3 2/3 2/3 360

0 0 1/3 1/3 1/3 2/3 1/3 1/3 2/3 1/3 1/3 2/3 2/3 0 0 180

0 0 1/3 1/3 1/3 2/3 1/3 1/3 2/3 1/3 1/3 2/3 2/3 0 1/3 360

0 0 1/3 1/3 1/3 2/3 1/3 1/3 2/3 1/3 2/3 1/3 2/3 2/3 1/3 360

0 0 1/3 1/3 1/3 2/3 1/3 1/3 2/3 1/3 2/3 2/3 2/3 1/3 2/3 720

0 0 1/3 1/3 1/3 2/3 1/3 1/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 360

0 0 1/3 1/3 1/3 2/3 1/3 2/3 2/3 1/3 2/3 2/3 0 1/3 2/3 360

0 0 1/3 1/3 1/3 2/3 1/3 2/3 2/3 2/3 1/3 2/3 1/3 2/3 2/3 360

0 0 1/3 1/3 1/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 60

0 0 1/3 1/3 2/3 1/3 0 2/3 1/3 2/3 0 1/3 0 1/3 1/3 360

0 0 1/3 1/3 2/3 1/3 1/3 1/3 1/3 2/3 2/3 1/3 2/3 1/3 1/3 360

0 0 1/3 1/3 2/3 2/3 1/3 1/3 0 1/3 1/3 1/3 2/3 1/3 2/3 720

0 0 1/3 1/3 2/3 2/3 1/3 1/3 0 1/3 1/3 1/3 2/3 2/3 2/3 360

0 0 1/3 1/3 2/3 2/3 1/3 1/3 1/3 1/3 2/3 0 2/3 1/3 0 720

0 0 1/3 1/3 2/3 2/3 1/3 1/3 1/3 1/3 2/3 1/3 2/3 0 1/3 720

0 0 1/3 1/3 2/3 2/3 1/3 2/3 0 1/3 2/3 1/3 0 1/3 1/3 720

0 0 1/3 1/3 2/3 2/3 1/3 2/3 0 1/3 2/3 1/3 1/3 2/3 1/3 720

0 0 1/3 1/3 2/3 2/3 1/3 2/3 1/3 1/3 2/3 1/3 1/3 0 1/3 360

0 0 1/3 1/3 2/3 2/3 1/3 2/3 1/3 2/3 2/3 1/3 2/3 1/3 1/3 720

0 0 1/3 1/3 2/3 2/3 2/3 2/3 0 2/3 2/3 1/3 2/3 1/3 1/3 360

0 0 1/3 2/3 2/3 2/3 1/3 1/3 1/3 2/3 0 1/3 0 1/3 2/3 360

0 0 1/3 2/3 2/3 2/3 2/3 1/3 1/3 2/3 1/3 1/3 1/3 1/3 2/3 180

0 0 2/3 2/3 2/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 2/3 2/3 2/3 60

0 1/3 1/3 1/3 1/3 1/3 1/3 1/3 2/3 2/3 2/3 1/3 2/3 2/3 2/3 360

0 1/3 1/3 1/3 1/3 1/3 1/3 2/3 2/3 2/3 1/3 2/3 2/3 2/3 2/3 720

0 1/3 1/3 1/3 1/3 1/3 2/3 2/3 2/3 1/3 2/3 2/3 2/3 2/3 2/3 360

0 1/3 1/3 1/3 2/3 1/3 1/3 2/3 1/3 2/3 0 2/3 1/3 2/3 1/3 720

0 1/3 1/3 1/3 2/3 1/3 2/3 2/3 1/3 0 1/3 2/3 2/3 1/3 1/3 360

0 1/3 1/3 1/3 2/3 1/3 2/3 2/3 1/3 2/3 2/3 1/3 2/3 1/3 1/3 360

Table 4 The 88 {...}-valued representatives (vd. repr’tives) (χ1,2, . . . , χ5,6) for the 28895
elements of Ex(TCF6) (see Section 7). Columns (1)-(15) list the coordinates χ1,2, . . . , χ5,6.
The last column gives the orbit length under permutations.
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Facets of TCF6

Generator 1

Positivity
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7657 15
Triangle inequality
-1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 3521 60

Generator 2

Tetrahedron inequality
-1 -1 1 0 0 -1 1 0 0 1 0 0 0 0 0 1 1554 60
Pentagonal inequality
-1 -1 1 1 0 -1 1 1 0 1 1 0 -1 0 0 2 1043 60

Generator 3

Pyramid inequality
-1 -1 -1 1 0 -1 -1 1 0 -1 1 0 1 0 0 1 110 30
2-weighted pentagonal inequality
-2 -2 2 2 0 -1 1 1 0 1 1 0 -1 0 0 3 135 180
2-weighted pyramid inequality
-1 -1 -1 2 0 -1 -1 2 0 -1 2 0 2 0 0 3 102 30
“new inequalities” from here on
-2 -2 2 2 2 -1 1 1 1 1 1 1 -1 -1 -1 4 129 60
-1 -1 -1 1 2 -1 -1 1 2 -1 1 2 1 2 -2 4 129 30

Generator 4

-1 -1 -1 1 1 -1 -1 1 1 -1 1 1 1 1 -1 2 554 15

Generator 5

-2 -2 -2 2 2 -1 -1 1 1 -1 1 1 1 1 -1 3 20 60
-1 -1 -1 -1 2 -1 -1 -1 2 -1 -1 2 -1 2 2 3 20 6
-4 -2 2 2 2 -2 2 2 2 1 1 1 -1 -1 -1 5 61 60
-2 -2 -2 2 4 -1 -1 1 2 -1 1 2 1 2 -2 5 53 120

Generator 6

-1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 1 15 6
-3 -3 3 3 3 -1 1 1 1 1 1 1 -1 -1 -1 6 15 60
-1 -1 -1 -1 3 -1 -1 -1 3 -1 -1 3 -1 3 3 6 15 6

Generator 7: Clique-Web-Generator;
all following inequalities are not hypermetric

-1 -1 -1 1 1 -1 -1 1 1 0 0 1 1 0 -1 2 95 180
-1 -1 0 0 1 0 -1 0 1 0 -1 1 -1 1 1 2 95 72
-1 -1 -1 1 1 -1 -1 1 1 0 0 1 1 1 0 3 15 360
-1 -1 -1 1 1 -1 0 0 1 0 1 0 1 1 0 3 15 360
-1 -1 -1 1 1 -1 0 0 1 0 1 1 1 1 -1 3 15 720
-1 -1 0 0 1 -1 1 1 1 1 1 1 -1 -1 0 3 15 360
-1 -1 0 0 1 0 -1 0 1 0 1 1 1 1 -1 3 15 360
-1 -1 0 1 1 -1 1 0 1 1 1 1 0 -1 -1 3 15 360

Generator 8: Clique-Web-Generator

-2 -2 -2 1 2 -1 -1 1 1 -1 1 1 1 1 0 3 18 120
-2 -2 -1 2 2 -1 -1 1 1 -1 1 1 0 1 -1 3 18 360
-1 -1 -1 -1 2 -1 -1 -1 2 -1 -1 2 0 1 2 3 18 120
-3 -2 -1 2 2 -1 -2 2 2 0 1 1 1 1 -1 4 83 180
-2 -2 -2 1 3 -1 -1 1 2 -1 1 2 1 2 -2 4 86 120
-3 -2 1 2 2 -2 2 1 2 1 1 1 0 -1 -1 5 15 360
-3 -2 1 2 2 -2 2 2 2 1 1 1 -1 -1 -1 5 15 360
-3 -2 1 2 2 -1 2 2 2 0 1 1 -1 -1 -1 5 15 360
-2 -2 -2 2 3 -1 -1 1 2 -1 1 2 1 2 -1 5 15 120
-2 -2 -1 2 3 -1 -1 1 2 -1 1 2 0 2 -1 5 15 360
-2 -2 -1 2 3 -1 -1 1 2 -1 1 2 1 2 -2 5 15 360
-2 -2 -1 2 3 -1 -1 1 2 0 1 1 1 2 -2 5 15 720
-2 -2 1 2 3 -1 1 1 2 1 1 2 -1 -2 -2 5 15 360

Generator 9: Clique-Web-Generator

-2 -2 -2 -2 3 -1 -1 -1 2 -1 -1 2 -1 2 2 3 15 30
-3 -3 -3 3 5 -1 -1 1 2 -1 1 2 1 2 -2 6 15 120
-2 -2 -2 -2 5 -1 -1 -1 3 -1 -1 3 -1 3 3 6 15 30
-5 -5 3 3 3 -3 2 2 2 2 2 2 -1 -1 -1 7 73 60
-5 -3 3 3 5 -2 2 2 3 1 1 2 -1 -2 -2 8 15 360
-3 -3 -3 5 5 -1 -1 2 2 -1 2 2 2 2 -3 8 15 60
-3 -2 -2 2 5 -2 -2 2 5 -1 1 3 1 3 -3 8 15 180

Generator 10: Parachute-Generator

-1 -1 0 0 1 0 -1 0 1 1 -1 0 1 1 -1 2 93 360
-1 -1 0 0 1 -1 0 1 0 1 0 1 1 -1 1 3 15 720
-1 -1 0 0 1 -1 0 1 1 1 1 0 -1 1 0 3 15 720
-1 -1 0 0 1 0 -1 0 1 1 -1 1 1 0 1 3 15 720
-1 -1 0 0 1 0 -1 1 0 1 -1 1 1 0 1 3 15 720
-1 -1 0 0 1 0 -1 1 1 1 0 1 1 0 -1 3 15 720

Generator 11: Grishukhin-Generator

-1 -1 -1 0 1 -1 -1 0 1 -1 1 0 1 0 1 2 19 90
-1 -1 -1 0 1 -1 -1 0 1 0 -1 1 1 0 1 2 19 360
-2 -2 -1 1 2 -1 0 1 1 0 1 1 -1 1 0 3 87 360
-2 -2 1 2 2 -1 0 1 1 0 1 1 -1 -1 -1 3 88 180
-2 -2 -1 2 2 -1 0 1 1 0 1 1 1 1 -1 4 15 180
-2 -2 1 1 2 -1 0 1 1 0 1 1 1 -1 0 4 15 360
-2 -2 1 1 2 -1 0 1 1 1 0 1 1 -1 0 4 15 720
-2 -2 1 2 2 -1 0 1 1 1 1 1 -1 0 -1 4 15 720
-2 -1 -1 2 2 -1 0 1 1 1 0 0 1 1 -1 4 15 360
-2 -1 -1 2 2 -1 0 1 1 1 0 1 1 0 -1 4 15 720
-2 -1 1 1 1 -1 2 2 2 0 0 1 -1 -1 -1 4 15 360
-2 -1 1 2 2 0 1 1 1 -1 0 1 -1 0 -1 4 15 720
-2 0 1 1 1 1 2 2 2 -1 -1 0 -1 -1 -1 4 15 360
-1 -1 -1 0 2 -1 -1 0 2 -1 1 2 1 2 -1 4 15 180
-1 -1 -1 0 2 -1 -1 0 2 0 -1 2 1 1 1 4 15 360
-1 -1 -1 0 2 -1 0 1 2 0 1 2 -1 1 -1 4 15 360

Table 5 The 67 representatives for the 18720 facets of TCF6 as computed from the 11
generators of the facets of CUT�

7 and the 28895 vertices of TCF6 (see Section 7 and Tables 6
and 4). When we use the format

∑
1≤i<j≤6 cijxij ≤ c0 for the facet inducing inequalities of

TCF6, columns (1)-(16) list the coefficients c1,2, c1,3, . . . , c5,6 followed by the constant c0,
column (17) is the total number of vertices from TCF6 solving it as an equation and finally,
column (18) is the orbit length under permutations. By “new inequalities” we mean that
the following inequalities cannot be obtained as liftings from TCF5 (see Section 6.1).
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Generators for the cut polytope CUT�
7

Name in Deza and Laurent (1997) Coefficients c1,2, . . . , c6,7

1. Q7(1, 1,−1, 0, 0, 0, 0) 1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2. Q7(1, 1, 1,−1,−1, 0, 0) 1 1 -1 -1 0 0 1 -1 -1 0 0 -1 -1 0 0 1 0 0 0 0 0
3. Q7(2, 1, 1,−1,−1,−1, 0) 2 2 -2 -2 -2 0 1 -1 -1 -1 0 -1 -1 -1 0 1 1 0 1 0 0
4. Q7(1, 1, 1,−1,−1,−1,−1) 1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 1 1
5. Q7(2, 2, 1,−1,−1,−1,−1) 4 2 -2 -2 -2 -2 2 -2 -2 -2 -2 -1 -1 -1 -1 1 1 1 1 1 1
6. Q7(3, 1, 1,−1,−1,−1,−1) 3 3 -3 -3 -3 -3 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1

7. CW1
7(1, 1, 1, 1, 1,−1,−1) 0 1 1 0 -1 -1 0 1 1 -1 -1 0 1 -1 -1 0 -1 -1 -1 -1 1

8. CW1
7(2, 2, 1, 1,−1,−1,−1) 3 2 1 -2 -2 -2 1 2 -2 -2 -2 0 -1 -1 -1 -1 -1 -1 1 1 1

9. CW1
7(3, 2, 2,−1,−1,−1,−1) 5 5 -3 -3 -3 -3 3 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1

10. Par7 -1 -1 0 -1 -1 0 1 0 1 0 -1 1 0 0 -1 -1 -1 -1 1 0 1

11. Gr7 1 1 1 -2 -1 0 1 1 -2 0 -1 1 -2 -1 0 -2 0 -1 1 1 -1

Table 6 The 11 homogeneous generators for the 116 764 facets of CUT�
7 under all switch-

ings and permutations as in Deza and Laurent (1997) p. 504 and their 21 coefficients
c1,2, . . . , c6,7 of

∑
1≤i<j≤7 cijxij ≤ 0. Generators 1-6 are hypermetric “in the cut sense”,

i.e., the given b-vectors determine the cij via cij = bi · bj . Generators 7-9 are called clique-
web inequalities (the vectors have a different meaning here). Generator 10 is a parachute
inequality and generator 11 a Grishukhin inequality.

Hypermetric facets of TCF6 and their corresponding b-vector

Generator 1 b = (1, 1, 0, 0, 0, 0) lifting of positivity inequality v0
b = (1, 1,−1, 0, 0, 0) lifting of triangle inequality v1

Generator 2 b = (1, 1, 1,−1, 0, 0) lifting of tetrahedron inequality
b = (1, 1, 1,−1,−1, 0) lifting of pentagonal inequality v1

Generator 3 b = (1, 1, 1, 1,−1, 0) lifting of pyramid inequality
b = (2, 1, 1,−1,−1, 0) lifting of 2-weighted pentagonal inequality
b = (1, 1, 1, 1,−2, 0) lifting of 2-weighted pyramid inequality
b = (2, 1, 1,−1,−1,−1) v1
b = (1, 1, 1, 1,−1,−2) v1

Generator 4 b = (1, 1, 1, 1,−1,−1)

Generator 5 b = (2, 1, 1, 1,−1,−1)
b = (1, 1, 1, 1, 1,−2)
b = (2, 2, 1,−1,−1,−1)
b = (2, 1, 1, 1,−1,−2)

Generator 6 b = (1, 1, 1, 1, 1,−1)
b = (3, 1, 1,−1,−1,−1)
b = (1, 1, 1, 1, 1,−3)

Table 7 The 17 representatives for the 858 hypermetric facets of TCF6 and their corre-
sponding b-vectors (see Section 5). The list is in the same order as in Table 5. The last column
indicates whether the respective facet contains one of the exposed vertices v0 = (0, 0, . . . , 0)
or v1 = (1, 1, . . . , 1).
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