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Abstract

Let X be a max-stable random vector with positive continuous density. It is
proved that the conditional independence of any collection of disjoint subvectors of X
given the remaining components implies their joint independence. We conclude that
a broad class of tractable max-stable models cannot exhibit an interesting Markov
structure.
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1 Introduction

As pointed out by Dawid (1979) independence and conditional independence are key con-
cepts in the theory of probability and statistical inference. A collection of (not necessarily
real-valued) random variables Y1, . . . , Yk on some probability space (Ω,A,P) are called
conditionally independent given the random variable Z (on the same probability space)
if

P(Y1 ∈ A1, . . . , Yk ∈ Ak | Z) =
k∏
i=1

P(Yi ∈ Ai | Z) P-a.s.,

for any measurable sets A1, . . . , Ak from the respective state spaces. The conditioning is
meant with respect to the σ-algebra generated by Z. A particularly important example
for the conditional independence to be an omnipresent attribute are the Gaussian Markov
random fields that have evolved as a useful tool in spatial statistics (Lauritzen 1996, Rue
& Held 2005). Here, the zeroes of the precision matrix (the inverse of the covariance
matrix) of a Gaussian random vector represent precisely the conditional independence of
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the respective components conditioned on the remaing components of the random vector.
Hence, sparse precision matrices are desirable for statistical inference.

In the analysis of the extreme values of a distribution (rather than fluctuations around
mean values) max-stable models have been frequently considered. We refer to Blanchet &
Davison (2011), Buishand et al. (2008), Engelke et al. (2014), Naveau et al. (2009) for some
spatial applications among many others. Their popularity originates from the fact that
max-stable distributions arise precisely as possible limits of location-scale normalizations
of i.i.d. random elements. A random vector X is called max-stable if it satisfies the distri-
butional equality anX + bn

D
= max(X(1), . . . , X(n)) for independent copies X(1), . . . , X(n)

of X for some appropriate normalizing sequences an > 0 and bn ∈ R, where all operations
are meant componentwise. If the components Xi of X are standard Fréchet distributed,
i.e. P(Xi ≤ x) = exp(−1/x) for x ∈ (0,∞), we have an = n and bn = 0 and the random
vector X will be called simple max-stable.

Let I be a non-empty finite set. It is well-known (cf. e.g. Resnick (2008)) that the
distribution functions G of simple max-stable random vectors X = (Xi)i∈I are in a one-
to-one correspondence with Radon measures H on some reference sphere S+ = {ω ∈
[0,∞)I : ‖ω‖ = 1} that satisfy the moment conditions

∫
ωiH(dω) = 1, i ∈ I. The

correspondence between G and H is given by the relation

G(x) = P(Xi ≤ xi, i ∈ I) = exp

(
−
∫
S+

max
i∈I

ωi
xi

H(dω)

)
, x ∈ (0,∞)I .

Here, ‖·‖ can be any norm on RI and H is often called angular or spectral measure.
In general, neither does independence imply conditional independence nor does condi-

tional independence imply independence of the subvectors of a random vector. Consider
the following two simple examples which illustrate this fact in the case of Gaussian ran-
dom vectors (Example 1) and max-stable random vectors (Example 2). For notational
convenience, we write X ⊥⊥ Y if X and Y are independent and X ⊥⊥ Y | Z if X and Y
are conditionally independent given Z and likewise use the instructive notation ⊥⊥ki=1 Xi

and ⊥⊥ki=1 Xi | Z if more than two random elements are involved.

Example 1. Let X1, X2, X3 be three independent standard normal random variables
and, moreover, X4 = X1 + X2 and X5 = X1 + X2 + X3. Then all subvectors of (Xi)

5
i=1

are Gaussian and

X1 ⊥⊥ X2, but not X1 ⊥⊥ X2 | X5, (1)

whereas X1 ⊥⊥ X5 | X4, but not X1 ⊥⊥ X5. (2)

Example 2. Let X1, X2, X3 be three independent standard Fréchet random variables
and, moreover, X4 = max(X1, X2) and X5 = max(X1, X2, X3). Then all subvectors of
(Xi)i=1,...,5 are max-stable and both relations (1) and (2) hold true also in this setting.

However, if the distribution of a max-stable random vector has a positive continuous
density, then conditional independence of any two subvectors conditioned on the remain-
ing components implies already their independence. To be precise, when we say that a
random vector has a positive continuous density, we mean that the joint distribution of its
components has a positive continuous density. The following theorem is the main result
of the present article. If X = (Xi)i∈I is a random vector, we write XA for the subvector
(Xi)i∈A if A ⊂ I. The same convention applies to non-random vectors x = (xi)i∈I .
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Theorem 1. Let X = (Xi)i∈I be a simple max-stable random vector with positive con-
tinuous density. Then, for any disjoint non-empty subsets A and B of I, the conditional
independence XA ⊥⊥ XB | XI\(A∪B) implies the independence XA ⊥⊥ XB.

A proof of this theorem is given in Section 3. Beforehand, some comments are in
order.

(a) First, the requirement of a positive continuous density for X is much less restrictive
than requiring the spectral measure H of X to admit such a density, cf. Beirlant et al.
(2004) pp. 262-264 and references therein. For instance, fully independent variables X =
(Xi)i∈I have a discrete spectral measure, while their density exists and is positive and
continuous. A more subtle example is, for instance, the asymmetric logistic model (Tawn
1990), which admits a continuous positive density and whose spectral measure carries
mass on all faces of S+, cf. also Example 3.

(b) Secondly, both random vectors (Xi)i=1,2,5 and (Xi)i=1,4,5 that were considered in
the Gaussian case in Example 1 have a positive continuous density on Rd. Hence, there
exists no version for Theorem 1 for the Gaussian case.

(c) Note that the implication of Theorem 1 is the independence of XA and XB, not
the independence of all three subvectors XA, XB, XI\(A∪B).

(d) By means of the same argument that shows that pairwise independence of the
components of a max-stable random vector implies already their joint independence, we
may deduce a version of Theorem 1, in which more than two subvectors are considered.

Corollary 2. Let X = (Xi)i∈I be a simple max-stable random vector with positive contin-
uous density. Then, for any disjoint non-empty subsets A1, . . . , Ak of I, the conditional
independence ⊥⊥ki=1 XAi | XI\

⋃k
i=1 Ai

implies the independence ⊥⊥ki=1 XAi.

(e) The non-degenerate univariate max-stable laws are classified up to location and
scale by the one parameter family of extreme value distributions indexed by γ ∈ R

Fγ(x) = exp(−(1 + γx)−1/γ), x ∈


(−1/γ,∞) γ > 0,
R γ = 0,
(−∞,−1/γ) γ < 0.

Any other (not necessarily simple) max-stable random vector is obtained through a trans-
formation of the marginals that is differentiable and strictly monotone on the respective
sub-domain on Rd (cf. e.g. Resnick (2008) Prop. 5.10). Hence, the above results remain
valid for the general class of max-stable random vectors.

(f) Dombry & Eyi-Minko (2014) show that, up to time reversal, only max-auto-
regressive processes of order one can appear as discrete time stationary max-stable pro-
cesses that satisfy the first order Markov property. This result indicates already that
the conditional independence assumption is to some extent unnatural in presence of the
max-stability property.

Example 3. Various classes of tractable max-stable distributions admit a positive con-
tinuous density, such that Theorem 1 and Corollary 2 apply. Popular models that are
commonly used for statistical inference include the asymmetric logistic model (Tawn
1990), the asymmetric Dirichlet model (Coles & Tawn 1991), the pairwise beta model
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(Cooley et al. 2010) and its generalizations involving continuous spectral densities (Bal-
lani & Schlather 2011) in the multivariate case. Moreover, most marginal distributions of
spatial models such as the Gaussian max-stable model (Genton et al. 2011, Smith 1990) or
the Brown-Resnick model (Hüsler & Reiss 1989, Kabluchko et al. 2009) possess a positive
continuous density if the parameters are non-degenerate. Hence, if any of the components
of the previously mentioned extreme value models exhibit conditional independence given
any of the remaining components, they must be independent.

In the remaining article we subsume auxiliary arguments in Section 2 and give all
proofs in Section 3.

2 Preparatory results on max-stable random vectors

Throughout this section let G be the distribution function of a simple max-stable random
vector X = (Xi)i∈I that has a positive continuous density. We denote its exponent
function by

V (x) := − logG(x) =

∫
S+

max
i∈I

(
ωi
xi

)
H(dω), x ∈ (0,∞)I .

Lower order marginals GA that refer to a subset A of I are obtained as mini∈Ac(xi)→∞,
where Ac = I \A. We write xAc →∞ for mini∈Ac(xi)→∞, and with this notation

GA(xA) := lim
xAc→∞

G(x) and V A(xA) := − logGA(xA).

Since G is absolutely continuous, the partial derivatives

GAB(xA) :=
∂|B|

∂xB
GA(xA) and V A

B (xA) :=
∂|B|

∂xB
V A(xA)

exist and are continuous for B ⊂ A, and the latter V A
B are homogeneous of order −(|B|+1)

(Coles & Tawn 1991). An elementary computation shows that

GAB(xA) = WA
B (xA) exp

(
−V A(xA)

)
,

where

WN
M (xM ) =

∑
π∈Π(M)

(−1)|π|
∏
J∈π

V N
J (xN ),

and Π(M) stands for the set of partitions of M for M ⊂ N ⊂ I.
Let us further denote the set of non-empty subsets of I by C(I). The collection of

exponent functions (V A)A∈C(I) is in a one-to-one correspondence with its Möbius inversion
(dA)A∈C(I), i.e., if we set

dA(x) :=
∑

B∈C(I):Ac⊂B

(−1)|B∩A|+1V B(xB),
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it follows that V A can be recovered via

V A(xA) =
∑

B∈C(I):B∩A 6=∅

dB(x) (3)

(cf. Papastathopoulos & Tawn (2014), Theorem 2 and Schlather & Tawn (2002), Theo-
rem 4 or, more generally, Berge (1971) Chapter 3, Section 2 for the Möbius inversion).
Finally, we define

χA(xA) := lim
xAc→∞

dA(x) =
∑

B∈C(I):B⊂A

(−1)|B|+1V B(xB) =
∑

B∈C(I):A⊂B

dB(x).

Then the collection of functions (χA)A∈C(I) is also in a one-to-one correspondence with

(V A)A∈C(I) as well as (dA)A∈C(I) and the inversions are given by

dA(x) =
∑

B∈C(I):A⊂B

(−1)|B\A|χB(xB),

V A(xA) =
∑

B∈C(I):B⊂A

(−1)|B|+1χB(xB).

Further expressions for V A, dA and χA are collected in Lemma 3. Note that χA(xA) ≥
dA(x) and thus,

dA = 0 ⇔ χA = 0. (4)

Lemma 3. The functions V A and dA and χA (with A ∈ C(I)) can be expressed in terms
of the spectral measure H as follows:

V A(xA) =

∫
S+

max
i∈A

(
ωi
xi

)
H(dω),

dA(x) =

∫
S+

[
min
i∈A

(
ωi
xi

)
−max

j∈Ac

(
ωj
xj

)]
+

H(dω),

χA(xA) =

∫
S+

min
i∈A

(
ωi
xi

)
H(dω).

Here z+ = max(0, z) and max(∅) = 0.

It turns out that the following two quantities are closely linked to conditional indepen-
dence and independence of subvectors of X, respectively. For non-empty disjoint subsets
A,B of I and C = I \ (A ∪B), we set for x ∈ (0,∞)I

dA,B(x) := V A∪C(xA∪C) + V B∪C(xB∪C)− V (x)− V C(xC)

=
∑

L∈C(I):L∩A 6=∅,L∩B 6=∅,L∩C=∅

dL(x),

χA,B(xA∪B) := lim
xC→∞

dA,B(x) = V A(xA) + V B(xB)− V A∪B(xA∪B)

=
∑

L∈C(I):L∩A 6=∅,L∩B 6=∅

dL(x),

where the last equalities follow from (3). The following lemma is an analogue of Lemma 3.
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Lemma 4. The functions dA,B and χA,B can be expressed in terms of the spectral measure
H as follows

dA,B(x) =

∫
S+

[
min

(
max
i∈A

(
ωi
xi

)
,max
i∈B

(
ωi
xi

))
−max

j∈C

(
ωj
xj

)]
+

H(dω),

χA,B(xA∪B) =

∫
S+

min

(
max
i∈A

(
ωi
xi

)
,max
i∈B

(
ωi
xi

))
H(dω).

Note that χA,B(xA∪B) ≥ dA,B(x) implies similarly to (4) that

dA,B = 0 ⇔ χA,B = 0. (5)

General expressions for the regular conditional distributions for the distribution of
a max-stable process conditioned on a finite number of sites that are based on hitting
scenarios of Poisson point process representations have been computed in Dombry &
Eyi-Minko (2013), Oesting (2015), Oesting & Schlather (2014) under mild regularity
assumptions or in Wang & Stoev (2011) for spectrally discrete max-stable random vectors.

Let again A and B be non-empty disjoint subsets of I. Since we assumed a pos-
itive continuous density for G (and hence also for its marginals), the numerators and
denominators in

G(xA|xB) :=
GA∪BB (xA∪B)

GBB(xB)
= exp

(
−
[
V A∪B(xA∪B)− V B(xB)

])WA∪B
B (xA∪B)

WB
B (xB)

are non-zero and continuous for x ∈ (0,∞)I and the expression G(xA|xB) constitutes a
regular version of the conditional probability P(XA ≤ xA|XB = xB).

Proposition 5. The functions χA,B and dA,B are connected with the independence and
conditional independence of the respective subvectors of X as follows.

a) XA ⊥⊥ XB | XI\(A∪B) ⇒ dA,B = 0.

b) XA ⊥⊥ XB ⇔ χA,B = 0.

Remark. The assumption that G admits a positive continuous density on (0,∞)I is crucial
for part a) to hold true. It fails in Example 2.

Moreover, it is a simple consequence of Berman (1961/1962) and de Haan (1978) that
the pairwise independence of any disjoint subvectors of the simple max-stable random
vector X implies already their joint independence.

Lemma 6. If XA1 , . . . , XAk
are pairwise independent subvectors of a simple max-stable

random vector X (for necessarily disjoint Ai ⊂ I), then they are jointly independent.
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3 Proofs

Proof of Lemma 3. The first equation is clear from the definition of V A. The relation for
dA can be obtained as follows.

dA(x) =
∑

B∈C(I):Ac⊂B

(−1)|B∩A|+1V B(xB)

=

∫
S+

∑
B∈C(I):Ac⊂B

(−1)|B∩A|+1 max
i∈B

(
ωi
xi

)
H(dω)

=

∫
S+

[
min
i∈A

(
ωi
xi

)
−max

j∈Ac

(
ωj
xj

)]
+

H(dω).

In order to obtain the last equality, we denote ai = ωi/xi and distinguish two cases:
1st case: A = I. Then∑

B∈C(I):Ac⊂B

(−1)|B∩A|+1 max
i∈B

(ai) =
∑

B∈C(I)

(−1)|B|+1 max
i∈B

(ai) = min
i∈I

(ai) .

2nd case: A 6= I. Then set b := maxi∈Ac ai and ci := max(ai, b), such that∑
B∈C(I):Ac⊂B

(−1)|B∩A|+1 max
i∈B

(ai) =
∑

B∈C(I):Ac⊂B,B 6=Ac

(−1)|B∩A|+1 max
i∈B∩A

(ci)− b

=
∑

U⊂A:U 6=∅

(−1)|U |+1 max
i∈U

(ci)− b = min
i∈A

(ci)− b

= min
i∈A

(max(ai, b))− b = max

(
min
i∈A

(ai), b

)
− b =

(
min
i∈A

(ai)− b
)

+

.

The expression for χA follows immediately.

Proof of Lemma 4. Similar to the proof of Lemma 3, the relation for dA,B follows from

dA,B(x) = V A∪C(xA∪C) + V B∪C(xB∪C)− V (x)− V C(xC)

=

∫
S+

max
i∈A∪C

(
ωi
xi

)
+ max
i∈B∪C

(
ωi
xi

)
−max

i∈I

(
ωi
xi

)
−max

i∈C

(
ωi
xi

)
H(dω)

=

∫
S+

[
min

(
max
i∈A

(
ωi
xi

)
,max
i∈B

(
ωi
xi

))
−max

j∈C

(
ωj
xj

)]
+

H(dω),

where the last equality is obtained from

max
i∈A∪C

(ai) + max
i∈B∪C

(ai)−max
i∈I

(ai)−max
i∈C

(ai)

= min

(
max
i∈A∪C

(ai) , max
i∈B∪C

(ai)

)
−max

i∈C
(ai)

= max

[
min

(
max
i∈A

(ai) ,max
i∈B

(ai)

)
,max
i∈C

(ai)

]
−max

i∈C
(ai)

=

[
min

(
max
i∈A

(ai) ,max
i∈B

(ai)

)
−max

i∈C
(ai)

]
+

if we denote ai = ωi/xi. The expression for χA,B follows immediately.
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Proof of Proposition 5. a) As before, let C = I\(A∪B). Since G(x) = exp(−V (x)) has a
positive continuous density, we have that the conditional independenceXA ⊥⊥ XB | XC

for C = I \ (A ∪B) implies that for all x ∈ (0,∞)I

G(xA|XC)G(xB|XC) = G(xA∪B|XC) P-a.s. .

Since XC has a positive continuous density with respect to the Lebesgue-measure on
(0,∞)C , it follows that

G(xA|xC)G(xB|xC) = G(xA∪B|xC) for all x ∈ Q,

where Q is a dense subset of (0,∞)I . By the continuity of these expressions in x ∈
(0,∞)I , the equality holds for all x ∈ (0,∞)I and is equivalent to

exp (dA,B(x)) =
WA∪C
C (xA∪C)WB∪C

C (xB∪C)

WA∪B∪C
C (xA∪B∪C)WC

C (xC)
, x ∈ (0,∞)I . (6)

Here, dA,B ≥ 0 and dA,B is homogeneous of order −1, while the components V N
J that

build the terms WN
M are homogeneous of order −(|J |+ 1). Now, replacing x by t−1x

for t > 0 in (6), we see that the left-hand side grows exponentially in the variable t
as t tends to ∞ if dA,B(x) > 0, while the right-hand side exhibits at most polynomial
growth. Therefore, dA,B(x) = 0 for x ∈ (0,∞)I .

b) Both sides are equivalent to GA(xA)GB(xB) = GA∪B(xA∪B) for all x ∈ (0,∞)I .

Proof of Theorem 1. The hypothesis follows from Proposition 5 and (5).

Proof of Lemma 6. It suffices to show that for xAi ∈ (0,∞)Ai , i = 1, . . . , k and r ∈ (0,∞)

P (XA1 ≤ xA1 , . . . , XAk
≤ xAk

) =
k∏
i=1

P (XAi ≤ xAi) .

Using the notation ri =
∑

ji∈Ai
x−1
ji

, uji = (rixji)
−1 for ji ∈ Ai and Yi = maxji∈Ai ujiXji ,

i = 1, . . . , k, we can rewrite this equality in the form

P
(
Y1 ≤ r−1

1 , . . . , Yk ≤ r−1
k

)
=

k∏
i=1

P
(
Yi ≤ r−1

i

)
,

where the random vector (Y1, . . . , Yk) is simple max-stable (de Haan 1978) and has pair-
wise independent components due to our assumptions. Hence, by Berman (1961/1962)
Theorem 2, the Yi are jointly independent, which entails the relation above.

Proof of Corollary 2. ⊥⊥ki=1 XAi | XI\
⋃k

i=1 Ai
implies XAi1

⊥⊥ XAi2
| XI\

⋃k
i=1 Ai

for i1 6= i2
and hence XAi1

⊥⊥ XAi2
by Theorem 1. The hypothesis follows if we apply Lemma 6 to

the XAi , i = 1, . . . , k.
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