
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/97284/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Peneau, Virginie, Armstrong, Robert, Shaw, Greg, Xu, Jun, Jenkins, Robert, Morgan, David John ,
Dimitratos, Nikolaos , Taylor, Stuart H. , Zanthoff, Horst, Pietz, Stefan, Stochniol, Guido, He, Qian , Kiely,
Christopher and Hutchings, Graham John 2017. The low temperature oxidation of propane using H2O2 and

Fe/ZSM-5 catalysts; insights into the active site and enhancement of catalytic turnover frequencies.
ChemCatChem 9 (4) , pp. 642-650. 10.1002/cctc.201601241 

Publishers page: http://dx.doi.org/10.1002/cctc.201601241 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



 1 

DOI: 10.1002/cctc.201601241 

Full Paper 

The Low-Temperature Oxidation of Propane by using H2O2 and Fe/ZSM-5 

Catalysts: Insights into the Active Site and Enhancement of Catalytic 

Turnover Frequencies 

Virginie Peneau,[a] Robert^^D. Armstrong,[a] Greg Shaw,[a] Jun Xu,[a] Robert^^L. Jenkins,[a] 

David^^J. Morgan,[a] Nikolaos Dimitratos,[a] Stuart^^H. Taylor,[a] Horst^^W. Zanthoff,[b] 

Stefan Peitz,[c] Guido Stochniol,[c] Qian He,[a] Christopher^^J. Kiely,[d] and Graham^^J. 

Hutchings*[a] 

[a] <orgDiv/>Cardiff Catalysis Institute 

<orgDiv/>School of Chemistry 

<orgName/>Cardiff University 

<street/>Park Place, <city/>Cardiff, <postCode/>CF10 1AQ (<country/>UK) 

E-mail: Hutch@Cardiff.ac.uk 

[b] <orgName/>Evonik Technology and Infrastructure GmbH 

<street/>Paul-Baumann Str. 1, <postCode/>45764 <city/>Marl (<country/>Germany) 

[c] <orgName/>Evonik Performance Materials GmbH 

<street/>Paul-Baumann Str. 1, <postCode/>45764 <city/>Marl (<country/>Germany) 

[d] <orgDiv/>Department of Materials Science and Engineering 

<orgName/>Lehigh University 

<street/>5 East Packer Avenue, <postCode/>18015-3195, <city/>Bethlehem, 

<countryPart/>Pennsylvania (<country/>USA) 

<spi> This manuscript is part of a Special Issue to celebrate the 50th annual meeting of the German 

Catalysis Society. A link to the Table of Contents will appear here once the Special Issue is 

assembled. 

<pict> Supporting information for this article can be found under: 

<+><url>http://dx.doi.org/10.1002/cctc.201601241</url>. 



 2 

A framework for change: Extra framework cationic Fe species in Fe/ZSM-5 zeolite catalysts 

are the active sites for the low-temperature partial oxidation of propane with H2O2. Activity is 

intrinsic and unique to this MFI-type zeolite framework, with unprecedented turnover 

frequencies (TOFs) of up to 1063 (h<M->1) observed. Surface oxide species are found to be 

effective spectators in the reaction. 

Extra framework species in #zeolite #catalysts are active sites for low-temp. partial propane 

oxidation with H2O2 @cardiffuni @Evonik @LehighU 

natural gas 

propane oxidation 

selective oxidation 

zeolite catalysts 

<?><?>Please add academic titles of authors, e.g. Prof./Dr.<?><?> 

Fe-containing ZSM-5 catalysts are reported to be efficient catalysts for the partial oxidation of 

propane to oxygenated products at reaction temperatures as low as 50^°C in an aqueous phase 

reaction when using the green oxidant H2O2. It was previously proposed that extra framework 

Fe species at the exchange sites of the zeolite are responsible for activation of both the alkane 

and hydrogen peroxide. Through a systematic study of the influence of framework topology 

and exchange properties, it is now shown that this high catalytic activity is specific to the 

MFI-type Brønsted acidic zeolite ZSM-5. Furthermore, through a simple aqueous acid 

washing treatment, leaching of approximately 77^% of iron present within a Fe/ZSM-5 

catalyst only caused the relative propane conversion to decrease by 17^%; implying that most 

of the initially loaded Fe does not actually contribute to the catalytic activity. This small 

change in conversion after ‘excess’ Fe removal, amounts to a three-fold increase in turnover 

frequency (TOF) (Fe) from 66^^h<M->1 to 232^^h<M->1 compared with the parent Fe/ZSM-5 

catalyst. By comparing these samples, it is shown by NH3 temperature-programmed 

desorption, 27Al magic angle spinning NMR spectroscopy, X-ray photoelectron spectroscopy 

and TEM analysis that surface iron oxide species are effectively spectators in the oxidation of 

propane with H2O2. This provides further insight as to the location and true nature of the 

catalytically active Fe species. 
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Introduction 

A key challenge within the field of catalysis is the selective partial oxidation of 

aliphatic hydrocarbons such as methane, ethane and propane. Valorisation of these highly 

abundant, inexpensive constituents of natural gas, is an important element in the global push 

to find alternative, non-crude oil dependent routes to bulk chemical synthesis. Whilst not the 

most abundant of these resources, the direct oxidation of propane is still of great interest, 

owing to it possessing both primary and secondary carbon atoms. Unfortunately, the 

realisation of propane as a feedstock for direct oxidation processes is stymied by relatively 

high C<C->H bond enthalpies of 422.2 and 409.2^^kJ^mol<M->1 at the primary and secondary 

positions, respectively.[1,^2] To overcome this kinetic inertness and low reactivity, current 

industrial practices are often energy intensive. Indeed, aside from its primary use as a 

combustible fuel, propane is currently a feedstock for the production of acrolein, acrylic acid, 

isopropanol and acetone; the first step in all these synthesis routes being steam cracking or 

dehydrogenation to propene followed by functionalisation to oxygenated products.[3--6] Such 

indirect processes have high energy/economic demands and there is considerable interest in 

developing direct routes to convert propane, which is available in large quantities, to value-

added oxygenated products. Unfortunately, direct routes to C3 oxygenated products suffer 

from competing, undesirable deep oxidation and scission pathways owing to the higher 

reactivity of the primary products relative to propane. Therefore, high conversion and reaction 

selectivity towards C3 oxygenated products must be realised if direct routes are to compete 

with current processes, which, although energy intensive, afford high C3 product yields. 

Direct catalytic routes for the synthesis of isopropanol, acrylic acid, acrolein and 

acetone have been reported,[5,^7--15] with gas-phase operation favoured owing to the physical 

properties of propane. The low-temperature oxidation of n-alkanes by using ZSM-5 catalysts 

and H2O2 has been studied previously,[16--22] with activation of the oxidant and alkane 

substrate being attributed to extra framework dimeric μ-oxo--hydroxo iron sites.[19,^20] These 

were shown to form upon high-temperature activation of ZSM-5, which promotes migration 

of residual iron, endemic in commercial zeolites, from tetrahedral framework sites to extra 

framework cation exchange sites (AlO4
<M->).[19] Furthermore, it has recently been reported 
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that the MFI zeolite H-ZSM-5 is also intrinsically active for the partial oxidation of propane 

when using the green oxidant H2O2 in the aqueous phase.[23] Commercial H-ZSM-5 showed 

rates of 2.7^^mol propane converted kgcat
<M->1^h<M->1. Concordant with previous studies into 

the oxidation of methane and ethane under equally mild reaction conditions,[16--20] this activity 

was ascribed to Fe residues (0.014^^wt^%). This afforded unprecedented catalytic turnover 

frequencies of 1064^^mol^molFe
<M->1^h<M->1 at 50^°C.[23] Additionally, through post synthesis 

deposition of iron (2.5^^wt^%) onto H-ZSM-5 by using a novel chemical vapour 

impregnation (CVI) technique, catalyst productivity was shown to be further enhanced to 

23.5^^mol propane converted kgcat
<M->1^h<M->1, which corresponded to a decrease in turnover 

frequency (TOF) to 66^^h<M->1. 

Herein, we report a systematic study of this catalyst system with the aim of 

determining the role that the zeolite framework topology and exchange properties play in 

catalyst performance. Through better understanding the active species, more active catalysts 

for the direct oxidation of propane may be designed. 

Results and Discussion 

To determine the contribution of physical/ chemical properties, (i.e., microporosity, 

Brønsted acidity and framework topology) towards the high intrinsic activity of H-ZSM-

5^(30) for propane oxidation, a systematic series of amorphous and crystalline 

alumina/silicate samples were prepared and assessed. Given that our previous studies of the 

same catalyst system showed the catalytic productivity of H-ZSM-5^(30) to increase by a 

factor of 10 following impregnation with 2.5^^wt^% Fe, solid catalysts were also modified by 

the CVI method such that the nominal deposited Fe content was 2.5^^wt^%.[23] The catalyst 

productivities for unmodified and Fe-impregnated silica/alumina catalysts are shown in 

Figure^^1<figr1>. 

Of the unmodified supports tested, H-ZSM-5 (SiO2/Al2O3=30) showed the highest 

intrinsic activity (2.7^^mol propane converted kgcat
<M->1^h<M->1). Zeolite-Y (SiO2/Al2O3=30), 

the second most active, showed relatively low activity (0.5^^mol propane converted kgcat
<M-

>1^h<M->1). Following impregnation with Fe (2.5^^wt^%), the ZSM-5^(30) supported catalyst 

showed a far higher activity level (23.5^^mol propane converted kgcat
<M->1^h<M->1), followed 
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by 2.5^^wt^% Fe/SiO2 (1.1^^mol propane converted kgcat
<M->1^h<M->1). It is clear from these 

data that the high catalytic activity shown by ZSM-5^(30) catalysts cannot be solely attributed 

to Brønsted acidic AlO4
<M-> exchange sites as zeolites Y (SiO2/Al2O3=30) and Beta 

(SiO2/Al2O3=25), possess comparable acid site densities, yet showed relatively low rates of 

propane conversion. Rather, the data in Figure^^1<xfigr1> suggests that catalytic activity 

might be derived from the MFI framework topology of ZSM-5 catalysts combined with the 

presence of additional Fe species. TS-1 and silicalite-1 are MFI zeolites that are isomorphous 

to ZSM-5 but lack cation exchange sites (AlO4
<M->). These variants showed relatively low 

rates of propane and H2O2 conversion when compared with ZSM-5^(30) (Figure^^2<figr2>), 

particularly following Fe impregnation, which had no discernible benefit upon the activity of 

the alumina-free zeolites. 

Owing to the fact that our previous studies into the low-temperature oxidation of 

short-chain alkanes over ZSM-5 catalysts attributed the intrinsic activity of unmodified ZSM-

5 to contaminant Fe species, the unmodified supports from Figures^^1<xfigr1> and 2<xfigr2> 

were analysed for Fe content. Rates of H2O2 and propane conversion (as a function of both Fe 

content and mass productivity) are shown in Table^^1<tabr1>. 

When the rates were normalised to Fe content, the highest propane turnover frequency 

was shown for H-ZSM-5^(30) (1064^^mol propane converted molFe
<M->1^h<M->1). This is 

compared with a rate of 7588^^mol H2O2 converted molFe
<M->1^h<M->1 over the same catalyst. 

The disparity between observed rates of propane and H2O2 conversion is an important 

consideration when comparing catalyst efficiency and the atom efficiency of the process. 

Appreciable rates of propane conversion were also noted for the SiO2 and SiO2/Al2O3 

materials (198 and 312^^mol propane converted molFe
<M->1^h<M->1, respectively); however, 

when normalised to mass, productivities were still low relative to H-ZSM-5^(30). A 

comparison of the H2O2 and propane conversion rates observed over aluminosilicate catalysts 

is given in Table^^1<xtabr1>. Stoichiometric H2O2 utilisation would afford a 

(TOF<in>H2O2</in>^molFe
<M->1^h<M->1)/(TOF<in>C3H8</in>^molFe

<M->1^h<M->1) ratio equal 

to 2. Of the aluminosilicates tested, H-ZSM-5^(30) shows the greatest atom efficiency, with a 

ratio of 7.1. 
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It is clear that the high productivity and TOFs shown by the ZSM-5 catalysts are due 

to a combination of (i)^^MFI framework topology, (ii)^^Fe content and (iii)^^the availability 

of AlO4
<M-> cation exchange sites. 

Extra framework dimeric μ-oxo--hydroxo iron sites, situated at the AlO4
<M-> exchange 

sites in ZSM-5 have been proposed as being catalytically active for methane and ethane 

oxidation reactions.[16,^24] Indeed, there is precedent within the literature for Fenton’s type 

decomposition of H2O2 to form hydroxyl radicals, which can propagate radical-based 

mechanisms through abstraction of R<C->CH2<C->H. Reactions using Fenton’s type 

reagents were therefore carried out, and the activities compared with those of our Fe 

supported catalysts in Table^^2<tabr2>. The homogeneous FeIII Fenton’s type reagent, 

Fe(NO3)3·9^H2O, showed comparable propane turnover rates to Fe/ZSM-5^(30) prepared by 

the CVI method (47.7 and 63.5^^mol propane converted molFe
<M->1^h<M->1, respectively). The 

homogeneous catalyst also afforded increased CO2 selectivity and a higher rate of H2O2 

decomposition, but no overall benefit to the rate of alkane oxidation. Remarkably, the 

Fenton’s system afforded high acetone selectivity (53^%) with higher overall selectivity 

towards C3 products (64.0^%) than the supported Fe/ZSM-5 catalyst (34.2^%). High primary 

product selectivity when utilising homogeneous FeIII/H2O2 is consistent with the partial ethane 

and methane oxidation systems reported by Shul Pin et^^al.[23,^25] Catalytic activity was 

attributed to generation of a ferryl (FeIV=O)2+ ion, with appreciable TOFs (2.33^^mol 

methane converted molFe
<M->1^h<M->1 and 22.67^^mol ethane converted molFe

<M->1^^h<M->1) in 

the absence of promoters.[25] As shown in Table^^2<xtabr2>, addition of a hydroxyl radical 

scavenger (NaSO3) to Fe/ZSM-5^(30) catalysed propane oxidation resulted in a 37^% 

decrease in conversion, which fell from 7.9^% to 5.0^%. This is consistent with the initial 

activation of propane proceeding at least in part through a free radical process. As such 

processes have been previously reported for homogeneous Fe systems,[25] the heterogeneity of 

the Fe/ZSM-5 catalyst system was assessed through hot filtration studies (Table^^3<tabr3>). 

In the absence of Fe/ZSM-5, no further propane conversion occurred. However, undesirable 

C<C->C scission reactions continue, with increased yields of acetic and formic acids, 

suggesting potential ˙OH radical driven side reactions (further details are shown in the 

Supporting Information, Table^^S1). Results therefore indicate that the supported Fe/ZSM-5 
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catalyst is behaving as a heterogeneous Fenton’s type catalyst for the propane oxidation 

reaction. This is in agreement with the data from Figures^^1<xfigr1> and 2<xfigr2>, which 

suggest a cationic Fe active site exists within the ZSM-5 catalysts. This is also consistent with 

our previous studies into ethane oxidation over the same catalyst system, in which it was 

observed that near-complete removal of surface iron oxides caused only a limited decrease in 

reaction rate and consequently led to significant increases in TOFs.[26] 

To further study the nature and location of the active site for propane oxidation, we 

adopted the following approach: a catalyst containing 2.5^^wt^% Fe (nominal)/ZSM-5^(30) 

(2.06^^wt^% determined by inductively coupled plasma (ICP)) was treated in HNO3(aq) 

(2.4^M) at 50^°C for varying time periods. The resulting catalysts were analysed for iron 

content, and their activity for propane oxidation was re-assessed. As shown in 

Table^^4<tabr4>, a 15^^min treatment at 50^°C removed approximately 73^% of the total Fe 

content with only a slight decrease in propane conversion being observed (down from 7.9^% 

to 6.8^%; Table^^4<xtabr4>, entry^^3). This equated to a 210.5^% increase in TOF, from 

63.5 to 204.6^^mol propane converted molFe
<M->1^h<M->1. It was also found that longer acid 

treatment times (Table^^4<xtabr4>, entries^^4 and 5) effected further Fe removal, leading to 

increased TOFs, with reaction selectivities comparable to the non-acid washed parent 2.06^% 

Fe/ZSM-5^(30) catalyst. Indeed, all Fe-modified ZSM-5 catalysts represented in 

Table^^4<xtabr4> showed approximately 34^% selectivity towards C3 reaction products. This 

is a key requirement for direct propane oxidation; however, we previously showed that 

primary products undergo cracking/further oxidation over the same catalysts to yield the C2 

and C1 products shown in Table^^4<xtabr4>.[23] Another key consideration in this system is 

the selectivity with which H2O2 is converted, as such synthetic oxidants incur a high cost 

relative to molecular oxygen. Acid treatment effected a decrease in the percentage of H2O2 

used in products, from 43^% for the parent Fe/ZSM-5 catalyst to 31^% following a 2^^h 

treatment at isoconversion of H2O2. Increases in either the temperature or concentration of the 

HNO3(aq) solution used, showed no further beneficial effect on the catalyst activity (see the 

Supporting Information, Table^^S2). To determine the effect of acid washing upon the zeolite 

support, the location/nature of removed Fe species and thereby hopefully elucidate details of 
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the catalytically active site in Fe/ZSM-5, this series of catalysts were characterised by using a 

range of techniques. 

The 2.5^% Fe/ZSM-5^(30) material prepared by the CVI method has been fully 

characterised previously.[16,^17] High-resolution (HR)-TEM showed that Fe is deposited as a 

patchy iron oxide film on the zeolite surface and also within its pores.[16,^17] In addition, 

UV/Vis spectroscopy indicated broad speciation of iron as isolated iron clusters, oligomeric 

iron species and cationic species at exchange sites within the zeolite pores.[16,^17] 

Our characterisation studies showed that the concentration of all these Fe species 

increased with Fe loading, suggesting that Fe deposition by CVI was relatively non-selective. 

Additionally, X-ray photoelectron spectroscopy (XPS) surface analysis showed the existence 

of Fe3+, which was due to the presence of Fe2O3 particles (Table^^5<tabr5>).[17] 

Diffuse reflectance (DR) UV/Vis spectra of the acid-washed series of 2.5^% Fe/ZSM-

5 catalysts are shown in Figure^^3<figr3>. Speciation of Fe in ZSM-5 catalysts is expected to 

give rise to four UV-active species: isolated Fe3+ in framework sites (200--250^^nm), isolated 

or oligomeric extra framework Fe species in zeolite channels (250--350^^nm), iron oxide 

clusters (350--450^^nm) and large surface oxide species (>450^^nm).[27,^28] 

The spectra in Figure^^3<xfigr3> show impregnation of ZSM-5 with Fe to be 

unselective, giving rise to broad absorbance across the whole bandwidth in 

Figure^^3^(a)<xfigr3>. Following acid treatment, a significant decrease in the absorbance 

feature at λ>350^^nm suggests removal of surface oxide species. The retention of low 

wavelength absorbance bands (200--350^^nm) implies that framework iron sites and those 

species sited within the zeolite channels are at least partially retained following acid 

treatment, independent of the treatment duration. 

Quantification of surface Fe from XPS spectra presented in Figure^^4<figr4> is in 

agreement with DR UV/Vis spectroscopic data. Following acid treatment, a significant 

decrease in Fe enrichment of the zeolite surface is observed, falling from 5.46 to 

0.33^^mol^% after 15^^min of acid treatment. ICP analysis of the same materials showed Fe 

contents of 2.06 and 0.55^^wt^% Fe, respectively. Based on the XPS and DR UV/Vis 

analysis, it can be concluded that CVI impregnation affords significant Fe speciation, with 
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surface enrichment exceeding the theoretical Fe loading. Meanwhile, the disparity between 

XPS and ICP measurements on the acid-treated catalysts implies that the acid treatment is 

selective, favouring leaching of surface iron oxides. 

Indeed, following acid treatment, the total Fe content exceeds the surface enrichment 

for all catalysts, suggesting that a greater proportion of Fe sites are located within the pores of 

the zeolite material. This supposition is also evident from electron microscopy studies. 

Representative TEM bright field (BF) images of 2.5^% Fe/ZSM-5^(30) catalysts prepared by 

CVI before and after a 2^^h acid treatment are shown in Figure^^5^(a) and (b)<figr5>, 

respectively. Particles around 2^^nm in size (highlighted by white arrows) were found on the 

ZSM-5 particles in the untreated catalyst. Those particles are also visible in the Z-contrast 

STEM high angle annular dark field (HAADF) images (in the Supporting Information, 

Figure^^S4), displaying a significantly higher contrast than the surrounding zeolite support, 

confirming that the particles contain iron. 

After the acid treatment, these iron-containing particles can no longer be found 

(Figure^^5^(b)<xfigr5>), confirming that they are being removed effectively by the acid wash 

treatment. 

The effect of acid treatment upon the physicochemical properties of the zeolite support 

was also studied through NH3 temperature-programmed desorption (TPD), N2 physisorption, 

27Al magic angle spinning (MAS) NMR, diffuse reflectance infrared Fourier transform 

spectroscopy (DRIFTS) and XRD studies. 

NH3-TPD plots for the iron-free ZSM-5 catalysts show two key desorption features 

occurring at 266^°C and 446^°C. The low-temperature desorption is assigned to NH3 

adsorbed at weak acid sites, either Lewis or Brønsted acidic in nature, whilst the higher 

temperature desorption is accepted to represent NH3 chemisorbed at strongly acidic Brønsted 

acid sites.[29--35] Following impregnation of Fe by CVI, a significant decrease in the high-

temperature desorption feature is observed (Figure^^6^d<figr6>), which is consistent with 

occupation or blocking of Brønsted acid sites by Fe cations and oxides, respectively. 

Following acid washing, the amount of NH3 desorbed at this high temperature is seen to 

(a) (b) 
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increase again. This suggests either (a)^^removal of exchanged Fe cations and/or (b)^^the 

removal of site-blocking Fe oxides. 

N2 adsorption studies show a decrease in surface area following Fe impregnation 

(from 413^^m2^g<M->1 to 363^^m2^g<M->1) and a corresponding decrease in Vmicropore, from 

0.147 to 0.123^^cm3^g<M->1 as shown in Table^^6<tabr6>. Both surface area and Vmicropore are 

shown to decrease, reaching 257^^m2^g<M->1and 0.086^^cm3^g<M->1, respectively, following a 

2^^h acid treatment, whilst no significant change in Vmesopore was observed following acid 

treatment. This suggests that the acid washing is also effecting a structural change within the 

zeolite pores, which is consistent with our previous studies.[26] 

In the 2^^h acid washed 2.5^% Fe/ZSM-5^(30)AT2.0 catalyst, some agglomerates of 

10--20^^nm nanocrystals can be occasionally found (Figure^^S5^(a) in the Supporting 

Information). These are much smaller than the typical parent ZSM-5 particles and X-ray 

energy dispersive spectroscopy (XEDS) analysis (Figure^^S5^(b) in the Supporting 

Information) suggests that they are deficient in Al compared with ZSM-5. It is likely that 

these are silicate materials, resulting from some minor ZSM-5 dealumination during the acid 

wash, which might be expected under the conditions used.[36,^37] Stabilisation of H2O2 in the 

presence of a Brønsted acid is well known. The decreased selectivity in H2O2 conversion 

observed in Table^^4<xtabr4> following acid treatment of Fe/ZSM-5 might therefore be 

attributed to the loss of Brønsted acidic aluminium sites. However, the majority of the zeolite 

structure remains intact as evident from XRD (Figure^^S3 and Table^^S3 in the Supporting 

Information). There is no apparent change in the zeolite unit cell following either 

impregnation with Fe or acid treatments, with dimensions remaining consistent with those of 

the parent H-ZSM-5. Therefore, to determine whether the observed changes in surface area 

and pore distribution were due to significant dealumination of the zeolite framework, the 

catalysts were further analysed by using 27Al MAS NMR and DRIFT spectroscopies. 

Integrated areas corresponding to 27Al resonances in the 27Al MAS NMR spectra of 

these catalysts are shown in Table^^S4 in the Supporting Information. Impregnation of ZSM-

5 with Fe (2.06^^wt^%) caused a decrease in the Td/Oh ratio, which is consistent with either 

(i)^^exchange of cationic Fe species at AlO4
<M-> sites or (ii)^^migration of Td Al to extra 
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framework Oh sites. Indeed, a decrease in the intensity of the Td 
27Al resonance at 55^^ppm is 

consistent with the presence of paramagnetic Fe species at ion exchange positions,[38--40] 

which is consistent with the proposed dimeric μ-oxo--hydroxo iron active site. An increase in 

the Td/Oh Al ratio following acid treatment (0.25--1^^h) is consistent with a portion of the 

removed Fe species having occupied cation exchange sites. This is in agreement with the 

decrease in catalyst productivity shown in Table^^4<xtabr4> following acid treatment. 

DRIFTS spectra (Figure^^S2 in the Supporting Information) show a clear decrease in the 

peak corresponding to O<C->H groups coordinated to tetrahedral framework Al3+ 

(3605^^cm<M->1) following Fe impregnation.[38] After acid treatment, however, no significant 

change is observed for the peaks corresponding to either O<C->H groups coordinated to 

tetrahedral framework Al3+ (3605^^cm<M->1)[41] or O<C->H coordinated to extra framework 

tetrahedrally co-ordinated Al atoms (3658^^cm<M->1).[42] However, a clear decrease in the 

intensity of the peak assigned to the terminal Si<C->O<C->H entity (3737^^cm<M->1) is 

observed following Fe impregnation. This is observed to increase in intensity following acid 

treatment, which suggests that supported iron oxides/clusters interact with terminal silanol 

groups on the zeolite surface. 

Conclusions 

ZSM-5 catalysts are active for the partial oxidation of propane under mild reaction 

conditions when using the environmentally benign oxidant H2O2. These catalysts have been 

shown to derive their intrinsic activity from a combination of synergistic physical properties 

unique to ZSM-5, specifically the MFI framework topology, Brønsted acidic AlO4
<M-> 

exchange sites and trace iron residues. The productivity afforded by H-ZSM-5 is significantly 

enhanced through deposition of Fe through CVI. Much of this added iron has been shown to 

be inactive for the catalytic reactions involved: H2O2 conversion and propane oxidation. 

Indeed, when 77^% of the supported Fe was leached by using an aqueous acidic solution, the 

relative conversion only decreased by 17^%, meaning that the TOF (Fe) increased by over 

200^%. This strongly indicates that it is exchanged cationic Fe sites within the zeolite pores 

that are active for the studied reaction. This was further supported through characterisation of 

the synthesised and acid-washed catalysts, which show near complete removal of surface 
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oxides following acid treatment. The continued observance of DR UV/Vis absorbance bands 

at approximately 200--350^^nm following acid treatment indicated that some iron oxide 

species are retained within the zeolite pores. Acid washing for extended periods of time 

(>0.5^^h) was found to be unnecessary; indeed, this is found to induce a structural change in 

the zeolite support through dealumination. The Fe/ZSM-5 catalysts were shown to be strictly 

heterogeneous and addition of a hydroxyl radical scavenger led to decreased propane 

conversion at isoconversion of H2O2. It is clear, therefore, that this propane oxidation process 

proceeds at least in part through a free radical mechanism. Interestingly, FeIII nitrate is found 

to be an efficient catalyst for propane oxidation with H2O2 at 50^°C, yielding acetone as a 

major reaction product. These studies suggest that Fe sites exchanged within ZSM-5 act as a 

heterogeneous Fenton’s type catalyst and it is clear that acid sites (Lewis and/or Brønsted) in 

the hydrophobic pores of ZSM-5 play a key role in the observed cracking of C3 products. 

Potential routes towards promoting the mass transport of primary products away from the 

catalytically active sites in the pores of ZSM-5 are currently under investigation, with an aim 

to increase C3 selectivities. 

Experimental Section 

Metal impregnation by using chemical vapour impregnation (CVI) 

NH4-ZSM-5 (SiO2/Al2O3 molar ratio=30) was obtained from Zeolyst and activated in flowing 

air prior to use (550^°C, 3^^h, 20^°C^min<M->1). Fe was deposited at the desired loading by the CVI 

technique with Fe(acac)3. This preparation technique has been described in detail previously, and was 

shown to afford strict control of actual metal loadings.[17] 

<+>The procedure for preparation of 2.5^% Fe/ZSM-5^(30) is as follows. H-ZSM-5^(30) 

(2.50^^g) was dried under vacuum (160^°C, 3^^h, 10<M->3^^mbar) prior to sieving (40^^mesh). Dried 

H-ZSM-5^(30) (1.95^^g) and Fe(acac)3 (0.316^^g, 0.895^^mmol) were then physically mixed and 

transferred to a Schlenk flask. The flask was then evacuated (10<M->3^^mbar) and heated under vacuum 

for 2^^h at 150^°C. The resulting solid was then calcined in static air (550^°C, 3^^h, ramp rate 

20^°C^min<M->1). 
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<+>Other supports used in this study include; Zeolite^^β (Zeolyst, SiO2/Al2O3=25), 

Zeolite^^Y (Zeolyst, SiO2/Al2O3=30), TS-1 (ACS Reagents, SiO2/ TiO2=30), SiO2 (silica nanopowder, 

Sigma--Aldrich), aluminium oxide (Puriss, 98^%, Sigma--Aldrich), amorphous silica--alumina 

(SiO2/Al2O3=10, for preparation procedure see Section^^1.1 in the Supporting Information) and 

silicalite-1 (for preparation procedure see Section^^1.2 in the Supporting Information). Where 

applicable, the zeolitic materials were activated in flowing air (3^^h, 550^°C, 20^°C^min<M->1) prior to 

testing or modification through metal impregnation. 

Acid treatment methodology 

The procedure for acid washing of a catalyst was as follows. The sample (typically 1^^g) was 

stirred in an aqueous solution of nitric acid (50^^mL, typically 10^^v/v^% HNO3, 2.4^M) for the 

desired time (typically 0.25^^h) at a temperature of 50^°C. The sample was then recovered by 

filtration and washed with deionised water until the washings reached pH^^7. The catalysts were then 

dried for 4^^h at 110^°C. Where applicable, the iron content of the catalysts was determined by ICP 

with HF digestion (Exeter Analytical Services). The standard nomenclature employed herein is 

2.5^^wt^% Fe/ZSM-5^(30)AT^n, where "AT'' denotes acid treatment and n=the duration of the acid 

treatment in hours. 

Catalyst assessment 

Catalyst testing for the oxidation of propane with added H2O2 was carried out in a 50^^mL 

stainless-steel Parr autoclave fitted with a Teflon liner and a total workable volume of 35^^mL. In a 

typical experiment, the vessel was charged with an aqueous solution of H2O2 (10^^mL, 0.5^M, 

5000^^μmol) and the desired amount of catalyst (typically 27^^mg). After purging with helium, the 

system was charged with propane (4^^bar, 4000^^μmol) and then the total pressure was increased to 

20^^bar with He as diluent. The autoclave was then heated to the desired reaction temperature 

(typically 50^°C) with vigorous stirring (1500^^rpm) and maintained at a constant temperature for the 

desired reaction time (typically 0.5^^h). After completion of the reaction, the vessel was cooled in ice 

to approximately 12^°C and the gas phase was vented into a gas sampling bag. Following this, the 

liquid phase was recovered and filtered prior to analysis. 
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<+>Liquid products were analysed by 1H^^NMR spectroscopy with a Bruker 500^^MHz 

Ultra-Shield NMR spectrometer and quantified against a 1^^vol^% TMS/CDCl3 internal standard 

calibrated against commercial standards. Gaseous phase products were analysed by using a Varian 

450-GC fitted with a CP-Sil 5CB capillary column (50^^m length, 0.33^^mm ID), a methaniser and 

both TCD and FID detectors. The H2O2 conversion was quantified by titration of aliquots of the final 

solution against Ce(SO4)2 by using Ferroin indicator. 

Catalyst characterisation 

Powder X-ray diffraction was performed by using a PANalytical X'PertPRO X-ray 

diffractometer, with a CuΚα radiation source (40^^kV and 40^^mA) and Ni attenuator. Diffraction 

patterns were recorded over a 2θ angular range of 5--75° employing a.0167° step size 

(time/step=150^^s). 

<+>NH3-TPD was carried out by using a CHEMBET TPR/TPD chemisorption analyser 

(Quantachrome Industries) fitted with a TCD. Samples were pre-treated for 1^^h at 130^°C 

(15^°C^min<M->1) in a flow of He (80^^mL^min<M->1). NH3 was adsorbed at room temperature, with 

physisorbed NH3 removed in a flow of He (80^^mL^min<M->1, 110^°C, 1^^h, 15^°C^min<M->1). 

Chemisorbed NH3 was then desorbed by heating to a Tmax of 900^°C (15^°C^min<M->1) in a flow of He 

(80^^mL^min<M->1) during which period desorbed NH3 was monitored by using a TCD (current 

180^^mV, attenuation 1). 

<+>27Al MAS NMR experiments were carried out with a 400^^MHz Varian CMX infinity 

spectrometer, equipped with 4.0^^mm probe with resonance frequencies of 400.1 and 100.4^^MHz for 

1H and 27Al, respectively. Single-pulse 27Al experiments were performed with a pulse length of 1^^μs 

and a pulse delay of 1^^s. The magic angle spinning rate was set to be 8^^kHz. 

<+>Brunauer--Emmett--Teller (BET) analysis was conducted with an Autosorb-1 

Quantachrome instruments system at 77^^K. A Monte Carlo based model was used in determining 

pore volumes. Points in the range of 0.06 to 0.35 were used for the BET multi-point surface area 

quantification. 
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<+>UV/Vis spectra were collected by using a Varian 4000 UV/Vis spectrophotometer. Scans 

were collected across the wavelength range 200--800^^nm, at a scan rate of 150^^nm^min<M->1, with a 

UV/Vis changeover wavelength of 260^^nm. 

<+>Transmission electron microscopy (TEM) analysis was performed by using a JEOL 2100 

microscope, operating at 200^^kV with a LaB6 electron source. The microscope was equipped with a 

Gatan 1000XP CCD camera for TEM work, JEOL dark field and bright field detectors for scanning 

transmission electron microscopy (STEM) work and an Oxford instruments X-MaxN 80^^mm2 Silicon 

Drift Detector (SDD) for X-ray analysis. Specimens were prepared by dispersing dry catalyst powders 

onto 400 mesh lacy carbon TEM Cu grids (TAAB). 

<+>IR spectra were collected with a Bruker Tensor 27 spectrometer fitted with a liquid 

nitrogen-cooled mercury cadmium telluride (MCT) detector. Samples were housed within a Praying 

Mantis high-temperature diffuse reflection environmental reaction chamber (HVC-DRP-4) fitted with 

zinc selenide windows. Samples were pre-treated prior to acquisition by heating the cell to 200^°C 

(10^°C^min<M->1) under continuous vacuum (10<M->3^^mbar) and maintained at this temperature for 

2^^h to ensure removal of residual water. Multiple scans (64) were collected across the 4000^^cm<M->1 

to 1500^^cm<M->1 wavenumber range, at 4^^cm<M->1 intervals. 

<+>X-ray photoelectron spectra (XPS) were collected by using a Kratos Axis Ultra DLD 

system with a monochromatic AlΚα X-ray source operating at 120^^W. Data was collected in the 

hybrid mode of operation, by using a combination of magnetic and electrostatic lenses, and at pass 

energies of 40 and 160^^eV for high-resolution and survey spectra, respectively. Magnetically 

confined charge compensation was used to minimize sample charging and the resulting spectra were 

calibrated to the Si^2p line at 103.2^^eV. 
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Figure^^1 Comparison of the total productivity of aluminosilicate catalysts for propane 

oxidation with H2O2. Reaction conditions: P(C3H8)=4^^bar (4000^^μmol), 

Ptotal(C3H8/He)=20^^bar, [H2O2]=0.5^M (5000^^μmol), 27^^mg catalyst, 50^°C, 0.5^^h, 

1500^^rpm. Catalysts calcined 3^^h at 550^°C (20^°C^min<M->1, static air). White: bare 

support (where applicable, zeolites in H-form); black: 2.5^^wt^% Fe impregnated by CVI. 

Figure^^2 Comparison of the total productivity of MFI framework zeolite catalysts for 

propane oxidation with H2O2. Reaction conditions: P(C3H8)=4^^bar (4000^^μmol), 

Ptotal(C3H8/He)=20^^bar, [H2O2]=0.5^M (5000^^μmol), 27^^mg catalyst, 50^°C, 0.5^^h, 

1500^^rpm. White: bare support (where applicable, zeolites in H-form); black: 2.5^^wt^% Fe 

impregnated by CVI. 

Figure^^3 Diffuse reflectance UV/Vis spectra of (a)^^untreated 2.5^^wt^% Fe/ZSM-

5^(30), (b)^^2.5^^wt^% Fe/ZSM-5^(30)AT0.25, (c)^^2.5^^wt^% Fe/ZSM-5^(30)AT1.0, 

(d)^^2.5^^wt^% Fe/ZSM-5^(30)AT2.0 and (e)^^H-ZSM-5^(30). 

Figure^^4 XPS spectra showing the Fe^2p3/2 binding energy region for (a)^^untreated 

2.5^^wt^% Fe/ZSM-5^(30), (b)^^2.5^^wt^% Fe/ZSM-5^(30)AT0.25, (c)^^2.5^^wt^% Fe/ZSM-

5^(30)AT1.0 and (d)^^2.5^^wt^% Fe/ZSM-5^(30)AT2.0. 
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Figure^^5 Representative TEM bright field (BF) images of the (a)^^the untreated catalyst 

2.5^^wt^% Fe/ZSM-5^(30) and (b)^^the catalyst after 2^^h of acid wash 2.5^^wt^% 

Fe/ZSM-5^(30)AT2.0. Iron species of about 2^^nm in size are clearly visible (e.g., highlighted 

by the white arrow) in the untreated catalyst. Those are no longer visible after acid treatment. 

The scale bars represent 20^^nm. 

Figure^^6 NH3-TPD analyses of (a)^^H-ZSM-5^(30), (b)^^untreated 2.5^^wt^% 

Fe/ZSM-5^(30), (c)^^2.5^^wt^% Fe/ZSM-5^(30)AT0.25, (d)^^2.5^^wt^% Fe/ZSM-5^(30)AT1.0 

and (e)^^2.5^^wt^% Fe/ZSM-5^(30)AT2.0. 

Table^^1 Physical properties and catalytic performance of unmodified solid 

catalysts.<W=3> 

Catalyst SiO2/Al2O3  Fe[a] BET surface Rate TOF Rate TOF TOF<in>H2O2</in>/ 

 [molar] [wt^%] area [m2^g<M->1][b] (H2O2)
[c] (H2O2)

[d] (C3H8)
[c] (C3H8)

[d] TOF<in>C3H8</in> 

SiO2 -- 0.007 430.7 bdl bdl 0.26 198.4 -- 

Al2O3 -- 0.029 6.6 bdl bdl 0.25 49.0 -- 

SiO2/Al2O3 10 0.008 527.3 26.5 18^272.8 0.45 312.1 58.5 

H+ 

Zeolite^^Y 
30 0.026 716.1 16.2 3475.8 0.53 113.2 30.7 

H+ 

Zeolite^^β 
25 0.038 706.7 52.0 7639.77 0.26 37.8 202.1 

H-ZSM-5 30 0.014 413 19.0 7587.8 2.7 1063.7 7.1 

TS-1 -- 0.031 361.1 bdl bdl 0.21 36.7 -- 

Silicalite-1 -- 0.009 474.7 bdl bdl 0.14 85.8 -- 
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[a]^^As determined by ICP. [b]^^Surface area determined from nitrogen adsorption by using 

the BET equation. [c]^^molconverted^kgcat
<M->1^h<M->1. [d]^^molconverted^molFe

<M->1^h<M->1. 

Catalysts calcined prior to testing (3^^h, 550^°C, 20^°C^min<M->1 in static air). bdl=H2O2 

conversion below detection limit. 

Table^^2 The activity of Fenton’s type reagents and effect of adding a ˙OH scavenger 

(NaSO3) upon propane oxidation reactions.<W=3> 

Catalyst χPropane  χ<in>H2O2</in> H2O2  Product selectivities [%]  TOF  

   Used  C3 Products  C2 Products  C1 Products   

 [%] [%] [%]  Ace. i-PrOH n-PrOH PA C3H6  EtOH AA C2H4 C2H6  MeOH FA CH4 CO2  [h<M->1] 

H-ZSM-5 0.9 5.2 18  9.9 5.8 23.3 12.9 2.8  6.6 1.5 0.7 5.8  0.6 27.9 1.26 0.9  1063.7 

2.1^% 

Fe/ZSM-5 
7.9 29 43 

 
6.4 5.7 8.8 11.4 2 

 
14.1 11 0.6 1.5 

 
1.3 34.6 0.9 1.4 

 
63.5 

Fe(NO3)3·9

^H2O
[a] 

7.18 52.5 12.0 
 
53.0 1.1 0.4 9.5 0.0 

 
0.2 18.2 0.1 0.5 

 
0.2 12.2 0.1 4.3 

 
47.7 

2.1^% 

Fe/ZSM-

5^(30)+Na

SO3
[b] 

5.0 32.5 19.2 

 

12.9 3.9 7.6 12.3 1.1 

 

8.4 15.6 0.2 2.7 

 

1.2 29.9 1.2 3.1 

 

39.4 

Reaction conditions: P(C3H8)=4^^bar (4000^^μmol), Ptotal(C3H8/He)=20^^bar, [H2O2]=0.5^M 

(5000^^μmol), 27^^mg supported catalyst where applicable, 50^°C, 0.5^^h, 1500^^rpm. 

Ace=acetone, PA=propanoic acid, AA=acetic acid, FA=formic acid. [a]^^1.2×10<M-

>5^^mol^Fe, based upon ICP analysis. [b]^^[NaSO3]=0.053^M (530^^μmol). 
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Table^^3 Assessment of reaction heterogeneity through hot filtration. <W=3> 

Reaction Total χ<in>H2O2</in> H2O2  Product selectivities [%] 

 carbon  Used  C3 Products  C2 Products  C1 Products 

 [μmol][a] [%] [%] 
 

Ace. i-PrOH n-PrOH PA C3H6 
 

EtOH AA C2H4 C2H6 
 

MeOH FA 
CH

4 
CO2 

Catalysed 1240.9 28.4 29.0  50.8 10.6 13.8 42.0 --  39.2 127.2 -- --  14.3 541.8 -- -- 

Hot filtration 1296.7 0.64 30.0[b]  50.0 7.1 10.1 42.3 0.0  37.5 141.2 0.1 1.8  14.0 581.1 0.5 11.5 

Reaction conditions: P(C3H8)=4^^bar (4000^^μmol), Ptotal(C3H8/He)=20^^bar, [H2O2]=0.5^M 

(5000^^μmol), 27^^mg supported catalyst where applicable, 50^°C, 0.5^^h, 1500^^rpm. 

Ace=acetone, PA=propanoic acid, AA=acetic acid, FA=formic acid. [a]^^Where 

3^^μmolcarbon corresponds to 1^^μmolpropane<?><?>Footnote [a] in correct position in table? 

Please check<?><?>. [b]^^Percent of H2O2 utilisation over reactions^^1 and 2. 

Table^^4 Propane oxidation by using a series of untreated and acid-treated ZSM-5 

catalysts. <W=3> 

Entry Catalyst χPropane  χ<in>H2O2</in> H2O2 Product selectivities [%] Fe[a] TOF  

    Used C3 Products  C2 Products  C1 Products   

 
 

[%] [%] [%] Ace. i-PrOH n-PrOH PA 
C3H

6 

 
EtOH AA C2H4 C2H6 

 
MeOH FA CH4 CO2 [wt^%] 

[h<M->1][b] 

1 H-ZSM-5^(30) 0.9 5.2 18 9.9 5.8 23.3 12.9 2.8  6.6 1.5 0.7 5.8  0.6 27.9 1.26 0.9 0.014 1063.7 
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2 
2.5^% Fe/ZSM-

5^(30) 
7.9 29.0 43 6.4 5.7 8.8 11.4 2 

 
14.1 11 0.6 1.5 

 
1.3 34.6 0.9 1.4 2.06 63.5 

3 
2.5^% Fe/ZSM-

5^(30)AT0.25 
6.8 27.3 34 4.6 5.8 10.6 8.8 2.7 

 
17.2 11.4 0.4 1.7 

 
1.3 33.2 1.0 1.1 0.55 204.6 

4 
2.5^% Fe/ZSM-

5^(30)AT1.0 
6.8 23.4 37 4.6 6.2 12.1 8.8 2.9 

 
18 11.1 0.5 1.8 

 
1.3 30.5 1.1 1.1 0.5 225.0 

5 
2.5^% Fe/ZSM-

5^(30)AT2.0 
6.6 28.3 31 4.4 5.7 10.1 7.2 2.8 

 
15.7 12.7 1.7 2.8 

 
1.2 35.5 1.0 1.4 0.47 232.4 

Reaction conditions: P(C3H8)=4^^bar (4000^^μmol), Ptotal(C3H8/He)=20^^bar, [H2O2]=0.5^M 

(5000^^μmol), 27^^mg catalyst, 50^°C, 0.5^^h, 1500^^rpm. Ace=acetone, PA=propanoic 

acid, AA=acetic acid, FA=formic acid. [a]^^Determined by ICP. [b]^^mol of propane 

converted molFe
<M->1^h<M->1.  

Table^^5 XPS analysis of acid-treated 2.5^^wt^% Fe/ZSM-5^(30) catalysts. <W=3> 

Catalyst Binding energy [eV][a]  Surface content [atomic %]  Fe[b] 

 Fe^2p O^1s Si^2p Al 2p  Fe O Si Al  [wt^%] 

2.5^^wt^% Fe/ZSM-5^(30) 709.9 530.9 101.9 73.9  5.46 68.72 25.49 0.33  2.06 

2.5^^wt^% Fe/ZSM-5^(30)AT0.25 711.6 531.8 102.8 73.8  0.33 75.15 24.25 0.26  0.55 

2.5^^wt^% Fe/ZSM-5^(30)AT1.0 711.6 531.6 102.6 74.6  0.30 73.37 25.96 0.36  0.5 

2.5^^wt^% Fe/ZSM-5^(30)AT2.0 711.6 531.6 102.6 73.6  0.18 71.27 28.28 0.28  0.47 

[a]^^All binding energies referenced to C^1s=284.7^^Ev. [b]^^Determined by ICP with HF 

digestion. 
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Table^^6 N2 Brunauer--Emmett--Teller (BET) surface area and porosimetry analysis of 

ZSM-5 catalysts. <W=1> 

Catalyst BET surface Vmicropores Vmesopores
 

 area [m2^g<M->1][a] [cm3^g<M->1] [cm3^g<M->1] 

H-ZSM-5^(30) 413 0.147 0.148 

2.5^^wt^% Fe/ZSM-5^(30) 363 0.123 0.098 

2.5^^wt^% Fe/ZSM-5^(30)AT0.25 353 0.122 0.093 

2.5^^wt^% Fe/ZSM-5^(30)AT1.0 348 0.116 0.094 

2.5^^wt^% Fe/ZSM-5^(30)AT2.0 257 0.086 0.094 

[a]^^Surface area determined from nitrogen adsorption measurement by using the BET 

equation. 


