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Surface and shape modification of mackinawite 
(FeS) nanocrystals by cysteine adsorption: 
a first-principles DFT-D2 study 
 

N. Y. Dzade,*a A. Roldanb and N. H. de Leeuw*ab 

 
The control of nanoparticle shape offers promise for improving catalytic activity and selectivity through 

optimization of the structure of the catalytically active site. Here, we have employed density functional 

theory calculations with a correction for the long-range interactions (DFT-D2) to investigate the effect of 

adsorption of the amino acid cysteine on the {001}, {011}, {100}, and {111} surfaces of mackinawite, which 

are commonly found in FeS nanoparticles. We have calculated the surface energies and adsorption 

energies for all the surfaces considered, and compared the surface energies of the pure and adsorbed 

systems. Based on the calculated surface energies, we have simulated the thermodynamic crystal 

morphology of the pure and cysteine-modified FeS nanoparticles using Wulff ’s construction. The strength 

of cysteine adsorption is found to be related to the stability of different surfaces, where it adsorbs most 

strongly onto the least stable FeS{111} surface via bidentate Fe–S and Fe–N chemical bonds and most 

weakly onto the most stable FeS{001} surface via hydrogen-bonded interactions; the adsorption energy 

decreases in the order {111} 4 {100} 4 {011} 4 {001}. We demonstrate that the stronger binding of the 

cysteine to the {011}, {100}, and {111} surfaces rather than to the {001} facet results in shape modulation of 

the FeS nanoparticles, with the reactive surfaces more expressed in the thermodynamic crystal morphology 

compared to the unmodified FeS crystals. Information regarding the structural parameters, electronic 

structures and vibrational frequency assignments of the cysteine–FeS complexes is also presented. 

  

1. Introduction 
 
Nanoparticles have major impacts in fundamental research and many 

industrial applications due to their unique size- and shape-dependent 

properties such as electrical, magnetic, mechanical, optical and 

chemical properties, which largely diff er from those of the bulk 

materials.
1–6

 Because nanoparticles have different surface structures 

and thus different surface interactions com-pared to larger particles, 

they have an extremely high tendency toward adhesion and 

aggregation.
2
 It is therefore important to develop synthesis 

techniques to control the dispersion or aggregation of nanoparticles 

which dictate their crystal shape. Control of nanocrystal shape is 

important in various applications, such as in heterogeneous 

catalysis,
7,8

 solar cells,
9
 light-emitting diodes,

10,11
 and biological 

labeling.
12,13

 In particular, it offers promise for improving catalytic 

activity and selectivity through optimization of the structure of the 

catalytically active site. 
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Simultaneous control of size, morphology, and size distribution of 

colloidal nanocrystals is however, a challenging task.  
Generally, the synthesis of nanoparticles involves surfactant 

molecules that bind to their surface, which stabilize the nuclei and 

larger nanoparticles against aggregation by a repulsive force between 

the adsorbates, which controls the growth of nanoparticles in terms 

of the rate, final size or geometric shape. The surfactant/capping 

molecules also improve the stability of the nanoparticles against 

temperature and possible oxidation that could result in their 

degradation.
14,15

 Depending on the nanoparticle material and 

surfactant molecules used, shape controlled growth is also possible, 

e.g. by stronger binding of the ligand to certain crystal facets.
1,2,15–

19
 The ligand molecules bound to the nanoparticle surface via the 

head group not only control the growth of the particles during 

synthesis, but also prevent the aggregation of the nanoparticles. 

Various chemical functional groups possess certain affinity to 

inorganic surfaces, the most famous example being the affinity of 

thiol to gold.
2,20

 The possible choice of ligand molecules can depend 

on the material of the nanoparticle core, the particle size and the 

solvent. Generally, it is found that strongly binding molecules 

forming a dense layer stabilize the particles better than the 

 
 
 
 



 
  

 
 
 
 
 
 
 
 
 

 

 

 
weakly binding ones, and particularly, if further processing and 

purification steps are required after the particle synthesis.
20 

 
The synthesis and characterization of transition metal chalco-

genide nanocrystals have become of interest fairly recently as they 

possess germane properties for many applications including in solar 

cells,
21–25

 solid state batteries,
26–29

 biomedicine,
30,31

 and 

heterogeneous catalysis.
32–37

 Variously shaped transition metal 

chalcogenide nanocrystals can be synthesized by using suitable 

reducing agents and surface-capping agents.
38–44

 For example, 

capping agents such as long-chain amines and L-cysteine are often 

dissolved in the synthesis solution to prevent the aggregation of iron 

sulfide nanoparticles.
38–41

 Many biological molecules have also been 

used either in the synthesis or capping of CdS nanoparticles.
42–44

 

Cysteine and thiolates, which are able to form high-affinity metal ligand 

clusters, have been shown to promote the formation of CdS and ZnS 

nanocrystals.
42–44

 Further control over nanocrystal synthesis has been 

gained by using fatty acids, which have been found to promote the 

formation of CdSe and CdS nanocrystals.
45 

 
Modifying the surface of mackinawite (tetragonal iron(II) sulfide) 

nanoparticles by L-cysteine has been shown to modulate the shape 

and make it more resistant to oxidation.
46

 Mackinawite crystallises 

in the tetragonal structure, with the space group P4/nmm.
47,48

 The 

FeS structure is formed by vertically stacked two-dimensional (2D) 

layers with strong covalent bonding between Fe and S atoms within 

a given layer and very weak van der Waals bonding between the 

adjacent layers (Fig. 1a). Mackinawite (FeS) and greigite (Fe3S4) are 

increasingly considered to be the pre-biotic catalysts for a series of 

biochemical reactions that occur in hydrothermal systems, making 

them relevant to the origin of life 

theories.32–35,49–51  
Experimentally, it is often difficult to determine the funda-mental 

interactions that take place between surfaces and the functional 

groups of the surfactants, which are thought to be the main 

contributing factors in the capping process.
20

 However, using 

simulation techniques capable of modelling the structure of mineral 

surfaces at the atomic level, it is possible to study computationally 

the interactions between the crystal surface and the adsorbates. 

Several reviews and articles are available in the 

 

 
literature on the adsorption of amino acids on mineral surfaces, 

particularly with regard to the origin of life on Earth,
60–69

 and on 

metallic surfaces.
58,70–72

 However, investigations of cysteine  
adsorption have revealed a complex scenario in which it is hard to 

identify a unique bonding paradigm due to different functional 

groups in cysteine (thiol, amine, and carboxyl) that can interact with 

the mineral or metal surface. It appears that, depending on several 

experimental conditions, the interactions may vary sub-stantially and 

even exhibit different configurations. The picture that has emerged 

so far from experimental and theoretical investigations is that the 

cysteine molecule interacts with the metal via either the thiol (–

SH)
52–54

 or the amine (–NH2)
55

 side groups. Additionally, the –

COOH end group might also interact with the surface. When all 

three functional groups of cysteine are free and not engaged in other 

biochemical interactions, the molecule can bind to metal/mineral 

surfaces by employing more than one end group.
56

 The interactions 

of the thiol group can be easily identified by Fourier transform 

infrared spectroscopy (FT-IR), the spectrum showing the vanishing 

of the stretching S–H band at 2562 cm 
1
.
57–60 

 
In this study, we have used density functional theory calculations, 

corrected for dispersion-interactions (DFT-D2), to investigate the 

adsorption of the amino acid cysteine on the low-index {001}, 

{011}, {100} and {111} surfaces of mackinawite. Electronic 

structure calculations based on DFT techniques have become 

indispensable in unravelling the interactions of organic molecules 

with solid surfaces as they are capable of accurately predicting the 

lowest-energy adsorption geometries and identifying the charge 

transfer and other electronic eff ects.
73,74

 We have considered 

diff erent coupling schemes that involve one or more functional 

groups of the cysteine molecule and report the analyses of the 

structures and energetics of diff erent optimized adsorption 

configurations. The binding strengths, electronic structures and 

vibrational properties of the cysteine–FeS complexes are discussed. 

Finally, using Wulff’s construction,
75

 we have simulated the 

thermodynamic crystal morphology of the FeS nanoparticle based on 

the calculated surface energies before and after cysteine adsorption. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 (a) The layered structure of mackinawite, with the tetragonal unit cell highlighted by dashed lines. (b) The electronic density of states showing the 

total and projected values on the Fe d-states and S p-states (colour scheme: Fe = grey, S = yellow). 

 
 
 
  



 
 
 
 
 
 
 
 
 

 

 

 

 

2. Computational details 
 
The relaxed structures and energies were determined using plane-

wave density functional theory (PW-DFT) calculations within the 

Vienna Ab initio Simulation Package (VASP).
76–78

 Long-range 

dispersion forces were accounted for in our calcula-tions using the 

DFT-D2 approach of Grimme,
79

 which is essential for an accurate 

description of the FeS interlayer interactions, as well as the 

interactions between the cysteine and FeS surfaces.
33,34,80

 The 

electronic exchange–correlation potential was calculated using the 

generalized gradient approximation (GGA), with the PW91 

functional.
81,82

 The inter-actions between the valence electrons and 

the core were described with the projected augmented wave (PAW) 

method
83

 in the implementation of Kresse and Joubert.
84

 A plane-

wave basis with an energy cut-off of 400 eV was tested to be 

sufficient to converge the total energy of mackinawite to within 

0.0001 eV. Integration over the Brillouin zone is carried out using 

the Monkhorst–Pack scheme
85

 with 11 11 11 and 5 5 1 meshes of k-

points for bulk and surface calculations, respectively. Geometry 

optimizations were performed using the conjugate gradient 

minimization algorithm until the magnitude of the residual Hellman–

Feynman force on each relaxed atom reached 0.01 eV Å 
1
. The 

resulting cell parameters were a = 3.587 Å, c = 4.908 Å, and c/a = 

1.368 Å,
34,34,80

 which compare closely with those measured 

experimentally (a = 3.674 Å, c = 5.033 Å, and c/a = 1.370 Å).
47,48

 

The metallic character of FeS is also accurately reproduced as shown 

in Fig. 1b, with the electronic states of the Fe d-orbitals dominating 

the regions around the Fermi level, in agreement with the metallic 

nature deduced by Vaughan and Ridout,
87

 and previous DFT 

results.
86,88,89 

 
The {001}, {011}, {100} and {111} surfaces were considered for 

the cysteine adsorption calculations as they are the domi-nant 

growth surfaces of FeS nanocrsytals.
90

 These surfaces were created 

from the fully relaxed bulk using the METADISE code,
91

 which not 

only considers periodicity in the plane direction but also provides 

diff erent atomic layer stacks resulting in a zero dipole moment 

perpendicular to the surface plane, as is required for reliable and 

realistic surface calculations.
92

 A vacuum region of 15 Å was tested 

to be sufficient to avoid interactions between periodic slabs. Fig. 2 

shows the top views of the relaxed structures of the most stable 

terminations of each FeS surface, where the {001} and the {111} 

surfaces are termi-nated by S, {011} is an Fe-termination, and the 

{100} termina-tion contains both S and Fe in the surface plane. The 

cysteine adsorption calculations were carried out on large surface 

slabs constructed from (3 3) of the {001} unit cell and (4 2) of the 

{011}, {100} and {111} unit cells. These simulation supercells are 

large enough to minimize the lateral interaction between the cysteine 

molecules in neighbouring image cells. The struc-tural optimizations 

of the FeS–cysteine systems were carried out without any symmetry 

constraint, and in particular, the cysteine molecule was free to move 

away laterally and vertically from the initial binding site or reorient 

itself to find the minimum energy adsorption structure. All atoms of 

the cysteine molecule and the topmost three atomic layers of the 

surface slabs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Top views of the relaxed structures of (a) FeS{001}, (b) FeS{011},  
(c) FeS{100}, and (d) FeS{111}surfaces used for the adsorption of cysteine 

(colour scheme: Fe = grey, S = yellow). The size of the simulation cells is 

highlighted by continuous red lines. 

 
 
were allowed to relax unconstrainedly until residual forces on all 

atoms reached 0.01 eV Å 
1
.  

The adsorption energy (Eads) which is a measure of the strength 
of the FeS–cysteine interaction is defined as follows: 
 

E
ads 

=
 
E

surface+cysteine
(E

surface + Ecysteine

) 
(1) 

where Esurface+cysteine is the total energy of the FeS–cysteine system 

in the equilibrium state, Esurface is the total energy of the relaxed FeS 

surface slab alone, and Ecysteine is the total energy of free cysteine in 

the gas phase. By this definition, a negative value of Eads 

corresponds to an exothermic and favourable adsorption process. In 

this work, all of the reported adsorption energies were corrected by 

the zero-point energy (DZPE) calculated as the difference between 

the ZPE correction of the adsorbate on the surface and in the gas 

phase according to eqn (2): 

 

 X 
hn 

 

! 

 X 
hn 

 

! 

 

DZPE ¼ 

3n i 

 

3n i 

(2) i  1 2  i  1  2  

 ¼    surf ¼     gas 

where h is the Planck constant and ni’s are the vibrational 

frequencies. Vibrational frequency calculations were performed 

within the framework of the self-consistent density functional 

perturbation theory (DFTP).
93

 The implementation of harmonic 

DFPT in a plane-wave pseudopotential framework presents several 

advantages. The main advantage of harmonic DFPT over other 

methods for computing vibrations of crystalline solids is that the 

responses to perturbations of different wave-lengths are decoupled. 

Thus, vibrational frequencies oi(q) can be calculated at any arbitrary 

wave vector q, avoiding the use of large supercells as required in 

standard methods, which calcu-late only zone-centered (G-point) 

frequencies. Also, plane waves are particularly convenient in a 

DFPT implementation for rapid exchanges between reciprocal and 

real spaces by fast Fourier 
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      Fig. 3  Schematic representation of (a) the optimized structure, (b) the 
      lowest unoccupied molecular orbital (LUMO), (c) the highest occupied 

  

Eslab
unrelaxed

    nEbulk 

 molecular orbital (HOMO) and (d) the projected density of states (PDOS) of 

gu ¼ (3) 
cysteine. The three potential surface-binding groups are highlighted in 

2A   dashed circles (colour scheme: O = red, C = green, S = orange and H = 

where Eslab
unrelaxed

 is the energy of the unrelaxed slab, nEbulk is the 
white). 
 
 

energy of an equal number (n) of the bulk FeS atoms, and A is  

the area of one side of the slab. During relaxation, the top calculated  bond distances and angles  are summarized  in 

surface was allowed to relax and the bottom one was kept fixed. Table 1, showing good agreement with experimental data
96–98 

The additional energy due to the relaxed surface at the top of and earlier DFT-PW91
72

 and semiempirical-PM3
95

 calculations. 

the slab must be separated from the energy of the unrelaxed Any differences compared to the experimental data are likely 

surface at the bottom, as the two diff er. From the unrelaxed due to the fact that the optimization was performed under 

surface energy it is possible to calculate the relaxed surface isolated conditions, whereas the crystal environment will have 

energy (gr) from the total energy of the relaxed slab as:  affected the experimental X-ray and neutron diffraction struc- 

Eslab
relaxed

    nEbulk 
   tures. We have also determined the highest occupied molecular 
  

(4) 

 

gr ¼ 
  

gu 
 

 A  
 

where E
relaxed

slab is the energy of the relaxed slab. Considering that 

the adsorption of cysteine on the FeS surfaces changes the surface 

energies and therefore may alter the equilibrium mor-phology, we 

have also calculated the surface energies of the surfaces after 

cysteine adsorption using eqn (5): 

 relaxed nE
cysteine

nE
bulk 

  
E

slabþcysteine  

(5) 
g

cysteine 
¼ 

  

gu  A 

where E
relaxed

slab+cysteine is the energy of the surface with adsorbed 

cysteine and nEcysteine is the energy of an equivalent number of free 
cysteine molecules in the gas phase. 

 

3. Results and discussion 
 

3.1 Cysteine molecule in the gas phase 
 

To ensure that our calculations are of sufficiently high accuracy, we 

first compared our calculated structural parameters of the free 

cysteine molecule with those of available theoretical
72,95

 and 

experimental X-ray
96,97

 and neutron diff raction
98

 data. The fully 

relaxed structure of cysteine is shown in Fig. 3a and the 

 
Table 1 The equilibrium structural parameters of cysteine calculated in this 

work and compared with available experiment data 
 

Parameter This work PW9172 PM395 X-ray96 X-ray97 Neutron98 
      

Bond distance (Å)      
d(C1–Oa) 1.212 1.230 1.218 1.208 1.260 1.251 
d(C1–Ob) 1.369 1.370 1.350 1.338 1.250 1.239 
d(Ob–H) 0.977 — 0.952 0.972 — — 
d(C1—C2) 1.525 1.520 1.527 1.509 1.530 1.530 
d(C2—C3) 1.531 1.550 1.536 1.523 1.530 1.530 
d(C2—H) 1.104 — 1.122 1.113 — 1.104 
d(C3—H) 1.095 — 1.107 1.113 — 1.077 
d(C2—N) 1.465 1.470 1.483 1.468 1.483 1.488 
d(N—H) 1.022 — 0.998 1.035 — 1.038 
d(C3—S) 1.822 1.860 1.815 1.815 1.819 1.800 
d(S—H) 1.350 — 1.307 1.345 1.340 1.270 

Bond angle (1)       
a(C2—C1—Oa) 125.0 124.6 128.6 122.5 118.1 117.3 
a(C2—C1—Ob) 115.3 113.1 115.0 107.1 116.7 117.0 
a(Oa—C1—Ob) 123.6 122.3 116.4 122.0 125.3 125.7 
a(C1—C2—C3) 111.0 111.3 110.6 109.9 111.7 111.1 
a(C1—C2—N) 110.4 109.1 106.7 110.7 109.9 111.1 
a(C3—C2—N) 110.1 109.3 113.7 108.8 111.3 110.9 
a(C2—C3—S) 114.5 116.8 114.9 106.5 115.1 114.8 

a(C3—S—H) 96.2 — 100.5 96.0 98.1 97.0 

 

 

  

 

transform, for precision regulated by the size of the basis set and for 

derivative calculation of the Hellmann–Feynman forces and force 

constants without any Pulay correction. More infor-mation regarding 

the DFTP approach and its mathematical formulation can be found in 

the review paper (Phonons and related crystal properties from 

density-functional perturbation theory) by Baroni et al.
93 

The equilibrium morphologies of the FeS crystal before and after 

cysteine adsorption are determined from the relaxed surface energies 

of the various surfaces, which provide a measure of the relative 

stabilities of the surfaces. The equili-brium morphology is 

constructed according to Wulff ’s theorem,
75

 which states that a polar 

plot of surface energy versus the orientation of normal vectors would 

give the crystal morphology based on the approach of Gibbs.
94

 

According to the Gibbs formulation, under thermodynamic 

conditions, the equi-librium shape of a crystal should possess minimal 

total surface free energy for a given volume. 

The surface energy of the unrelaxed surfaces (gu) was derived 
from a single point calculation of the pure symmetric stoichio-metric 
slab before relaxation, via the equation: 
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orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO) of cysteine and presented them, respectively, in Fig. 3b and 

c. Both the HOMO and the LUMO are dominated by the 3p 

character of the sulfur atom which is expected to play a vital role in 

the interaction of cysteine with the given FeS surfaces, as has been 

seen on metallic surfaces.
67–70

 Similarly, the projected density of 

states (PDOS) as displayed in Fig. 3d reveals that the states at the 

Fermi level are dominated by S p-states, and these orbitals are 

expected to play an important role in the binding of the cysteine 

molecule to the FeS surfaces. 

 

3.2 Cysteine adsorption on FeS{001} 
 
Cysteine has three potential metal-binding groups; the thiol (–SH), 

amine (–NH2), and carboxyl (–COOH) end groups (Fig. 3a), and it 

may thus act as a monodentate, bidentate, or tridentate ligand. In 

order to determine the preferred adsorp-tion sites and binding modes 

of cysteine on the {001} surface, we optimized the cysteine 

molecule from a number of different initial orientations on the 

surface, without any symmetry constraints. The optimized 

adsorption structures are shown in Fig. 4 and the calculated 

adsorption energies and any charge transferred to the adsorbed 

cysteine molecule are listed in Table 2. All four identified adsorption 

modes gave similar exo-thermic energies, with the strongest 

adsorption at 0.70 eV, calculated for the flat adsorption 

configuration (Fig. 4a). The adsorption energy of the flat 

configuration is comparable to 0.65 eV for the SH-end configuration 

(Fig. 4b), 0.63 eV for CH–N-end (Fig. 4c), and 0.57 eV for the Oa-

end configuration (Fig. 4d). In the flat adsorption configuration (Fig. 

4a), the cysteine molecule lies almost flat on the surface with the 

hydrogen atoms from the three end-groups pointing towards the 

surface sulfur atoms in such a manner that the interatomic distances 

between the hydrogen atoms of the carboxyl, thiol, and amine 

groups and the surface sulfur atoms are calculated at 2.382 Å, 2.571 

Å, and 2.700 Å, respectively. Similar S–H 

  
 
 

 

Table 2 Adsorption energies (Eads) and the relevant bond distances of 

cysteine adsorbed onto the {001}, {011}, {100} and {111} FeS surfaces. |q| 

denotes the net charge gained by the cysteine molecule 

  
E

ads d(Fe–S) d(Fe–N) d(Fe–O) 

|q| (e ) Surface Config. (eV) (Å) (Å) (Å) 

FeS{001} Flat 0.60 4.694 4.502 4.307 0.01 
 SH-end 0.57 4.899 — 4.283 0.00 
 CH–N-end 0.52 — 4.468 — 0.00 

 Oa-end 0.49 — — 3.726 0.00 

FeS{011} Fe–NS–Fe 1.861 2.382 2.163 — 0.16 
 Fe–S 1.622 2.343 — — 0.05 
 Fe–N 1.426 — 2.102 — 0.04 

 Fe–OO–Fe 0.995 — — 2.093 0.03 

FeS{100} Fe–NS–Fe 2.26 2.380 2.140 — 0.01 
 Fe–N 1.65 — 2.084 — 0.00 

 Fe–O 0.98 — — 2.001 0.00 

FeS{111} Fe–NS–Fe 3.41 2.264 2.130 — 0.16 
 Fe–S–Fe 2.48 2.123 — — 0.05 
 Fe–OO–Fe 2.05 — 2.084 2.183 0.04 

 Fe–N 1.79 — 2.102 — 0.03 

 

interatomic distances are obtained for the SH-end, CH–N-end, and 

Oa-end configurations, which are calculated at 2.57 Å, 2.96 Å, and 

3.21 Å, respectively (see Fig. 4). These adsorption modes suggest 

very weak hydrogen-bonded interactions between the cysteine 

molecule and the surface sulfur atoms, considering that the H–

surface distances are larger than the typical hydrogen-bond length in 

water, which is 1.97 Å.
99

 It therefore suggests that van der Waals 

interactions (vdW) play an important role in stabilizing the adsorbed 

cysteine molecule on the {001} surface. The contribution of the van 

der Waals interactions (EvdW) to the adsorption energy for the flat, 

SH-end, CH–N-end, and Oa-end configurations is calculated at 0.37, 

0.30, 0.27 and 0.25 eV, respectively. In all four adsorption 

configurations on the {001} surface, we found that the structural 

parameters of cysteine are not significantly affected by the 

adsorption process, which is consistent with the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 The lowest-energy adsorption configurations of cysteine on the FeS{001} surface, in side (top) and top (bottom) views. Distances in Angstroms (Å). 

(colour scheme: Fe = grey, Ssurface = yellow, Smolecule = orange; O, C, N and H are the same as in Fig. 3). 

 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 

 

          

           

 Table 3  Structural parameters (bond distances and angles) of cysteine adsorbed onto FeS{001} and FeS{011} surfaces   
           

  FeS{001}     FeS{011}    

 Parameter Flat SH-end CH–N-end Oa-end Fe–NS–Fe Fe–OO–Fe Fe–S Fe–N 
           

 Distance (Å)          
 d(C2–N) 1.469 1.465 1.458 1.450  1.495 1.474 1.420 1.503 
 d(C3–S) 1.823 1.829 1.839 1.827  1.844 1.830 1.840 1.823 
 d(C1–Oa) 1.211 1.216 1.216 1.217  1.211 1.234 1.216 1.213 
 d(C1–Ob) 1.368 1.363 1.357 1.367  1.367 1.379 1.356 1.362 
 d(C1–C2) 1.537 1.540 1.544 1.535  1.531 1.519 1.533 1.529 
 d(C2–C3) 1.527 1.530 1.546 1.528  1.525 1.525 1.535 1.518 
 d(S–H) 1.351 1.352 1.350 1.351  1.354 1.349 1.359 1.359 
 d(O–H) 0.984 0.980 0.992 0.977  0.980 0.979 0.994 0.993 
 d(C2–H) 1.109 1.102 1.105 1.103  1.108 1.105 1.103 1.102 
 d(N–H) 1.022 1.023 1.024 1.0.22 1.026 1.022 1.022 1.026 

 Angle (1)          
 a(C1–C2–C3) 110.8 108.7 112.3 110.8  112.8 109.2 108.1 113.7 
 a(C1–C2–N) 108.3 111.5 113.2 110.7  110.8 112.7 114.5 108.1 
 a(C3–C2–N) 109.1 109.3 107.7 108.8  110.6 110.9 109.8 110.6 
 a(C2–C1–Oa) 125.1 122.1 123.2 123.8  125.5 125.8 123.0 125.0 
 a(C2–C1–Ob) 114.6 117.9 115.9 116.4  113.7 114.8 115.9 113.7 
 a(Oa–C1–Ob) 120.3 119.9 120.9 119.6  120.8 119.4 121.0 121.1 
 a(C2–C3–S) 113.7 113.0 116.6 114.7  106.8 110.1 106.4 111.1 

 a(C3–S–H) 96.9 95.8 97.3 95.3  96.8 95.3 96.5 95.5 
             
fairly weak adsorption energies calculated on this surface. Reported 

in Table 3 are the internal bond distances and angles of the adsorbed 

cysteine, which remained similar to those calculated for the gas 

phase molecule. 

 
3.3 Cysteine adsorption on FeS{011} 
 
As on the {001} surface, we have optimized a number of diff erent 

initial orientations of the cysteine molecule on the {011} surface 

without any symmetry constraints, in order to determine the 

preferred adsorption sites and the lowest-energy adsorption 

structures. Four diff erent adsorption modes including two bidentate 

configurations, wherein the cysteine binds at Fe sites either via the –

COOH end forming two Fe–O bonds (denoted Fe–OO–Fe) or via the 

–NH2 and –SH end groups forming Fe–N and Fe–S bonds (denoted 

Fe–NS–Fe), and two monodentate 

 
configurations, wherein the cysteine is adsorbed via only the –SH 

end group (denoted Fe–S) or –NH2 end group (denoted Fe–N), were 

considered. The relaxed cysteine/FeS{011} adsorp-tion structures 

are shown in Fig. 5, whereas the calculated adsorption energies and 

structural parameters, including bond distances and angles, are 

reported in Tables 2 and 3. The strongest adsorption is computed for 

the Fe–NS–Fe configu-ration with an adsorption energy of 1.86 eV, 

compared to 1.62 eV for Fe–S, 1.43 eV for Fe–N and 0.99 eV for the 

Fe–OO–Fe configurations. Compared to the {001} surface, the 

contribution of the van der Waals interactions to the adsorption 

energy is smaller, which is calculated at 0.23, 0.20, 0.17 and 0.11 eV 

for the Fe–NS–Fe, Fe–S, Fe–N, and Fe–OO–Fe configurations, 

respectively. The adsorption energies on the {011} surface are larger 

than the ones obtained on the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 5 The lowest-energy adsorption configurations of cysteine on the FeS{011} surface, in side (top) and top (bottom) views. Distances in Angstroms (Å). 

(colour scheme: Fe = grey, Ssurface = yellow, Smolecule = orange; O, C, N and H are the same as in Fig. 3). 

 
 
 
  



 

 
 

 
 
 
 
 
 
 
 
 

 

 
{001} surface, indicating a stronger interaction of the cysteine with 

the {011} surface than with the {001} surface. The stronger 

interaction on the {011} surface can be attributed to the direct 

molecule–cation interactions, which are absent on the {001} surface, 

as the layer of negatively charged S ions shields the inner Fe ions. In 

the lowest-energy complex (Fe–NS–Fe), the Fe–S and Fe–N bond 

distances are calculated at 2.379 Å and 2.158 Å respectively, which 

are comparable to the distances of 2.341 Å and 2.082 Å in the 

monodentate Fe–S and Fe–N binding modes, respectively. For the 

bidentate Fe–OO–Fe configuration, the Oa–Fe and Ob–Fe bond 

distances are, respectively, calcu-lated at 2.068 Å and 2.125 Å. Our 

calculated Fe–S interatomic distances on the FeS{011} surface are 

shorter than the value of 2.510 Å reported for Au–S on Au{111}
72

 

and for other thiols at the bridge (2.50 Å) and at the fcc (2.52 Å) 

sites of Au{111}.
100,101

 Shown in Table 3 are the calculated internal 

bond distances and bond angles of the adsorbed cysteine on the 

{011} surface. When compared to the gas phase geometries, we 

observe a small difference that can be attributed to the stronger 

cysteine– surface interactions calculated on this surface. 

 

 
3.4 Cysteine adsorption on FeS{100} 
 
Similar to the {011} surface, we have optimized a number of 

diff erent initial orientations of the cysteine molecule on the {100} 

surface without any symmetry constraints, in order to determine the 

preferred adsorption sites and the lowest-energy adsorption 

configurations. We found three stable adsorption configurations 

(Fig. 6), wherein the cysteine adsorbs onto Fe sites either via both 

the –NH2 and –SH end groups forming Fe–N and Fe–S bonds (Fe–

NS–Fe) or via only the –NH2 end group (denoted Fe–N) or the –

COOH end group (denoted Fe–O). The calculated adsorption 

energies and structural parameters, including bond distances and 

angles, are reported in Tables 2 and 4. The strongest adsorption is 

computed for the Fe–NS–Fe configu-ration which released an 

adsorption energy of 2.26 eV (EvdW = 0.37 eV), compared to 1.65 

eV (EvdW = 0.23 eV) for Fe–N and 0.98 eV (EvdW = 0.21 eV) for 

the Fe–O configurations. In the 

 
lowest-energy Fe–NS–Fe configuration, the Fe–S and Fe–N bond 

distances are calculated at 2.380 Å and 2.140 Å, respectively, which 

are shorter than those obtained at the FeS{011} surface (Table 2), 

thus indicating stronger adsorption on FeS{100} than on FeS{011}. 

We observed that the adsorption of cysteine on the FeS{100} surface 

results in layer expansion, particularly in the Fe–NS–Fe and Fe–N 

configurations where the cysteine interacts across layers. The space 

between the layers (d001) increased from 4.908 in the naked surface 

to 5.331 Å, 5.220 Å, and 5.056 Å after cysteine adsorption in the Fe–

NS–Fe, Fe–N, and Fe–O configurations, respectively. A similar layer 

space expansion was observed in synthetic poorly crystallized FeS 

samples, with the layer spacing reported to be 5.24 Å and 5.49 Å for 

the unmodified FeS and cysteine modified FeS particles, 

respectively.
46

 The strong adsorption of the cysteine molecule on the 

FeS{100} also gave rise to changes in the internal bond distances 

and bond angles (Table 4) and vibration modes (Table 7) when 

compared to the gas phase geometries. 

 
3.5 Cysteine adsorption on FeS{111} 
 
The representative lowest-energy adsorption structures of cysteine 

on the FeS{111} surface are shown in Fig. 7 with the energetics and 

structural details listed in Tables 2 and 4 respectively. We found the 

strongest adsorption on FeS{111} when cysteine binds via –SH and 

–NH2 end groups forming bidentate Fe–S and Fe–N bonds (Fe–NS–

Fe, Fig. 7a), with an adsorption energy of 3.42 eV (EvdW = 0.47 eV). 

When compared to the adsorption energy released in the lowest-

energy structures on the other surfaces (Table 2), it can be concluded 

that FeS{111} is the most reactive surface towards cysteine 

adsorption. Consistent with its superior reactivity towards cysteine 

adsorption, shorter Fe–S (2.264 Å) and Fe–N (2.130 Å) are 

calculated on FeS{111} for the Fe–NS–Fe configu-ration compared 

to the other surfaces (Table 2). A strong adsorption is also obtained 

when the –SH end group of the cysteine molecule bridges between 

two surface Fe ions at Fe–S distances of 2.102 Å and 2.140 Å, with 

an adsorption energy of 2.48 eV (EvdW = 0.34 eV). The bidentate 

Fe–OO–Fe and the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 The lowest-energy adsorption configurations of cysteine on the FeS{100} surface, in side (top) and top (bottom) views. Distances in Angstroms (Å). 

(colour scheme: Fe = grey, Ssurface = yellow, Smolecule = orange; O, C, N and H are the same as in Fig. 3). 
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 Table 4  Structural parameters (bond distances and angles) of cysteine adsorbed onto FeS{100} and FeS{111} surfaces   
           

  FeS{100}     FeS{111}    

 Parameter Fe–NS–Fe Fe–N Fe–O Fe–NS–Fe Fe–S–Fe Fe–OO–Fe Fe–N 
           

 Distance (Å)          
 d(C2–N) 1.492 1.486 1.459 1.500 1.449 1.460 1.500 
 d(C3–S) 1.835 1.826 1.830 1.865 1.851 1.831 1.825 
 d(C1–Oa) 1.217 1.214 1.236 1.216 1.211 1.231 1.215 
 d(C1–Ob) 1.347 1.363 1.345 1.343 1.366 1.353 1.347 
 d(C1–C2) 1.546 1.539 1.528 1.556 1.544 1.518 1.546 
 d(C2–C3) 1.529 1.519 1.537 1.529 1.541 1.529 1.525 
 d(S–H) 1.353 1.353 1.351 1.354 1.376 1.359 1.352 
 d(O–H) 0.999 0.975 0.978 0.980 0.978 0.983 0.999 
 d(C2–H) 1.102 1.099 1.102 1.103 1.104 1.102 1.103 
 d(N–H) 1.033 1.030 1.025 1.001 1.025 1.023 1.032 

 Angle (1)          
 a(C1–C2–C3) 110.4 109.9 107.7  109.5 107.1 109.1 111.4 
 a(C1–C2–N) 109.7 107.0 112.2  110.4 113.6 110.6 110.6 
 a(C3–C2–N) 112.4 110.1 109.2  111.3 110.1 111.9 107.7 
 a(C2–C1–Oa) 122.1 122.7 119.5  122.7 123.3 124.5 122.1 
 a(C2–C1–Ob) 116.6 116.8 121.3  116.5 116.2 118.1 117.1 
 a(Oa–C1–Ob) 121.2 120.3 119.2  120.8 120.5 117.3 120.8 
 a(C2–C3–S) 105.8 111.3 113.3  113.7 113.0 111.8 113.4 

 a(C3–S–H) 97.6 95.5 96.2  94.2 98.4 96.4 95.5 
           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 The lowest-energy adsorption configurations of cysteine on the FeS{111} surface, in side (top) and top (bottom) views. Distances in Angstroms (Å). 

(colour scheme: Fe = grey, Ssurface = yellow, Smolecule = orange; O, C, N and H are the same as in Fig. 3). 

 

 
monodentate Fe–N configurations release adsorption energies of 

2.05 eV (EvdW = 0.30 eV) and 1.79 eV (EvdW = 0.27 eV) 

respectively, which are both stronger than the similar configu-ration 

on the FeS{011} and {100} surfaces. The stronger adsorp-tion 

calculated for the configurations involving the thiol (–SH) end group 

on all the surfaces considered suggests that the S orbitals are the 

driving force for the adsorption of cysteine on FeS surfaces, which is 

in good agreement with the dominant contribution of the sulfur 3p 

states to the HOMO, the LUMO, and the DOS at the Fermi level of 

the cysteine molecule (Fig. 3). 

 
3.6 Electronic properties 
 
In addition to the energies released, the interactions between the 

cysteine molecule and the FeS surfaces gave rise to electron density 

redistributions within the FeS–cysteine systems. This is 

 

 
analysed in Fig. 8 by means of projected density of states (PDOS) 

and differential charge-density difference (Dr) iso-surfaces, which 

are obtained by subtracting from the electron density of the total 

FeS–cysteine system both the electron density of the naked FeS 

surface and that of an isolated cysteine: 

 
 

Dr
 
=

 
r

surface/cysteine
(r

surface + rcysteine

). 
(6) 

The atomic positions of the naked FeS surface and the cysteine 

array (i.e., including the molecule’s images in neigh-bouring cells) 

are considered to be the same as those of the relaxed FeS–cysteine 

system. In this way, the presentation highlights the electronic 

structure and bond formation. The insets in Fig. 8 show the iso-

surface plot of the electron density difference in the lowest-energy 

cysteine configurations on the 

 

 
  



 

 
  

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Partial DOS projected on the interacting surface Fe d-states and on the 

adsorbed cysteine’s S and N p-states at the (a) FeS{001}, (b) FeS{011},  
(c) FeS{100}, and (d) FeS{111} surfaces. The insets show the 

corresponding isosurfaces of the differential charge density, where the 

green and red contours indicate electron density increase and decrease by 

0.02 e Å 3, respectively. 

 

 

{001}, {011}, {100}, and {111} surfaces. The observed electron 

density accumulation between the hydrogen and surface sulfur atoms 

on the {001} surface (Fig. 8a) is characteristic of weak hydrogen-

bonded interactions.  
An inspection of the isosurface at the {011}, {100}, and {111} 

surfaces reveals a chemisorption character of cysteine, which leads 

to charge density accumulation (green contours) around centers of 

the newly formed Fe–S and Fe–N bonds. We also observe electron 

density accumulation between the thiol end hydrogen and the {100} 

and {111} surface S ions, indicative of hydrogen-bonded 

interactions within these FeS–cysteine com-plexes (Fig. 8(c and d)). 

The electronic DOS projected on the sulfur and nitrogen p-orbitals 

of cysteine and the interacting Fe d-orbitals provides further insight 

into the nature of cysteine interactions with the FeS surfaces. On the 

{001} surface, we observe only a shift in the cysteine’s sulfur and 

nitrogen 

 
p-orbitals towards lower energy levels relative to the gas phase states 

(Fig. 3d), but there is no hybridisation between them and surface Fe 

d-states around the Fermi level, as there is no direct chemical bond 

between these species. In contrast to the {001} surface, adsorption of 

cysteine on the {011}, {100}, and {111} surfaces reveals a strong 

hybridization between the sulfur and nitrogen p-orbitals of the 

cysteine molecule and the d-orbitals of the interacting surface Fe 

ions, which is consistent with the formation of new Fe–S and Fe–N 

bonds between the cysteine molecule and the surface Fe sites. The 

strong hybridization between sulfur and nitrogen p-orbitals of the 

cysteine molecule and the d-orbitals of the interacting surface Fe 

atoms is characterized by the disappearance of the S p-states around 

the Fermi level. While there are local electron rearrangements within 

the FeS–cysteine systems as shown by the differential charge-density 

difference iso-surfaces (insets in Fig. 8), the net charge transfer from 

the FeS surfaces to the cysteine molecule, as estimated by the space 

partitioning scheme of Bader,
102

 is very small (Table 2). The small 

net charge gained by the cysteine molecule upon adsorption is 

consistent with the small changes in the structural parameters of the 

adsorbed molecule compared to the gas phase parameters. 

 
 

 
3.7 Vibrational properties 
 
In order to assign the vibrational modes of the adsorbed cysteine 

molecule, we have computed the wavenumbers of the normal modes 

for diff erent cysteine adsorption configura-tions, on the FeS 

surfaces. Shown in Tables 6 and 7 are the calculated vibrational 

frequencies of the cysteine molecule in the gas phase and in the 

adsorbed states, respectively. Our calculated vibrational frequencies 

of the gas phase cysteine molecule compare reasonably well with 

those reported in earlier theoretical
103–108

 and 

experimental
95,106,109,110

 investiga-tions, as shown in Table 5, 

which ensures the reliability and accuracy of our approximate 

assignments. The stretching S–H bands of the cysteine molecule on 

the {001} surface (Table 6) at 2607, 2534, 2617, and 2621 cm 
1
 can 

be assigned to the flat, SH-end, CH–N-end and Oa-end adsorption 

configurations, respectively, which are slightly lower than the gas 

phase stretching S–H band at 2625 cm 
1
. The small reductions in 

 
 
Table 5 Molecular vibrational frequencies (in cm 1) of the gas-phase calculated in this work and compared with the available experimental data and earlier 

theoretical predictions  

Assignment This work Theory106 Theory107 Theory108 IR106 Raman107,109 
       

C3–S stretch 742 666 713 688 — — 
SH bending 952 987 976 — — — 
CO2 s-stretch 1107 1389 1372 1374 1377 1397 
C2–H bend 1347 1326 1341 — — — 
CH2 bending 1425 1440 1423 1468 1424 1424 
NH2 bending 1596 1577 1538 — 1581 1574 
CO2 as-stretch 1781 1782 1602 — 1645 1644 
S–H stretch 2625 2604 2516 2682 2540 2546 
C2–H stretch 2925 2925 3012 2999 — 2970 
CH2 s-stretch 2992 2910 2965 — — — 
CH2 as-stretch 3062 2995 3027 — — 3000 
NH2 s-stretch 3420 3280 — — — — 

NH2 as-stretch 3518 3381 — — — 3190 

Ob–H stretch 3669 — — — — — 

 

 
  



 
 
 
 
 
 
 
 
 
 
 
 
 

 

          

           

 Table 6  Molecular vibrational frequencies (in cm 1) of adsorbed cysteine on FeS{001} and FeS{011} surfaces    

  FeS{001}     FeS{011}    

 Assignment Flat SH-end CH–N-end Oa-end Fe–NS–Fe Fe–OO–Fe Fe–S Fe–N 
           

 C3–S stretch 715 697 700 699  701 744 754 743 
 C1–Ob stretch 1116 1146 1112 1107  1106 1067 1138 1125 
 C3–C2–H bend 1200 1362 1285 1348  1386 1289 1289 1224 
 CH2 scissor 1392 1414 1391 1398  1415 1417 1415 1403 
 NH2 scissor 1601 1615 1613 1596  1588 1597 1593 1581 
 C1–Oa stretch 1795 1751 1765 1755  1784 1637 1765 1780 
 S–H stretch 2607 2534 2617 2621  2584 2635 2570 2523 
 C2–H stretch 2909 2903 2908 2956  2816 2946 2942 3006 
 CH2 s-stretch 2962 2998 2960 2988  2981 2994 2992 2936 
 CH2 as-stretch 3062 3058 3057 3050  3096 3060 3061 3030 
 NH2 s-stretch 3394 3394 3390 3420  3353 3460 3302 3315 
 NH2 as-stretch 3482 3474 3478 3517  3423 3611 3632 3413 

 Ob–H stretch 3508 3257 3517 3695  3626 3632 3404 3317 
           

 the stretching S–H bands can be attributed to the hydrogen-bonded 
interactions with the surface sulfur atoms, which have caused a 

weakening of the S–H bonds. The stretching Ob–H modes at 3508, 

3257, 3517, and 3695 cm 
1
 are assigned to the cysteine adsorbed in 

the flat, SH-end, CH–N-end and Oa-end adsorption configurations 

respectively. The NH2 symmetric and asymmetric stretching 

frequencies (3394; 3482 cm 
1
) can be assigned to the lowest-energy 

flat configuration, whereas the CH2 symmetric and asymmetric 

stretching frequencies (2962; 3062 cm 
1
) are assigned to those on 

FeS{001}.  
For the cysteine interactions with the {011}, {100}, and {111} 

surfaces, the S–H stretching bands of cysteine at 2584, 2590, and 

2583 cm 
1
 are assigned to the lowest-energy adsorption 

configurations, respectively (Tables 6 and 7). When compared to the 

gas phase S–H bands at 2625 cm 
1
, they indicate a softening of the 

vibrational modes and therefore weakening of the S–H bonds. 

Similar results were reported from Fourier transform infrared 

spectroscopy (FT-IR) for the interactions of the thiol groups with 

minerals and metal surfaces, where the stretching S–H band at 2562 

cm 
1
 vanishes.

57–60
 The stretching Ob–H modes for the lowest-

energy cysteine configurations on the {011}, {100}, and {111} 

surfaces are observed at 3626, 3622, and 3620 cm 
1
 respectively. 

Compared to the gas phase stretching Ob–H band at 3669 cm 
1
, it is 

worth noting that there is a 

reduction in the stretching Ob–H modes, which is in agreement with 

the hydrogen-bonded interactions in these complexes with longer 

Ob–H bond lengths. We have also observed softening of the 

symmetric and asymmetric stretching NH2 modes, (3353; 3423 cm 
1
), (3343; 3413 cm 

1
), and (3313; 3411 cm 

1
), respec-tively, assigned 

to the lowest-energy adsorption configurations on the {011}, {100}, 
and {111} surfaces. 
 
3.8 Equilibrium crystal morphologies 
 

Wulff
75

 and Gibbs
94

 showed that equilibrium morphologies of 

minerals can be obtained from their surface energies and we 

investigated whether the morphology of mackinawite is changed by 

the adsorption of cysteine onto its surfaces, by comparing the 

morphology of the clean material with that calculated from the 

surface energies after adsorption of cysteine. Lattice dynamics 

simulations have shown that the contribution of the excess entropy 

term to the surface free energy is small compared to the enthalpy 

term, as the diff erences between the entropies of the bulk and the 

surface are small and hence for solid surfaces the surface energy is a 

close approximation of the surface free energy.
111

 Thus, the surface 

energies can be assumed to deter-mine the equilibrium morphology 

of the crystal. This approach has been employed in the calculation of 

the eff ect of surface adsorbates on the thermodynamic morphologies 

of many diff erent 

 

 

Table 7 Molecular vibrational frequencies (in cm 1) of adsorbed cysteine on FeS{100} and FeS{111} surfaces 
 
  FeS{100}     FeS{111}    

Assignment  Fe–NS–Fe Fe–N Fe–O Fe–NS–Fe Fe–S–Fe Fe–OO–Fe Fe–N 
         

C3–S stretch 700 740 761  693 754 751 741 

C1–Ob stretch 1101 1121 1083  1106 1138 1071 1117 
C3–C2–H bend 1387 1234 1295  1383 1289 1290 1247 
CH2 scissor 1413 1407 1423  1418 1415 1418 1410 
NH2 scissor 1589 1579 1598  1590 1593 1587 1583 
C1–Oa stretch 1779 1776 1630  1780 1765 1633 1757 
S–H stretch 2590 2533 2637  2583 2570 2615 2538 
C2–H stretch 2816 3013 2954  2815 2942 2953 2973 
CH2 s-stretch 2979 2926 2990  2975 2992 2987 2920 
CH2 as-stretch 3063 3023 3063  3059 3061 3060 3017 
NH2 s-stretch 3343 3314 3467  3313 3302 3457 3312 
NH2 as-stretch 3413 3410 3610  3411 3632 3603 3411 

Ob–H stretch 3622 3319 3632  3620 3404 3601 3307 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

P
u
b

li
sh

ed
 o

n
 2

2
 S

ep
te

m
b

er
 2

0
1
6

. 
D

o
w

n
lo

ad
ed

 b
y
 C

ar
d
if

f 
U

n
iv

er
si

ty
 L

ib
ra

ri
es

 o
n

 2
7

/0
1

/2
0
1

7
 1

0
:5

1
:3

5
. 

 

 

 
Table 8 Calculated surface energies of pure mackinawite before (gr) and 

after cysteine adsorption (gcysteine) 
 

Surface gr (J m 2) gcysteine (J m 2) 

{001} 0.19 0.21 
{011} 0.95 0.72 
{100} 1.04 0.81 
{111} 1.51 0.76 
   

 

materials, e.g. oxides, carbonates, phosphates and sulfides,
111–116

 

where good agreement was obtained with experiment. We have 

therefore employed the same approach here to obtain the 

morphology of the FeS crystal and investigate the effect of cysteine 

adsorption on the expression of different low-index surfaces in the 

resulting morphology, using the calculated surface energies listed in 

Table 8. The order of increasing surface energies, and therefore 

decreasing stability of the dry FeS surfaces, was determined to be 

{001} o {011} o {100} o {111},
34

 which is consistent with the 

results obtained from the selected area electron diffraction (SAED) 

analysis of FeS nanocrystals.
90

 The {001} surface is by far the most 

stable surface of FeS because its creation only involves breaking the 

weak vdW interactions between the sulfide layers, with negligible 

relaxation of the surface species. Except for the {001} surface, all 

the other FeS surfaces considered were stabilised considerably by 

the adsorption of cysteine (Table 8). The stabilisation of the {011}, 

{100}, and {111} surfaces compared to the {001} surface can be 

attributed to the strong binding of cysteine to these surfaces, whereas 

on the {001} surface it is only weakly physisorbed owing to 

repulsive interactions between the negatively charged S ions 

terminating the surface and the adsor-bate’s O, S and N ions. The 

strength of cysteine adsorption on various FeS surfaces is consistent 

with the trend generally observed for the thermodynamic stabilities 

of the surfaces, where the less stable surfaces are more reactive 

towards adsorbing species.
117

 The {001} surface, however, remains 

the most stable surface after adsorption of cysteine, with a surface 

energy of 0.21 J m 
2
. 

 
Shown in Fig. 9a is the morphology of the clean FeS crystal, 

which reveals thin and tabular crystal morphology, with the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9 Equilibrium crystal morphology of (a) clean FeS and (b) cysteine 

modified FeS. 

  
 
 

 
facet corresponding to the {001} orientation enclosing the largest 

area. The edges of the clean FeS crystals are formed by the {011}, 

{100}, and {111} facets. Similar observations were made from high 

resolution transmission electron microscope (HRTEM) examination 

of FeS aggregates.
90

 Since the surface energies change as an eff ect 

of cysteine adsorption, the mor-phology is altered as shown in Fig. 

9b. As expected the stronger binding of the cysteine molecule to the 

{011}, {100}, and {111} surfaces, rather than the {001} facet, 

causes these reactive surfaces to become more prominent in the 

crystal morphology in the presence of cysteine, owing to their 

decreased surface energies, and therefore increased stability. Crystal 

growth is hindered in the {011}, {100}, and {111} orientations 

compared to the {001} orientation, which interacts weakly with 

cysteine. As such, the FeS moiety grows much more rapidly 

perpendi-cular to the {001} surface, rather than extending it 

horizontally. In essence, the {001} surface becomes less dominant in 

morpho-  
logy with respect to other surfaces, as is found in many crystals 

grown in the presence of growth-modifying moieties.
118,119

 It  
should be noted, however, that these results are based on the 

adsorption of only one cysteine molecule on each FeS surface 

simulated cell, whereas increasing the cysteine coverage on the 

surfaces may conceivably lead to further expression of the reactive 

surfaces in the morphology. These results are in agree-ment with 

experimental results, which showed that cysteine stabilizes the 

surfaces of FeS nanoparticles during synthesis, thereby modifying 

the shape and size as revealed by scanning electron microscopy 

(SEM).
46

 The greater expression of the more reactive surfaces in the 

FeS particle grown in the presence of cysteine or similar surfactants 

is expected to enhance the catalytic performance of the FeS 

nanoparticles. 

 

 

4. Summary and conclusions 
 
We have studied the adsorption of the amino acid cysteine onto the 

low-index {001}, {011}, {100}, and {111} surfaces of FeS, by 

means of dispersion-corrected density functional theory calculations. 

We found that the strength of adsorption of cysteine onto the low-

index FeS surfaces is related to the stability of diff erent surfaces, 

where it adsorbs most strongly onto the least stable FeS{111} 

surface and most weakly onto the most stable FeS{001} surface; the 

adsorption energy decreases in the order FeS{111} 4 FeS{100} 4 

FeS{011} 4 FeS{001}. Hydrogen-bonded and vdW interactions are 

found to play important roles in stabilizing the cysteine molecule on 

the {001} surface, whereas on the {011}, {100}, and {111} surfaces, 

cysteine is anchored via direct Fe–S and Fe–N chemical bonds. 

Consistent with the formation of new bonds between the surface and 

cysteine, we observed electron density accumulation around centers 

of the newly formed bonds. Analyses of the electronic structures also 

reveal strong hybridisation between the sulfur and nitrogen p-orbitals 

of the cysteine molecule and the d-orbitals of the interacting surface 

Fe ions, which gave rise to small net charge transfer from the surface 

to the adsorbed cysteine. 

 
 
 
  



 
 
 
 
 
 
 
 
 

 

 

 
The stabilities of the low-index mackinawite surfaces are shown 

to be aff ected by the adsorption of cysteine. Except for the {001} 

surface, all the other FeS surfaces considered were stabilised 

considerably by the adsorption of cysteine, especially the most 

reactive {111} surface. Since the surface energies change as an 

eff ect of cysteine adsorption, the equilibrium morphology is altered. 

The strong adsorption of the cysteine molecule onto the {011}, 

{100}, and {111} surfaces, in preference to the {001} facet, changes 

the FeS crystal shape, with the reactive surfaces becoming more 

expressed in the equilibrium morphology. The greater expression of 

the more reactive surfaces in the FeS nanocrystals grown in the 

presence of cysteine or similar surfac-tants should give rise to an 

enhancement of the catalytic perfor-mance of the FeS nanoparticles. 

The structural parameters, vibrational frequency assignments and the 

electronic properties from this work may be relevant for the 

investigation of self-assembled cysteine monolayers, dimer-

adsorption, and other higher coverage structures in future works. 
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