
Reducing the Index of Differential-Algebraic

Equations by Exploiting Underlying

Structures

Ross McKenzie

A thesis

submitted to the School of Mathematics

of Cardiff University

in partial fulfilment of the requirements

for the degree of

PhD of Mathematics

2016

Summary. Differential-algebraic equations arise from the equation based modelling of phys-

ical systems, such as those found for example in engineering or physics. This thesis is con-

cerned with square, sufficiently smooth, potentially non-linear differential-algebraic equa-

tions. Differential-algebraic equations can be classified by their index. This is a measure of

how far a differential-algebraic equation is from an equivalent ordinary differential equation.

To solve a differential-algebraic equation one usually transforms the problem to an ordinary

differential equation, or something close to one, via an index reduction algorithm. This

thesis examines how the index reduction (using dummy derivatives) of differential-algebraic

equations can be improved via structural analysis, specifically the Signature Matrix method.

Improved and alternative algorithms for finding dummy derivatives are presented and then

a new algorithm for finding globally valid universal dummy derivatives is presented. It is

also shown that the structural index of a differential-algebraic equation is invariant under

order reduction.

Declaration

This work has not been submitted in substance for any other degree or award at this or

any other university or place of learning, nor is being submitted concurrently in candidature

for any degree or other award.

Signed (candidate) Date

Statement 1

This thesis is being submitted in partial fulfilment of the requirements for the degree of

PhD of Mathematics.

Signed (candidate) Date

Statement 2

This thesis is the result of my own independent work/investigation, except where other-

wise stated, and the thesis has not been edited by a third party beyond what is permitted by

Cardiff University’s Policy on the Use of Third Party Editors by Research Degree Students.

Other sources are acknowledged by explicit references. The views expressed are my own.

Signed (candidate) Date

iii

iv DECLARATION

Statement 3

I hereby give consent for my thesis, if accepted, to be available online in the University’s

Open Access repository and for inter-library loan, and for the title and summary to be made

available to outside organisations.

Signed (candidate) Date

Statement 4: Previously Approved Bar On Access

I hereby give consent for my thesis, if accepted, to be available online in the University’s

Open Access repository and for inter-library loans after expiry of a bar on access previously

approved by the Academic Standards and Quality Committee.

Signed (candidate) Date

Acknowledgements

It would not have been possible to write this thesis and carry out the work within it

without the help and support of so many people around me. To mention just a few here

feels like an injustice to anyone I may miss out, but I shall endeavour to do my best.

This thesis would not have been possible without the expertise and guidance of my supervisor

John Pryce, for his constant support I am and have been extremely grateful.

When visiting Ned Nedialkov over several summers in Canada he always did his utmost to

make me feel welcome and to make my stay enjoyable and productive, for that I thank him.

I would also like to thank Peter Harman for his guidance and industrial perspective.

Without Guangning Tan to act as a constant sounding board and friend I have no doubt my

time as a PhD student would have been a much less rewarding and fruitful one. I particularly

would like to thank him for entertaining me on my visits to McMaster.

I thank the Leverhulme Trust and Cardiff University Mathematics Department for their

financial support during the completion of this thesis.

My time in the applied mathematics group at Cardiff was made much more enjoyable due

to the many opportunities afforded to me by the SIAM Student Chapter there and for that

I would like to thank everyone involved in the chapter.

I would like to thank my family, particularly my parents Robert and Lindsey, whose support

I cannot thank them for enough.

Last but by no means least I would like to thank all my friends I’ve made both in Cardiff

and elsewhere without whom I’m quite convinced I wouldn’t be where I am today, you know

who you are and thank you, really, thank you.

v

Contents

Chapter 1. Introduction 1

1.1. Motivation 2

1.2. Common Issues, A Summary of Notation and Terms 4

1.3. Different Index concepts 6

Chapter 2. Structural Analysis 11

2.1. Introduction to Structural Analysis - The Signature Matrix Method 11

2.2. A Brief Overview 11

2.3. Linear Assignment Problems 13

2.4. Signature Method By Example 21

2.5. Signature Method - Basics 25

2.6. Standard Solution Scheme 28

2.7. Exploiting DAE BTFs 37

2.8. Classifying Non-Canonical Offsets 39

Chapter 3. Dummy Derivatives 45

3.1. Introduction to Dummy Derivatives 45

3.2. Original Dummy Derivative Algorithm 46

3.3. Reordered Dummy Derivative Algorithm 52

3.4. Using Structural Analysis to Simplify Dummy Derivatives 54

3.5. Alternative Algorithms 66

3.6. Dummy Pivoting 79

Chapter 4. Exploiting Non-Canonical Offsets—Universal Dummy Derivatives 87

4.1. The Basic Algorithm 87

vii

viii CONTENTS

4.2. The Reduced Universal Dummy Derivative Form 95

4.3. Numerical Results for Universal Dummy Derivatives 103

Chapter 5. Order Reduction Leaving the Structural Index Unchanged 109

5.1. Introduction to Order Reduction - Why It’s Non-Trivial for DAEs 109

5.2. Order Reduction and the Structural Index 111

5.3. Invariant DOF Under Order Reduction 114

5.4. Order Reduction and Canonical Offsets 117

5.5. Invariant Structural Index Under Order Reduction 130

Chapter 6. Conclusions and Future Work 133

6.1. Conclusions 133

6.2. Future Work 134

Appendix A. Code for the Simple Pendulum Using the Signature Matrix Method 137

Appendix B. Code for the Simple Pendulum Using Universal Dummy Derivatives 145

Bibliography 155

CHAPTER 1

Introduction

Differential-algebraic equations (henceforth DAEs) arise from the equation based mod-

elling of physical systems, such as those found in engineering or physics, with problems

specifically arising from chemical distillation [61], electronic circuits [60] and robotics [7].

Models are now frequently built interactively using different components from large libraries

in environments such as GPROMS [43], MAPLESIM [26], SIMULINK [27] and an assort-

ment of tools that use the Modelica modelling language (e.g. OpenModelica [16], Dymola

[12] and SimulationX [23]). This way of modelling systems can lead to large scale DAEs

[17]. A common notion in DAE theory is the differentiation index [6], see §1.2. It is well

known that solving a high index (larger than one) DAE directly is numerically difficult [19],

hence modelling tools usually perform some structural analysis to determine the index of the

problem. Up until recently this analysis was usually based on Pantelides’ algorithm [41],

although we will be using the Signature Matrix method [45] (see Chapter 2) for our analysis,

as it applies to DAEs of arbitrary order (see Chapter 5) and provides us with extra structural

information we wish to exploit (see Chapter 3). After finding a DAE’s index the problem is

usually to convert (or reduce) the DAE to an equivalent system of index 1 or 0 (an ODE), as

these problems are easily solvable by commonly used solvers, e.g. DASSL [42], SUNDIALS

[22] and recently the MATLAB solver ode15i [57]. Thus our aim is to reduce a large class

of high index DAEs to index 1 or 0 algorithmically. We now provide a brief overview of this

thesis. Chapter 1 provides an introduction to differential-algebraic equations and different

ways of classifying them. Chapter 2 provides an overview of the Structural Analysis via

a Signature Matrix, with detail and derivations not previously seen in the literature. The

chapter concludes with new material on classifying different potential offset vectors, which

has proved fruitful for developing new index reduction algorithms. Chapter 3 gives a brief

1

2 1. INTRODUCTION

overview of the Dummy Derivative index reduction procedure and then goes on to give new

algorithms to speed up the procedure. The chapter provides new material on unifying the

method with the Signature Matrix method and goes on to give several algorithms for finding

necessary dummy derivatives and dummy derivatives efficiently using a block form. Chap-

ter 4 gives a new algorithm for finding dummy derivatives that are globally valid, thereby

removing some of the complications inherent in the original algorithm. Finally Chapter 5

provides a proof that the structural index is invariant under a specific form of order reduc-

tion. Such a result was not known in the literature previously and is of course very important

in practice. If the structural index could increase under order reduction then one would have

to be particularly careful when applying the dummy derivative algorithm, since it can yield

an index 1 DAE (or ODE) with order larger than 1 when applied to a high index DAE of

order 1. Chapter 6 provides a summary of conclusions for each chapter and future works the

author believes would prove fruitful.

1.1. Motivation

Before giving any motivation we need to define what we mean by DAEs. We write(
x

(`)
j

)
(j,`)∈J

with J = {(j, `) | j ∈ {1, . . . , n} and ` ∈ {0, . . . , lj}} to compactly denote n

variables and their derivatives with respect to t up to some order lj, where lj depends on

variable xj. We define a general DAE:

Definition 1.1.1 (A Differential Algebraic Equation). A differential algebraic equation,

DAE, is a set of m equations and n variables, dependent on a variable t usually considered

to be time. We label equations by i and variables by j so that we have derivatives of each

variable up to some order lj. More compactly

(1) fi(t;
(
x

(`)
j

)
) = 0,

where ` ∈ {0, . . . , lj} and i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}.

We avoid the case where the DAE is over or under determined and only look at the

case where n = n1 = n2 for the majority of this thesis. Perhaps the most straightforward

1.1. MOTIVATION 3

and informative physical example of a DAE is found by considering the simple pendulum in

Cartesian coordinates. We measure from left to right in the x direction, downwards in the

y direction and employ Newton’s law to find equations for the force in these directions. We

keep the length of the pendulum fixed, so that it will be moving in a circle. The variables x

and y represent displacement in the horizontal and vertical directions respectively and λ is

a multiple of tension in the rod, all of which depend on time t. We let G be the constant for

acceleration due to gravity, L be the length of the rod and obtain the following equations:

(2) @
@

@
@@

~
s -

?
y

x

Pendulum bob, mass=m


a(t) = mẍ(t) + λ(t)x(t) = 0,

b(t) = mÿ(t) + λ(t)y(t)−mG = 0,

c(t) = x2(t) + y2(t)− L2 = 0.

For the duration of the thesis we will assume m = 1 for simplicity. We now briefly check these

equations make sense via dimensional analysis and discover how λ relates to tension. Firstly

[ẍ] = [LT−2] which from a means that [λx] = [λL] and thus for consistency [λ] = [T−2].

Now, [tension] = [MLT−2] and thus for consistency we must have that [λ] =
[

tension
ML

]
. We

also note that b and c are dimensionally correct, since b concerns only the dimension [LT−2]

and c has terms only in [L2]. This formulation (2) contains both differential and algebraic

equations and it will be shown later that it requires differentation in order to solve for x, y

and λ. Hence (2) is indeed an interesting DAE (all ODEs are DAEs, albeit not interesting

ones for the purposes of this thesis). Clearly this is an artificial example, as one could instead

write the simple pendulum in polar coordinates as an ODE in θ:

(3) θ̈ +
G

L
sin θ = 0.

Rewriting any arbitrary DAE as an ODE, or something ‘close’ to an ODE (index 1 DAE, see

Definition 1.2.1 for more details), is an open non-trivial problem. There have been techniques

developed that attempt to solve this problem, the Dummy Derivative method [29] being the

most commonly employed. This thesis aims to develop a method of doing such a conversion

by exploiting the structural analysis of the Signature Matrix method of [45] to inform the

4 1. INTRODUCTION

Dummy Derivative algorithm [30] to efficiently find globally valid conversions for a wide

class of DAEs.

1.2. Common Issues, A Summary of Notation and Terms

We begin by considering the simple DAE (where u(t) is some arbitrary function):
x1(t)− u(t) = 0,

x1(t)− ẋ2(t) = 0.

Solving this DAE requires integrating x2(t) =
∫
u(t) dt+C where C is a constant. So this is

actually an ODE (or index 0 DAE, see Definition 1.2.1). Consider however the DAE where

instead of differentiating x2(t) we differentiate x1(t) in the second equation:

(4)


x1(t)− u(t) = 0,

ẋ1(t)− x2(t) = 0.

Solving requires differentiating the first equation, yielding x2(t) = u̇(t), so this is not an

ODE (it’s an index 2 DAE).

Let us consider again the simple pendulum example (2) and attempt to solve it naively.

First let’s try to reduce the problem to an ODE where we can solve for the highest order

derivatives of each variable in each equation. First λ appears undifferentiated throughout,

so we will need to differentiate equations a and b. This will mean we now have equations

for x(3)(t) and y(3)(t), so we will have to differentiate c(t) three times. This gives us the

following, which can be solved to an ODE in x(3)(t), y(3)(t) and λ̇(t):

(5)


ȧ(t) = x(3)(t) + λ̇(t)x(t) + λ(t)ẋ(t) = 0,

ḃ(t) = y(3)(t) + λ̇(t)y(t) + λ(t)ẏ(t) = 0,

c(3)(t) = 6ẋ(t)ẍ(t) + 2x(t)x(3)(t) + 6ẏ(t)ÿ(t) + 2y(t)y(3)(t) = 0.

1.2. COMMON ISSUES, A SUMMARY OF NOTATION AND TERMS 5

However, it turns out this problem has 7 degrees of freedom, whereas our original DAE

formulation has only 2—one will obtain the same solution when starting at a consistent

point of (2), but there are many solutions to (5) other than just those that satisfy (2). This

phenomenon is called integration drift. This drift occurs because in solving our ODE (5) we

do not satisfy the so called hidden constraints of the problem:

(6)



a(t) = ẍ(t) + λ(t)x(t) = 0,

b(t) = ÿ(t) + λ(t)y(t)−G = 0,

c(t) = x2(t) + y2(t)− L2 = 0,

ċ(t) = 2x(t)ẋ(t) + 2y(t)ẏ(t) = 0,

c̈(t) = 2ẋ(t)2 + 2x(t)ẍ(t) + 2ẏ(t)2 + 2y(t)ÿ(t) = 0.

e.g for the pendulum the length of our rod will vary, since the circle constraint equation c

is not explicitly satisfied. There are two intuitive ways one may attempt to satisfy these

constraints that will be explored in this thesis. The first is to think of these equations as

specifying a consistent manifold and project to it—this is done in the Signature matrix

method, see Chapter 2 and [45]. The second is to add the equations to the system directly,

then locally choose some of the variables to be considered as algebraic (so as to retain a

square system) — this is done in the Dummy Derivative method, see Chapter 3 and [29].

The above example motivates us to define a concept of distance from an equivalent ODE,

given in [3] for first order DAEs:

Definition 1.2.1 (Differentiation Index). The minimum number of times that all (or

part) of a DAE F (t,x, ẋ) = 0 has to be differentiated with respect to t to determine ẋ as a

function of x and t is the differentiation index.

Note: this index may be locally valid depending on the underlying structure of the

DAE. For the purposes of this thesis we consider it to be the largest globally valid number of

differentiations. The differentiation index is only defined for first order DAEs, F (t,x, ẋ) = 0.

6 1. INTRODUCTION

If we reformulate to order 1 we get:

ẋ(t)− u(t) = 0,(7)

ẏ(t)− v(t) = 0,(8)

u̇(t)− λ(t)x(t) = 0,(9)

v̇(t)− λ(t)y(t)−G = 0,(10)

(x(t))2 + (y(t))2 − L2 = 0..(11)

Differentiating (11) and using (7) and (8) to simplify gives:

(12) u(t)x(t) + v(t)y(t) = 0.

Differentiating (12) and using equations (7)—(11) to simplify yields:

(13) λ(t)L2 −Gy(t) + (u(t))2 + (v(t))2 = 0.

Differentiating (13) and using equations (7)—(12) to simplify leads to:

(14) λ̇(t)L2 − 3Gv(t) = 0.

We can now use equations (7)—(14) to solve for ẋ(t), ẏ(t), λ̇(t), u̇(t) and v̇(t) so the DAE

has differentiation index 3.

1.3. Different Index concepts

There are several different concepts of index for DAEs other than the differentiation

index, such as the perturbation index, tractability index, geometric index, strangeness index,

kroneker index, nilpotency index and structural index to name a few, for more information

see [34]. What follows is a brief overview of some of these concepts to give the reader an

overview of what is meant when one talks about the index of a DAE. Throughout this thesis

we shall use the differentiation and structural index.

1.3. DIFFERENT INDEX CONCEPTS 7

1.3.1. Derivative Array. A common notion in DAE index classification is the Campbell-

Gear derivative array equations [25]. This is a the set of equations necessary such that one

can find the differentiation index (i.e. solve for first order derivatives of all variables.) For

example, consider the first order DAE:

F (t,x, ẋ) = 0.

Following the process illustrated for the simple pendulum in the previous section one will

have to differentiate some set of these equations to solve for each derivative uniquely. Given

a more complicated DAE than the simple pendulum it may not be obvious which equations

need to be differentiated, so we differentiate each equation νd times say:

d

dt
F (t,x, ẋ) = 0,

d2

dt
F (t,x, ẋ) = 0,

...
...
...

dνd

dt
F (t,x, ẋ) = 0.

This enlarged set of equations is called the derivative array (of level νd). If we are able to

solve for all first order derivatives of all variables at level νd (and not able to at a previous

level) then νd is the differentiation index of the DAE F (t,x, ẋ) = 0. As we can see from

considering such an array for the simple pendulum the number of equations one has to

consider in this approach can become very large, so we have a preference to working with a

reduced derivative array if possible.

1.3.2. Strangeness Index. The strangeness index was developed by Kunkel and Mehrmann

in [24]. It is found as the result of a larger hypothesis, for simplicity we illustrate the concept

on the linear constant coefficient DAE of differentiation index 2 and delay the definition until

after:

8 1. INTRODUCTION


ẋ(t)− y(t)− u(t) = 0,

x(t)− v(t) = 0.

In matrix form this is given by:Is 0

0 0

ẋ(t)

ẏ(t)

 =

 0 I

Is 0

x(t)

y(t)

+

u(t)

v(t)

 .

Here u(t) and v(t) are arbitrary forcing functions and Is is an identity matrix of size s,

corresponding to the number of differential variables. Kunkel and Mehrmann consider the

Is entry in both position (1, 1) of the left hand matrix and (2, 1) of the right hand matrix

as ‘strange’, one has some number of differential and algebraic variables and thus must

differentiate as was demonstrated above in order to find ẏ(t). If one differentiates the second

equation and subtracts the first from it then they get:

y(t) + u(t) + v̇(t) = 0

and a new matrix system:0 0

0 0

ẋ(t)

ẏ(t)

 =

 0 I

Is 0

x(t)

y(t)

+

u(t) + v̇(t)

v(t),


where this strangeness has been eliminated. Hence this problem has strangeness index 1.

Given an arbitrary first order constant coefficient linear DAE

Eẋ(t) = Ax(t) + f(t),

1.3. DIFFERENT INDEX CONCEPTS 9

one looks for permutation matrices P and Q (via a singular value decomposition (SVD))

such that the DAE reduces to a canonical form:
Is 0 0 0

0 Ia 0 0

0 0 0 0

0 0 0 0


ẋ(t) =


0 ∗ 0 ∗

0 ∗ 0 ∗

0 0 Ia 0

Is 0 0 0


x(t) + f(t).

Here * is some potentially non-zero entry. If Is exists then the system exhibts some strange-

ness, a differentiation is performed, new permutation matrices are found and the new differ-

entiated system’s Is are checked iteratively. If Is does not exist then the system is strangeness

free and we stop our iteration. The number of iterations of this procedure to arrive at a

strangeness free DAE is called the strangeness index. For a full discussion of the strangeness

index concept and its use in numerical simulation we refer to [54].

1.3.3. Perturbation Index. A DAEs index in some sense quantifies how difficult a

DAE is to solve numerically, the perturbation index considers this problem explicitly. When

solving a DAE numerically the resulting solution will be slightly removed from the actual

solution, this index gives us a way of measuring the sensitivity of the DAE to such pertur-

bations, [4] and [13].

Definition 1.3.1 (Perturbation Index). Consider a DAE and a slightly perturbed DAE:

F (t,x, ẋ) =0,

F (t, x̂, ˙̂x) =δ.

If x is a solution to the unperturbed DAE, then the DAE has perturbation index k along x

if k is the smallest number such that for a solution to the perturbed DAE x̂ the following

bound holds with constant C:

‖x− x̂‖ ≤ C(‖x(t0)− x̂(t0)‖∞ + ‖δ‖+ ‖δ̇‖+ · · ·+ ‖δ(k−1)‖).

For example, recall DAE (4) and perturb the system to:

10 1. INTRODUCTION


x̂1(t)− u(t) = δ(t),

˙̂x1(t)− x̂2(t) = 0,

so that x̂1(t) = u(t) + δ(t) and x̂2 = u̇(t) + δ̇(t). Consider our norm to be the standard

Euclidean norm for simplicity, although the following argument works for any norm:

‖x(t)− x̂(t)‖ =

∥∥∥∥∥∥
δ(t)
δ̇(t)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
δ(t)

0

∥∥∥∥∥∥+

∥∥∥∥∥∥
 0

δ̇(t)

∥∥∥∥∥∥ ≤ C

(∥∥∥∥∥∥
δ(t0)

δ̇(t0)

∥∥∥∥∥∥
∞

+‖δ(t)‖+‖ ˙δ(t)‖

)
.

Hence we have a perturbation index of 2. From [18] we have that the perturbation index

is always equal to or one greater than the differentiation index. The perturbation index

is extended for k = 0 in [34] so that, when defined, the perturbation index equals the

differentiation index, but a further discussion is outside the scope of this thesis.

1.3.4. Geometric Index. The leading principle behind the geometric index [50] and

[52] (which given a smooth DAE is equal to the differentiation index) is to think of DAEs

as differential equations on manifold, e.g. an ODE is differential equation on the manifold

R
n. The idea is to construct a sequence of sub-manifolds via local charts (each stage in the

sequence being equivalent to a level of differentiation in the derivative array). The number

of differentiations one goes through to write the DAE as a differential equation on a manifold

is called the geometric index.

1.3.5. Structural Index. Rather than looking at the numerical features of a given

DAE the structural index aims to use structural properties to generate a necessary set of

differentiation steps to produce a reduced derivative array. In practice this is usually done

either by the graph theoretical Pantelides algorithm [41] or the matrix based signature matrix

method [45]. We defer an in depth discussion of how this index is calculated to Chapter

2. In all that follows, unless otherwise stated, when we refer to the index of a DAE we will

mean its structural index, denoted νs.

CHAPTER 2

Structural Analysis

2.1. Introduction to Structural Analysis - The Signature Matrix Method

The Signature matrix method originally given in [45] by Pryce is a technique that studies

a DAEs underlying structure to identify all necessary hidden constraints. Originally the

approach was discovered by means of looking for a Taylor series solution to arbitrary order

for fully non-linear DAE’s [44], although we show in Chapter 3 that we can use the method

to inform other solution methods. The general idea is that, given a high index DAE we

know there exist some number of hidden constraints that are derivatives of equations given

by the original problem formulation in variables at higher order than in the original problem.

One seeks to match some subset of all derivatives of each equation at an arbitrary order to

a minimum number of derivatives at an arbitrary order that are necessary to solve for the

highest order derivatives of each variable. In §2.3 and §2.4 we show how one can derive the

method from first principles, which has not been done in detail in the literature. In §2.5

we give an overview of the method and demonstrate how it works on simple examples. In

§2.8 we describe the different types of offset vector the method can use to provide a valid

solution scheme—such distinctions have not been previously studied in the literature and

are new material for the purposes of this thesis, without which the method of §4 would not

be possible. In §2.7 we give natural sparsity patterns and block forms one can consider when

applying the signature method.

2.2. A Brief Overview

We give a brief overview of the signature matrix method to give later exposition context.

Take a system of n equations fi = 0 in n unknowns xj, where the equations may have

derivatives of the n unknowns. The unknowns xj are all functions of t, usually considered to

11

12 2. STRUCTURAL ANALYSIS

be time, so that we do not have any partial derivatives in our initial formulation. We begin

by finding the problem’s signature matrix Σ, with entries:

(15) σi,j =


Order of highest derivative of xj in fi if xj occurs in fi,

−∞ otherwise.

The approach then finds a highest value transversal (HVT) for our problem. A transversal T

is any choice of n positions (i, j) in an n×n matrix, say H, such that only one entry in each

row and column of H is selected. We say the value of a transversal T is Val(T) =
∑

(i,j)∈T
σi,j.

A HVT, say T1, is such that Val(T1) ≥ Val(T) for all transversals T . We denote the value

of a HVT as Val(Σ) and say a DAE is structurally non singular if Val(Σ) ≥ 0.

We then find non-negative integer valued offset vectors c and d satisfying:

(16) σi,j ≤ dj − ci with equality on a HVT,

and we call such offset vectors valid. We will usually consider another constraint on the

offsets, min
i
ci = 0, and we call such offsets normalised.

The method uses a System Jacobian J with entries:

(17) Ji,j =
∂fi

∂x
(dj−ci)
j

=


∂fi

∂x
(σi,j)

j

if dj − ci = σi,j,

0 elsewhere.

A stage by stage solution process, with stages indexed by k, is constructed using equations

(18) f
(k+ci)
i ∀i such that k + ci ≥ 0

to solve for variables

(19) x
(k+dj)
j ∀j such that k + dj ≥ 0

at each stage.

Throughout our analysis we will write Σ and J in tableau form as appropriate, e.g. for a

2.3. LINEAR ASSIGNMENT PROBLEMS 13

3× 3 DAE:

Σ =

x1 x2 x3 ci


f1 ∗ ∗ ∗ c1

f2 ∗ ∗ ∗ c2

f3 ∗ ∗ ∗ c3

dj d1 d2 d3

J =

x
(d1)
1 x

(d2)
2 x

(d3)
3 ci


f
(c1)
1 ∗ ∗ ∗ c1

f
(c2)
2 ∗ ∗ ∗ c2

f
(c3)
3 ∗ ∗ ∗ c3

dj d1 d2 d3

entries * that equal−∞ and (structural) 0’s will be left blank in Σ and J respectively. We will

also make use of a sparsity pattern (a subset of positions (i, j)) corresponding to non blank

entries in these tableau’s, S for Σ and S0 for J. From this we have the following equation

for calculating the structural index, which is always an upper bound on the differentiation

index νs:

(20) νs = max
i
ci +

 1 if some dj is zero,

0 otherwise.

2.3. Linear Assignment Problems

We seek to find an algorithm for finding the offsets from an arbitrary structurally non-

singular signature matrix Σ, as specified by (16). We consider linear programming problems

(specifically, primal problems) and their duals. It is worth noting the dual to a dual problem

is the primal problem. We will view maximisation problems as primal and minimisation

problems as dual. They are of the form given in Table 1. We now give an explanation, from

Table 1. Primal and dual problems.

Maximise f1 Minimise f2

eTx = f1 bTy = f2

Ax ≤ b ATy ≥ e

x ≥ 0 y ≥ 0

[2], as to why these problems are considered dual to each other. Let x and y be feasible

solutions (satisfy all constraints) of the primal and dual problems respectively, then we have

14 2. STRUCTURAL ANALYSIS

that yTA ≥ eT , so yTAx ≥ eTx because x ≥ 0. Similarly, yTAx ≤ yTb, combining these

inequalities gives eTx ≤ yTb. We now note bTy = yTb, since b and y are column vectors.

Thus it follows that f1 ≤ f2. This gives us the following theorem:

Theorem 2.3.1. (The Weak Duality Theorem) If x ∈ Rn is a solution to the primal and

y ∈ Rm is a solution to the dual problem, then

eTx ≤ yTAx ≤ bTy

as proved above. In fact this can be strengthened to give the following theorem from [5]

and [2]:

Theorem 2.3.2. (The Strong Duality Theorem) If either the primal or dual problem has

a finite optimal value then

i) The optimal values coincide.

ii) Optimal solutions to both problems exist.

We now formulate the structural analysis of the pendulum (2) as a minimisation problem

as an illustration of the general method that applies to an arbitrary DAE. Firstly we need

the DAE’s signature tableau as in §2.2:

Σ =

x y λ ci


a 2 −∞ 0 0

b −∞ 2 0 0

c 0 0 −∞ 2

dj 2 2 0

.

2.3. LINEAR ASSIGNMENT PROBLEMS 15

The objective function is Val(Σ) =
∑
j

dj −
∑
i

ci. The constraints come from dj − ci ≥

σi,j ∀(i, j) ∈ S, see (34). So in the pendulum we have the following constraints:

d1 − c1 ≥ 2,

d3 − c1 ≥ 0,

d2 − c2 ≥ 2,

d3 − c2 ≥ 0,

d1 − c3 ≥ 0,

d2 − c3 ≥ 0,

which give the following matrix system:

−1 0 0 1 0 0

−1 0 0 0 0 1

0 −1 0 0 1 0

0 −1 0 0 0 1

0 0 −1 1 0 0

0 0 −1 0 1 0





c1

c2

c3

d1

d2

d3


≥



2

0

2

0

0

0


.

This gives us a problem of the form ATy ≥ e which we now find the dual of, using Table 1.

The primal problem is thus to maximise 2x1,1 + 0x1,3 + 2x2,2 + 0x2,3 + 0x3,1 + 0x3,2—we’ve

chosen this way of numbering the entries of x for comparison with the σi,j later. We have

16 2. STRUCTURAL ANALYSIS

the following constraints: 

−x1,1 − x1,3 ≤ −1,

−x2,2 − x2,3 ≤ −1,

−x3,1 − x3,2 ≤ −1,

x1,1 + x3,1 ≤ 1,

x2,2 + x3,2 ≤ 1,

x1,3 + x2,3 ≤ 1,

which in matrix notation yields:

−1 −1 0 0 0 0

0 0 −1 −1 0 0

0 0 0 0 −1 −1

1 0 0 0 1 0

0 0 1 0 0 1

0 1 0 1 0 0





x1,1

x1,3

x2,2

x2,3

x3,1

x3,2


≤



−1

−1

−1

1

1

1


.

The vector b (the RHS of the above inequality) corresponds to the coefficient vector in the

objective function of the dual problem. This leads us to formulate the system as a linear

assignment problem as given in Table 2 We now prove that these problems are in fact the

Table 2. Pendulum primal and dual problems.

Maximise f1 Minimise f2∑
(i,j)∈S

σi,jxi,j = f1

∑
j

dj −
∑
i

ci = f2 ∀(i, j)∑
i|(i,j)∈S

xi,j = 1 ∀j dj − ci ≥ σi,j ∀(i, j) ∈ S∑
j|(i,j)∈S

xi,j = 1 ∀i dj ≥ 0 ∀j

xi,j ≥ 0 ∀(i, j) ci ≥ 0 ∀i

dual of one another. We consider only the primal and using techniques outlined in [2] recover

the dual. We begin by noticing that it’s possible to write the equality-to-1 constraints in

Table 2 on xi,j in several forms, as given in the Table 3. We choose the formulation given

2.3. LINEAR ASSIGNMENT PROBLEMS 17

Table 3. Cases for the primal formulation.

Case 0 Case 1 Case 2 Case 3∑
i|(i,j)∈S

xi,j = 1 ∀j
∑

i|(i,j)∈S
xi,j ≤ 1 ∀j

∑
i|(i,j)∈S

xi,j ≤ 1 ∀j
∑

i|(i,j)∈S
xi,j ≥ 1 ∀j∑

j|(i,j)∈S
xi,j = 1 ∀i

∑
j|(i,j)∈S

xi,j = 1 ∀i
∑

j|(i,j)∈S
xi,j ≥ 1 ∀i

∑
j|(i,j)∈S

xi,j = 1 ∀i

Case 4 Case 5 Case 6∑
i|(i,j)∈S

xi,j ≥ 1 ∀j
∑

i|(i,j)∈S
xi,j = 1 ∀j

∑
i|(i,j)∈S

xi,j = 1 ∀j∑
j|(i,j)∈S

xi,j ≤ 1 ∀i
∑

j|(i,j)∈S
xi,j ≤ 1 ∀i

∑
j|(i,j)∈S

xi,j ≥ 1 ∀i

by case 3:

(21) Maximise
∑

(i,j)∈S

σi,jxi,j,

subject to:

−
∑

i|(i,j)∈S

xi,j ≤ −1,(22)

∑
j|(i,j)∈S

xi,j = 1,(23)

xi,j ≥ 0 (i, j) ∈ S.(24)

If any σi,j = −∞, and the corresponding xi,j 6= 0, then the objective function is always

negative infinite and thus no feasible solution will exist. Hence, σi,j are only considered

when (i, j) ∈ S. We also note that b = (−1, ..., 1)T with a number of components equal to

the number of σi,j ∈ S with the −1’s coming from the RHS of (22) and the 1’s coming from

the RHS of (23). Also, we note that e = (σi,j | (i, j) ∈ S)T with entries ordered in rows

and then columns, so that we read off values in Σ from left to right row by row. We now

notice that this choice of constraints will give us a matrix, A, that has a −1 in it for every

σi,j ∈ S corresponding to (22) and a 1 in it for every σi,j ∈ S corresponding to (23), so in

each column there are exactly two entries, one −1 and one 1. Hence, AT will have exactly

one 1 and one −1 in each row. Hence ATy ≥ e will give equations of the form (something

from the second half of y) − (something from the first half of y) ≥ (σi,j | (i, j) ∈ S), which

18 2. STRUCTURAL ANALYSIS

are exactly the equations generated by (34) as we predicted, thus our y is (ci’s, dj’s)
T . From

[2] we have ‘If there are any equality constraints in the primal problem the corresponding

dual variables are not sign restricted’. Hence the different ways to formulate the primal

problem, shown in Table 3 will give several possible choices of non zero variables in the

dual. It is therefore possible to get unconstrained ci values. However, if we had all ci < 0

then we would try to find invalid canonical offsets, which is why we reformulated to give us

unconstrained dj’s using Case 3. Thus, Case 3 gives us dj − ci ≥ σi,j on a transversal (since

we restricted ourselves to S) and ci ≥ 0 which give us one hidden constraint, namely dj ≥ 0,

since σi,j ≥ 0 ∀(i, j) ∈ S, showing the problems in Table 2 are dual to one another.

It is always possible to permute Σ such that a HVT is on the main diagonal by permuting

rows and columns and provide an algorithm for finding the offsets from an n× n signature

matrix, with a HVT on the main diagonal (Note: we use Python-style in all algorithms in

this thesis, i.e. indentation is used to show the scope of a statement):

Algorithm 1 Algorithm to Find Offset Vectors

1: for j = 1 : n

2: dj = max
i=1:n

σi,j

3: for i = 1 : n

4: ci = 0

5: loop until ci = coldi for all i

6: for i = 1 : n

7: coldi = ci

8: for i = 1 : n

9: ci = di - σi,i

10: for j = 1 : n

11: dj = max
i=1:n

(σi,j + ci)

12: return c,d

2.3. LINEAR ASSIGNMENT PROBLEMS 19

We now prove that this algorithm terminates if and only if a HVT is on the main diagonal.

Firstly suppose it terminates. Then ci = di − σi,i and therefore σi,i = di − ci, which from

(34) means there is a HVT on the main diagonal.

Conversely, if there is a HVT on the main diagonal then the algorithm will terminate, since

each dj will either increase or remain constant with each iteration of the loop. If they remain

constant over all iterations then the algorithm will terminate, since each cj will be fixed. If

however during the loop we raise a ci in the second for loop then the equations will satisfy

the condition of having equality on a HVT, but may not be greater than σi,j everywhere. The

third for condition in the loop will increase the dj so that (34) is satisfied, although possibly

without equality on the HVT. This process will then repeat. Formally, if we consider each

loop iteration as a function, at each stage we input a vector c and get a new one c′. So that

we have a map:

(25) φ : c 7→ c′,

which is a weakly monotone function. That is, if we have two n-vectors c and c∗ with

ci ≤ c∗i ∀i ∈ {1, . . . , n} then φ(c) ≤ φ(c∗).

Proposition 2.3.3. Index the c found at each call of φ in the algorithm by cn, the

algorithm yields an element-wise weakly monotone sequence c0 ≤ c1 ≤ · · · ≤ cn.

Proof. We start by setting c0 = 0 with lines 4-6 of the algorithm. We have:

φ(c0) = c1, φ(c1) = c2, . . . ,

and since c0 = 0 we have:

c1 = φ(c0) = φ(0) ≥ 0 = c0,

due to the algorithm never letting an element of c be negative. If we repeat this we get:

c2 = φ(c1) ≥ φ(c0) = c1,

and thus the argument follows by induction. �

20 2. STRUCTURAL ANALYSIS

Since our algorithm is weakly monotone and starts at the zero vector it must terminate

at the canonical offsets if there exist valid offsets. Take a valid offset c∗, so φ(c∗) = c∗

and c∗ ≥ 0, since c1 = φ(c0) ≤ φ(c∗) = c∗ we have c1 ≤ c∗ and hence by induction and

choice of cn found by the algorithm has the property cn ≤ c∗s and we have a bound on our

offsets. There are a finite number of cn, so the algorithm must terminate at some point,

say c∗∗ ≤ c∗. Since c∗ is an arbitrary valid offset we have termination to the element-wise

smallest offsets, clearly these offsets are normalised, consider a c∗ with all entries larger than

m, then c∗ −m is a normalised offset - but we can always choose a element-wise smaller valid

offset to be c∗ and hence c∗∗ must be canonical. For a full description of valid, normalised

and canonical offsets see Definitions 2.5.3, 2.5.4 and 2.5.5 although for now it is sufficient to

have an understanding from (16).

Theorem 2.3.4 (Existence of canonical offsets). There exists an element-wise minimal

pair of offset vectors, called the canonical offsets, provided there exists valid offsets.

We proved this above, but we provide a second proof to help the reader understand the

algorithm.

Proof. If there exist valid offset vectors there will exist normalised offset vectors, found

by subtracting unit vectors from c and d repeatedly until we have normalised offsets. Hence

we can use existence of normalised offsets. Given two normalised sets of offset vectors c′,

d′ and c′′, d′′ we take the element-wise minimum and produce element-wise smaller offset

vectors c and d. These offsets satisfy the following inequalities, with equality on a HVT:

d′j − c′i ≥ σi,j,

d′′j − c′′i ≥ σi,j.

It is easiest for explanation to consider taking the first set of offsets and amending them

with any lower values in the second set. Clearly if a c′′i ≤ c′i then choosing it will not change

the inequality, although it might break equality on a HVT. If it broke equality on the HVT

at position, say σi,j then it must be true that d′′j ≤ d′j, since there is still equality on a HVT

2.4. SIGNATURE METHOD BY EXAMPLE 21

in the second set of equations. If reducing a non HVT d′j to a d′′j makes an inequality false

in some position σi,j then it must be true that the c′′i ≤ c′i, since that same inequality holds

in the second set of equations. Hence taking the element-wise minimum of two normalised

offset vectors produces a new normalised offset vector and there must exist canonical offsets

if there exist valid offsets. �

Note, since finding a HVT is dual to finding valid offsets, from Theorem 2.3.1 we have

that our algorithm terminates provided there is a HVT on the main diagonal.

2.4. Signature Method By Example

Recall the simple pendulum DAE (2). We look for a solution by means of a power series,

specifically a Taylor series. That is, x is to be of the form
∞∑
n=0

xnt
n, and y, λ similarly, where

without loss we take t = 0 as the point to be expanded about. If we expand each variable

as a power series and then substitute into equation (2) we obtain:

(26)


a(t) = 1.2x2 + 2.3x3t+ · · ·+ (x0 + x1t+ . . .)(λ0 + λ1t+ . . .) = 0,

b(t) = 1.2y2 + 2.3y3t+ · · ·+ (y0 + y1t+ . . .)(λ0 + λ1t+ . . .)−G = 0,

c(t) = (x0 + x1t+ . . .)(x0 + x1t+ . . .) + (y0 + y1t+ . . .)(y0 + y1t+ . . .)− L2 = 0.

Each of a, b, c can also be represented as a power series where coefficients an, bn, cn must

vanish for all n. Thus if we simplify (26) we can equate coefficients and get constraint

equations on the variables. Expanding brackets yields:

(27)


a(t) = 1.2x2 + 2.3x3t+ · · ·+ x0 + λ0 + (x0λ1 + x1λ0)t+ (x0λ2 + x1λ1 + x2λ0)t2 + . . . = 0,

b(t) = 1.2y2 + 2.3y3t+ · · ·+ y0 + λ0 + (y0λ1 + y1λ0)t+ (y0λ2 + y1λ1 + y2λ0)t2 + · · · −G = 0,

c(t) = x20 + 2x0x1t+ (2x0x2 + x21)t2 + · · ·+ y20 + 2y0y1t+ (2y0y2 + y21)t2 + · · · − L2 = 0,

22 2. STRUCTURAL ANALYSIS

Table 4. Power series coefficient equations for the simple pendulum.

Stage -2 Stage -1 Stage 0 Further Stages
1.2x2 + x0λ0 = a0 . . .

1.2y2 + y0λ0 −G = b0 . . .
x2

0 + y2
0 − L2 = c0 2x0x1 + 2y0y1 = c1 2x0x2 + x2

1 + 2y0y2 + y2
1 = c2 . . .

.

collecting terms

(28)


a(t) = (1.2x2 + x0λ0) + (2.3x3 + x0λ1 + x1λ0)t+ (3.4x4 + x0λ2 + x1λ1 + x2λ0)t2 + . . . = 0,

b(t) = (1.2y2 + y0λ0) + (2.3y3 + y0λ1 + y1λ0)t+ (3.4y4 + y0λ2 + y1λ1 + y2λ0)t2 + . . . = 0,

c(t) = (x20 + y20 − L2) + (2x0x1 + 2y0y1)t+ (2x0x2 + x21 + 2y0y2 + y21)t2 + . . . = 0,

and equating coefficients yields Table 4. We have arranged the coefficients in Table 4 by

noting that only c0 involves x0, y0 and no higher order terms (h.o.t.s) so we can solve it for

x0 or y0 by giving one as a trial value. Now we have a similar situation with c1 and can use

it to solve for x1, y1 giving one as a trial value and using already computed x0 and y0 from

c0. Consider the system given by a0, b0 and c2, we now have equations for x2, y2 and λ0 and

no other h.o.t.s, so can solve this system, similarly we can use a1, b1 and c3 to get x3, y3 and

λ1 and so on. We have indexed the stages starting from −2 because we have to solve two

systems before getting a 3×3 system. We write the equations at stage 0 in matrix notation:

0 =


1.2 0 x0

0 1.2 y0

2x0 2y0 0

 .


x2

y2

λ0

+


0

−G

x2
1 + y2

1

 ,

and stage 1

0 =


2.3 0 x0

0 2.3 y0

2x0 2y0 0

 .


x3

y3

λ1

+


l.o.ts

l.o.ts

l.o.ts

 ,

where l.o.ts means terms involving lower order coefficients. The positions in the first two

diagonal entries appear to have the form (n + 1).(n + 2), in general we have the following

2.4. SIGNATURE METHOD BY EXAMPLE 23

formula for the coefficients:

(29)



an = (n+ 1)(n+ 2)xn+2 +
n∑
0

xiλn−i,

bn = (n+ 1)(n+ 2)yn+2 +
n∑
0

yiλn−i,

cn =
n∑
0

xixn−i +
n∑
0

yiyn−i,

so that at each stage we solve
an = (n+ 2)(n+ 1)xn+2 + x0λn + l.o.ts,

bn = (n+ 2)(n+ 1)yn+2 + y0λn + l.o.ts,

cn+2 = 2xn+2x0 + 2yn+2y0 + l.o.ts.

We would like to have the same matrix multiplying our unknowns being solved for at

each 3×3 stage so we make a change of unknowns so that Ak = akk! (and similarly for other

variables), which gives us the following equations at each stage:

(30)

An
n!

=
Xn+2

n!
+
Y0Λn

n!
+ l.o.ts

Bn

n!
=
Yn+2

n!
+
Y0Λn

n!
+ l.o.ts

Cn+2

(n+ 2)!
=

2Xn+2X0

(n+ 2)!
+

2Yn+2Y0

(n+ 2)!
+ l.o.ts


.

which gives us the following system in matrix form at stage n


1 0 X0

0 1 Y0

2X0 2Y0 0



Xn+2

Yn+2

Λn

+


l.o.ts

l.o.ts

l.o.ts

 = 0.

Since the ak’s are power series coefficients the Ak’s are derivatives (at t = 0), our solution

method is to find:

24 2. STRUCTURAL ANALYSIS

(31) x(t0 + h) =
Nx∑
n=0

x(n)(t0)

n!
hn,

where h is a given step size and Nx is the final order of Taylor series used for variable x.

For illustration purposes we present a solution to simple pendulum done via this method in

Matlab with: (x(0), y(0), ẋ(0), ẏ(0)) = (6, 8,−.8, .6), L = 10, G = 9.81 with a step size of

.001 and a Taylor series of order 18 in Figure 1 and see it looks as expected. For an error

heuristic we see how well energy is preserved in Figure 2. The Matlab script is presented in

Appendix A.

100
80

60
40

t
20

0-10
-5

x

0
5

-8

-8.5

-9

-9.5

-10

y

Figure 1. A solution to simple pendulum DAE via a Taylor series approach.

In general we will consider the idea of a consistent manifold. That is, a manifold speci-

fied by all the equations involving initial variables. For the pendulum our consistent man-

ifold could live in (x, ẋ, y, ẏ) space and be given by (c, ċ) = 0 but could equally live in

(x, ẋ, ẍ, y, ẏ, ÿ, λ) and be (a, b, c, ċ, c̈) = 0 and so on. We find all required Taylor coefficients

2.5. SIGNATURE METHOD - BASICS 25

t
0 20 40 60 80 100

In
it

ia
l E

n
er

g
y-

C
u

rr
en

t
E

n
er

g
y

×10-13

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Figure 2. Change in energy for simple pendulum DAE via a Taylor series approach.

at t0 for the initial variables, which will give us a point off the consistent manifold (speci-

fied by c0 = 0 and c1 = 0 for the pendulum). We choose to project our solution onto this

manifold by dropping a perpendicular, for example using a Gauss-Newton method, and then

starting again at time t0 + h. For the pendulum we find Taylor coefficients for x and y up

to some order N + 1 and then differentiate them to get N coefficients for ẋ and ẏ. We then

project this solution onto the consistent manifold and repeat the process for our new time

eventually reaching the desired end time and reading the values of x, y and λ. It is worth

noting that the consistent manifold will always lie in the space of all initial conditions, but

can be considered as ‘living in’ some larger space, given by any number of coordinates.

2.5. Signature Method - Basics

Given that we now have an idea as to how a Taylor solution scheme should look for an

arbitrary DAE we proceed to give the signature matrix method. Firstly we need to define

what is meant by a signature matrix for a DAE of form (1):

26 2. STRUCTURAL ANALYSIS

Definition 2.5.1 (Signature Matrix). The signature matrix, Σ, for a DAE with a set of

equations fi and variables xj where i, j ∈ {1, . . . , n} has entries :

(32) σi,j =


Order of highest derivative of xj in fi if xj occurs in fi,

−∞ otherwise.

The signature matrix for the simple pendulum (2) is therefore:

(33) Σ =

x y λ


a 2 −∞ 0

b −∞ 2 0

c 0 0 −∞

,

where we write corresponding equation and variable names around the matrix.

Definition 2.5.2 (Transversals). A transversal for a square matrix is any set of matrix

positions (i, j) so that an entry in each row and column is chosen only once. A transversal

for an m × n matrix, with m ≥ n is a set of n positions (i, j) so that i ∈ {1, . . . ,m} and

j ∈ {1, . . . , n} where no i or j is repeated, similarly for the case when m ≤ n we look for m

matrix positions. The value of a transversal is the sum of all entries in the matrix, say ai,j,

such that (i, j) belongs to the transversal.

It is useful for our purposes to consider the, non-unique, highest value transversal, HVT.

Consider the signature matrix for the pendulum

Σ =

x y λ


a 2• −∞ 0◦

b −∞ 2◦ 0•

c 0◦ 0• −∞

.

This has two HVTs, marked by •, {(1, 1), (2, 3), (3, 2)}, and ◦, {(1, 3), (2, 2), (3, 1)}, in the

signature matrix above.

2.5. SIGNATURE METHOD - BASICS 27

Definition 2.5.3 (Valid Offsets). We call positive valued n-vectors c and d satisfying

(34) σi,j ≤ dj − ci with equality on any HVT

valid offset vectors.

Definition 2.5.4 (Normalised Offsets). We call valid offsets c and d normalised if

mini ci = 0.

Definition 2.5.5 (Canonical Offsets). We call the element-wise minimum normalised

offset vectors the canonical offsets.

Theorem 2.3.4 shows us that given valid offsets the canonical offsets exist. Historically

canonical offsets have always been used for the structural analysis of a DAE (since they

represent doing less differentiations), we will show in Chapter 4 that it is sometimes preferable

to drop this restriction. The offsets represent the way in which solving for some variables

must be ‘pushed back’ a stage in the Taylor series the solution of a DAE, as was demonstrated

in Table 4.

Definition 2.5.6 (Degrees of Freedom). The number of degrees of freedom, DOF, of a

DAE is the number of initial conditions required to specify a unique solution.

For example, the pendulum has 2 DOF; the first might be imposed by specifying either

x or y and the second by specifying either ẋ or ẏ, the position and velocity of the pendulum

respectively. The degrees of freedom are given by

(35)
∑
j

dj −
∑
i

ci.

We delay the proof of this because we need notation not yet introduced.

Definition 2.5.7. (The function Val(Σ)) Consider a HVT, T , then we say Val(Σ) =∑
(i,j)∈T

σi,j.

Lemma 2.5.8. DOF = Val(Σ) iff dj − ci = σi,j for all (i, j) in a HVT.

28 2. STRUCTURAL ANALYSIS

Proof. Consider an arbitrary HVT T1, then

∑
(i,j)∈T1

σi,j = DOF =
∑
j

dj −
∑
i

ci,

using (35) and hence,

0 =
∑

(i,j)∈T1

dj − ci − σi,j.

From (34) each individual term in the summation is non-negative and hence 0. Meaning

σi,j = dj − ci for all σi,j on the HVT T1, since T1 is arbitrary we have equality on any HVT.

Conversely if we have equality on any HVT in (34) then summing across a HVT T2 we have

∑
(i,j)∈T2

σi,j =
∑
j

dj −
∑
i

ci = DOF

using (35). �

2.6. Standard Solution Scheme

We now seek to develop a way of solving our DAE given a signature matrix. From (18,

19) it is clear that at stage 0 we have exactly derivatives up to order ci of equations fi, for

example consider ci=l, then at stage l we use fi, at stage l + 1 use f ′i etc... until at stage

0 we are using f
(l)
i . Similarly we solve derivatives up to order dj of variables xj at stage 0,

which is what we meant earlier by ‘pushing back’ the solution of some variables.

Definition 2.6.1 (System Jacobian). The n×n Jacobian matrix used for finding Taylor

coefficients in SA is called the System Jacobian, denoted by J.

Ji,j =
∂fi

∂x
(dj−ci)
j

.

2.6. STANDARD SOLUTION SCHEME 29

Hence, recalling the signature matrix (33), for the simple pendulum we have the following

System Jacobian:

J =

ẍ ÿ λ ci


a aẍ 0 aλ 0

b 0 bÿ bλ 0

c̈ c̈x c̈y 0 2

dj 2 2 0

Since the ci’s belong to equations they are written around the matrix in their corresponding

row, similarly the dj are written in their corresponding column, we also write equations

being used and variables being solved for in their respective rows and columns—we call

such a representation the matrix tableau, above we have a Jacobian tableau, similarly such a

representation for Σ (we omit derivatives of equations and variables in this case) is termed

the signature tableau. To proceed in our analysis we need the following lemma, from [20]

(and [10]):

Lemma 2.6.2 (Griewank’s Lemma). Suppose f(t, x1, x2, . . . , xn) is a smooth function

that contains derivatives of xj not exceeding order mj. Then the (mj + 1)st derivative of xj

occurs linearly in ḟ = df
dt

, and

∂f ′

∂x
(mj+1)
j

=
∂f

∂x
(mj)
j

.

The first assertion of this lemma follows by way of the chain rule when proving the second

assertion, which we now prove.

Proof. Take a DAE:

u = f(t;
(
x

(`)
j

)
(j,`)∈J

) = 0,

then by the chain rule

(36) u̇ = fx1(t;
(
x

(`)
j

)
)ẋ1 + · · ·+ f

x
(l1)
1

(t;
(
x

(`)
j

)
)x

(l1+1)
1 + . . .

30 2. STRUCTURAL ANALYSIS

where fxj = ∂f
∂xj

and + . . . is contributions from x2 onwards. Writing (36) as a sum over J

yields:

u̇ =
∑

(j,l)∈J

f
x
(`)
j

(t;
(
x

(`)
j

)
)x

(`+1)
j .

Therefore, letting lj∗ be the highest order derivative (HOD) of variable xj∗

∂u̇

∂x
(lj∗+1)

j∗

=
∂

∂x
(lj∗+1)

j∗

 ∑
(j,l)∈J

f
x
(`)
j

(t;
(
x

(`)
j

)
)x

(`+1)
j

 = f
(lj∗)
xj∗ ,

because x
(lj∗+1)

j∗ does not appear in any other terms of the series. �

Following this lemma we can give a more informative formula for the System Jacobian

J:

(37) Ji,j =
∂fi

∂x
(dj−ci)
j

=


∂fi

∂x
(σi,j)

j

if dj − ci = σi,j,

0 elsewhere.

This final equality comes from the condition that dj − ci = σi,j on a HVT and that if

dj − ci > σi,j then we will be differentiating by a variable that doesn’t occur in the function.

This ensures we only ever differentiate equations by variables that occur in them and thus

have a well defined System Jacobian. If we have a HVT then (34) guarantees that there will

be a structural non-zero, at least one in every row and column, in the Jacobian and hence

ensures it’s structurally non-singular and the problem is thus solvable provided we don’t get

numerical non-singularity along the solution process. We wish to use this System Jacobian

to develop a stage-wise solution process. We illustrate this with the simple pendulum, for

ease we will rename the variables and equations as follows: a = f1, b = f2, c = f3, x = x1,

y = x2 and λ = x3 giving us the functions and variables at each stage listed in Table 5. At

any stage k we use equations

(38) f
(k+ci)
i ∀i such that k + ci ≥ 0

2.6. STANDARD SOLUTION SCHEME 31

Table 5. Stage for the simple pendulum

k Equations being used Variables being found
−2 f3 x1, x2

−1 ḟ3 ẋ1, ẋ2

0 f1, f2, f̈3 ẍ1, ẍ2, x3

1 ḟ1, ḟ2, f
(3)
3 x

(3)
1 , x

(3)
2 , ẋ3

.

to solve for variables

(39) x
(k+dj)
j ∀j such that k + dj ≥ 0.

Thus at any stage k < 0 we are using derivatives found either at stage k or at a previous stage,

due to the incremental nature of the formula. The stage where we first get an n× n matrix

for the n equations and variables is stage 0. We use k as our stage number, and begin at

stage kmin = −maxj dj. Our stages are therefore numbered: kmin, kmin+1, . . . , 0, 1, . . . , kmax,

where kmax is some arbitrary Taylor series order being used.

Recall the formula for the System Jacobian (37). We show this is the natural Jacobian

when we use these equations and variables at each stage of our method. To do this we will

consider the System Jacobian using equations (38, 39) which tell us that at step 0 we are

using equations f
(ci)
i to solve for variables x

(dj)
j , if we form the matrix with entries

(40)
∂f

(ci)
i (t;

(
x

(`)
j

)
)

∂x
(dj)
j

and use the fact dj ≥ ci and dj must be at least as large as the maximum derivative of xj

we can apply Lemma 2.6.2 to obtain:

∂f
(ci)
i (t;

(
x

(`)
j

)
)

∂x
(dj)
j

=
∂fi(t;

(
x

(`)
j

)
)

∂x
(dj−ci)
j

,

whenever dj − ci is the highest order derivative of variable xj in fi and 0 otherwise. Hence,

from (37) we have that (40) is just the (i, j)th entry of the System Jacobian evaluated at a

point. From (40) we have a matrix of the coefficients of x
(dj)
j in f

(ci)
i by Lemma 2.6.2. For

32 2. STRUCTURAL ANALYSIS

example, if ci = 1 by the chain rule we have:

(41)
dfi
dt

=
∑

(j,a)∈J

f
i,x

(a)
j
x

(a+1)
j .

Here f
i,x

(a)
j

is the partial derivative of fi with respect to variable x
(a)
j . Our solution method

from equations (18, 19) means that at the next stage we solve for the derivative of the

variable previously solved for using the derivatives of the equations previously used. This is

due to us considering the equations at each stage as our new ‘starting equations’ so instead

of considering f̈ as the second differential of f we consider it as the first differential of ḟ ,

which is why considering ci = 1 is sufficient.

We will now use the notation Jk to denote the System Jacobian at stage k (where k < 0),

that is the System Jacobian found by considering only equations and variables being used

at stage k and changing dj to dj + k and ci to ci + k in the formula above. To proceed we

need the following definition:

Definition 2.6.3 (Submatrix). Given two matricesA andB, the matrixB is a submatrix

of A if it can be obtained by deleting rows and columns of A or possibly reordering rows and

columns of A.

Since the above definition does not take order in to account given a matrix:

A =


a1,1 a1,2 a1,3

b1,1 b1,2 b1,3

c1,1 c1,2 c1,3


the following two matrices are both submatrices of A:

B1 =

a1,1 a1,2

b1,1 b1,2

 , B2 =

b1,1

a1,1

 .

Definition 2.6.4 (Leading Submatrix). Given two matrices A and B, the matrix B is

a leading submatrix of A if it comprises the first p rows and first q columns of A for some

choice of p and q.

2.6. STANDARD SOLUTION SCHEME 33

From Lemma 2.6.2 it can be seen that this leads to us having a nested form for the

Jacobian at each stage, where Jk is a leading submatrix of JK ∀K ≥ k, assuming rows and

columns are ordered in descending order of offsets. From (38, 39) it can be seen that after

ordering rows and columns Jk will start in the upper left corner of JK . Formally we have

the following lemma

Lemma 2.6.5. If we order rows and columns of J in descending order of offset values

then Jk is a leading submatrix of J for all k < 0.

Proof. By definition the System Jacobian at negative stages is:

Jki,j =
∂f

(ci+k)
i

∂x
(dj+k)
j

if ci + k ≥ 0 and dj + k ≥ 0

if dj−ci > σi,j then fi is has no terms of order x
(dj−ci)
j , so by differentiating ci+k times using

Lemma 2.6.2 we see f
(ci+k)
i must have no terms of order x

dj+k
j and Jki,j = 0. Alternatively

consider the case dj− ci = σi,j, by definition σi,j is the H.O.D. of xj in fi, so by Lemma 2.6.2

we have:

Jki,j =
∂f

(ci+k)
i

∂x
(dj+k)
j

=
∂f

(ci)
i

∂x
(dj−ci)
j

,

which is by definition J. �

From above it is clear that the System Jacobian, when ordered with respect to descending

offsets, at each negative step is a submatrix of J, and Jk = J0 ∀k ≥ 0, thus we write J for

any Jk, k ≥ 0.

For example with the pendulum there are two System Jacobians throughout the solution

process, the smaller at negative stages and the larger at non-negative stages. For convenience

we order the signature tableau with descending offsets and show the submatrix relevant for

34 2. STRUCTURAL ANALYSIS

negative stages:

Σ =

x y λ ci


c 0 0 −∞ 2

a 2 −∞ 0 0

b −∞ 2 0 0

dj 2 2 0

We have two Jacobians, separated by a line below, the smaller occurs at stages k = −2,−1

and the larger for all k ≥ 0:

J =


cx cy 0

aẍ 0 aλ

0 bÿ bλ

 .

Definition 2.6.6 (Structural Full Row Rank). We say a numerical matrix of size m×n,

where m ≤ n, has structural full row rank if and only if it has a transversal that contains no

0 elements.

Definition 2.6.7 (Structural Full Row Rank of Σ). We say a signature matrix Σ of size

n× n, has structural full row rank iff S has a transversal.

Lemma 2.6.8. If J has a transversal then the System Jacobian at a negative stage is of

structural full row rank.

Proof. To the right of any nested matrix all values will be −∞ in Σ and 0 in J, due

to dj − ci < 0 in those places when ordered with descending offsets. Hence, if there’s a valid

transversal for J it must have m values in an m× n submatrix found from a negative step.

Thus, each negative step System Jacobian of size m × n has a transversal of size m and is

thus of structural full row rank. �

We make a distinction between matrices which are structurally singular and genuinely,

that is numerically, singular.

2.6. STANDARD SOLUTION SCHEME 35

Definition 2.6.9 (Genuinely Non-Singular). A matrix A(t) is genuinely non-singular if

there exists a non-zero expression for its determinant at some t = t̂.

Example 2.6.10. The matrix: x y

y x


is genuinely non-singular, as it’s non-singular for all values except when x = ±y

Definition 2.6.11 (Structurally Non-Singular). A matrixA(t) is structurally non-singular

if there exists a transversal that contains no zero-entries (or −∞ entries for Σ).

Example 2.6.12. The matrix: x y

0 0


is structurally singular as every transversal uses a zero entry.

It is important to note a matrix may be structurally non-singular but be genuinely

singular, e.g. x y

x y

 .

Lemma 2.6.13. If J is genuinely non-singular then the System Jacobian at all negative

stages is genuinely of full row rank.

Proof. If J is of genuine full row rank then any subset of rows of J is of genuine full

row rank. If we order our Jacobian with descending offsets then consider a subset of rows so

that all the rows of a negative stage System Jacobian are included, and then disregard the

columns that are all zero (on the right hand side of the matrix), since dj − ci > σi,j there.

This has no effect on the rows being linearly independent, then we have the negative stage

Jacobian which must be of genuine full row rank. �

We now consider each stage k as using mk equations to solve for nk variables. Here mk

is the number of i for which k + ci ≥ 0 and nk is the number of j for which k + dj ≥ 0, so

that the following then holds.

36 2. STRUCTURAL ANALYSIS

Lemma 2.6.14.

1. The mk and nk both increase with k, from 0 for k sufficiently negative, to n for

k ≥ 0.

2. nk ≥ mk ∀k.

3.
∑
k

(nk −mk) = DOF =
∑
j

dj −
∑
i

ci.

We seek to prove each statement in turn.

1. As k increases towards 0 there are clearly going to be more, or at the least the same

number of, equations and variables that satisfy the inequalities than there were at a previous

stage, since it is only the stage number that changes the 2n equations for mk and nk at each

stage, not the offsets. This holds until we reach step 0, where there will be n equations and

n variables, since ci ≥ 0 and dj ≥ 0. We can also increase these values from 0 by setting

k = −max
i,j

(dj, ci)− 1 as our initial stage. �

2. σi,j ≥ 0 ∀(i, j) ∈ S. Now assume Σ is structurally non-singular and pick a HVT

from S, say T . Let (i, j) ∈ T , from (34) we have dj − ci ≥ 0 and hence dj ≥ ci, meaning

k + dj ≥ k + ci and hence from (38, 39) there are at least as many variables as equations at

any stage k, since there is a one to one map, T , between the i’s and the j’s. Any (i, j) /∈ S

yields a 0 entry in Ji,j and thus plays no role in the solution scheme. �

3. Consider a matrix, E, with a 1 in entry Ei,k if equation i is used in stage k and a 0

otherwise, and another, V , which is the same for variables. Here the number of stages starts

at −max
j
dj (since all prior stages will have columns with only 0’s in) and goes up to stage

−1 (since stage 0 and on will have column’s with all 1’s in). For example, for the simple

pendulum we have:

E =

k = −2 −1


c 1 1

a 0 0

b 0 0

, V =

k = −2 −1


x 1 1

y 1 1

λ 0 0

.

2.7. EXPLOITING DAE BTFS 37

The DOF of a DAE is defined as the dimension of the set of valid initial conditions. An

initial condition is needed every time there is one or more variable than equation. Therefore

the DOF is given by the sum of all entries in V take the sum of all entries in E, because this

will give us the total number of variable found minus the total number of equations used, as

all non-negative k stages will have an equal number of equations and variables as outlined

above. If we number the columns of E and V by k then a sum down the k column of E is

mk and down the k column of V is nk. Hence summing down columns and then across rows

gives: ∑
k

(nk −mk) = DOF.

We now consider a sum across rows first. It should be clear that row j of V will give us dj,

since we have dj occurrences of variable xj before stage 0, hence the name offset. Similarly

row i of E will give us ci. Hence a sum across rows and then down columns gives us:

∑
j

dj −
∑
i

ci = DOF.

�

2.7. Exploiting DAE BTFs

We discuss block triangular forms (BTFs) natural to the Signature method, for more

detail see [47] and [49]. We previously discussed two useful sparsity patterns for the signature

method. We recap and expand on them here, giving an example to illustrate the ideas. We

have the natural sparsity pattern for a DAE, the set where the entries of Σ are finite:

S = {(i, j) | σi,j > −∞} (the sparsity pattern of Σ).(42)

and we have a more informative BTF coming from the sparsity pattern of the system Jacobian

J:

S0 = S0(c,d) = {(i, j) | dj − ci = σi,j} (the sparsity pattern of J).(43)

38 2. STRUCTURAL ANALYSIS

S0(c,d) ⊆ S for any c,d.

Unless otherwise stated we will only consider an irreducible BTF, that is one such that each

block contains no possible sub-blocks based on the sparsity pattern associated with the BTF.

In applications a Block BTF based on S0 is usually significantly finer than one based on S

and as such we call an irreducible BTF (unique up to possible re-ordering of blocks [47])

based on S the coarse BTF and on S0 the fine BTF. We now define the concept of a local

offset:

Definition 2.7.1 (local offsets). The offsets found by treating each fine block in the fine

BTF as a stand alone DAE are termed the local offsets and are denoted ĉ and d̂.

Local offsets are useful when trying to break a large DAE down in to smaller problems,

one can then solve the whole DAE using the blocks in a stage-wise manner due to the

following theorem from [48] and [40]:

Theorem 2.7.2. The difference between local and global offsets is a constant over a fine

block.

We call the difference between local and global offsets the lead time of a block l and

denote it Kl.

Example 2.7.3. Consider a modified double pendula DAE:

(44)



f1 = ẍ1 + x1x3 =0,

f2 = ẍ2 + x2x3 −G =0,

f3 = x2
1 + x2

2 − L2 =0,

f4 = ẍ4 + x4x6 =0,

f5 = (x
(3)
5)2 + x5x6 −G =0,

f6 = x2
4 + x2

5 − (L+ cx3)2 + ẍ3 =0.

2.8. CLASSIFYING NON-CANONICAL OFFSETS 39

We present the different BTFs indicated by dotted lines in Figure 3. We see the fine BTF

does indeed produce more blocks than the coarse BTF. The local offsets associated with the

fine BTF allow us to consider a different staged solution scheme, i.e. we can solve each block

using stage counters determined by the local offsets think of variables found by previous

blocks as driving functions, see [48].

2.8. Classifying Non-Canonical Offsets

In the literature only canonical offsets are considered (due to uniqueness and providing

a shorter solution scheme), this section expands the classes of potential offset vectors to be

used in the structural analysis. We seek to illuminate the space of all possible offset vectors

to better understand other solution schemes that could be employed. We start by noting

that an offset vector classified by Definitions 2.5.3, 2.5.4 and 2.5.5 will potentially have some

overlap, for example the canonical offset vectors are both valid and normalised. Let V be

the set of valid offset vectors, N the set of normalised offset vectors and C the singleton

set containing the canonical offset vectors, i.e. C = {(canonical c, canonical d)}, so that

C ⊆ N ⊂ V . When we refer to a set of offset vectors we will mean those that belong that set

only, i.e when we say valid offsets c and d we mean those in V \ N , unless context clearly

requires a different meaning. Given a structurally non-singular n×n Σ there exist n equality

constraints found on a HVT, T , of the form:

dj − ci = σi,j,

and some number of inequalities equal to the entries in S that are not on a HVT. It is

possible to use the n equalities to substitute for d (or c) in the inequalities and be left with

only inequalities in c (or d), generating a feasible region of offset vectors c (or d). We can

then use these feasible regions to recover an equivalent diagram for d (or c), below we show

these regions for c.

40 2. STRUCTURAL ANALYSIS

1 2 3 4 5 6

1

2

3

4

5

6

 MODIFIED2PENDULA
 Size 6, structural Index 7, DOF 5

Shaded: structural nonzeros in system Jacobian J
Boxed: HVT

2

0

2

0

0

0

2

2

0

3

0

0

0

2

0

2

0

0

0

2

2

0

3

0

0

0

2

0

0

3

0

Indices of Variables

In
di

ce
s

of
 E

qu
at

io
ns

4

4

6

0

0

2

ci

6 6 4 2 3 0dj

(a) original structure

5 6 4 1 2 3

5

4

6

3

2

1

MODIFIED2PENDULA: Coarse BTF
 Size 6, structural index 7, DOF 5

Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

2

0

2

0

0

0

2

2

0

3

0

0

0

2

0

2

0

0

0

0

3

0

2

2

0 0

0

2

6

4

4

ci

3 0 2 6 6 4dj

Indices of Variables

In
di

ce
s

of
 E

qu
at

io
ns

(b) coarse structure

5 6 4 1 2 3

5

4

6

3

2

1

MODIFIED2PENDULA: Fine BTF
 Size 6, structural index 7, DOF 5

Shaded: structural nonzeros in system Jacobian J
Boxed: positions that contribute to det(J)

2

0

2

0

0

0

2

2

0

3

0

0

0

2

0

2

0

0

0

0

3

0

2

2

0 0

0

0

2

0

0

ĉi

0

0

2

6

4

4

ci

3 0 0 2 2 0d̂j

3 0 2 6 6 4dj

Indices of Variables

In
di

ce
s

of
 E

qu
at

io
ns

(c) fine structure

Figure 3. Structure of Equation (44) and its block-triangularizations.

Example 2.8.1. We consider a DAE with structure given by:
A(x) = 0.

B(x, ẏ) = 0.

2.8. CLASSIFYING NON-CANONICAL OFFSETS 41

This system has the following signature tableau:

Σ =

x y ci A 0 −∞ 0

B 0 1 0

dj 0 1

If we explicitly write out the equations for the offsets given by (34) we get the following

system of equations: 
d1 − c1 = 0,

d2 − c2 = 1,

d1 − c2 ≥ 0.

If we solve the first two to get the c’s in terms of the d’s then substitute our values into the

third the constraints reduce to c2 ≤ c1, c1 ≥ 0 and c2 ≥ 0. For normalised offsets we have

c1 = 0 and c2 ∈ N0 or c1 ∈ N0 and c2 = 0. This is represented graphically in Figure 4, where

the blue dots represent a normalised choice of offsets and the green dots represent a valid

choice, with red shading to indicate infeasible regions. The canonical offset vector is found

by means of a dual linear programming method with objective function min
2∑
i=1

ci.

c
1

0 0.5 1 1.5 2 2.5 3

c
2

0

0.5

1

1.5

2

2.5

3

Normalised offsets
Valid offsets

Figure 4. Feasible ci for example 2.8.1, with infeasible region shaded.

42 2. STRUCTURAL ANALYSIS

Example 2.8.2. We now present an example where there is a finite choice of normalised

offset values, specifically two. Consider a DAE with structure given by:
A(ẋ, y) = 0,

B(x, y) = 0.

with signature tableau:

Σ =

x y ci A 1 0 0

B 0 0 0

dj 1 0

Writing out the equations given by (34) gives us:

d1 − c1 = 1,

d2 − c2 = 0,

d1 − c2 ≥ 0,

d2 − c1 ≥ 0.

When simplified to inequalities involving only the c’s yields:
c2 ≤ c1 + 1,

c2 ≥ c1.

Here we have two constraints, as shown by Figure 5.

Example 2.8.3. We now stretch our understanding to systems of 3 equations in 3

unknowns. Consider a DAE with structure given by:
A(y) = 0,

B(x, z) = 0,

C(ẋ, y) = 0,

2.8. CLASSIFYING NON-CANONICAL OFFSETS 43

c
1

0 0.5 1 1.5 2 2.5 3

c
2

0

1

2

3

4

Normalised offsets
Valid offsets

Figure 5. Feasible ci for example 2.8.2.

with signature tableau:

Σ =

x y z ci


A −∞ 0 −∞ 0

B 0 −∞ 0 0

C 1 0 −∞ 0

dj 1 0 0

Once again we look at the equations generated by (34), the equality constraints are:
d1 − c3 = 1,

d2 − c1 = 0,

d3 − c2 = 0,

→


d1 = 1 + c3,

d2 = c1,

d3 = c2,

and inequality constraints are: 
d1 − c2 ≥ 0,

d2 − c3 ≥ 0,

which reduce to: 
c3 ≥ c2 − 1,

c3 ≤ c2,

which gives rise to Figure 6. We have two planes of possible offset vectors, with an infinite

44 2. STRUCTURAL ANALYSIS

3
2

c
2

13

2

1

c
1

1

2

3

c
3

Normalised offsets
Valid offsets

Figure 6. Feasible ci for example 2.8.3.

number of both valid and normalised offsets.

CHAPTER 3

Dummy Derivatives

3.1. Introduction to Dummy Derivatives

Usually to solve a DAE one differentiates parts of the DAE in order to reveal the hidden

constraints of the problem, as done in Chapter 2. The Dummy Derivative (DD) approach

adds the hidden constraint equations to the system directly, as opposed to solving them stage-

wise as done above in the signature matrix method. This makes the DAE over-determined.

To get a square DAE again the method adds extra dependent variables to the system for each

constraint equation added, specifically the method finds a subset of appearing derivatives

of variables to be considered algebraic. In [30] it is proved that this approach yields a

DAE with the same solution as the original DAE. The advantage of this approach is by

solving the resulting index 1 DAE we satisfy all constraint equations of the original DAE

automatically. Unfortunately this approach is inherently local, as will be shown in §3.2,

which means one may have to reformulate the problem (sometimes periodically) throughout

numerical simulation, as explained in §3.6. In §3.4 and §3.5 we use the signature matrix

method to inform our choices of dummy derivatives by finding so-called necessary dummy

derivatives, removing choice in the algorithm and increasing computational efficiency, this

yields different classes of DDs and new algorithms not before seen in the literature. In

particular this Chapter highlights choice in the block form not previously known, gives new

insights in to why certain derivatives must or can be DDs and gives several new ways of

approaching dummy derivative reformulation, linking our approach to a new method from

[54] in §3.5.2.

45

46 3. DUMMY DERIVATIVES

3.2. Original Dummy Derivative Algorithm

We will be re-ordering the original method of [30] somewhat, thus to avoid confusion with

readers already familiar with DDs we present the original algorithm in §3.2.1, for reference

and provide a brief example for illustration.

3.2.1. The method as presented originally. Although originally the algorithm was

given using a block lower triangular (BLT) form we shall, at least initially, consider the algo-

rithm over one block. This simplifies notation considerably and allows us to note interactions

between blocks later to find a reduced block triangular form (BTF) with which to find DDs.

It also highlights a subtlety in the block form choice not mentioned in the original paper

[29].

We define notation needed in the DD method, but first present a necessary definition for

our analysis of the algorithm, see [45] for more details:

Definition 3.2.1 (Differential Algebraic Operator). A differential algebraic operator

(DAO) is a vector of size m acting on n dependent variables, say x1, . . . , xn, which are

themselves regarded as functions of an independent variable t. More formally we have an Rm

valued function f of an independent variable t, dependent variables x1, . . . , xn, and finitely

many derivatives of the dependent variables. If we index derivatives so that xj0 corresponds

to xj(t), xj1 to x′j(t) and so on then we have the following map:

(45) f : R× RJ → R
m,

where J is the index set:

(46) J = {(j, l) : j = 1, . . . , n; l = 0, 1, . . . }.

Consider a DAE to be given by Fx = 0, where F is a (column n-vector) differential-

algebraic operator (DAO) and x are n unknowns dependent on some variable t, we then have

the following notation:

3.2. ORIGINAL DUMMY DERIVATIVE ALGORITHM 47

(1) ν = ν(F), a column n-vector of non-negative integers, containing the minimum

number of differentiations of each equation to get an ODE, usually found by Pan-

telides’ Method [41] or as the c in SA. We use c in throughout this thesis as it

provides more information than Pantelides’ method that we wish to exploit [45].

(2) Dν = diag(
dν1

dtν1
, . . . ,

dνn

dtνn
), regarded as a DAO.

(3) The differentiated problem denoted by Gx = Dν(F)Fx = 0.

(4) A symbolic vector, z, of highest order derivatives (HODs) of xi(t) in Gx, with first

entry equal to the HOD of x1 etc...

(5) A system of equations g(z) = 0—The equations in Gx = 0−.

There are three main stages in finding DDs:

(1) Get ν.

(2) Obtain a differentiated problem Gx = 0.

(3) Perform the index reduction algorithm. Loop through stages that select derivatives

to be considered as algebraic variables in the solution process.

For ease of analysis later we will assume, without loss of generality, that the equations

(and variables) have been sorted into descending order with respect to number of differen-

tiations needed, i.e. have been sorted with descending dj (and ci). We consider each stage

in turn by the superscript [κ]. The index reduction part of the algorithm, given in as much

brevity as reasonable—for full details see [30]—is given in Algorithm 2.

48 3. DUMMY DERIVATIVES

Algorithm 2 The Dummy Derivative Algorithm

Initialise: z[1] ← z , g[1](z[1])← g(z), G[1] =
∂g[1]

∂z[1]
← ∂g

∂z
, κ = 1.

1: Let m be the number of differentiated equations in g[0].

2: while g[κ] has m differentiated equations, with m > 0

3: Let h[κ] = 0 be the first m rows of g[κ] = 0, so that H [κ] =
∂h[κ]

∂z[κ]
.

4: Choose m columns of H [κ] producing a square non-singular M [κ].

5: Form ẑ[κ], the HODs of variables occuring in M [κ].

6: Make variables occuring in ẑ[κ] into dummy derivatives.

7: Add equations h[κ] = 0 to the DAE.

8: Omit one differentiation: g[κ+1] ← D−1h[κ], z[κ+1] ← D−1ẑ[κ], G[κ+1] ←M [κ].

9: Let m be the number of differentiated equations in g[κ+1].

10: Set κ = κ+ 1.

Example 3.2.2. We use an example found in [30] and apply the algorithm above to

find DDs. Consider a linear constant coefficient DAE, with known smooth forcing functions

u1(t), . . . , u4(t):

(47) Fx = F


x1(t)

x2(t)

x3(t)

x4(t)


=



a(t) = x1(t) +x2(t) +u1(t) = 0,

b(t) = x1(t) +x2(t) +x3(t) +u2(t) = 0,

c(t) = x1(t) +x′3(t) +x4(t) +u3(t) = 0,

d(t) = 2ẍ1(t) +ẍ2(t) +ẍ3(t) +ẋ4(t) +u4(t) = 0.

3.2. ORIGINAL DUMMY DERIVATIVE ALGORITHM 49

We need a number of differentiations for each equation to get Gx = 0, to do this we’ll

compute the signature matrix to find c:

(48) Σ =

x1 x2 x3 x4 ci


a 0• 0 −∞ −∞ 2

b 0 0• 0 −∞ 2

c 0 −∞ 1• 0 1

d 2 2 2 1• 0

dj 2 2 2 1

.

Hence, ν = c = (2, 2, 1, 0) and our differential operator, Dν , is:

Dν =



d2

dt2
0 0 0

0 d2

dt2
0 0

0 0 d
dt

0

0 0 0 1


and the differentiated problem DνFx = Gx = 0 is:

(49) Gx = DνFx =



ä(t) = ẍ1(t) +ẍ2(t) +ü1(t) = 0,

b̈(t) = ẍ1(t) +ẍ2(t) +ẍ3(t) +ü2(t) = 0,

ċ(t) = ẋ1(t) +ẍ3(t) +ẋ4(t) +u̇3(t) = 0,

d(t) = 2ẍ1(t) +ẍ2(t) +ẍ3(t) +ẋ4(t) +u4(t) = 0.

50 3. DUMMY DERIVATIVES

The vector of HODs, for Gx = 0, is given by z[1] = (ẍ1, ẍ2, ẍ3, ẋ4) and the current equations

are g[1](z[1]) = (ä, b̈, ċ, d)T and

∂g[1]

∂z[1]
= G[1] =

ẍ1 ẍ2 ẍ3 ẋ4


ä 1 1 0 0

b̈ 1 1 1 0

ċ 0 0 1 1

d 2 1 1 1

.

Stage 1

Let h[1] = (ä, b̈, ċ)T , i.e. the differentiated equations, then

∂h[1]

∂z[1]
= H [1] =

ẍ1 ẍ2 ẍ3 ẋ4


ä 1 1 0 0

b̈ 1 1 1 0

ċ 0 0 1 1

.

We now have two possibilities for selecting columns to get a non-singular matrix, either we

choose 1,3,4 or we choose 2,3,4. For the purposes of this example we can make either selection

arbitrarily (since the resulting matrices M [1] are the same). In practice this selection would

usually be made using an estimate of the condition number of M [1] at each (or at least some)

time steps. Choosing columns 1,3,4 yields:

M [1] =

ẍ1 ẍ3 ẋ4


ä 1 0 0

b̈ 1 1 0

c′ 0 1 1

.

We have differentiated variables ẑ[1] = (ẍ1, ẍ3, ẋ4) which are to be made DDs. We now omit

one differentiation (re-initialise for the next stage of the reduction procedure) by setting

3.2. ORIGINAL DUMMY DERIVATIVE ALGORITHM 51

g[2] = D−1h[1] = (ȧ, ḃ, c)T , z[2] = D−1ẑ[1] = (ẋ1, ẋ3, x4) and G[2] = M [1].

Stage 2

We now have a vector of differentiated equations h[2] = (ȧ, ḃ)T and thus:

H [2] =

ẋ1 ẋ3 x4 ȧ 1 0 0

ḃ 1 1 0

.

We have to remove column three to get a square non-singular matrix:

M [2] =

ẋ1 ẋ3 ȧ 1 0

ḃ 1 1

.

We have differentiated variables ẑ[2] = (ẋ1, ẋ3) which are to be made DDs. We now omit one

differentiation by setting g[3] = D−1h[2] = (a, b)T , z[3] = D−1ẑ[2] = (x1, x3) and G[3] = M [2].

Stage 3

We have no undifferentiated equations, so the algorithm ends. Equation (50) presents the

52 3. DUMMY DERIVATIVES

resulting index 1 DAE, with DDs marked in prime notation, i.e. ẋ = x′ and ẍ = x′′:
a(t) = x1(t) +x2(t) + u1(t) = 0,

b(t) = x1(t) +x2(t) + x3(t) + u2(t) = 0,
ȧ(t) = x′1(t) +ẋ2(t) + u̇1(t) = 0,

ḃ(t) = x′1(t) +ẋ2(t) + x′3(t) + u̇2(t) = 0,

c(t) = x1(t) + x′3(t) +x4(t) + u3(t) = 0,

ä(t) = x′′1(t) +ẍ2(t) + ü1(t) = 0,

b̈(t) = x′′1(t) +ẍ2(t) + x′′3(t) + ü2(t) = 0,

ċ(t) = x′1(t) + x′′3(t) +x′4(t) + u̇3(t) = 0,

d(t) = 2x′′1(t) +ẍ2(t) + x′′3(t) +x′4(t) + u4(t) = 0.

(50)

3.3. Reordered Dummy Derivative Algorithm

To make it simpler to draw comparisons between SA and DDs we reorder the index

reduction part of the original algorithm as presented in [29] to become Algorithm 3, doing this

allows the DD Jacobians G to be directly comparable with ‘equivalent’ stage SA Jacobians

J. We start the algorithm from stage 0 rather than 1. We remove the appearance of the

matrix M [κ], since G[κ+1] = M [κ] this matrix is only useful for bookkeeping. We also now

compute H at the end of a stage as opposed to G so that we can have matrix G[κ] computed

at stage κ rather than stage κ − 1. Computing our matrices somewhat out of order means

it’s easier to treat stage 0 as a special case in the algorithm, since we need to initialise stage

κ with matrix H [κ−1] but H [0] needs to be computed from G[0] and thus cannot be given as

an input initially.

Example 3.3.1. We use the same example as before (Example 3.2.2) to illustrate this

altered dummy derivative algorithm. Consider again equation (47) and its corresponding

signature matrix (48) As before the HODs are z[0] = (ẍ1, ẍ2, ẍ3, ẋ4), the current equations

are g[0](z[0]) = (ä, b̈, ċ, d)T . Our algorithm is thus:

3.3. REORDERED DUMMY DERIVATIVE ALGORITHM 53

Algorithm 3 The Reordered Dummy Derivative Algorithm

Initialise: z = z[0], g(z) = g[0](z[0]), κ = 0
1: if κ = 0

2: G[0] =
∂g[0]

∂z[0]

3: Let m be the number of differentiated equations in g[0](z[0])
4: Let H [0] be the first m rows of G[0]

5: κ = κ+ 1
6: else
7: while H [κ−1] 6= []
8: Let G[κ] be m columns of H [κ−1] such that we have a non-singular matrix
9: Make the corresponding variables used in G[κ] into DDs

10: Omit one differentiation to get z[κ], g[κ](z[κ])
11: (where we only consider variables and equations in G[κ])
12: Let m be the number of differentiated equations in g[κ](z[κ])
13: Let H [κ] be the first m rows of G[κ],...
14: (the rows using differentiated equations in g[κ](z[κ]))
15: κ = κ+ 1
16: Consider the new system using all equations g[κ](z[κ]),where κ ≥ 0,...
17: and dummy derivatives for z[κ], where κ > 0, as well as all original variables.

Stage 0

Initialise and then remove undifferentiated equations, since m = 3 we get:

G[0] =
∂g[0]

∂z[0]
=

ẍ1 ẍ2 ẍ3 ẋ4


ä 1 1 0 0

b̈ 1 1 1 0

ċ 0 0 1 1

d 2 1 1 1

and H [0] =

ẍ1 ẍ2 ẍ3 ẋ4


ä 1 1 0 0

b̈ 1 1 1 0

ċ 0 0 1 1

.

Stage 1

We now have two possibilities for selecting columns to get a non-singular matrix. Choosing

to omitt column 2 gives G[1] below. Therefore ẍ1, ẍ3 and ẋ4 are made DDs, denoted by

x′′1, x′′3 and x′4. Reducing the order of differentiation by 1 gives z[1] = (ẋ1, ẋ3, x4), current

54 3. DUMMY DERIVATIVES

equations are g[1](z[1]) = (ȧ, ḃ, c)T , so m = 2 and we get H [1] as below:

G[1] =

ẍ1 ẍ3 ẋ4


ä 1 0 0

b̈ 1 1 0

ċ 0 1 1

and H [1] =

ẋ1 ẋ3 x4 ȧ 1 0 0

ḃ 1 1 0

.

Stage 2

We now have only one possibility, so must have:

G[2] =

ẋ1 ẋ3 ȧ 1 0

ḃ 1 1

.

Thus ẋ1 and ẋ3 are made DDs, denoted by x′1 and x′3. Reducing the order of differentiation by

1 gives z[2] = (x1, x3), the current equations are g[2](z[2]) = (a, b)T , so m = 0 and H [2] = []

and the algorithm ends, yielding an index 1 system equivalent to the one found in [29],

Equation (50).

Note: The zeros in the third column of H [1] mean we never choose x4 as a DD, this is

(as one would hopefully expect) always the case for undifferentiated variables, as explained

in the following section. Also, the variables and equations used in G[κ] are just Dz[κ] and

Dg[κ](z[κ]).

3.4. Using Structural Analysis to Simplify Dummy Derivatives

If we consider H [κ] to be a matrix of size nκ ×mκ, then from the algorithm in §3.3 we

have
(
mκ
nκ

)
potential index 1 systems at stage κ + 1. Thus the potential number of index

1 systems obtainable by the method can be very large for practical examples. We would

like to use the structural analysis of Chapter §2 to inform our choice of DDs and thus limit

the potential number of systems considered at each stage. Note, it is of course possible and

done in practice to compute all possible Jacobians at a stage then store only those that are

3.4. USING STRUCTURAL ANALYSIS TO SIMPLIFY DUMMY DERIVATIVES 55

numerically non-singular, but this again can be costly or lead to memory issues for large

problems [46].

3.4.1. Similarities in the methods. There are several similarities between SA and

DDs, a preliminary summary is given in [32] and a more detailed expansion is given in [33],

this section expands on both these papers. Firstly, as was said above, the ν used in DDs is

the same as c in SA, as from [45] we see that Pantelides algorithm [41] and SA can be used

interchangeably. Therefore we have that Dν = diag(d
c1

dtc1
, . . . , d

cn

dtcn
) and have the following

equality:

Gx = DνFx = DcFx.

We are differentiating each equation fi, ci times, so the maximum derivative for each variable

xj in Gx = 0 will equal maxi(σi,j + ci); from (34) this is dj. Hence, the 0th stage system in

DDs (Algorithm 3) is the 0th stage system in SA. Thus the differentiated problem can be

written:

f
(ci)
i (t, x

(dj)
j ; lower order derivatives) = 0, for i, j = 1, . . . , n.

Therefore we must have that:

z[0] = (x
(d1)
1 , . . . , x(dn)

n).

The formula for the DD Jacobian matrix G[0] can now be written in this SA based notation

to show it actually equals SA’s stage 0 Jacobian J.

(51) G[0] =
∂g[0]

∂z[0]
=

(
∂f

(ci)
i

∂x
(dj)
j

)
= J.

Going to the next stage in DDs by reducing the order of differentiation by 1 is equivalent to

reducing the offset vector c by 1 after removing its zero entries (and consequently reducing

d by 1 also). Therefore at stage 1 in DDs we will be considering the equations used in stage

−1 of SA, since SA increases the order of differentiation by one at each stage. This leads us

to the following observation.

56 3. DUMMY DERIVATIVES

Lemma 3.4.1. The equations used at stage k in SA are equal to those used at stage

κ = −k in DDs (when writing down G[κ]), for each stage k between kmin and 0.

Proof. We have already shown that at stage 0 both methods use the same equations.

In DDs we now remove all equations such that ci = 0. We then omit one differentiation and

repeat. Hence we remove, at stage 1, equations such that ci − 1 = 0, and by induction, at

stage κ equations such that ci − κ = 0, where κ is the stage number. From (38) these are

exactly the equations considered at stage −κ = k in SA. �

Due to the above lemma we will now use the term ‘equivalent stage’ to mean DD stage

κ when talking about SA stage −k = κ and vice versa. We take notation from [45] in order

to write down the kth stage System Jacobian found in SA. Consider each variable xj as a

function of an independent variable t and let xjl represent x
(l)
j (t). Then for an n × n DAE

we have the index set:

J = {(j, l) | j = 1, . . . , n; l = 0, 1, . . . },

similarly for the equations we use the set:

I = {(i, l) | i = 1, . . . , n; l = 0, 1, . . . }.

This gives us a notation for the variables used at each stage in the SA:

Ik = {(i, l) ∈ I | l = k + ci},

Jk = {(j, l) ∈ J | l = k + dj},

where the offsets are taken to be canonical (see Definition 2.5.5) unless otherwise stated. At

each SA stage we have:

mk =| Ik |=| {j | dj + k ≥ 0} | , nk =| Jk |=| {i | ci + k ≥ 0} | .

3.4. USING STRUCTURAL ANALYSIS TO SIMPLIFY DUMMY DERIVATIVES 57

Table 1. The results of SA on the linear DAE (47)—also showing DDs by a prime.

k Equations being used Variables being found

−2 a, b x1, x2, x3

−1 ȧ, ḃ, c x′1, ẋ2, x
′
3, x4

0 ä, b̈, ċ, d x′′1, ẍ2, x
′′
3, x

′
4

We write fIk to mean the set of equations used at stage k in SA and fI≤k
to mean the set of

equations used between SA stage kmin and k—i.e. (fIkmin
, fIkmin+1

, ..., fIk), We use a similar

notation for the variables.

Again, from [45] we have that the system Jacobian used at stage k in SA is given by:

(52) Jk =
∂fIk
∂xJk

.

Recall the note at the end of §3.3, which gives us the following lemma:

Lemma 3.4.2. In DDs if at stage κ, dj = κ+ 1 then column j cannot be in G[κ+1].

Proof. If 1 ≤ i ≤ mk and j > mk then k+ ci > 0 and k+ dj ≤ 0, hence dj − ci < 0 and

thus cannot be equal to σi,j, so that (Jk)ij = 0 due to the definition of the System Jacobian

in Equation (37). Since we have G[0] = J0 = J and the DD algorithm is reducing the order of

differentiation by one at each stage, if the column referring to xj appears in Jk and H [−k−1]

then its entries must be the same. Thus columns with dj = κ+ 1 cannot be selected to form

G[−k], as they will be columns of structural zeros. �

Thus columns representing variables that are undifferentiated cannot be chosen as DDs,

as one would expect, otherwise we would not introduce new dummy variables to the system.

Example 3.4.3. Consider example 3.2.2 and recall the index 1 system given in equation

(50). Compare this with the SA results in Table 1, the variables that became DDs are

marked by prime notation. In Example 3.2.2 we make a subset of the variables found at

stage k in SA into DDs at stage −k+ 1 = κ+ 1 in the DD scheme, using the same equations

in both cases, see Table 1.

58 3. DUMMY DERIVATIVES

The total number of DDs introduced will be
∑

i ci, since this is the total number of new

equations introduced and we identify one DD with each new equation. At each stage the

variables that produced DDs are a subset of the variables that produced DDs at the previous

stage (necessarily excluding those with dj = κ + 1), of size mk−1, with each variable being

differentiated one time less than in the previous stage. So, the DDs will be a subset of the

variables solved for at the equivalent stage +1 of SA, thus we have the following:

Theorem 3.4.4. The matrix G[κ] is a submatrix of (it may be equal to) Jk, where κ = −k.

Before going into a deeper comparison we consider the 0 DOF case as this simplification

yields some interesting observations.

3.4.2. DDs and SA in the 0 DOF case. We begin by noting the following lemma

for the offsets of a 0 DOF DAE:

Lemma 3.4.5. If a square non-singular DAE has 0 DOF and, without loss, has been

reordered to put a HVT on the main diagonal of Σ then d = cT .

Proof. If we have 0 DOF then
∑

j dj−
∑

i ci = 0 from 2.6.14 and by (34) di−ci ≥ 0, ∀i.

Hence, the non-negative numbers di − ci sum to 0 and thus must equal 0. �

We also include a second shorter proof to help illustrate the point to the reader:

Proof. From (34) we have dj = ci + σi,j = ci on a HVT as all σi,j = 0 on the HVT. �

This gives us the following theorem:

Theorem 3.4.6. If we have 0 DOF then G[−k] = Jk for each stage k between kmin and 0.

Proof. We have no choice in our selection of G[κ] since H [κ−1] (of size m × n say)

must contain only m columns of structural non-zeros, since n−m other columns correspond

to undifferentiated variables due to Lemma 3.4.5. Noting that J0 = G[0] completes the

proof. �

Hence in the 0 DOF case Theorem 3.4.4 can be made more precise.

3.4. USING STRUCTURAL ANALYSIS TO SIMPLIFY DUMMY DERIVATIVES 59

Example 3.4.7. In [7] the authors introduce a DAE for modelling a robot arm. It is

reformulated to be structurally well posed in [44]:

(53)

0 = D = ẍ1 −
[
2(ẋ1 + ẋ3)2c(x3) + ẋ2

1d(x3) + (2x3 − x2).(a(x3) + 2b(x3)) + a(x3)w
]
,

0 = E = ẍ2 −
[
−(2(ẋ1 + ẋ3)2c(x3) + ẋ2

1d(x3)) + (2x3 − x2).(1− 3a(x3)− 2b(x3))− a(x3)w + u2

]
,

0 = F = ẍ3 −
[
−(2(ẋ1 + ẋ3)2c(x3) + ẋ2

1d(x3)) + (2x3 − x2).(a(x3)− 9b(x3))− 2ẋ2
1c(x3)

−d(x3)(ẋ1 + ẋ3)2 − (a(x3) + b(x3))w
]
,

0 = G = cosx1 + cos(x1 + x3)− p1(t),

0 = H = sinx1 + sin(x1 + x3)− p2(t),

0 = K = w − (u1 − u2).

Here

p1(t) = cos(et − 1) + cos(t− 1),

p2(t) = sin(1− et) + sin(1− t),

a(s) =
2

2− cos2 s
, b(s) =

cos s

2− cos2 s
,

c(s) =
sin s

2− cos2 s
, d(s) =

cos s sin s

2− cos2 s
.

We arrange the equations and variables such that we clearly illustrate the block triangular

structure of the problem. Structural Jacobian, signature matrix and offsets (with a HVT

marked by • and −∞ entries left blank) for this DAE are, where Fw means ∂F/∂w and so

60 3. DUMMY DERIVATIVES

on:

Σ =

x1 x3 w x2 u2 u1 ci



G 0• 0 4

H 0 0• 4

D 2 1 0• 0 2

F 1 2 0 0• 2

E 1 1 0 2 0• 0

K 0 0 0• 0

dj 4 4 2 2 0 0

, J =

x
(4)
1 x

(4)
3 ẅ ẍ2 u2 u1



G(4) Gx1 Gx3 0 0 0 0

H(4) Hx1 Hx3 0 0 0 0

D̈ Dẍ1 0 Dw Dx2 0 0

F̈ 0 Fẍ3 Fw Fx2 0 0

E 0 0 0 Eẍ2 Eu2 0

K 0 0 0 0 Ku2 Ku1

.

For later observations we note Σ has four coarse (also fine) blocks, two of size 2× 2 and two

of size 1× 1, although for the time being we will treat it as having only one block. Working

through the DD algorithm yields ν = (4, 4, 2, 2, 0, 0), and thus the differentiated system G

is:

G(4) = 0, H(4) = 0,

D(2) = 0, F (2) = 0,

E = 0, K = 0.

Stage 0

The vector of HODs is z[0] = (x
(4)
1 , x

(4)
3 , ẅ, ẍ2, u2, u1)T and g[0] = (G(4), H(4), D(2), F (2), E,K)T .

3.4. USING STRUCTURAL ANALYSIS TO SIMPLIFY DUMMY DERIVATIVES 61

Thus we have a DD Jacobian of the form:

∂g[0]

∂z[0]
= G[0] =

x
(4)
1 x

(4)
3 ẅ ẍ2 u2 u1 ci



G(4) G
(4)

x
(4)
1

G
(4)

x
(4)
3

0 0 0 0 4

H(4) H
(4)

x
(4)
1

H
(4)

x
(4)
3

0 0 0 0 4

D̈ D̈
x
(4)
1

0 D̈ẅ D̈ẍ2 0 0 2

F̈ 0 F̈
x
(4)
3

F̈ẅ F̈ẍ2 0 0 2

E 0 0 0 Eẍ2 Eu2 0 0

K 0 0 0 0 Ku2 Ku1 0

dj 4 4 2 2 0 0

.

By Griewank’s Lemma 2.6.2 this is equivalent to J. Removing equations with ci = 0 yields:

H [0] =

x
(4)
1 x

(4)
3 ẅ ẍ2 u2 u1 ci



G(4) G
(4)

x
(4)
1

G
(4)

x
(4)
3

0 0 0 0 4

H(4) H
(4)

x
(4)
1

H
(4)

x
(4)
3

0 0 0 0 4

D̈ D̈
x
(4)
1

0 D̈ẅ D̈ẍ2 0 0 2

F̈ 0 F̈
x
(4)
3

F̈ẅ F̈ẍ2 0 0 2

dj 4 4 2 2 0 0

.

Stage 1

We are now forced to remove the last two columns of H [0] to get a non-singular matrix,

choosing x
(4)
1 , x

(4)
3 , ẅ, ẍ2 as DDs and reducing the order of differentiation:

G[1] =

x
(4)
1 x

(4)
3 ẅ ẍ2 ci



G(4) G
(4)

x
(4)
1

G
(4)

x
(4)
3

0 0 4

H(4) H
(4)

x
(4)
1

H
(4)

x
(4)
3

0 0 4

D̈ D̈
x
(4)
1

0 D̈ẅ D̈ẍ2 2

F̈ 0 F̈
x
(4)
3

F̈ẅ F̈ẍ2 2

dj 4 4 2 2

, H [1] =

x
(3)
1 x

(3)
3 ẇ ẋ2 ci



G(3) G
(3)

x
(3)
1

G
(3)

x
(3)
3

0 0 3

H(3) H
(3)

x
(3)
1

H
(3)

x
(3)
3

0 0 3

Ḋ Ḋ
x
(3)
1

0 Ḋẇ Ḋẋ2 1

Ḟ 0 Ḟ
x
(3)
3

Ḟẇ Ḟẋ2 1

dj 3 3 1 1

.

62 3. DUMMY DERIVATIVES

Stage 2

Since H [1] is square G[2] = H [1]. As ci − κ = 0 no rows (and therefore no columns) are

removed at this stage, so that:

H [2] =

ẍ1 ẍ3 w x2 ci


G̈ G̈ẍ1 G̈ẍ3 0 0 2

Ḧ Ḧẍ1 Ḧẍ3 0 0 2

D Dẍ1 0 Dw Dx2 0

F 0 Fẍ3 Fw Fx2 0

dj 2 2 0 0

.

Stage 3

Again, H [2] is already square so G[3] = H [2].

H [3] =

ẋ1 ẋ3 w x2 ci Ġ Ġẋ1 Ġẋ3 0 0 1

Ḣ Ḣẋ1 Ḣẋ3 0 0 1

dj 1 1 0 0

.

Stage 4

Then:

G[4] =

ẋ1 ẋ3 ci Ġ Ġẋ1 Ġẋ3 1

Ḣ Ḣẋ1 Ḣẋ3 1

dj 1 1

.

Finally we get H [4] = [] and the algorithm terminates. By Griewank’s Lemma 2.6.2 we have

G[−k] = Jk for all k between −4 and 0 inclusively. We list a comparison between the SA and

DD algorithms in Table 2.

The DDs are equivalent to the differentiated variables solved for at each prior stage in

SA as expected and we have no choice in selecting them, due to the 0 DOF in this example.

3.4. USING STRUCTURAL ANALYSIS TO SIMPLIFY DUMMY DERIVATIVES 63

Table 2. DDs and SA stages for the robot arm.

DD stage SA stage Equations being used Variables being found DDs selected
4 −4 G,H x1, x3 x′1, x

′
3

3 −3 Ġ, Ḣ ẋ1, ẋ3 x′′1, x
′′
3

2 −2 G̈, Ḧ,D, F ẍ1, ẍ3, w, x2 x
(3)
1 , x

(3)
3 , w′, x′2

1 −1 G(3), H(3), Ḋ, Ḟ x
(3)
1 , x

(3)
3 , ẇ, ẋ2 x

(4)
1 , x

(4)
3 , w′′, x′′2

0 0 G(4), H(4), D̈, F̈ , E,K x
(4)
1 , x

(4)
3 , ẅ, ẍ2, u2, u1 N/A

3.4.3. Structurally Necessary Dummy Derivatives. Because the equations used

in each equivalent stage of DDs and SA are the same and variables in each DD stage are a

subset of those in the SA stage we have the following theorem:

Theorem 3.4.8. If there are an equal number of variables nk and equations mk used at

stage k in the SA then we will have no choice when finding G[−k+1] in the DD scheme, i.e.

H [κ] is square.

That is, if there is a stage in the SA that introduces no degrees of freedom then we can

use that stage to find some dummy derivatives without carrying out the algorithm:

Corollary 3.4.9 (Structurally Necessary Dummy Derivatives). If mk=nk in the SA

scheme at stage k then all subsequent derivatives of variables in z[k] used by the DD scheme

at stage κ = −k must be DDs in the final index 1 system, i.e. Dz[k], . . . , D(−k)z[k] must be

DDs. We call such DDs structurally necessary.

More precisely we have the following:

Theorem 3.4.10. If there exists a k such that mk = nk and dj−k ≥ 0 then x
(dj−k+1)
j , . . . , x

(dj)
j

must be DDs irrespective of the numerical values in the Jacobian (i.e irrespective of the choice

of index 1 system) and are hence termed structurally necessary dummy derivatives.

This gives us the following improved DD algorithm, where we can identify structurally

necessary DDs (unless there are 0 DOF a these will only be a subset of all DDs needed to

give an index 1 formulation) without computing numerically the Jacobians:

64 3. DUMMY DERIVATIVES

Algorithm 4 mK = nK Algorithm

1: for K = kmin : −1

2: Find SA solution scheme

3: Note stages where mK = nK

4: Make subsequent derivatives of such variables DDs

5: for K = 0 : −kmin

6: Work through DDs algorithm, but:

7: keep columns for already known DDs from step 4 when finding G[K]

For 0 DOF systems this identifies all DDs as one might expect. Clearly Algorithm 4 finds

all structurally necessary DDs. Applying the first half of 4 (finding structurally necessary

DDs) to the robot arm gives us the following staged solution scheme, produced by a prototype

extension (not yet released) to the authors’ code DAESA [31]:

Do a pass through the Structural Analysis scheme:

K = -4: Make the following derivatives into dummy derivatives

x1’, x1’’, x1’’’, x1’’’’, x2’, x2’’, x2’’’, x2’’’’;

K = -3: No dummy derivatives can be discovered structurally at this stage;

K = -2: Make the following derivatives into dummy derivatives

x3’, x3’’, x4’, x4’’;

K = -1: No dummy derivatives can be discovered structurally at this stage.

One should compare this with Table 2 to convince themselves of the result.

Example 3.4.11. Recall the modified double pendula DAE (44) and the associated

signature matrix and offsets in Figure 3. Table 3 gives the SA solution stages for this

problem. In Table 3 we see all higher order derivatives of variables found at stage 4 in

DDs will be made DDs (i.e. those used in SA stages −3,−2 and −1 or DD stages 1, 2 and

3). Consider now the different BTFs as shown previously in Figure 3. Applying Corollary

3.4.9 corresponds to solving the first coarse block as a stand alone system and then using

it to solve the second coarse block. Compare this with the z[κ] and g[κ](z[κ]) found in DDs

3.4. USING STRUCTURAL ANALYSIS TO SIMPLIFY DUMMY DERIVATIVES 65

Table 3. SA stages for equation (44).

SA stage mk nk
−6 1 2
−5 1 2
−4 3 3
−3 3 4
−2 4 5
−1 4 5
0 6 6

in Table 4 (we have re-ordered equations and variables so they correspond with the coarse

block ordering). Note we get the same result applying our DAESA function to the problem:

Dummy Derivative solution scheme for ’modified2pendula’ problem

Do a pass through the Structural Analysis scheme:

k = -6: No dummy derivatives can be discovered structurally at this stage;

k = -5: No dummy derivatives can be discovered structurally at this stage;

k = -4: Make the following derivatives into dummy derivatives

x1’’’, x1’’’’, x1^(5), x1^(6), x2’’’, x2’’’’, x2^(5), x2^(6), x3’,

x3’’, x3’’’, x3’’’’;

k = -3: No dummy derivatives can be discovered structurally at this stage;

k = -2: No dummy derivatives can be discovered structurally at this stage;

k = -1: No dummy derivatives can be discovered structurally at this stage;

k = 0: No dummy derivatives can be discovered structurally at this stage.

Table 4. Dummy derivative stages for equation (44).

Dummy derivative stage κ z[κ] g[κ](z[κ])

0 (x
(6)
1 , x

(6)
2 , x

(4)
3 , x

(3)
5 , ẍ4, x6) (f

(6)
3 , f

(4)
1 , f

(4)
2 , f̈6, f4, f5)T

1 (x
(5)
1 , x

(5)
2 , x

(3)
3 , ẍ5) (f

(5)
3 , f

(3)
1 , f

(3)
2 , ḟ6)T

2 (x
(4)
1 , x

(4)
2 , ẍ3, ẋ5) (f

(4)
3 , f̈1, f̈2, f6)T

3 (x
(3)
1 , x

(3)
2 , ẋ3, x5) (f

(3)
3 , ḟ1, ḟ2)T

4 (ẍ1, ẍ2, x3) (f̈3, f1, f2)T

5 (ẋ1) (ḟ3)T

6 (x1) (f3)T

66 3. DUMMY DERIVATIVES

Due to our ordering in the DD algorithm we introduce DDs for Dz[κ] at stage κ, e.g.

at stage 4 we are left with the 3 × 3 system given by the first coarse block in our BTF as

expected. We note this algorithm for structurally necessary DDs looks similar to solving for

DDs based on the coarse BTF, see §3.5.1 for why this is not quite the case.

Example 3.4.12. This improved DD algorithm does indeed achieve our goal of reducing

the total number of potentially needed index 1 systems: Consider again the DAE (44),

working through the structural analysis we see that at stage k = −4 we have mk = nk. At

stage −4 we are solving for ẍ1, ẍ2, x3, so we know to keep columns corresponding to these

variables when working through DDs. For example, with • indicating a structural non-zero

and a blank indicating a structural zero we have G[0] and H [0]:

x
(6)
1 x

(6)
2 x

(4)
3 ẍ4 x

(3)
5 x6 ci



f
(4)
1 • • 4

f
(4)
2 • • 4

f
(6)
3 • • 6

f4 • • 0

f5 • • 0

f̈6 • • 2

dj 6 6 4 2 3 0

x
(6)
1 x

(6)
2 x

(4)
3 ẍ4 x

(3)
5 x6 ci


f

(4)
1 • • 4

f
(4)
2 • • 4

f
(6)
3 • • 6

f̈6 • • 2

dj 6 6 4 2 3 0

.

We must keep the first three columns and hence only have to check 3 matrices for non-

singularity (in practice for best condition number), as opposed to the 15 we would otherwise

have to check—although clearly in this case inspection tells us we choose the first 4 columns.

3.5. Alternative Algorithms

3.5.1. Using BTFs. Using a block decomposition may yield a way of reducing the size

of potential G[κ] matrices at each stage, which should offer computational speed up when

checking the condition number of each Jacobian when doing dummy pivoting. Before giving

an algorithm for finding DDs on blocks we ask if Algorithm 4 was already doing something

similar to a BTF for us. We consider a fine block decomposition (which is itself a BTF

3.5. ALTERNATIVE ALGORITHMS 67

within the coarse BTF, see §2.7) and ask if we could further reduce potential index 1 choices

when considering mk being equal to nk during our SA stages.

Theorem 3.5.1. If given an n× n DAE and there exists a k ∈ {kmin, . . . ,−1} such that

nk = mk = µ for some 0 < µ < n, then the DAE must decompose into 2 coarse blocks of size

µ and (n− µ) (it may decompose further).

Proof. Similar to the proof of Lemma 3.4.2 one partitions the matrix into the following

and then notes the top right block is empty (i.e. all its entries are −∞) by (34).

Σ =





1

k + dj ≥ 0 k + dj < 0
...

k + ci ≥ 0 k + ci ≥ 0

µ

µ+ 1

k + dj ≥ 0 k + dj < 0
...

k + cj < 0 k + cj < 0

n

1 . . . µ µ+ 1 . . . n

.

�

This means, we cannot have a coarse block irreducible DAE with nk = mk, unless k ≥ 0

or k < kmin and therefore nk = mk never occurs when solving via fine blocks unless the

DAE has m fine blocks and we are solving fine block m, i.e. are at global stage 0. Hence we

turn our attention to the interactions between blocks rather than trying to optimise further

within a block. We define local offsets associated with an arbitrary block form:

Definition 3.5.2 (Block Local Offsets). We denote the canonical local offsets associated

with an arbitrary block form, were its blocks treated as stand alone systems, as či and ďj.

68 3. DUMMY DERIVATIVES

Note: the local offsets ĉ and d̂ are the block local offets for the fine BTF. Given a block

form of Σ with L blocks we have Algorithm 5. In the following discussion we will call DDs

Algorithm 5 Block based Dummy Derivatives

1: for l = 1 : L
Initialise: z

[0]
l , g

[0]
l (z

[0]
l), κl = 0

2: if j = 0

3: G
[0]
l =

∂g
[0]
l

∂z
[0]
l

4: Let m be the number of differentiated equations in g
[0]
l (z

[0]
l)

5: Let H
[0]
l be the first m rows of G

[0]
l

6: κ = κ+ 1
7: else
8: while H

[κl−1]
l 6= []

9: Let G
[κl]
l be m columns of H

[κl−1]
l such that we have a non-singular matrix

10: Make the corresponding variables used in G
[κl]
l DDs

11: Omit one differentiation to get z
[κl]
l , g

[κl]
l (z

[κl]
l),...

12: (where we only consider variables and equations in G
[κl]
l)

13: Let m be the number of differentiated equations in g
[κl]
l (z

[κl]
l)

14: Let H
[κl]
l be the first m rows of G

[κl]
l ,...

15: (the rows using differentiated equations in g
[κl]
l (z

[κl]
l))

16: κl = κl + 1

17: Consider the new system using all equations g
[κl]
l (z[κl]),where κl ≥ 0,...

18: and dummy derivatives for z
[κl]
l , where κl > 0 and original variables,...

19: as well as all equations g
(č)
l , . . . , g

(c)
l ,...

20: and dummy derivatives for all variables x
(ďj)
j , . . . , x

(dj)
j .

block necessary dummy derivatives if they are found at the end of Algorithm 5, i.e. if they

can be found by using a block form’s local offsets and the global canonical offsets. There

is no explicit interaction between blocks in Algorithm 5 (the inter block dependencies are

taken into account on lines 19 and 20) and therefore the majority of the algorithm could be

performed in parallel. In our discussions that follow we will restrict ourselves to thinking

about coarse and fine BTFs, as described in §2.7, as these tend to be the most natural when

using the signature matrix method.

To prove that Algorithm 5 gives a suitable choice of DDs, we would like an analogue of

a theorem in [48] that asserts the difference between local and global offsets is constant on

3.5. ALTERNATIVE ALGORITHMS 69

a fine block form to hold for an arbitrary block form. This would mean that we introduce

only as many DDs as differentiated equations when taking the interactions between blocks

into account. Consider however the following example:

Example 3.5.3. Consider a DAE with the following signature matrix:

ci či


0 1 0 0

0 0 1 0

0 1 0 0

dj 0 1 1

ďj 0 0 1

.

Here we are block triangularising over coarse blocks. There is not a constant difference

between coarse local and global offsets, so it’s possible we introduce more DDs than we do

equations when using Algorithm 5.

The potential issue in Example 3.5.3 is actually not a problem at all due to the follow-

ing theorem (if it were, then Algorithm 5 would not be a valid method for producing DD

schemes):

Theorem 3.5.4. Given a BTF of Σ the difference between the sum of any block’s local

offsets and global offsets is equal with respect to c and d.

Proof. Take an n× n signature matrix Σ and put its HVT on the main diagonal. Let

S be any subset of {1, . . . , n} and č and ď be any valid offsets. Then, since ďi − či = σi,i we

have: ∑
i∈S

ďi −
∑
i∈S

či =
∑
i∈S

σi,i =
∑
i∈S

di −
∑
i∈S

ci = Val(S),

which is independent of č and ď. So, for any other valid offsets, say c and d we have:

∑
i∈S

ďi −
∑
i∈S

di =
∑
i∈S

či −
∑
i∈S

ci.

�

70 3. DUMMY DERIVATIVES

This is not what one might first expect: in our coarse block algorithm one might expect

to differentiate an entire block a number of times to solve a later block, this theorem shows

that actually you may only need to differentiate some parts of the block to retain a square

index 1 system using lines 19 and 20 in Algorithm 5, a subtlety in the choice of block form

not explored in [30].

Theorem 3.5.5. Algorithm 5 gives a suitable choice of DDs that could otherwise have

been found by considering the entire system and original DD algorithm.

Proof. If one is able to carry out the above algorithm then we have a block form whose

diagonal sub-matrices are structurally non-singular. Because each block’s coarse local offsets

are a constant away from the global, by Lemma 2.6.2 we must have a non-singular Jacobian

at each global stage of DDs if we have a non-singular Jacobian at each coarse local stage.

Again, by Lemma 2.6.2 we see that a valid choice for the global stage DD algorithm is an

amalgam of variables found at positive and negative local stages, using each block’s lead

times (if we consider adding variables and equations at the end of the algorithm as doing

local stages 0, . . . ,maxj (dj − ďj)). �

Due to Theorem 3.5.1 and Example 3.4.7 one may think when restricting to coarse blocks

Algorithm 5 is just a restating of Algorithm 4—consider a DAE with signature matrix:

x1 x2 x3 x4 x5 x6 ci



f1 5 0 0

f2 0 4 0

f3 0 0 0 4

f4 0 0 6

f5 2 0 4

f6 2 0 4

dj 5 0 4 6 6 4

,

k −6 −5 −4 −3 −2 −1

mk 1 1 4 4 4 4

nk 2 3 5 5 5 5

.

Looking for stages where mk = nk we find no structurally necessary DDs. However, using

Algorithm 5 we find block necessary DDs for x
(3)
4 , . . . , x

(6)
4 , x

(3)
5 , . . . , x

(6)
5 and ẋ6, . . . , x

(4)
6 .

3.5. ALTERNATIVE ALGORITHMS 71

We see that Algorithm 5 restricted to the coarse BTF yields a valid set of DDs that could

be found using the global offsets and no BTF. All we’ve done is take a BTF, so one might

assume in general it generates all possible sets of valid DDs that could be obtained globally,

as certainly seems to be asserted in the original paper [29]. Consider however:

Example 3.5.6. Consider a DAE with signature tableau as follows:

Σ =

x1 x2 x3 x4 x5 ci



f1 1 0 0 1

f2 2 1 0

f3 1 0 2

f4 2 1 0 1

f5 2 1 0

dj 2 1 3 2 1

.

Note that the coarse BTF given above is the same as the fine BTF and c = č = ĉ and

d = ď = d̂. Algorithm 5 will give a DD for either ẍ1 or ẋ2 from the first block, that is

Algorithm 5 cannot find a set of DDs where neither of ẍ1 and ẋ2 are selected. However, if

we carry out the original DD algorithm we see that there is an index one system that uses

only derivatives of variables x3, x4 and x5 as DDs. Thus there are index 1 systems we may

‘miss’ using a BTF that would otherwise be available if considering the DAE as a whole.

We now show that the choice of block form does directly affect the number of block

necessary DDs. We assert the fine BTF is a good choice. Before giving an example of

Algorithm 5 using the fine BTF we wonder if there exists a more informative version of

Algorithm 4 based on the fine BTF. Consider again equation (44), its signature matrices

in Figure 3 and its stages in Table 4. For stages −2 and −1 mk 6= nk because we have to

introduce initial values for ẍ5 and ẋ5. If we did not have to do this we would again have

a square system, this time with 4 equations—the original coarse block containing equations

1, 2, 3 and variables 1, 2, 3 and a fine block containing equation 6 and variable 4. We note

that variable 5 does not actually appear in the DD solution scheme until stage 0 because

72 3. DUMMY DERIVATIVES

it does not have an associated equation. Note: because they will not appear in the DD

scheme we can ignore any variables that must be specified as IVs by the SA when checking

for square systems. This gives rise to the following definition

Definition 3.5.7. Fine block local numbers of equations and variables are written as:

m̂k,l =

∣∣∣∣{j in block l | d̂j + k ≥ 0}
∣∣∣∣, n̂k,l =

∣∣∣∣{i in block l | ĉi + k ≥ 0}
∣∣∣∣,

where k is taken to be a local SA stage associated with a fine block.

Doing this we end up with an improved fine block based analogue of Algorithm 4. For

each fine block l do the following (where k̂min,l is the -maxj dj such that j is in block l):

Algorithm 6 Fine BTF based structural DD algorithm

1: for K = k̂min,l : −1

2: Find SA solution scheme

3: Note stages where m̂k,l = n̂k,l

4: Make subsequent derivatives of such variables DDs

5: for K = 0 : −k̂min,l

6: Work through DDs algorithm, but:

7: keep columns relating to already known DDs from step 4 when finding G[K]

Knowing this it motivates us to continue using the fine BTF to find DDs, since we have

a better set of structurally necessary DDs (we will term such DDs fine block structurally

necessary DDs) than was previously found using the entire signature matrix. Before proving

this is indeed a valid method we illustrate it on a double pendulum:

Example 3.5.8. Consider again Equation (44). We carry out Algorithm 5 on this DAE

to illustrate the advantages of the fine BTF. The local offsets tell us that we must have DDs

shown in Table 5—found by comparing the offsets via lines 19 and 20 of the Algorithm. The

only block we have to select DDs in is block 4 (equivalent to the simple pendulum). For ease

of checking the Jacobians that follow we now consider this as a stand alone DAE (as would

3.5. ALTERNATIVE ALGORITHMS 73

Table 5. DDs from the fine blocks for example (44).

Block Number Fine block structural DDs

1 No dummy derivatives for this block

2 No dummy derivatives for this block

3 ẋ4, ẍ4

4 x
(3)
1 , x

(4)
1 , x

(5)
1 , x

(6)
1 , x

(3)
2 , x

(4)
2 , x

(5)
2 , x

(6)
2 , ẋ3, ẍ3, x

(3)
3 , x

(4)
3

be done should Algorithm 5 be done in parallel over fine blocks) and give the differentiated

problem Gx = 0:


f1 = ẍ1 + x1x3 = 0,

f2 = ẍ2 + x2x3 −G = 0,

f3 = x2
1 + x2

2 − L2 = 0,


ḟ3 = f4 = 2ẋ1x1 + 2ẋ2x2 = 0,

f̈3 = f5 = 2ẍ1x1 + 2ẋ2
1 + 2ẍ2x2 + 2ẋ2

2 = 0.

Performing the DD algorithm gives two possible index 1 systems, where the choice of

DDs is given in Table 6. We are able to find 14 block necessary DDs without ever having to

Table 6. Possible DD choices from (44).

Stage 1 Stage 2

x′′1 x′1

x′′2 x′2

compute a numerical Jacobian and reduced our problem size by half at the outset.

A brief complexity analysis follows. Assume the DAE decomposes into L fine blocks

labelled by a subscript l. At each stage of DDs the original algorithm has a complexity of

order:
kmin∑
k=−1

(nk)
3,

74 3. DUMMY DERIVATIVES

because the selection of DDs is usually done via a QR decomposition in practice, which is

an O(n3) operation. The proposed algorithm has a complexity of order:

L∑
l=1

(

k̂min,l∑
k=−1

(n̂k,l)
3),

where ĉi in the second summation is taken to be in block l. Assuming the system decomposes

into relatively small fine blocks, i.e. n̂ � n and some ĉi < ci—from test models in DAESA

this is usually the case—this should offer good numerical speed up.

Importantly the large reduction in potential DDs and problem size makes dummy pivoting

less problematic, since we will have to consider smaller systems of equations with a reduced

number of potential variables to choose from, see §3.6 for more detail.

Consider again Example 3.5.6, we are reminded that there are index 1 systems we may

‘miss’ using a fine BTF that would otherwise be available if considering the DAE as a whole.

Whilst this seems like a rather large oversight of our method, this potential ‘oversight’ will

never make an otherwise solvable (by DDs) DAE unsolvable:

Theorem 3.5.9. If the DAE is solvable then Algorithm 5 restricted to the fine BTF will

always be able to select a valid set of DDs.

Proof. If the system is solvable then there must exist DD matrices globally, i.e. there

is a choice G[0], . . . , G[maxi ci] for which each matrix is non-singular. We also know that

there exist global SA system Jacobian J0, . . . ,J−maxi ci that have full row rank. If the SA

scheme succeeds globally then it succeeds over fine-blocks. That is, over each fine block l

there are J0,l, . . . ,J−maxi ĉi,l that have full row rank. Since we have that any J0 = G[0] and

subsequent DD matrices are sub matrices of previous SA matrices it must be possible to

select a non-singular DD matrix on each fine block if each SA Jacobian has full row rank in

that block. �

3.5. ALTERNATIVE ALGORITHMS 75

Thus, although it is possible to find non-singular choices of DDs globally that cannot

be found over a fine block these choices are somehow a redundant selection—although ad-

mittedly it might be possible the global selections have better condition numbers there will

exist a fine block selection if the DAE is solvable.

3.5.2. Relation to another approach in the literature. An approach in the litera-

ture that seeks to improve upon the Dummy Derivative method is found in [54] and [55] and

is termed the structural approach for regularization. One begins by adding to the system all

equations ḟi, . . . , f
(ci)
i for each equation i, this gets us a reduced derivative array, see [8] or

1.3. We now have a system with M =
∑

i ci + n equations in only n unknowns, so we have

to introduce
∑

i ci new unknowns we wish to solve for, i.e. the approach is similar to doing

DDs in one go, rather than in stages. The method does this by using a HVT, T with entries

given by (i, ji). It adds new variables as follows:

(54) wji =


w

(σi,ji+1)

ji

...

w
(σi,ji+ci)

ji

 =


x

(σi,ji+1)

ji

...

x
(σi,ji+ci)

ji

 for ci > 0 and wji = [] for ci = 0.

Of course this choice of HVT is, in general, non-unique. A weighting is suggested to choose

a HVT that is valid in a maximal neighbourhood of a consistent point, so that one may have

to change their selection dynamically as one does in dummy pivoting. Each HVT is assigned

a local weighting coefficient:

ωT =
∏

(i,j)∈T

|Ji,j|.

Intuitively this method looks very similar to DDs, one seeks to add the same equations to

the system and introduce an equivalent number of ‘new’ algebraic variables to solve for that

were previously derivatives of our original variables. In fact one can see any index 1 system

found by the above approach must also be obtainable using Dummy Derivatives.

Lemma 3.5.10. Adding variables to the DAE as in equation (54) produces a valid Dummy

Derivative system.

76 3. DUMMY DERIVATIVES

Proof. Each entry of Σ that is on a HVT must have a structurally non-singular System

Jacobian entry. Consider a DAE that is one irreducible coarse block for simplicity without

loss of generality. In DDs if ci = 0 we remove that equation, in this approach if ci = 0 we

add no variables to ‘match’ to that equation, essentially removing it from consideration. If

ci > 0 we consider the approach above as stage-wise and note since we are using a HVT

dji = σi,ji+ci, we add variables for x
(maxji dji)

ji
, then set dji = dji−1 and iterate until dji = 0—

which is exactly what we do in DDs. Since we are working on a HVT each equivalent DD

Jacobian must be (at least structurally) non-singular, so we have an alternative way to find

a DD system. �

This looks similar to the approach based on a BTF above—we have a method that

identifies a potential DD system, so we ask if it can identify all potential DD systems.

However, the following example tells us it cannot.

Example 3.5.11. Consider a DAE:
f1 = x1 + x2 + tx3 = 0,

f2 = 3ẋ1 + ẋ2 + x3 = 0,

f3 = 2ẍ1 + ẍ2 + ẍ3 = 0,

which has signature tableau (with HVTs marked by ∗, ◦, • and 4):

Σ =

x1 x2 x3 ci


f1 0∗ 0◦ 0•4 2

f2 1◦• 1∗4 0 1

f3 24 2• 2∗◦ 0

dj 2 2 2

.

3.5. ALTERNATIVE ALGORITHMS 77

We therefore have initial DD Jacobian:

G[0] =

ẍ1 ẍ2 ẍ3


f̈1 1 1 t

ḟ2 3 1 0

f3 2 1 1

.

Which is non-singular provided 2− t 6= 0. Proceeding with the algorithm produces:

H [0] =

ẍ1 ẍ2 ẍ3 f̈1 1 1 t

ḟ2 3 1 0

.

We therefore have 3 potential choices for G[1], listed in Table 7.

Table 7. Possible DD choices for Example 3.5.11.

Choose x′′1 and x′′2 Choose x′′1 and x′′3 Choose x′′2 and x′′3

G[1] =

ẋ1 ẋ2()
ḟ1 1 1

f2 3 1
G[1] =

ẋ1 ẋ3()
ḟ1 1 t

f2 3 0
G[1] =

ẋ2 ẋ3()
ḟ1 1 t

f2 1 0

In Table 8 we present all possible index 1 DD systems and indicate which can be found

using a HVT above and note there are 2 systems (from 2 different branches) that the method

cannot find.

Table 8. All DD choices for Example 3.5.11.

Choose x′′1, x′′2, x′1 HVT: ∗ Choose x′′1, x′′2, x′2 HVT: ◦ Choose x′′1, x′′3,x′1 HVT: N/A

Choose x′′1, x′′3, x′3 HVT: • Choose x′′2, x′′3, x′3 HVT: 4 Choose x′′2, x′′3,x′2 HVT: N/A

78 3. DUMMY DERIVATIVES

Example 3.5.12. To further example 3.5.11 consider a DAE with signature matrix,

offsets and HVTs (given by ∗, ◦, • and 4) given below:

Σ =

x1 x2 x3 ci


f1 0∗ 0◦ 0•4 2

f2 14 1• 1∗◦ 1

f3 2◦• 2∗4 −∞ 0

dj 2 2 2

.

This has System Jacobian:

J =

ẍ1 ẍ2 ẍ3


f̈1 • • •

ḟ2 • • •

f3 • • 0

= G[0],

where • indicates a structural non zero. The method above can only select index 1 systems

using either x′′1 and x′′3 or x′′2 and x′′3, however DDs can select the following G[1]:

G[1] =

ẋ1 ẋ2 ḟ1 • •

f2 • •
.

Hence we have an index 1 system that cannot be found using the structural approach for

regularization, that can be found using DDs.

The following remains an open question: if every choice of index 1 system the above

method produces has a singular Jacobian then will every index 1 system it misses also have

a singular Jacobian? Clearly for this example this is the case, if columns 1 and 3 and 2 and 3

are linearly dependent then so are columns 1 and 2, we conjecture this is the case in general,

which if true would give us a more practical way of finding DDs.

3.6. DUMMY PIVOTING 79

3.6. Dummy Pivoting

We briefly discuss the issue of dummy pivoting as first examined in [30], we give an

insight in to how best to visualise the problem and present an example that shows a ‘worst’

case number of potential index 1 systems. When proceeding along a numerical solution it

is possible that some chosen matrices G[κ] will become singular, [28]. The above examples

don’t have time dependent Gκ although there’s no reason a Gκ can’t be time varying—which

may lead to singularity at some time t. Consider for example the simple pendulum (2), when

proceeding through the DD algorithm 3 we get:

H [0] =

ẍ ÿ λ()
C̈ 2x 2y 0

.

We have a choice between selecting either column one or column two. As our solution

trajectory approaches the x axis we want to select column one, as it approaches the y axis

we want to select column two, assuming our pendulum is moving across the x axis we will

have to change our choice of index 1 system dynamically. It is therefore necessary to change

our choice of G[κ] as our numerical solution evolves with time. Such a change is called dummy

pivoting or dynamic selection of states [28]. The main problem with making such a change

is that changing a G[κ] will (frequently, but not necessarily) produce a need to change all

subsequent G[κ+i]. This problem is worsened the higher the DAE index (there will be multiple

stages and thus more potential G[κ] to change) or when the larger the problem size (this will

result in estimating condition numbers of potentially large matrices frequently throughout

the solution process). One method of avoiding the former problem is to start by attempting

to reduce the order of the problem and block triangularising as in §3.5, a technique that in

practice frequently reduces the order. The solver Dymola seems to do this (it seems to also

do behind the scenes algebraic manipulations to reduce the block sizes as well), however it

is sometimes not possible to reduce the DAE this way and one can crash the solver due to

there being too many matrices to dynamically switch between. If one slightly modifies the

example of [51] (see Example 3.6.2) so that every entry in Σ is a structural non-zero then the

80 3. DUMMY DERIVATIVES

DAE with a structural index of 13 (of size 25×25) is enough to crash Dymola (using > 1GB

of system memory before running out of memory [21]), as the number of potential index 1

systems grows with the index (one has to consider more stages). Clearly such a large index is

unlikely to occur in a practical example, but less extreme cases are indeed feasible. Another

alternative is to select which states must or cannot be chosen as DDs, this is implemented

in some tools, such as is done in Dymola with each variable given a stateSelect parameter

that can be prefer, default or avoid. Selecting dynamic states before solving however

needs to be informed by problem specific knowledge, which it is not always possible a user

will have. It is also dangerous as the user may avoid choosing structurally necessary DDs

and thus not find any index 1 system at all if they are not careful. There are few effective

ways to measure when it is necessary to perform dummy pivoting, one such method is to

monitor the condition number of G[κ], as in [15] or to use an adaptive step size ODE solver

and monitor the step-size as in [14] the former potentially being computationally expensive

whilst the latter risks dummy pivoting when it is not needed. It is also possible that if

the step size is too large one misses points where a pivot was needed and thus has solution

regions that are not valid, similar to what happens when checking switching conditions for

hybrid systems [59]. The following example offers some insight in to the number of different

potential Jacobians G[κ].

Example 3.6.1.

(55)



f1 = ẍ2
1(t) + ẋ2

5(t) + u1(t) = 0,

f2 = ẍ2
4(t) + ẍ2

2(t) + u2(t) = 0,

f3 = ẋ2
1(t) + x2

3(t) + u3(t) = 0,

f4 = x2
4(t) + x2

3(t) + u4(t) = 0,

f5 = ẋ2
5(t) + ẋ2

2(t) + u5(t) = 0.

3.6. DUMMY PIVOTING 81

Here u1(t), . . . , u5(t) are arbitrary driving functions. The non-linearity gives stages in the

DD algorithm that may need pivoting. This DAE (55) has signature tableau and offsets:

Σ =

x1 x2 x3 x4 x5 ci



f1 2• 1◦ 1

f2 2• 2◦ 0

f3 1◦ 0• 2

f4 0◦ 0• 2

f5 1◦ 1• 1

dj 3 2 2 2 2

.

Equation (55) is irreducible and has two HVTS, marked by • and ◦. Every entry of

Σ corresponds to a structurally non-singular entry in each Jk and their related DD stage

Jacobians. For ease of checking entries in the DD stage Jacobians that follow we present all

equations and their derivatives specified by c:



f1 = ẍ2
1(t) + ẋ2

5(t) + u1(t) = 0,

f2 = ẍ2
4(t) + ẍ2

2(t) + u2(t) = 0,

f3 = ẋ2
1(t) + x2

3(t) + u3(t) = 0,

f4 = x2
4(t) + x2

3(t) + u4(t) = 0,

f5 = ẋ2
5(t) + ẋ2

2(t) + u5(t) = 0,



ḟ1 = f6 = 2x
(3)
1 (t)ẍ1(t) + 2ẍ5(t)ẋ5(t) + u̇1(t) = 0,

ḟ3 = f7 = 2ẍ1(t)ẋ1(t) + 2ẋ3(t)x3(t) + u̇3(t) = 0,

ḟ4 = f8 = 2ẋ4(t)x4(t) + 2ẋ3(t)x3(t) + u̇4(t) = 0,

ḟ5 = f9 = 2ẍ5(t)ẋ5(t) + 2ẍ2(t)ẋ2(t) + u̇5(t) = 0,


f̈3 = f10 = 2x

(3)
1 (t)ẋ1(t) + 2ẍ2

1(t) + 2ẍ3(t)x3(t) + 2ẋ2
3(t) + ü3(t) = 0,

f̈4 = f11 = 2ẍ4(t)x4(t) + 2ẋ2
4(t) + 2ẍ3(t)x3(t) + 2ẋ2

3(t) + ü4(t) = 0.

82 3. DUMMY DERIVATIVES

Stage 0

In the DD algorithm, we have initial Jacobians:

G[0] =

x
(3)
1 ẍ2 ẍ3 ẍ4 ẍ5 ci



ḟ1 2ẍ1 0 0 0 2ẋ5 1

f2 0 2ẍ2 0 2ẍ4 0 0

f̈3 2ẋ1 0 2x3 0 0 2

f̈4 0 0 2x3 2x4 0 2

ḟ5 0 2ẋ2 0 0 2ẋ5 1

dj 3 2 2 2 2

, H [0] =

x
(3)
1 ẍ2 ẍ3 ẍ4 ẍ5


ḟ1 2ẍ1 0 0 0 2ẋ5

f̈3 2ẋ1 0 2x3 0 0

f̈4 0 0 2x3 2x4 0

ḟ5 0 2ẋ2 0 0 2ẋ5

.

Stage 1

We need to find G[1]. We do this by choosing any 4 columns, since all 5 possibilities are (at

least structurally) non-singular. Numerically one potentially has to pivot between different

systems, for example say you chose columns 1, 2, 3, 4, and ẋ2 → 0 at some time t then you

would pivot to the system with columns 1, 3, 4, 5. Choose columns 1, 2, 3, 4, giving DDs for

x
(3)
1 , ẍ2, ẍ3 and ẍ4. The new Jacobians are:

G[1] =

ẍ1 ẋ2 ẋ3 ẋ4


f1

¨2x1 0 0 0

ḟ3 2ẋ1 0 2x3 0

ḟ4 0 0 2x3 2x4

f5 0 2ẋ2 0 0

and H [1] =

ẍ1 ẋ2 ẋ3 ẋ4 ḟ3 2ẋ1 0 2x3 0

ḟ4 0 0 2x3 2x4

.

Stage 2

Choose two columns from H [1] to form a square non-singular matrix. There are three choices.

As above it may be necessary to pivot chosen DDs numerically. Say we choose columns 1

3.6. DUMMY PIVOTING 83

and 3, then we introduce DDs for ẍ1 and ẋ3 and get the following Jacobian:

G[2] =

ẋ1 x3 f3 2ẋ1 2x3

f4 0 2x3

.

Removing undifferentiated equations yields H [2] = [] and the algorithm terminates. Note:

we have selected the following dummy derivatives: x′′1, x
(3)
1 , x′′2, x′3, x′′3 and x′′4. If we do not

check for non-singular matrices at each stage we would have
(

5
4

)(
4
2

)
= 30 possible index 1

systems at the end of the algorithm. If however we check for structural singularity at each

stage (as is done above) we get 9 possible index 1 systems. Listed in Table 9 are selected

DDs.

Table 9. Possible DD index 1 systems from (55).

Stage 1 Stage 2

x
(3)
1 , x′′2, x′′3, x′′4 x′′1, x′3 or x′′1, x′4 or x′3, x′4

x
(3)
1 , x′′2, x′′3, x′′5 x′′1, x′3

x
(3)
1 , x′′2, x′′4, x′′5 x′′1, x′4

x
(3)
1 , x′′3, x′′4, x′′5 x′′1, x′3 or x′′1, x′4 or x′3, x′4

x′′2, x′′3, x′′4, x′′5 x′3, x′4

If one thinks of the number of possible DD index 1 systems as a tree diagram, with stage

1 producing the root and each subsequent stage producing branching nodes it is possible to

make pivoting easier. In applications where the DAE is usually of large size but (relatively)

low index the tree will likely be wide but shallow. Pivoting can then be done across nodes

on each level, i.e. you can pivot between all nodes at one level (restricting yourself to nodes

coming from one parent node), starting at the node that gives you a singular matrix G[κ] and

considering its leaves, then if no nodes at the current level give a non singular matrix go up

a level and repeat. Storing such a diagram may take a lot of memory, but it’s highly likely

many nodes will in fact have the same G[κ]. Consider Table 9. We see there are actually

84 3. DUMMY DERIVATIVES

only three distinct nodes at stage 2, so we only have to store 3 Jacobians, not 9 and check

3 Jacobians for non-singularity in the worst case.

Example 3.6.2. We conclude this section by looking at a ‘worst case scenario’. The

example from [51] forms a DAE with arbitrarily high structural index (if n is the problem

structural index it has size 2n − 1). Such a DAE will also therefore have arbitrarily many

DD stages (A DAE of structural index n will have n − 1 DD stages, as each stage reduces

the index by 1). We modify the example to have a signature matrix that is dense (all finite

entries in Σ are on a HVT), which causes a great deal of choice at each DD stage. Using

such a trivial example it’s possible for current DD solvers to break down with relatively

small problem size due to running out of system memory. Since the equations are arbitrary

for actual DD stages (one assumes they’re picked so that any possible DD selections can be

non-singular at some time step) we omit the equations and instead present the first three

signature matrices for the process, produced by DAESA in Figure 1. Consider for example

the 5 × 5 DAE of index 3, at stage 1 one has to choose 3 from 4 variables, then at stage 2

one has to choose 1 from 2, giving a total of 8 potential index 1 systems. For the index 4

DAE of size 7× 7 one has 6 choices at stage 1, 4 choices at stage 2 and 2 choices at stage 3,

giving 48 possible index 1 systems. In general we will have (2n−2) · (2n−4) · . . . ·2 possible

index 1 systems for an index n DAE of this form.

3.6. DUMMY PIVOTING 85

Indices of Variables
1 2 3

In
di

ce
s

of
 E

qu
at

io
ns

1

2

3

0

0

1

1

0

1

1

0

0

0

1

1

0

1

1

0

0

0

1 0

0

1

ci

0 1 1dj

 REISSIGN
 Size 3, structural Index 2, DOF 1

Shaded: structural nonzeros in system Jacobian J
Boxed: HVT

(a) Size 3

Indices of Variables
1 2 3 4 5

In
di

ce
s

of
 E

qu
at

io
ns

1

2

3

4

5

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

0

0

1

0

0

1

0

0

1

1

2

ci

0 1 1 2 2dj

 REISSIGN
 Size 5, structural Index 3, DOF 2

Shaded: structural nonzeros in system Jacobian J
Boxed: HVT

(b) Size 5

Indices of Variables
1 2 3 4 5 6 7

In
di

ce
s

of
 E

qu
at

io
ns

1

2

3

4

5

6

7

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

0

0

0

1

0

1

0

1

0

0

1

1

2

2

3

ci

0 1 1 2 2 3 3dj

 REISSIGN
 Size 7, structural Index 4, DOF 3

Shaded: structural nonzeros in system Jacobian J
Boxed: HVT

(c) Size 7

Figure 1. Modified Reissig example.

CHAPTER 4

Exploiting Non-Canonical Offsets—Universal Dummy Derivatives

This chapter provides a new algorithm that eliminates the inherent problem of dummy

pivoting (see §3.6) by transforming the DAE to a new problem where the same selection of

DDs can work throughout the numerical integration. If it’s possible to find globally valid

DDs for a system that previously only had local ones, we no longer run into problems where

we cannot store a sufficient number of index 1 DD systems due to running out of memory

(see Example 3.6.2 at the end of §3.6). We can also then exploit structural information

(e.g. block forms) throughout our solution, rather than in potentially small regions. The

algorithms given in this chapter are only suggested for use if a static selection of DDs cannot

be found, either by noting there are 0 DOF, or by finding a set of non-singular G[κ] that do

not depend on t and are non-singular or by using problem knowledge to find a set of G[κ]

that depend on t but are still non-singular throughout integration.

4.1. The Basic Algorithm

We would like to consider again the simple pendulum (2), where we rename a, b, c as

f1, f2, f3 for clarity later. It is a small physical example that exhibits pivoting so we hope to

gain insights into why we need to pivot and how we could avoid it in general by attempting

to eliminate pivoting in this problem.

Example 4.1.1. We proceed to carry out the DD algorithm 3. Recall from §3.4 that the

DD algorithm proceeds in stages, using matrices G[κ] and H [κ] for κ = 0, 1, . . . where G[0] is

the n × n system Jacobian J = ∂f
(ci)
i /∂x

(dj)
j . Deleting appropriate rows of G[κ] gives H [κ].

Deleting appropriate columns of H [κ] to form a nonsingular matrix gives G[κ+1]. We have

an initial Jacobian (with highest order equations and variables) and a secondary non-square

87

88 4. UNIVERSAL DUMMY DERIVATIVES

Jacobian:

G[0] =

ẍ ÿ λ ci


f1 1 0 x 0

f2 0 1 y 0

f̈3 2x 2y 0 2

dj 2 2 0

and H [0] =

ẍ ÿ λ()
f̈3 2x 2y 0

.

We have to select 1 column from H [0] to get a square non-singular matrix G[1]. We cannot

choose column 3 because it is structurally 0, as was shown is always the case with columns

corresponding to non-differentiated variables in §3.4. We thus either choose column 1 or

column 2. We will have to change our choice depending on if x or y are close to 0, in practice

this means changing our dummy derivatives whenever the pendulum comes close to crossing

an axis. Assuming we have a pendulum that doesn’t loop back on itself and starts in say

the upper left quadrant this means in one period of oscillation dummy derivatives will have

been changed at least five times (start with ẍ, ẋ) or potentially as many as 6 times (start

with ÿ, ẏ). We want to eliminate the need to choose between any variables and instead

pick both, since any choice may become invalid and it will be expensive to pivot between

potential systems as this happens for a general DAE, see example 3.6.2 at the end of §3.6

for a worst case scenario.

Since we do not have to dummy pivot for DAEs where a static choice of G[κ+1] exists or

where only one choice for G[κ+1] exists, we wish to try to reformulate our problem to be close

to the latter case. If we want to eliminate the choice of candidate dummy derivatives (DDs

that can be selected as dummy derivatives in at least one DD reduced index 1 formulation)

at this stage one way we can do this is by adding equations to the DAE so that we can

choose a square submatrix of H [0] that contains the columns corresponding to all candidate

dummy derivatives, i.e. ẍ and ÿ. This will still give us multiple choices (e.g. one could pick

some subset of old variables and new variables) so we try to add equations that can give us

a choice that’s valid for all time. Note: introducing new equations and variables and then

4.1. THE BASIC ALGORITHM 89

choosing the new variables’ derivatives to be DDs is counter intuitive to the method whereby

we seek to ‘match’ each differentiated equation with a differentiated variable (if we’re just

adding equations and matching variables we’re not progressing our anti-pivot fix). Since

in this example we have one more candidate DD than we do equation we need to add one

equation to ‘square-up’ the system. Since we’re at stage 0 → 1 in the DD algorithm our

equation will have to have (at least) one differentiation specified by the offsets, i.e. will have

a c offset ≥ 1. To keep the equation simple (and because we don’t intend to use the new

variable in the DD scheme) we will look for an equation of the form (where f is some as yet

unknown function):

(56) Z1 := f(x, ẋ, ẍ, y, ẏ, ÿ, t)− z1(t) = 0.

Noting that we only care about coefficients of ẍ and ÿ in Ż1 (these are the only ones that

appear in H [0]) means that we can actually look for an equation of the form:

(57) Z1 := f̄(ẋ, ẏ, t)− z1(t) = 0,

where f̄ is some as yet unknown function. For simplicity take it to be linear, so we add:

(58) Z1 := αẋ+ βẏ − z1(t) = 0

to the original DAE, where α and β are some parameters that are yet to be determined and

z1 is some new variable to solve for. We would like the H [0] for our new DAE to be of the

form:

H [0] =

ẍ ÿ λ ż1
′ f̈3 2x 2y 0 0

Ż1 α β 0 −1

,

where now the parameters α and β can be chosen at run time so the row using new equations

(newly introduced equations of the form Zi = 0) in G[1] is roughly orthogonal to the row

using old equations (equations part of the original DAE including hidden constraints) in

90 4. UNIVERSAL DUMMY DERIVATIVES

G[1]. We chose (α, β) to be orthogonal to (x, y) so that the resulting DDs matrix G[1] has

good condition number. It is now possible to pick x′′ and y′′ as DDs for all time provided we

update α and β along the solution to keep the resulting G[1] matrix non-singular. Checking

the condition number of the corresponding G matrix and using a Gram-Schmidt or QR type

procedure for ‘new’ rows if the matrix becomes ill conditioned would be a reasonable way of

updating α and β dynamically in practice. We have now eliminated the pivot choice at this

stage (it will be shown later in the example that we’ve actually just pushed the choice back

to a later stage). Consider our new DAEs signature matrix and canonical offsets:

Σ =

x y λ z1 ci


f1 2• −∞ 0◦ −∞ 0

f2 −∞ 2◦ 0• −∞ 0

f3 0◦ 0• −∞ −∞ 2

Z1 1 1 −∞ 0 0

dj 2 2 0 0

,

where the block structure is shown, see §2.7. Unfortunately we see that entries in positions

(4, 1) and (4, 2) are both structurally zero (meaning dj − ci 6= σi,j), so won’t appear in H [0].

Recalling Equation (34) one can see that changing d4 = c4 (because entry (4, 4) must be on

a HVT) to 1 will not affect the other offsets—the block structure means the change in d4

does not change any of c1, c2 and c3 and a change to 1 for c4 satisfies Equation (34) so none

of d1, d2 and d3 are affected. Due to our choice of Z1 we see that d4 = c4 = 1 makes the

entries in positions (4, 1) and (4, 2) structurally non zero and therefore the matrix H [0] will

be as we want it. We therefore have the modified problem:

4.1. THE BASIC ALGORITHM 91

(59)



f1(t) = mẍ(t) + λ(t)x(t) = 0,

f2(t) = mÿ(t) + λ(t)y(t)−mG = 0,

f3(t) = x2(t) + y2(t)− L2 = 0,

Z1(t) = αẋ(t) + βẏ(t)− z1(t) = 0.

We proceed to carry out the DDs algorithm for this new problem to see if we have eliminated

the need to pivot. Our initial Jacobians are:

G[0] =

ẍ ÿ λ z1 ci


f1 1 0 x 0 0

f2 0 1 y 0 0

f̈3 2x 2y 0 0 2

Ż1 α β 0 −1 1

dj 2 2 0 1

and H [0] =

ẍ ÿ λ z1 f̈3 2x 2y 0 0

Ż1 α β 0 −1

.

As expected we can now choose x′′ and y′′ as DDs.

We proceed to finding the subsequent stage Jacobians for this new DAE:

G[1] =

ẋ ẏ ci ḟ3 2x 2y 1

Z1 α β 0

dj 1 1

and H [1] =

x′ y′()
f ′3 2x 2y

.

We see that we have actually just delayed our choice of DDs by a stage. If we repeat the

procedure as before we hope to eliminate all DD choices from the DAE (since there are no

further stages to push the choice back to). We seek to add an equation to the system so that

we can always choose the variables that are DD candidates at this stage. Using the same

92 4. UNIVERSAL DUMMY DERIVATIVES

rationale as before, we need the equation to appear at stage 2, so need the corresponding ci

to be at least two. We also only care about coefficients of ẋ and ẏ in Ż2, which gives us the

following equation:

(60) Z2 := γx+ δy − z2(t) = 0.

Here again γ and δ are parameters to be chosen at run time (ideally using an orthogonality

condition) and z2 is some new variable to be solved for. So that our new DAE’s signature

matrix with canonical offsets is:

Σ =

x y λ z1 z2 ci



f1 2• −∞ 0◦ −∞ −∞ 0

f2 −∞ 2◦ 0• −∞ −∞ 0

f3 0◦ 0• −∞ −∞ −∞ 2

Z1 1 1 −∞ 0 −∞ 0

Z2 0 0 −∞ −∞ 0 0

dj 2 2 0 0 0

.

Now to have all necessary entries of H [0] and H [1] structurally non zero we need to set

c4 = d4 = 1 and c5 = d5 = 2. Note that adding these equations to the system does not

change the original solution of the DAE, because the equations we add form a new block

dependent on the original DAE’s (block 1 above) solution. We now consider the DD stages

of our new system to ensure we have indeed eliminated the need to pivot to get:

H [0] =

x′′ y′′ λ z′1 z′′2 ci


f ′′3 2x 2y 0 0 0 2

Z ′1 α β 0 −1 0 1

Z ′′2 γ δ 0 0 −1 2

dj 2 2 0 1 2

.

4.1. THE BASIC ALGORITHM 93

We see that a valid choice is x′′, y′′ and z′′2—what we’re doing is adding DDs for all variables

in an old block that doesn’t contain an equation introduced at this stage in the original

system and ‘borrowing’ DDs from the new blocks that do use an equation introduced at this

stage in the original system. We’re forcing ourselves into a scheme that is unobtainable by

performing a block decomposition of the new DAE and doing DDs on each block. We note

this as an important consequence of this method—we are directly showing that it’s possible

to find useful DD schemes by not doing a block decomposition, a fact missed in the original

paper [30]. We also note that this provides a useful application for non-canonical offsets

(see section 2.8)—previously it was assumed canonical offsets were always the best choice

for making a DAE amenable to numerical solution. When proceeding to find H [1] we see

that the equation introduced for stage 1 is removed and we select x′ and y′ as DDs and the

DD algorithm then finishes. Hence we have found a way to have a static selection of dummy

derivatives, albeit with a dynamically varying set of parameters.

Before giving a general algorithm for adding such equations to the system we need the

following definition:

Definition 4.1.2. Let the mκ and nκ be the number of rows and columns in the DD

matrix H [κ−1] respectively.

We now use the insight gained by Example 4.1.1 to produce an algorithm (Algorithm 7)

for adding such equations and finding globally valid (universal) DDs for an arbitrary DAE.

94 4. UNIVERSAL DUMMY DERIVATIVES

Algorithm 7 The Universal Dummy Derivative Algorithm

1: When finding the matrix G[κ]:

2: if mκ = nκ

3: Proceed according to Algorithm 3

4: else

5: Create a vector say, candidatelist, of variables occurring in H [κ−1],...

with structurally non zero columns, to order dj − κ

6: S =size(candidatelist)−mκ

7: for j = 1 : S (using a new vector, parameterlist, in each equation)

8: Add an equation to the DAE of the form:

9:
∑size(candidatelist)

i=1 candidatelist(i)× parameterlist(i)− vj = 0

10: Set each new equation’s offsets equal to κ

11: Add DDs to the system for the differentials of entries in candidatelist

12: if κ > 1

13: for j = 1 : S

14: Add DDs to the system for v
(2)
j , . . . , v

(max ci)
j

15: Form the now non-square G[κ] comprising of all rows for variables in candidatelist

16: Proceed with DD algorithm, i.e form H [κ] and proceed to the next stage

Because Algorithm 7 is quite involved we go through each line here, giving the intuitive

reason it makes sense referring to Example 4.1.1 where needed. The initial if statement on

lines 2-4 tell us that we do indeed have a choice of dummy derivatives at stage κ. It is of

course possible that the choice is in fact not present due to structurally zero columns, always

static selections or problem specific knowledge, but this condition is general enough to be

easily implementable. In Example 4.1.1 we needed to know all potential variables that could

be made DDs at stage κ so that we could choose them all, e.g. stage 1 we have both x′ and

y′ in candidatelist for the simple pendulum. We then need to know how many equations

to add to ‘square up’ the system, which is what S tells us in line 6. We then work out the

4.2. THE REDUCED UNIVERSAL DUMMY DERIVATIVE FORM 95

structure of each new equation to add to the DAE (lines 8 and 9) and change to valid offsets

rather than canonical so they appear at the relevant DD stage (line 10). Lines 11-14 are

DD bookkeeping, adding DDs for everything that was previously a potential DD as well as

DDs should the block be used in previous stages as an S×S block. Note: the DAE changes

structure on each pass of this algorithm, which is why we need to reform G[κ] and H [κ] at the

end of the algorithm. We simplify our additional equations by the following observation in

the following section, to yield a reduced Universal Dummy Derivative (UDD) formulation.

4.2. The Reduced Universal Dummy Derivative Form

In this section we aim to further our understanding of UDDs to find a reduced formulation

that eliminates the need to pivot whilst also removing unnecessary equations introduced by

Algorithm 7. We saw in example 4.1.1 that the equation Z2 is somehow redundant at stage

1, since we end up choosing z′′2 as a DD. However, since we need this equation for stage 2 it

is neccessary for the method to eliminate pivoting and so we are in a sense ‘stuck with it’

introducing an extra DD at stage 1. We revisit Example 4.1.1 to gain further insights into

this problem:

Example 4.2.1. Recall example 4.1.1 and note that the second equation we introduced

is almost the antiderivative of the first (structurally the equation can be considered to be the

antiderivative). We can therefore condense both Z1 and Z2 into only one additional equation

and finish with a DAE that has signature matrix and valid offsets as shown in Equation (61)

and now only selects x′′, x′, y′′ and y′ as DDs (i.e. we no longer need z′′2). The reason this

is possible to do is perhaps not clear at first glance (since whilst such a reduction is clearly

structurally valid it may fail numerically). Due to Griewank’s Lemma [45] our new DAE’s

DD Jacobians G[1] and G[2] are equal, so if a set of parameters works for stage 1 it will also

96 4. UNIVERSAL DUMMY DERIVATIVES

work for stage 2.

(61) Σ =

x y λ z2 ci


f1 2• −∞ 0◦ −∞ 0

f2 −∞ 2◦ 0• −∞ 0

f3 0◦ 0• −∞ −∞ 2

Z2 0 0 −∞ 0 2

dj 2 2 0 2

.

We have the following algorithm to find a static selection of DDs and remove unnecessary

added equations, which is an improvement on Algorithm 7:

4.2. THE REDUCED UNIVERSAL DUMMY DERIVATIVE FORM 97

Algorithm 8 The Improved Universal Dummy Derivative Algorithm

1: When finding the matrix G[κ]:

2: if mκ = nκ

3: Proceed according to Algorithm 3

4: else

5: Create a vector say, candidatelist, of variables occurring in H [κ−1],...

with structurally non zero columns, to order dj − κ

6: S =size(candidatelist)−mκ

7: for j = 1 : S (using a new vector, parameterlist, in each equation)

8: Add an equation to the DAE of the form:

9:
∑size(candidatelist)

i=1 candidatelist(i)× parameterlist(i)− vj = 0

10: Set each new equation’s offsets equal to κ

11: Add DDs to the system for the differentials of entries in candidatelist

12: if κ > 1

13: for j = 1 : S

14: Add DDs to the system for v
(2)
j , . . . , v

(max ci)
j

15: Form the now non-square G[κ] comprising of all rows for variables in candidatelist

16: Proceed with DD algorithm, i.e form H [κ] and proceed to the next stage

17: Tidy up final system:

18: Check if any equation introduced is the antiderivative (barring new variables and pa-

rameters) of one introduced at a later κ stage.

19: Remove all such equations and any corresponding new variables and DDs from the

system.

The final check at the end is not needed to keep a static selection of dummy derivatives

(without it we have Algorithm 7), but can reduce the size of the resulting index 1 problem.

Note also line 14 where we introduce extra dummy derivatives for the new variables—we

need the new equations at some stage κ but we do not need them at previous κ stages and

98 4. UNIVERSAL DUMMY DERIVATIVES

will instead solve their block based DD system at those stages, which by construction is

always square. Let us consider the following example:

Example 4.2.2. Consider a problem with signature and initial H matrix as below, for

the purposes of this example we do not need full equations for this DAE as the algorithm

works on a purely structural level we will just assume equations are chosen so that all possible

candidate DDs are in fact candidate DDs:

Σ =

x1 x2 x3 x4 x5 ci



f1 2 1 1

f2 2 2 0

f3 1 0 2

f4 0 0 2

f5 1 1 1

dj 3 2 2 2 2

and H [0] =

x
(3)
1 ẍ2 ẍ3 ẍ4 ẍ5


ḟ1 • 0 0 0 •

f̈3 • 0 • 0 0

ḟ4 0 0 • • 0

ḟ5 0 • 0 0 •

.

In H [0] • is being used to denote a structurally non-zero entry. We have

(62) candidatelist = (x′′1, x
′
2, x
′
3, x
′
4, x
′
5)

and S = 1. This makes sense: there are only two possible choices of G[1]. All variables that

appear in a G[1] are also in candidatelist, either we have

G[1] =

ẍ1 ẋ2 ẋ3 ẋ4


f1 • 0 0 0

ḟ3 • 0 • 0

ḟ4 0 0 • •

f5 0 • 0 0

or G[1] =

ẍ1 ẋ3 ẋ4 ẋ5


f1 • 0 0 •

ḟ3 • • 0 0

ḟ4 0 • • 0

f5 0 0 0 •

.

We add an equation of the form:

(63) Z1 := αẍ1 + βẋ2 + γẋ3 + δẋ4 + εẋ5 − v1 = 0

4.2. THE REDUCED UNIVERSAL DUMMY DERIVATIVE FORM 99

to the DAE and choose x′′′1 , x′′2, x′′3, x′′4 and x′′5 to be Universal DDs, setting d6 = c6 = 1.

We form the following non square Jacobian:

G[1] =

x′′1 x′2 x′3 x′4 x′5


f1 • 0 0 0 •

f ′3 • 0 • 0 0

f ′4 0 0 • • 0

f5 0 • 0 0 •

and get H [1] =

x′′1 x′2 x′3 x′4 x′5 f ′3 • 0 • 0 0

f ′4 0 0 • • 0

again, this system is not square, we have

(64) candidatelist = (x′1, x3, x4)

and S = 1 again. We add an equation of the form:

(65) Z2 := ζx′1 + ηx3 + θx4 − vv1 = 0

to the DAE and choose x′′1, x′3, x′4 and vv′′1 to be Universal DDs, setting d7 = c7 = 2.

Let us just confirm our choice of DDs is valid (given the potential need to update our

parameters to keep any structurally non singular G matrix numerically non singular). Our

enlarged system has signature matrix and initial H matrix:

Σ =

x1 x2 x3 x4 x5 v1 vv1 ci



f1 2 1 1

f2 2 2 0

f3 1 0 2

f4 0 0 2

f5 1 1 1

Z1 2 1 1 1 1 0 1

Z2 1 0 0 0 2

dj 3 2 2 2 2 1 2

and H [0] =

x
(3)
1 ẍ2 ẍ3 ẍ4 ẍ5 v̇1 ¨vv1



ḟ1 • 0 0 0 • 0 0

f̈3 • 0 • 0 0 0 0

f̈4 0 0 • • 0 0 0

ḟ5 0 • 0 0 • 0 0

Ż1 α β γ δ ε −1 0

Z̈2 ζ 0 η θ 0 0 −1

.

100 4. UNIVERSAL DUMMY DERIVATIVES

Here as expected a valid G[1] is:

G[1] =

ẍ1 ẋ2 ẋ3 ẋ4 ẋ5 ˙vv1



f1 • 0 0 0 • 0

ḟ3 • 0 • 0 0 0

ḟ4 0 0 • • 0 0

f5 0 • 0 0 • 0

Z1 α β γ δ ε 0

Ż2 ζ 0 η θ 0 −1

yielding H [1] =

ẍ1 ẋ2 ẋ3 ẋ4 ẋ5 ˙vv1


ḟ3 • 0 • 0 0 0

ḟ4 0 0 • • 0 0

Ż2 ζ 0 η θ 0 −1

.

Again, as expected a valid choice for G[2] is:

G[2] =

ẋ1 x3 x4


f3 • • 0

f4 0 • •

Z2 ζ η θ

where the algorithm terminates.

One may think a way to tidy up the above system would be to increase c6 = d6 = 2 and

remove the final equation and variable. Structurally this will still work, but numerically we

may fall into trouble as G[2] may be singular since Z2 is not the structural antiderivative of

Z1 . e.g. consider the following G[1] and G[2] matrices:

G[1] =



1 0 0 0 1

1 0 1 0 0

0 0 1 1 0

0 1 0 0 1

1 1 1 0 2


and G[2] =


1 1 0

0 1 1

1 1 0



so that G[1] is non singular (with determinant 1) whereas G[2] is singular.

4.2. THE REDUCED UNIVERSAL DUMMY DERIVATIVE FORM 101

We now go about proving the above algorithm provides a valid DD scheme (one that

would be found by doing the DD algorithm to the enlarged DAE in one pass) with same

solution as the original problem.

Theorem 4.2.3. If a variable’s derivative does not appear in any potential structural DD

scheme the corresponding entries in the H matrix are all structurally 0.

Proof. For a variables’ derivative to be chosen as a DD it must be that there exists

a transversal using an entry in its correspond H matrix column. For there to exist such

a transversal there must be a structural non-zero in that column. If there is not then any

subsequent G matrix found by selecting that column will be structurally singular and thus

not produce a valid DD scheme. �

We further clarify all potential DD candidates (i.e. DDs that exist in some potential DD

scheme) by the following Theorem:

Theorem 4.2.4. Given any rectangular matrix with more columns than rows, and of

structural full row rank every non empty column contains an element of some transversal.

Proof. Assume for the sake of contradiction there exists a non empty column that does

not contain any elements that belong to a transversal. Without loss of generality rearrange

so that a non 0 entry is in the bottom right corner, say position (mκ, nκ). Since we have a

valid DD scheme at the stage (i.e. the system is of full row rank) we know there exists some

transversal, T say. This transversal contains some element (mκ, J), for some J ∈ {1, . . . , nκ−

1}. We can therefore form a new transversal of the form {T (mκ, J)} ∪ (mκ, nκ). �

Theorems 4.2.3 and 4.2.4 are why we consider all non empty columns in our candidatelist,

of course if one knew some extra information about the DAE they are trying to find a UDD

formulation for then one could further reduce the candidatelist accordingly. We now seek to

justify our removal of equations in the last part of the algorithm above.

Theorem 4.2.5. If a scheme produced by the above algorithm yields equations that can

be removed the solution is the same as the scheme without removing those equations.

102 4. UNIVERSAL DUMMY DERIVATIVES

Proof. Structurally it is clear that such removal still leaves us with the same potential

choice of DDs, since if such a removal is possible we will have (at least) structurally identical

equations at some stage κ, (at least one) of which is being treated as its own block system

until its new variable is needed to make a square G matrix. Numerically if such a reduction

is possible then the size of the candidatelist vector must remain unchanged. Since we only

remove equations in our DD stages we have two possibilities, either the difference between

the size of candidatelist and mκ has stayed the same, or it has increased. If it has stayed

the same then the proposed removal of equations gives us the same structural matrix, and

by Griewank’s Lemma the same numerical matrix. If it has reduced we will be adding

new equations that are not the antiderivatives of equations previously introduced. In which

case we can still make our corresponding G matrix non-singular by varying only the new

parameters introduced at this stage, since we know the rows are linearly independent. �

Note: The above proof yields a necessary condition for introducing equations that can be

removed that could shorten our algorithm. If at some stage ci−κ > 1 for each i considered at

that stage then at the next stage we must introduce equations which are the ‘antiderivatives’

of the ones introduced at this stage. We could shorten Algorithm 8 by introducing such a

condition. Finally we have the following:

Theorem 4.2.6. The above algorithm provides an always static selection of DDs that is

always valid (provided one chooses suitable parameters throughout integration) and has same

solution as the original DAE.

Proof. Theorem 4.2.3 and Theorem 4.2.5 give us that we have a valid DD scheme,

hence all that is left to prove is that such equation additions do not change the solution

set. As illustrated in above examples the inclusion of additional equations in the described

manner is equivalent to adding more dependent blocks to the system (of size S × S at each

stage), which will not change the original block’s solution. �

4.3. NUMERICAL RESULTS FOR UNIVERSAL DUMMY DERIVATIVES 103

Note: ‘same solution’ in the above Theorem may be confusing on a first read since the

reformulated DAE is of a larger size. We mean that the value of any xi(t) in the original

DAE is also the value of that same xi(t) in the reformulated DAE.

4.3. Numerical Results for Universal Dummy Derivatives

We solve the simple pendulum index 1 universal DD reformulation given below:

(66)



f1(t) = x′′(t) + λ(t)x(t) = 0,

f2(t) = y′′(t) + λ(t)y(t)− g = 0,

f3(t) = x2(t) + y2(t)− L2 = 0,

Z2(t) = γx(t) + δy(t)− z2(t) = 0,

ḟ3(t) = 2x(t)x′(t) + 2y(t)y′(t) = 0,

Ż2(t) = γx′(t) + δy′(t)− ż2(t) = 0,

f̈3(t) = 2x(t)x′′(t) + 2x′2(t) + 2y(t)y′′(t) + 2y′2(t) = 0,

Z̈2(t) = γx′′(t) + δy′′(t)− z̈2(t) = 0,

in MATLAB using ode45 (using variable step size with initial conditions x = 6, y = −8,

x′ = y′ = 0 and parameters L = 10 and G = 9.81) by reformulating the problem as an ODE

in z2 and z′2 and switching parameters whenever the angle between (x, y) and (γ, δ) becomes

small as a proof of concept. The Matlab cod for this can be found in Appendix B. We give

a plot of the result (using a tolerance of 10−8 in ode45) in Figure 4.3.

We compare the solution with one produced by DAETS (see[39], [36], [37], [38] and

[9]), an accurate order 30 Taylor series solution using a tolerance of 10−12, see Figure 4.3.

We briefly present some information on switching the system (changing γ and δ). If we

choose our switching condition so that we switch when the angle between (γ, δ) and (x, y)

(say θ) is less that π/4, i.e. trying to keep the G matrices well conditioned then the change

in energy from t = 0 to t = 100 grows to around 10−5 for a reasonable tolerance of 10−8. If

we instead switch after every time to step to a new (γ, δ) orthogonal to (x, y) this change is

104 4. UNIVERSAL DUMMY DERIVATIVES

0
100

200
300

400
500

−10

−5

0

5

10
−10

−5

0

5

10

Time

Plot of simple pendulum solution using universal dummy derivatives

x

y

Solution
Switch point

Student Version of MATLAB

Figure 1. A plot of the numerical solution for Equation (66).

greatly reduced to around 10−11. We show some indicative numerical results, showing the

maximum difference from t = 0 to t = 100 for the simple pendulum with initial conditions

as above using the theoretical energy from:

(67)
ẋ2 + ẏ2

2
−Gy

and the actual energy found in our numerical solution in Table1: We conclude this chapter

Table 1. Energy error for simple pendulum.

Tolerance Switch Every Step Switch when θ ≤ π
4

Switch when θ ≤ π
6

Switch when θ ≤ π
8

1e-5 7.36e-10 8.8e-2 1.8e-1 3.33e-1
1e-6 7.45e-11 6.5e-3 2.34e-2 1.95e-2
1e-7 1.28e-11 5.56e-4 1.2e-3 1.5e-3
1e-8 1e-11 5.18e-5 1.13e-4 1.31e-4
1e-9 6.49e-12 4.78e-6 8.86e-6 8.37e-6
1e-10 1.49e-11 4.75e-7 7.83e-7 9.03e-7

with three figures showing the change in energy with tolerance set to 10−−8 with switching

conditions to switch at every step (Figure 4.3) and switching when θ ≤ π
4

(Figures 4.3

4.3. NUMERICAL RESULTS FOR UNIVERSAL DUMMY DERIVATIVES 105

0 50 100 150 200 250 300 350 400 450 500
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

Time

ab
s(

D
A

E
T

S
−

U
D

D
s)

Error in universal DDs vs DAETS solution of simple pendulum

x
y

Student Version of MATLAB

Figure 2. Difference between the solution of the Universal Dummy Deriva-
tive index 1 formulation of the simple pendulum solved in MATLAB by refor-
mulating to an ODE and using ode45 and the solution to the original index 3
formulation solved via an order 30 Taylor Series method using DAETS.

and 4.3). We see that the choice of a suitable tolerance and switching condition for the

method needs further development, the author conjectures using an index 1 solver rather

than converting to an ODE and using an ODE solver is a good starting point for such future

works.

106 4. UNIVERSAL DUMMY DERIVATIVES

Time
0 10 20 30 40 50 60 70 80 90 100

T
he

or
et

ic
al

 E
ne

rg
y

-
A

ct
ua

l E
ne

rg
y

#10-5

0

1

2

3

4

5

6

Error in Energy
Switch Point

Figure 3. Change in energy when switching if θ ≤ π
4
.

Time
0 2 4 6 8 10 12

T
he

or
et

ic
al

 E
ne

rg
y

-
A

ct
ua

l E
ne

rg
y

#10-6

1

2

3

4

5

6

7

Error in Energy
Switch Point

Figure 4. Zoom for the change in energy when switching if θ ≤ π
4
.

4.3. NUMERICAL RESULTS FOR UNIVERSAL DUMMY DERIVATIVES 107

Time
0 10 20 30 40 50 60 70 80 90 100

T
he

or
et

ic
al

 E
ne

rg
y

-
A

ct
ua

l E
ne

rg
y

#10-11

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5. Change in energy when switching every step.

CHAPTER 5

Order Reduction Leaving the Structural Index Unchanged

Some notes on the history of the material in this chapter are in order. The author first

noted that though it is clear order reduction for DAEs can be done in the same way as for

ODEs and in an obvious sense does not change the solution set, it is less clear that it does

not essentially change the structural analysis. The author, Ned Nedialkov and John Pryce

worked on this problem together during a research visit of Nedialkov to Cardiff University.

The three of us formulated how order reduction changes the signature matrix and then

Guangning Tan formulated and gave initial proofs of some of the theorems in this chapter.

This chapter restates that material with expanded proofs. This chapter therefore represents

the joint work of all those involved. In particular the author would like to acknowledge Tan

for his contributions.

When one applies the SA of Pryce and the index reduction methods of Chapters 3 and 4 the

DAE’s order will likely increase. Most standard DAE solvers (e.g DASSL and SUNDIALS)

can only solve order 1 DAEs, so some order reduction procedure will thus be necessary. If

this order reduction is not done carefully one can increase the index of the DAE, negating

the previously done index reduction. This chapter provides a method of carrying out order

reduction that does not change the structural index. Whilst the method is somehow the

intuitive approach to the problem such a result was not previously known in the literature.

5.1. Introduction to Order Reduction - Why It’s Non-Trivial for DAEs

Usually texts dealing with numerical solution fo DAEs restrict themselves to order 1

DAEs, [3], however in practice when modelling e.g multi-body mechanical systems higher

order derivatives can occur. The natural solution to this is to treat a high order (larger

than 1) DAE as one would treat a high order ODE (see for example [58] and [56]) and

109

110 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

introduce new equations and variables that reduce the order of the problem. However, such

a technique is shown in [62], [1], [11], [35] and [53] to potentially change the (differentiation

and strangeness) index of a DAE. We take the following DAE with signature tableau from

[62] where it is shown the differentiation index can increase if one naively carries out an

order reduction process and see how the structural index behaves:

(68)


f1(t) = ẍ1(t) + ẋ1(t) + x2(t) = 0,

f2(t) = x1(t) = 0,

Σ =

x1 x2 ci f1 2 0 0

f2 0 2

dj 2 0

.

From (20) we have νs = 3. This makes sense, one differentiates f2 twice in order to solve

for ẍ1 and then to solve for ẋ2 one must differentiate both f1 and f2 one more time, using x
(3)
3

to solve for ẋ2. We carry out a naive order reduction procedure where we add the following

equations and variables:

(69)


f3(t) = x3(t)− ẋ1(t) = 0,

f4(t) = x4(t)− ẋ2(t) = 0,

so that our new order 1 DAE and signature tableau are:

(70)



f1(t) = ẋ3(t) + x3(t) + x2(t) = 0,

f2(t) = x1(t) = 0,

f3(t) = x3(t)− ẋ1(t) = 0,

f4(t) = x4(t)− ẋ2(t) = 0,

Σ =

x1 x2 x3 x4 ci


f1 0 1 1

f2 0 3

f3 1 0 2

f4 1 0 0

dj 3 1 2 0

.

5.2. ORDER REDUCTION AND THE STRUCTURAL INDEX 111

Therefore our order reduced equation (70) has index 4 and our method of order reduction

has indeed increased the structural index. Of course this approach to order reduction is very

alien if one is working in the above framework, so we take a moment to explain the motivation.

If one has everything written vectorised, i.e. Equation (68) were written as it is in [62]:

1 0

0 0

 ẍ +

1 0

0 0

 ẋ +

0 1

1 0

x = f(t),

then perhaps the most natural approach is indeed to do as is done above and reduce the

higher order vector ẍ. Intuitively the index increasing makes some sense, we have added

a derivative for x2 that otherwise did not appear in the system, therefore to solve for the

highest order of derivative of x2 we will have to do more differentiations, which will increase

the index. If we instead only replace high order derivatives that occur in the original DAE

we would have the following order one formulation with signature tableau:

(71)


f1(t) = ẋ3(t) + x3(t) + x2(t) = 0,

f2(t) = x1(t) = 0,

f3(t) = x3(t)− ẋ1(t) = 0,

Σ =

x1 x2 x3 ci


f1 0 1 0

f2 0 2

f3 1 0 1

dj 2 0 1

.

Therefore our new order reduced DAE (71) has structural index 3, which is what we would

expect. We will mean this approach to order reduction for the remainder of this chapter and

show it leaves the structural index unchanged.

5.2. Order Reduction and the Structural Index

We wish to develop an order reduction method that does not change the index (and

DOF) of our original DAE. To do this we consider a stage wise process where we eliminate

the HOD of a given variable if it has HOD larger than 1. We do this iteratively until all

derivatives are at most of order 1. This approach allows us to consider just adding one

112 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

equation and variable to our DAE and then observe how Σ reacts, clearly if the index does

not change over any iteration it will not change over all iterations. We start by defining

some notation. Given an n×n DAE of form (1) we denote the HOD of variable xj occurring

in the system as hj, i.e.

(72) hj = max
i
σi,j,

we then form the set of all variables that occur at a higher order:

(73) J = {j | hj ≥ 2}.

We choose some xk with k ∈ J and introduce a new variable xn+1 and a new equation:

(74) fn+1 = xn+1 − ẋk = 0,

and replace all x
(p)
k by x

(p−1)
n+1 for p ≥ 1 in our original equations. We term our new (n+ 1)×

(n+1) system as an order reduced system of our original DAE and similarly call xk an order

reduced variable. To reduce to an order 1 DAE one will have to repeat the above process

for each k ∈ J a number of times equal to each hk − 1 for k ∈ J .

We now consider how such a process changes our signature matrix. Assume we have an n×n

DAE, for the sake of convenience later we assume we have an HVT on the main diagonal,

so that σn,n is on the HVT and want to order reduce variable xn. We therefore have the

following signature matrix:

Σ =

x1 . . . xn


f1 σ1,1 . . . σ1,n

...
...

. . .
...

fn σn,1
. . . σn,n

.

We now construct the signature matrix resulting from applying one stage of order re-

duction, denoting our new sigma entries by a bar, i.e. our new signature matrix is denoted

Σ with entries σi,j. We only replace instances of the variable that we are order reducing.

5.2. ORDER REDUCTION AND THE STRUCTURAL INDEX 113

Hence

(75) σi,j = σi,j for i = 1, . . . , n and j = 1, . . . , n− 1.

In the enlarged system’s signature matrix Σ, the last two columns are trivial only in the last

row, so we have:

(76) Σ =

x1 . . . xn−1 xn xn+1



f 1 σ1,1 . . . σ1,n−1 σ1,n σ1,n+1

...
...

. . .
...

...
...

fn−1 σn−1,1 . . . σn−1,n−1 σn−1,n σn−1,n+1

fn σn,1 . . . σn,n−1 σn,n σn,n+1

fn+1 −∞ . . . −∞ 1 0

.

We now make the following observations about σi,n+1 based on σi,n for i = 1, . . . , n:

• If σi,n = 0 then xn appears in fi and thus must appear in f i with no replacements.

Therefore σi,n = 0 and σi,n+1 = −∞.

• If σi,n > 0 then xn may appear in f i. Therefore σi,n = 0 or σi,n = −∞ and

σi,n+1 = σi,n − 1.

• If σi,n = −∞ then xN does not appear in either fi or f i. Therefore σi,n = σi,n+1 =

−∞.

The above observations along with equation (76) allow us to break our problem in to the

following two cases, which we will refer to throughout this chapter:

Case 1: σn,n = 0. Then σn,n = 0 and σn,n+1 = −∞.

Case 2: σn,n > 0. Then σn,n = 0 or σn,n = −∞ and σn,n+1 = σn,n − 1.

114 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

We proceed in stages to show the index doesn’t change, first in §5.3 we show the DOF of

our DAE are unchanged under order reduction. In §5.4 we examine the canonical offsets in

Case 1 and Case 2 respectively. Finally in 5.5 we show the index remains unchanged under

order reduction, if the order reduction is done as above.

5.3. Invariant DOF Under Order Reduction

We begin by recalling Lemma 2.5.8 and seeing that a DAE’s DOF is equal to Val(Σ) .

We make a short observation about HVTs in Σ: from equation (76) it is clear that since

other entries in the last row of Σ are not finite an HVT of Σ must have an entry either using

σn+1,n or σn+1,n+1, which should (it will be proven shortly) make either σn,n+1 or σn,n be in

an HVT respectively. This fact is a result of the following theorem:

Theorem 5.3.1. For an order reduced DAE Val(Σ) = Val(Σ) .

Proof. We begin by showing that in both Case 1 and Case 2 Val(Σ) ≥ Val(Σ) .

Case 1: choose a transversal in Σ given by:

T1 = {(1, 1), (2, 2), . . . , (n, n), (n+ 1, n+ 1)}.

The first n− 1 terms on the diagonal of Σ are in the HVT of Σ so are finite. Since we are in

Case 1 σn,n = σn+1,n+1 = 0, so this is a finite transversal. We now try to find a lower bound

on Val(Σ) in Case 1:

(77)

Val(Σ) ≥
∑

(i,j)∈T1

σi,j

=
n−1∑
i=1

σi,i + σn,n + σn+1,n+1

=
n−1∑
i=1

σi,i + σn,n + 0

= Val(Σ) .

5.3. INVARIANT DOF UNDER ORDER REDUCTION 115

Case 2: choose a new transversal T2:

T2 = {(1, 1), (2, 2), . . . , (n− 1, n− 1), (n, n+ 1), (n+ 1, n)}.

As before this transversal is finite, the first n − 1 terms are part of an HVT in Σ while

σn,n+1 = σn,n − 1 and σn+1,n = 1. We now try to find a lower bound on Val(Σ) in Case 2:

(78)

Val(Σ) ≥
∑

(i,j)∈T2

σi,j

=
n−1∑
i=1

σi,i + σn,n+1 + σn+1,n

=
n−1∑
i=1

σi,i + σn,n − 1 + 1

= Val(Σ) .

Hence we have that Val(Σ) ≥ Val(Σ) in both cases.

We go on to bound Val(Σ) above by Val(Σ) . Since Σ has a finite transversal in both cases

it must have an HVT, say T3:

T3 = {(i1, 1), (i2, 2), . . . , (in, n), (in+1, n+ 1)}.

We now make some observations on where each ij must lie. For j = 1, . . . , n − 1 we must

have ij between 1 and n, since σn+1,j = −∞. Therefore either in = n + 1 (Case A) or

in+1 = n+ 1 (Case B). We consider Case A, using equation (76) we must have:

• σin,n = σn+1,n = 1.

• in+1 is between 1 and n, since we have an HVT entry in the final row.

• σin,n + σin+1,n+1 = 1 + σin+1,n+1, by construction of Σ.

116 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

We also note that since σin+1,n+1 is finite (it’s in an HVT) then σin+1,n is also finite, by

definition of Σ. We also have that i1, . . . , in+1 is a permutation of 1, . . . , n+ 1 and in = n+ 1

we have that i1, . . . , in−1, in+1 is a permutation of 1, . . . , n and therefore the transversal:

T4 = {(i1, 1), (i2, 2), . . . , (in−1, n− 1), (in+1, n)}

is a transversal of Σ. Now we bound Val(Σ) from above:

Val(Σ) =
∑

(i,j)∈T3

σi,j

=
n−1∑
j=1

σij ,j + σin,n + σin+1,n+1

=
n−1∑
j=1

σij ,j + 1 + σin+1,n+1

=
n−1∑
j=1

σij ,j + σin+1,n

≤ Val(Σ) .

We now treat Case B, that is if in+1 = n + 1. In this case we have σin+1,n+1 = σn+1,n+1 = 0

and in is between 1 and n, since we have an HVT entry in the final row. We can also

take, without loss of generality, σin,n = 0 and σin,n+1 = −∞, as otherwise we take a new

transversal:

T5 = (T3 \ {(in, n), (n+ 1, n+ 1)}) ∪ {(in, n+ 1), (n+ 1, n)}

5.4. ORDER REDUCTION AND CANONICAL OFFSETS 117

and observe the following:

∑
(i,j)∈T5

σi,j =
∑

(i,j)∈T3

σi,j − (σin,n + σn+1,n+1) + (σin,n+1 + σn+1,n)

=
∑

(i,j)∈T3

σi,j − (0 + 0) + (σin,n+1 + 1)

>
∑

(i,j)∈T3

σi,j.

This is a contradiction, since T3 is an HVT. Therefore we have:

Val(Σ) =
∑

(i,j)∈T3

σi,j

=
n−1∑
j=1

σij ,j + σin,n + σin+1,n+1

=
n−1∑
j=1

σij ,j + 0 + 0

≤ Val(Σ) .

We have bounded Val(Σ) above and below by Val(Σ) , so they must be equal, i.e. the DOF

doesn’t change between matrices, completing the proof. �

As stated prior to Theorem 5.3.1 we can now say something about an HVT in Case 1

and Case 2:

Corollary 5.3.2. T1 and T2 are HVTs in Cases 1 and 2 respectively.

Proof. Due to equations (77) and (78). �

5.4. Order Reduction and Canonical Offsets

We now go on to study how our order reduction procedure changes the offsets. In §5.4.1

we revisit Algorithm 1 and make an observation necessary to study the offsets in Case 1

(§5.4.2) and Case 2 (§5.4.3).

118 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

5.4.1. The c-d Algorithm Revisited. Recall Algorithm 1 for finding the canonical

offsets of a DAE given its signature matrix, as in that algorithm we assume henceforth that

an HVT is put on the main diagonal of Σ. For ease of notation going forward we reorder

Algorithm 1 slightly in Algorithm 9.

Algorithm 9 Reduced Algorithm to Find Offset Vectors

1: Initialize: c← 0

2: while Not converged

3: Set d← d(c)

4: Set c← c(d)

5: Return: Canonical offsets c and d.

Where:

d← d(c) means dj = max
i

(ci − σi,j) for all j

and:

c← c(d) means ci = di − σi,i for all i.

We then have the following lemma that lets us initialise Algorithm 9 at a c 6= 0:

Lemma 5.4.1. Denote the canonical offsets as c∗ and d∗ for Σ. Initialising Algorithm 9

by a vector c′ which is element wise smaller (or equal to) c∗ will still produce the canonical

offsets c∗ and d∗.

Proof. As was done in Equation (25) we define a function φ that performs one iteration

of Algorithm 9:

φ(c) = c(d(c)).

By proposition 2.3.3 φ yields a monotone increasing set of new vectors c at each stage until

we reach a canonical c, more specifically (for fixed j) we have:

(79) max
i

(c′i + σi,j)− σi,i ≤ max
i

(ci + σi,j)− σi,i

5.4. ORDER REDUCTION AND CANONICAL OFFSETS 119

thus we will never ‘overshoot’ our canonical c. Since Algorithm 9 converges monotonically

to canonical offsets this means we will still converge to canonical offsets if we initialise at a

non zero c vector. �

5.4.2. Canonical Offsets in Case 1. We begin our investigation of how the offsets for

an order reduced DAE behave by considering Case 1, everything in this section only applies

to Case 1. We begin with the following observation for dn and cn:

Lemma 5.4.2. Let c and d be canonical offsets of Σ, then:

(80) dn = cn = max
1≤i≤n−1

(ci + σi,n).

Proof. Let T be an HVT of Σ. We begin by showing:

(81) max
1≤i≤n−1

(ci + σi,n) + σn,j ≤ dj for j = 1, . . . , n− 1,

that is:

dj − σn,j ≥ ci + σi,n for i, j = 1, . . . , n− 1.

Assume for the sake of contradiction we have some r and k such that:

(82) dk − σn,k < cr + σr,n.

We split our analysis in to two cases. Case A: r = k and Case B: r 6= k.

Case A: Take a transversal:

T1 = (T \ {(k, k), (n, n)}) ∪ {(k, n), (n, k)}.

120 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

Then:

Val(T1) = Val(T)− σk,k − σn,n + σk,n + σn,k

= Val(T)− dk + ck + σk,n + σn,k

> Val(T)

= Val(Σ) .

This contradicts the fact that T is an HVT in Σ.

Case B: We form a new n× n matrix Γ with entries:

(83) γi,j =


dj − ci if i = k and j = r,

σi,j otherwise,

That is, we form a new matrix that is equal to Σ everywhere except where (82) holds, where

we force a structural non-zero. We observe that in Γ Equation (34) holds and therefore T

must be an HVT of Γ. We now take a new transversal of Γ:

T2 = (T \ {(k, k), (r, r), (n, n)}) ∪ {(n, k), (r, n), (k, r)}.

5.4. ORDER REDUCTION AND CANONICAL OFFSETS 121

We now try to find a lower bound on the value of this transversal:

Val(T2) =
∑

(i,j)∈T2

γi,j

=
n∑
i=1

γi,i − γk,k − γr,r − γn,n + γn,k + γr,n + γk,r

=
∑

(i,j)∈T

γi,j − σk,k − σr,r − σn,n + σn,k + σr,n + (dr − ck)

=
∑

(i,j)∈T

γi,j − (dk − ck)− (dr − cr)− 0 + σn,k + σr,n + dr − ck

=
∑

(i,j)∈T

γi,j − dk + cr + σn,k + σr,n

>
∑

(i,j)∈T

γi,j by Equation 82

which contradicts T being an HVT in Γ and hence Equation (81) holds. We now choose

an initial vector c′ to initialise Algorithm 9 that is element wise smaller than c so that by

lemma 5.4.1 Algorithm 9 converges to the canonical offsets:

c′ = (c1, . . . , cn−1, 0).

Note that in the first n− 1 positions this vector is canonical and therefore Algorithm 9 will

return:

(84) dj = max
i

(ci + σi,j) for j = 1, . . . , n− 1

and

(85) ci = di − σi,i for i = 1, . . . , n− 1.

122 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

Hence a full run of Algorithm 9 will produce:
d← d(c′) = (d1, . . . , dn − 1, max

1≤i≤n−1
(ci + σi,n)),

c← c(d) = (c1, . . . , cn − 1, max
1≤i≤n−1

(ci + σi,n)),

by Equation (81) the next iteration is:
d← d(c) = (d1, . . . , dn − 1, max

1≤i≤n−1
(ci + σi,n)),

c← c(d) = (c1, . . . , cn − 1, max
1≤i≤n−1

(ci + σi,n)).

Hence:

d = (d1, . . . , dn − 1, max
1≤i≤n−1

(ci + σi,n)),

c = (c1, . . . , cn − 1, max
1≤i≤n−1

(ci + σi,n)),

is a fixed point of Algorithm 9, which completes the proof. �

We now seek to use the above lemma to write the canonical offsets of Σ in terms of those

for Σ in the following lemma:

Lemma 5.4.3. Let c and d be canonical offsets for Σ, then:

c = (c1, . . . , cn, dn − 1),

d = (d1, . . . , dn, dn − 1),

are the canonical offsets for Σ.

Proof. Let c̃ and d̃ be valid offsets for Σ, i.e. we have:

d̃j − c̃i ≥ σi,j for all i, j

5.4. ORDER REDUCTION AND CANONICAL OFFSETS 123

with equality on an HVT of Σ, say T . We begin by finding a lower bound on offsets of Σ so

that we can initialise Algorithm 9 at a suitable c vector. We show:

(86) c̃i ≥ ci and d̃j ≥ dj for all i, j = 1, . . . , n− 1.

We prove this bound by contradiction, assume there exists a k between 1 and n − 1 such

that c̃k < ck and hence d̃k < dk. We form two new vectors:

C = (c̃1, . . . , c̃n−1,max(d̃n+1 + 1, d̃n)) and D = (d̃1, . . . , d̃n−1,max(d̃n+1 + 1, d̃n)).

We verify that C and D are valid offsets for Σ, that is Equation (34) holds with equality on

an HVT of Σ. We treat various ranges of i, j values separately:

(a): i = 1, . . . , n− 1 and j = 1, . . . , n− 1. We have the following inequality:

Dj − Ci = d̃j − c̃i ≥ σi,j = σi,j.

(b): i = n and j = 1, . . . , n− 1. We have the following inequality:

Dj − Cn = d̃j −max(d̃n+1 + 1, d̃n)

≥ d̃j − d̃n

= d̃j − c̃n (since d̃n − c̃n = σn,n = 0)

≥ σn,j

= σn,j.

124 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

(c): i = 1, . . . , n and j = n. We have the following inequality:

Dn − ci = max(d̃n+1 + 1, d̃n)− c̃i

= max(d̃n+1 + 1− c̃i, d̃n − c̃i)

≥ max(σi,n+1 + 1, σi,n)

≥ σi,n.

Finally we need equality on a HVT constraints (and to address position (n, n)).

(d): i = j = 1, . . . , n− 1.

Di − Ci = σi,i = σi,i.

(e): i = j = n.

Dn − Cn = 0 = σn,n.

Therefore C and D are valid offsets for Σ, which is a contradition since c and d are the

canonical offsets for Σ. Thus Equation (86) holds and we can initialize Algorithm 9 with:

c = (c1, . . . , cn−1, 0, 0)

and arrive at the canonical offsets of Σ by lemma 5.4.1. Due to Equations (84) and (85)

Algorithm 9 will return:

dj = max
i

(ci + σi,j) for j = 1, . . . , n− 1.

and

ci = di − σi,i = di − σi,i.

5.4. ORDER REDUCTION AND CANONICAL OFFSETS 125

We proceed to run Algorithm 9:
d← d(c) = (d1, . . . , dn−1, max

1≤i≤n−1
(ci + σi,n), max

1≤i≤n−1
(ci + σi,n+1)),

c← c(d) = (c1, . . . , cn−1, max
1≤i≤n−1

(ci + σi,n), max
1≤i≤n−1

(ci + σi,n+1))

The next iteration is:
d← d(c) = (d1, . . . , dn−1, max

1≤i≤n−1
(ci + σi,n+1) + 1, max

1≤i≤n−1
(ci + σi,n+1)),

c← c(d) = (c1, . . . , cn−1, max
1≤i≤n−1

(ci + σi,n+1) + 1, max
1≤i≤n−1

(ci + σi,n+1))

The next iteration is:
d← d(c) = (d1, . . . , dn−1, max

1≤i≤n−1
(ci + σi,n+1) + 1, max

1≤i≤n−1
(ci + σi,n+1)),

c← c(d) = (c1, . . . , cn−1, max
1≤i≤n−1

(ci + σi,n+1) + 1, max
1≤i≤n−1

(ci + σi,n+1))

We are therefore at a fixed point. To complete the proof we note:

max
1≤i≤n−1

(ci + σi,n+1) = max
1≤i≤n−1

(ci + σi,n − 1) = dn − 1

and therefore have:

c = (c1, . . . , cn, dn − 1), and d = (d1, . . . , dn, dn − 1).

which completes the proof. �

To complete the section we have the following lemma that writes the canonical offsets

for Σ in terms of those for Σ:

Lemma 5.4.4. Given canonical offsets of Σ (say c and d) then:

c = (c1, . . . , cn) and d = (d1, . . . , dn)

are the canonical offsets for Σ.

126 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

Proof. Let c̃, d̃ and c, d be valid and canonical offsets for Σ respectively, i.e:

d̃j − c̃i ≥ σi,j, dj − ci ≥ σi,j for all i, j

with equality on some HVT, say T . We wish to find a suitable c to initialise Algorithm 9.

We show:

(87) c̃i ≥ ci and d̃j ≥ dj for i, j = 1, . . . , n− 1.

Assume for the sake of contradiction there exists a k between 1 and n− 1 such that c̃k < ck

and hence d̃k < dk. By Equation (86) we have that ck > c̃k ≥ ck which is a contradiction by

lemma 5.4.3. Hence we choose the following vector to initialise Algorithm 9:

c = (c1, . . . , cn−1, 0)

which produces: 
d← d(c) = (d1, . . . , dn−1, dn),

c← c(d) = (c1, . . . , cn−1, cn),

The next iteration is:
d← d(c) = (d1, . . . , dn−1, dn),

c← c(d) = (c1, . . . , cn−1, cn),

since:

max
1≤i≤n

(ci + σi,n) = max{max
1≤i≤n

(ci + σi,n), max
1≤i≤n

(ci + σi,n+1) + 1}

= max{dn, dn+1 + 1}

= dn.

Therefore:

c = (c1, . . . , cn) d = (d1, . . . , dn)

5.4. ORDER REDUCTION AND CANONICAL OFFSETS 127

which completes the proof. �

5.4.3. Canonical Offsets in Case 2. We now restrict ourselves to Case 2. The struc-

ture of this section is similar to that of §5.4.2, first we seek to represent the canonical offsets

of Σ in terms of those for Σ and then we do the converse. We begin with the following

lemma:

Lemma 5.4.5. If c and d are the canonical offsets for Σ then:

c = (c1, . . . , cn−1, cn,max{1,max
i∈K

ci} − 1)

and

d = (d1, . . . , dn−1,max{1,max
i∈K

ci}, dn − 1)

are the canonical offsets for Σ, where:

K = {i | σi,n = 0}.

Proof. Let c̃ and d̃ be valid offsets for Σ. We seek a lower bound on canonical offsets

for Σ, so that we can initialise Algorithm 9 at a non zero c vector. We show:

(88) c̃i ≥ ci d̃j ≥ dj for i, j = 1, . . . , n− 1.

Assume for the sake of contradiction there exists a k between 1 and n− 1 such that c̃k < ck

and hence d̃k < dk. We let:

C = (c̃1, . . . , c̃n−1, c̃n) and D = (d̃1, . . . , d̃n−1, d̃n+1 + 1)

We verify such offsets are valid for Σ, treating various ranged of i, j separately:

(a): i, j = 1, . . . , n− 1. We have the following inequality:

Dj − Ci = d̃j − c̃i ≥ σi,j = σi,j.

128 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

(b): i = n and j = 1, . . . , n− 1. We have the following inequality:

Dj − Cn = d̃j − c̃n ≥ σn,j = σn,j.

(c): i = 1, . . . , n− 1 and j = n. We have the following inequalities:

Dn − ci = d̃n+1 + 1− c̃i ≥


σi,n+1 = σi,n if σi,n > 0

c̃n+1 + 1− c̃i = d̃n − c̃i ≥ σi,n = σi,n if σi,n = 0 or −∞.

Finally we need equality on a HVT constraints (and to address position (n, n)).

(d): i = j = 1, . . . , n− 1.

Di − Ci = d̃i − c̃i = σ)i, i = σi,i.

(e): i = j = n.

Dn − Cn = d̃n+1 + 1− c̃n = σn,n+1 + 1 = σn,n.

Therefore C and D are valid offsets for Σ, which is a contradition, since c and d are the

canonical offsets for Σ. Hence we initialise Algorithm 9 with:

c = (c1, . . . , cn, 0, 0)

5.4. ORDER REDUCTION AND CANONICAL OFFSETS 129

we have: 

d← d(c) = (d1, . . . , dn−1, max
1≤i≤n+1

(ci + σi,n), max
1≤i≤n+1

(ci + σi,n+1))

= (d1, . . . , dn−1,max{1,max
i∈K

ci}, dn − 1),

c← c(d) = (c1, . . . , cn−1, dn−1,max{1,max
i∈K

ci} − σn+1,n)

= (c1, . . . , cn−1, cn,max{1,max
i∈K

ci} − 1)

The next iteration is:
d← d(c) = (d1, . . . , dn−1,max{1,max

i∈K
ci}, dn − 1),

c← c(d) = (c1, . . . , cn−1, cn,max{1,max
i∈K

ci} − 1).

Here we used:

max
1≤i≤n+1

(ci + σi,n+1) = max
1≤i≤n

(ci + σi,n)− 1 = dn − 1,

dn − 1− σn,n+1 = dn − σn,n = cn.

Therefore, since they are a fixed point of Algorithm 9:

c = (c1, . . . , cn,max{1,max
i∈K

ci} − 1),

d = (d1, . . . , dn−1,max{1,max
i∈K

ci}, dn − 1)

are the canonical offsets for Σ. We now represent the canonical offsets of Σ in terms of those

for Σ in the following lemma:

Lemma 5.4.6. Let c and d be the canonical offsets for Σ, then:

(89) c = (c1, . . . , cn−1, cn) and d = (d1, . . . , dn−1, dn+1 + 1)

are the canonical offsets of Σ.

Let c̃, d̃ and c, d be valid and canonical offsets of Σ respectively. We find a bound on

the canonical offsets for Σ so that we can initialise Algorithm 9 from a non zero c vector.

130 5. ORDER REDUCTION LEAVING THE STRUCTURAL INDEX UNCHANGED

We show:

c̃i ≥ ci and d̃j ≥ dj for i, j = 1, . . . , n− 1.

Assume for the sake of contradiction there exists a k between 1 and n− 1 such that c̃k < ck

and therefore d̃k < dk, by Equation (88) ck > c̃k ≥ ck which is a contradiction. Therefore we

can initialise Algorithm 9 with:

c = (c1, . . . , cn−1, 0).

We have: 

d← d(c) = (d1, . . . , dn−1, max
1≤i≤n

(ci + σi,n))

= (d1, . . . , dn−1, max
1≤i≤n

(ci + σi,n+1) + 1)

= (d1, . . . , dn−1, dn+1 + 1)

c← c(d) = (c1, . . . , cn−1, cn)

The next iteration is:
d← d(c) = (d1, . . . , dn−1, dn+1 + 1)

c← c(d) = (c1, . . . , cn−1, cn)

Therefore, since they are a fixed point of Algorithm 9, the canonical offsets for Σ are:

c = (c1, . . . , cn) and d = (d1, . . . , dn−1, dn+1 + 1)

as required. �

5.5. Invariant Structural Index Under Order Reduction

We now prove the structural index is invariant under order reduction:

Theorem 5.5.1. The structural index of a DAE is unchanged by order reduction.

5.5. INVARIANT STRUCTURAL INDEX UNDER ORDER REDUCTION 131

Proof. Let c and d be the canonical offsets for Σ and c̃ and d̃ be the canonical offsets

for Σ, we have the following inequalities in Case 1 and Case 1 by §5.4.2 and §5.4.3:

Case 1: cn+1 = dn − 1 = cn − 1 < cn ≤ max
1≤i≤n

ci,

Case 2: cn+1 = max{1,max
i∈K
} − 1 ≤ max

1≤i≤n
ci.

In both cases we have:

cn+1 ≤ max
1≤i≤n

ci.

Therefore we have:

max
1≤i≤n+1

ci = max
1≤i≤n

ci

and the structural index therefore remains unchanged. �

CHAPTER 6

Conclusions and Future Work

This thesis set out to explore if the Signature Matrix method could be better exploited

in the index reduction of DAEs. In this final chapter we give some conclusions on the work

contained in this thesis as well as offer some potential avenues for future research that may

prove valuable to the wider DAE community.

6.1. Conclusions

The following are the main research contributions of this thesis:

• Illustrating the Signature Matrix Method by example. It is the authors

opinion that uptake of new methods for analysis of DAEs is a slow process, since

the community all has their own index concepts and methods that work for their

problems. It is our hope that the exposition of Chapter 2 goes some way to illumi-

nating the method for those not familiar with it and hence increases uptake of this

powerful method.

• Use of non-canonical offset vectors. Classically only canonical offset vectors

were used when applying the Signature Matrix method to a DAE. Due to the ex-

ploration of non-canonical offsets in Chapter 2 and the use of them in Chapter 4 it

is our hope that further analysis is done using non-canonical offset vectors.

• Development of alternative Dummy Derivative algorithms. The algorithms

developed in Chapter 3 shed some light on the potential dummy derivatives for a

given DAE as well as offer possibilities for numerical speed up of the algorithm.

• Provided a concise overview of dummy pivoting. It is our hope that the

material in §3.6 provides the reader with a good understanding of the issues and

challenges associated with the dynamic selection of dummy derivatives.

133

134 6. CONCLUSIONS AND FUTURE WORK

• Developed a new dummy derivative style index reduction method that

avoids dummy pivoting. In Chapter 4 we developed a new algorithm for reducing

the index of a DAE that removes the need to change the structure of the resulting

index 1 system locally. Since dummy pivoting is a large shortfall of the dummy

derivative algorithm it is our hope that our Universal Dummy Derivative algorithm

will allow modellers to solve problems that previously needed a large amount of

dummy pivoting much more easily.

• Proved the structural index is invariant under order reduction. This result

is of course necessary if one wishes to perform order reduction on a DAE. Before this

thesis the result was assumed to be true, but not proved, we hope this exposition

of the problem can illuminate the issue for other index concepts.

6.2. Future Work

• Relation between Dummy Derivatives and the structural approach for

regularization. In §3.5.2 an assertion is made about the relationship between the

two algorithms, it would prove useful if this were found to be correct or incorrect as

the proof may shed some light on how the HVT of a Signature Matrix can influence

the choice of dummy derivatives.

• Further exploration of the Universal Dummy Derivatives approach. If one

could derive conditions on when is best to switch parameters it would increase the

speed and reliability of the approach—at present one has to monitor condition num-

bers of matrices (which for large problems can be expensive), or do some problem

specific trick. We believe that if the method could be extended such that by in-

troducing symbolic functions one can eliminate the need for pivoting then it would

potentially become the standard approach for reducing the index of an arbitrary

DAE.

• Implementation of index reduction algorithms in DAESA. The MATLAB

code DAESA finds structural information about a DAE and provides a Signature

6.2. FUTURE WORK 135

Matrix method based solution scheme. We believe implementing several index re-

duction procedures (e.g. those in Chapter 3 or the Universal Dummy Derivative

algorithm) would increase uptake in the software and allow modellers to easily solve

practical problems.

APPENDIX A

Code for the Simple Pendulum Using the Signature Matrix

Method

1 % solves the simple pendulum DAE

2 % x'' + x*la = 0

3 % y'' + y*la - G = 0

4 % xˆ2 + yˆ2 -Lˆ2 = 0

5 % where

6 % x,y are the horizontal and vertical coordinates of the pendulum,

7 % with y pointing down.

8 % la (=lambda) is a Lagrange multiplier, equivalent to tension in the

9 % pendulum.

10 % G = gravity, L = length of pendulum, both are positive constants.

11 % It uses a Taylor series method based on Structural Analysis, taken to

12 % torder "k-stages", which implies the series for x,y have order torder+2

13 % and la has order torder.

14 %

15 % On entry

16 % t holds initial time t 0

17 % z is a column vector holding guesses for x and y at t 0

18 % zp is a column vector holding guesses for x' and y' at t 0

19 % hstep is a fixed time-step.

20 % nsteps is the number of steps taken, so (final t) = (t 0) +

21 % hstep*nsteps.

22 % On exit

23 % tlist is a 1 by (nsteps+1) array holding the time points t,t+hstep,...,

137

138 A. CODE FOR THE SIMPLE PENDULUM USING THE SIGNATURE MATRIX METHOD

24 % t+nsteps*hstep.

25 % zlist is a 2 by (nsteps+1) array whose i-th column holds the

26 % computed [x;y] at the i-th time point.

27 % zplistis a 2 by (nsteps+1) array whose i-th column holds the

28 % computed [x';y'] at the t 0+(i-1)*hstep timestep.

29 %

30 %

31 % Algorithm note:

32 % The code is only valid for pendulum DAE, for other problems the code list

33 % in onestep would need to be changed, along with J and the steps

34 % projecting to the consistent manifold, as well as various FOR loop

35 % indices in line with the c i and d j found via Structural Analysis.

36 %

37 % Input Note:

38 % z,zp need not contain consistent initial conditions. Consistent points

39 % are computed from the inputs before finding later values of x and y.

40 %

41 % Constants G,L,L2 are visible to main function and its subfunctions.

42 % So also is Binom, which holds Pascal's triangle, used by ADtimes.

43 %

44 % Inputs to the function are done in the following order

45 % simpend(initial t, inital x and y as column vector,...

46 % initial x' and y' as column vector , step length, number of steps,...

47 % gravity constant, length constant, order of taylor series for la -

48 % i.e. the minimal order Taylor series used)

49

50 function [tlist,zlist,zplist] = RMsimpend(t, z, zp, hstep, nsteps, G, L, ...

torder)

51

52 %Get list of t's

53 tlist = zeros(1,nsteps+1);

A. CODE FOR THE SIMPLE PENDULUM USING THE SIGNATURE MATRIX METHOD 139

54 %Creates an n+1 vector that holds entries:

55 %t, t+hstep, ..., t+nsteps*hstep

56 for j=1:nsteps+1

57 tlist(j)=t+(j-1)*hstep;

58 end

59

60 %Set up initial zlists

61 zlist=z;

62 zplist=zp;

63 %For speed define Lˆ2

64 L2=Lˆ2;

65

66 %Get binomial coefficients

67 %Preallocate binomial table

68 binom=zeros(torder+3,torder+3);

69 %Get vector in form [1 0...0]

70 binomrow=eye(1,torder+3);

71 %Change first row of binomial table for binomrow

72 binom(1,:) = binomrow;

73

74 for k=2:torder+3

75 %Get new binomial row

76 binomrow = binomrow +[0 binomrow(1:end-1)];

77 %Change row of zeros for binomial row

78 binom(k,:) = binomrow;

79 end

80 %Perform a first step to make initial conditions consistent

81 %Project to consistent manifold set-up

82 h = zlist(1,1)ˆ2+zlist(2,1)ˆ2-L2;

83 ratio = 1/sqrt(1+h/L2);

84 xconsistent = zlist(1,1)*ratio;

140 A. CODE FOR THE SIMPLE PENDULUM USING THE SIGNATURE MATRIX METHOD

85 yconsistent = zlist(2,1)*ratio;

86 M=(xconsistent*zplist(1,1)+yconsistent*zplist(2,1))/L2;

87 xpconsistent=zplist(1,1)-M*xconsistent;

88 ypconsistent=zplist(2,1)-M*yconsistent;

89

90

91 %Project to consistent manifold

92 zlist= [xconsistent; yconsistent];

93 zplist = [xpconsistent; ypconsistent];

94

95

96 for steps= 1:nsteps

97 onestep(steps);

98 end

99

100 function onestep(steps)

101 %Prealocate arrays

102 x=zeros(1,torder+2);

103 y=zeros(1,torder+2);

104 la=zeros(1,torder);

105 v1=zeros(1,torder);

106 v2=zeros(1,torder);

107 v4=zeros(1,torder);

108 v5=zeros(1,torder);

109 v6=zeros(1,torder);

110 v7=zeros(1,torder+2);

111 v8=zeros(1,torder+2);

112 v9=zeros(1,torder+2);

113 f1=zeros(1,torder);

114 f2=zeros(1,torder);

115 f3=zeros(1,torder+2);

A. CODE FOR THE SIMPLE PENDULUM USING THE SIGNATURE MATRIX METHOD 141

116

117 %Use current initial conditions

118 x(1) = zlist(1,steps);

119 y(1) = zlist(2,steps);

120 x(2) = zplist(1,steps);

121 y(2) = zplist(2,steps);

122

123 %Initialise J

124 J = [1 0 x(1)

125 0 1 y(1)

126 2*x(1) 2*y(1) 0];

127

128 %Stage k=-2

129 %C

130 v7(1) = ADtimes(x,x,0);

131 v8(1) = ADtimes(y,y,0);

132 v9(1) = v7(1)+v8(1);

133 v10(1) = L2;

134 f3(1) = v9(1)-v10(1);

135

136 %Stage k=-1

137 %C'

138 v7(2) = ADtimes(x,x,1);

139 v8(2) = ADtimes(y,y,1);

140 f3(2) = v7(2) + v8(2);

141

142 for i=1:torder+1

143 %Stage k=i

144 %Initial guess

145 x(i+2) = 0;

146 y(i+2) = 0;

142 A. CODE FOR THE SIMPLE PENDULUM USING THE SIGNATURE MATRIX METHOD

147 la(i) =0;

148 %Aˆ(i-1)

149 v1(i) = ADtimes(x,la,i-1);

150 v2(i) = x(i+2);

151 f1(i) = v1(i)+v2(i);

152 %Bˆ(i-1)

153 v4(i) = ADtimes(y,la,i-1);

154 v5(i) = y(i+2);

155 v6(i) = v4(i)+v5(i);

156 if i == 1

157 f2(1) = v6(1)-G;

158 else

159 f2(i) = v6(i);

160 end

161 %Cˆ(i+1)

162 v7(i+2) = ADtimes(x,x,i+1);

163 v8(i+2) = ADtimes(y,y,i+1);

164 f3(i+2) = v7(i+2) + v8(i+2);

165

166 %Get next set of variables

167 VAR = -J\[f1(i);f2(i);f3(i+2)];

168 x(i+2)=VAR(1);

169 y(i+2)=VAR(2);

170 la(i)=VAR(3);

171 end

172

173 %Get final variable values (using horners method for speed).

174

175 %preacolate taylor series'

176 xnew = 0;

177 ynew = 0;

A. CODE FOR THE SIMPLE PENDULUM USING THE SIGNATURE MATRIX METHOD 143

178 lanew = 0;

179 xpnew = 0;

180 ypnew = 0;

181

182 %horners method for x

183 for xi=torder+3:-1:2

184 xnew=x(xi)+xnew;

185 xnew=hstep*(1/(xi-1))*xnew;

186 end

187 xnew=xnew+x(1);

188

189 %horners method for y

190 for yi=torder+3:-1:2

191 ynew=y(yi)+ynew;

192 ynew=hstep*(1/(yi-1))*ynew;

193 end

194 ynew=ynew+y(1);

195

196 %horners method for la

197 for lai=torder+1:-1:2

198 lanew=la(lai)+lanew;

199 lanew=hstep*(1/(lai-1))*lanew;

200 end

201 lanew=lanew+la(1);

202

203 %horners method for x'

204 for xpi=torder+3:-1:3

205 xpnew=x(xpi)+xpnew;

206 xpnew=hstep*(1/(xpi-2))*xpnew;

207 end

208 xpnew=xpnew+x(2);

144 A. CODE FOR THE SIMPLE PENDULUM USING THE SIGNATURE MATRIX METHOD

209

210 %horners method for y'

211 for ypi=torder+3:-1:3

212 ypnew=y(ypi)+ypnew;

213 ypnew=hstep*(1/(ypi-2))*ypnew;

214 end

215 ypnew=ypnew+y(2);

216

217 %Project to consistent manifold set-up

218 h = xnewˆ2+ynewˆ2-L2;

219 ratio = 1/sqrt(1+h/L2);

220 xconsistent = xnew*ratio;

221 yconsistent = ynew*ratio;

222 M=(xconsistent*xpnew+yconsistent*ypnew)/L2;

223 xpconsistent=xpnew-M*xconsistent;

224 ypconsistent=ypnew-M*yconsistent;

225

226

227 %Project to consistent manifold

228 zlist(1,steps+1) = xconsistent;

229 zlist(2,steps+1) = yconsistent;

230 zplist(1,steps+1) = xpconsistent;

231 zplist(2,steps+1) = ypconsistent;

232 end

233

234 %Define ADtimes (Leibnitz Rule)

235 function w = ADtimes(u,v,p)

236 %u,v vectors, p the highest order TC

237 w = sum(binom(p+1,1:p+1).*u(1:p+1).*v(p+1:-1:1));

238 end

239 end

APPENDIX B

Code for the Simple Pendulum Using Universal Dummy

Derivatives

1 function [t all,xy all,itbreak,xpyp all,z all,condition all] = ...

T pendzode2(xy0,tend,tol)

2 % T PENDZODE tests PENDZODE, which implements a solution of the pendulum by

3 % the "DDs plus extra variable" method. PENDZODE calls a helper function

4 % PENDZSOL, which does most of the work. Both are written as part of this

5 % file, as nested functions, which avoids global variables that would be

6 % needed otherwise.

7 %

8 % Input:

9 % xy0 = [x0,y0], the initial position in xy coordinates. Should be

10 % approximately consistent; note pendulum length is L=10.

11 % Initial velocity is zero.

12 % tend Integration is from t=0 to t=tend.

13 % Output:

14 % t all,xy all

15 % the solution converted back to x,y coordinates.

16 % itbreak List of indices within t all of t points where a coordinate

17 % switch of the extra variable z occurred. It is defined by z = a x

18 % + b y, and the parameters a, b were changed at these points.

19 %

20 % One can use itbreak by code such as this:

21 % [t,xy,itbreak] = T pendzode2(...

22 % plot3(t,xy(:,1),-xy(:,2), t(itbreak),xy(itbreak,1),-xy(itbreak,2),'r+')

145

146 B. CODE FOR THE SIMPLE PENDULUM USING UNIVERSAL DUMMY DERIVATIVES

23 % An 'OutputFcn' is used. Its role is to decide when a switch of a,b is

24 % needed, and terminate the current section of integration. It can also be

25 % used to print to command window, etc.

26

27 % Notes:

28 % 1.Solving the nonlinear stage is done by Newton iteration (it could be by

29 % solving a quadratic equation). As expected, the method runs into

30 % trouble when bx-ay approaches 0, making one of the relevant Jacobians

31 % singular. Either stepsize goes to 0 and ODE solver gives up; or

32 % solution jumps to "the other" quadratic branch, giving nonsense.

33 % 2.Passing a sensible initial guess to the Newton method is a nuisance of

34 % this approach.

35

36 % Set vars & consts, global to this function & used by nested functions:

37 G=9.81; Lsq=100;

38 xy0 = xy0(:)'; %Force to be row vector

39 xyguess = xy0;

40 % Initial velocity is 0, for now

41 xpyp0 = [0 0];

42

43 % MAIN LOOP, of sections of integration each with a constant ab = [a,b].

44 % Choose it orthogonal to initial (x,y), and continue with that till

45 % orthogonality is lost too much.

46 solver = @ode45;

47 % solver = @ode113

48 options = odeset('OutputFcn',@outfun,...

49 'AbsTol',tol, 'RelTol',tol);

50

51 %Initialise arrays to accumulate over all sections:

52 t0 = 0;

53 t all = [];

B. CODE FOR THE SIMPLE PENDULUM USING UNIVERSAL DUMMY DERIVATIVES 147

54 xy all = [];

55 xpyp all=[];

56 z all=[];

57 condition all=[];

58 %This is a weird thing: you can't use tend - I suspect ode45 doesn't want

59 %to solve from t0:tend in one step... what happens is the step size

60 %decreases to 0 and a Jacobian (the one in the projection) goes

61 %singular.

62 while t0<tend-1e-8

63 %ab = [-xy0(2); xy0(1)];

64 %ab=[1;1];

65 %Do QR factorisation to get alpha and beta

66 [Q,~]=qr(xy0');

67 ab=Q(:,2);

68 %ab=ab-((ab(1)*xy0(1)+ab(2)*xy0(2))/(xy0(1)*xy0(1)+xy0(2)*xy0(2)))*transpose(xy0);

69 %ab = ab/norm(ab,2);

70 % fprintf('(Re)setting ab = [%8g,%8g]\n', ab);

71 % INTEGRATION

72 % z = ax+by and dz/dt = adx/dt+bdy/dt so compute their initial values

73 z0 = xy0*ab; %row*column

74 zp0 = xpyp0*ab;

75

76 [tt,ww] = solver(@pendzode,[t0 tend],[z0 zp0],options);

77

78 % Postprocessing to convert z solution to (x,y)

79 npt = numel(tt);

80 xy = zeros(npt,2);

81 xpyp=zeros(npt,2);

82 lcondition=zeros(npt,1);

83 xyguess = xy0; %as we now return to start of integration

84 for jj=1:npt

148 B. CODE FOR THE SIMPLE PENDULUM USING UNIVERSAL DUMMY DERIVATIVES

85 [~,xpyp(jj,:),xy(jj,:)] = pendzsol(ww(jj,:),xyguess);

86 xyguess = xy(jj,:);

87 end

88 zzz=ww(:,1);

89 % xy data to set z initial values for next section

90 [~,xpyp0,xy0] = pendzsol(ww(end,:),xyguess);

91

92 % Add this section to returned cumulative solution

93 for i=1:npt

94 A=[xy(i,1),xy(i,2);a,b];

95 lcondition(i,1)=cond(A);

96 end;

97 condition all=[condition all;lcondition];

98 t0 = tt(end);

99 t all = [t all; tt];

100 xy all = [xy all; xy];

101 xpyp all=[xpyp all;xpyp];

102 z all=[z all;zzz];

103

104 end

105

106 % Find the section-breaks: they are where t value occurs twice.

107 itbreak = find(~diff(t all));

108

109 % NESTED FUNCTIONS

110 function wp = pendzode(~,w)

111 % Description of ODE to put into Matlab ODE IVP solvers.

112 % w holds [z,zp] where zp = dz/dt.

113

114 % xyguess is the main architectural problem at present.

115 % Make it accessible by using nested functions, and

B. CODE FOR THE SIMPLE PENDULUM USING UNIVERSAL DUMMY DERIVATIVES 149

116 % - Initialise before calling ODE solver.

117 % - Update inside this function to latest values of x,y.

118

119 [xJ0,~,xJm2] = pendzsol(w,xyguess);

120 wp = [w(2); xJ0(4)]; % forms [dz/dt,dzp/dt]

121 % Update the global variables used as trial values by PENDZSOL:

122 xyguess = xJm2;

123 end

124

125 function [xJ0,xJm1,xJm2] = pendzsol(z zp,xy0)

126 % PENDZSOL is a support function for PENDZODE, which uses a "dummy

127 % derivative" approach to represent the simple pendulum DAE as an ODE in a

128 % form that can be input to MATLAB's ODE IVP solvers.

129 % Input:

130 % z zp Vector holding [z,zp], the given values of z and dz/dt (at

131 % some value of t).

132 % xy0 Vector holding initial guess of x,y to use in a Newton

133 % iteration.

134 % Defined in the main function

135 % pp Vector of length 2 holding parameters a,b.

136 % Output:

137 % XJ0 Vector holding [xdd,ydd,lam,zpp].

138 % XJm1 Vector holding [xd,yd].

139 % XJm2 Vector holding [x,y].

140

141 % PENDZSOL computes (at an arbitrary time t) values of relevant state

142 % variables & derivatives, in terms of a new "genuine" state variable

143 % z = a x + b y

144 % and its derivative zp = dz/dt, where a, b are constants passed in the

145 % parameter vector pp. One of the computed variables is the 2nd derivative

146 % zpp = d(zp)/dt, thus setting up a 2nd-order ODE for z=z(t). All the other

150 B. CODE FOR THE SIMPLE PENDULUM USING UNIVERSAL DUMMY DERIVATIVES

147 % quantities have become "dummy", given as functions of z and zp.

148 % In this way solving the pendulum is equivalent (locally, as long as a

149 % relevant Jacobian is nonsingular) to solving the ODE.

150

151 % The solution process uses trial values of x,y to get started; these are

152 % passed in x0,y0. Actually the solution is *locally* determined uniquely

153 % by z, and x0,y0 just fixes which of two global solutions (roots of a

154 % quadratic) is wanted.

155

156 % For derivatives, suffix p means genuine, suffix d means dummy.

157

158 a=ab(1); b=ab(2);

159 z=z zp(1); zp=z zp(2);

160

161 % Stage k=-2. Solve

162 % 0 = C = xˆ2+yˆ2 - Lˆ2

163 % 0 = D = z - (a x + b y)

164 % for x & y as a function of z.

165

166 %Newton iteration:

167 errold = Inf;

168 x = xy0(1); y = xy0(2);

169 while true

170 G2 = [2*x 2*y; -a -b];

171 CD = [(xˆ2+yˆ2 - Lsq); (z - (a*x + b*y))];

172 d xJm2 = -G2\CD; %Newton correction

173 err = norm(d xJm2);

174 if err==0 | | err>=errold, break, end%go to machine precision

175 x = x + d xJm2(1);

176 y = y + d xJm2(2);

177 errold = err;

B. CODE FOR THE SIMPLE PENDULUM USING UNIVERSAL DUMMY DERIVATIVES 151

178 end

179 xJm2 = [x y];

180 % % DEBUG!!

181 % fprintf('PENDZSOL: |change|=%g from guess [%g %g] to found [%g %g]\n'...

182 % ,norm(xy0-xJm2),xy0,xJm2);

183

184 % Stage k=-1. Solve

185 % 0 = C' = 2(x xd + y yd)

186 % 0 = D' = zp - (a xd + b yd)

187 % for xd & yd as a function of z & zp, using known x,y.

188 G1 = [2*x 2*y; -a -b];

189 CpDp = [0; zp];

190 xJm1 = (-G1\CpDp)'; %linear so Newton gets exact result.

191 xd = xJm1(1);

192 yd = xJm1(2);

193

194 % Stage k=0. Solve

195 % 0 = A = xdd + x lam

196 % 0 = B = ydd + y lam - G

197 % 0 = C'' = 2(x xdd + xdˆ2 + y ydd + ydˆ2)

198 % 0 = D'' = zpp - (a xdd + b ydd)

199 % for xdd, ydd, lam & zpp as a function of z & zp.

200 G0 = ...

201 [1 0 x 0;

202 0 1 y 0;

203 2*x 2*y 0 0;

204 -a -b 0 1];

205 ABCppDpp = ...

206 [0;

207 -G;

208 2*(xdˆ2 + ydˆ2);

152 B. CODE FOR THE SIMPLE PENDULUM USING UNIVERSAL DUMMY DERIVATIVES

209 0];

210 xJ0 = (-G0\ABCppDpp)'; %linear so Newton gets exact result.

211 end

212

213 function status = outfun(tt,ww,flag)

214 % Also uses xyguess in the call to PENDZSOL. As OUTFUN is called by the

215 % solver at each step, these values will be continually updated by

216 % calls to PENDZODE.

217 % To break every step change status to 1.

218 status = 0;

219 switch flag

220 case 'init'%, fprintf('Initialising outfun\n');

221 case []

222 for j=1:numel(tt) % this is in case odeset's 'refine' is >1.

223 %t=tt(j);

224 w = ww(:,j); %z=w(1); zp=w(2);

225 [~,~,xjm2] = pendzsol(w,xyguess);

226 % fprintf('t,z,zp=%9.5f % 8g % 8g, xdd ydd lam zpp=% ...

8g % 8g % 8g % 8g, xd yd=% 8g % 8g, x y=% 8g % 8g\n'...

227 % ,t,z,zp,xj0,xjm1,xjm2);

228 % y=xjm2(2); xd=xjm1(1); yd=xjm1(2); energy = -g*y + ...

0.5*(xdˆ2+ydˆ2);

229 % fprintf('t, energy=%g %g\n',t,energy);

230 end

231 % quit if angle between [x y] and [a b] is <= about 30 degrees:

232 if abs(xjm2*ab)/(norm(xjm2)*norm(ab)) >= cos(pi/4)

233 %if cond([xjm2;transpose(ab)])>100

234 % fprintf('outfun set status=1 to terminate integration\n');

235 status = 1;

236 end

237 case 'done'%, fprintf('Finalising outfun\n');

B. CODE FOR THE SIMPLE PENDULUM USING UNIVERSAL DUMMY DERIVATIVES 153

238 end

239 end

240 end

Bibliography

[1] Arévalo, C., and Lötstedt, P. Improving the accuracy of BDF methods for index 3 differential-

algebraic equations. BIT Numerical Mathematics 5, 3 (1995), 297–308.

[2] Beale, E. Mathematical Programming in Practice. Topics in operational research. Pitman, 1968.

[3] Brenan, K., Campbell, S., and Petzold, L. Numerical Solution of Initial-Value Problems in

Differential-Algebraic Equations, second ed. SIAM, Philadelphia, 1996.

[4] Bujakiewicz, P., and Van Den Bosch, P. Determination of perturbation index of a DAE with

maximum weighted matching algorithm. In Proceedings., IEEE/IFAC Joint Symposium on Computer-

Aided Control System Design, 1994 (1994), pp. 129–136.

[5] Burke, J. Lecture notes for course Math 407 at the University of Washington, 2012. http://www.

math.washington.edu/~burke/crs/407/notes/section4.pdf.

[6] Campbell, S. L., and Gear, C. W. The index of general nonlinear DAEs. Numerische Mathematik

72 (1995), 173–196.

[7] Campbell, S. L., and Griepentrog, E. Solvability of general differential algebraic equations. SIAM

J. Sci. Comput. 16, 2 (1995), 257–270.

[8] Campbell, S. L., and Hollenbeck, R. Automatic differentiation and implicit differential equations.

In Computational Differentation: Techniques, Applications and Tools (1996), pp. 215–227.

[9] Corless, R., and Ilie, S. Polynomial cost for solving IVP for high-index DAE. BIT Numerical

Mathematics 48, 1 (2008), 29–49.

[10] Corliss, G. F., and Chang, Y. F. Solving ordinary differential equations using Taylor series. ACM

Trans. Math. Software 8, 2 (1982), 114–144.

[11] de Boor, C., and Kreiss, H. O. On the condition of the linear systems associated with discretized

BVPs of ODEs. SIAM J. Numer. Anal. 23, 5 (October 1986), 936–939.

[12] Dynasym AB. Dymola, dynamic modeling laboratory, user’s manual, 2004. http://www.inf.ethz.

ch/personal/cellier/Lect/MMPS/Refs/Dymola5Manual.pdf.

[13] E. Hairer, C. Lubich, M. R. The Numerical Solution of Differential-Algebraic Systems by Runge-

Kutta Methods. Springer-Verlag, 1989.

155

http://www.math.washington.edu/~burke/crs/407/notes/section4.pdf
http://www.math.washington.edu/~burke/crs/407/notes/section4.pdf
http://www.inf.ethz.ch/personal/cellier/Lect/MMPS/Refs/Dymola5Manual.pdf
http://www.inf.ethz.ch/personal/cellier/Lect/MMPS/Refs/Dymola5Manual.pdf

156 BIBLIOGRAPHY

[14] Feehery, W. F., Banga, J. R., and Barton, P. I. A novel approach to dynamic optimization of

ODE and DAE systems as high-index problems, 1995.

[15] Feehery, W. F., and Barton, P. I. A differentiation-based approach to dynamic simulation and opti-

mization with high-index differential-algebraic equations. In Computational Differentiation: Techniques,

Applications, and Tools, M. Berz, C. Bischof, G. Corliss, and A. Griewank, Eds. SIAM, Philadelphia,

PA, 1996, pp. 239–252.

[16] Fritzson, P. OpenModelica users guide, 2015. https://openmodelica.org/svn/OpenModelica/

trunk/doc/OpenModelicaUsersGuide.pdf.

[17] Fritzson, P. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-

Physical Approach, second ed. Wiley-IEEE Press, 2015.

[18] Gear, C. W. Differential algebraic equations, indices, and integral algebraic equations. SIAM J. Nu-

mer. Anal. 27, 6 (Nov. 1990), 1527–1534.

[19] Gear, C. W. An introduction to numerical methods for ODEs and DAEs. In Real-time integration

methods for mechanical system simulation. Springer, 1990, pp. 115–126.

[20] Griewank, A. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Fron-

tiers in applied mathematics. SIAM, Philadelphia, PA, 2000.

[21] Harman, P. Personal Communication, 2015.

[22] Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E.,

and Woodward, C. S. SUNDIALS, Suite of Nonlinear and Differential/Algebraic Equation Solvers.

ACM Trans. Math. Softw. 31, 3 (2005), 363–396.

[23] ITI GmbH. SimulationX user manual, 2009. http://www.tu.kielce.pl/~rokach/instr/mud/

UserManual.pdf.

[24] Kunkel, P., and Mehrmann, V. Canonical forms for linear differential-algebraic equations with

variable coefficients. Journal of Computational and Applied Mathematics 56, 3 (1994), 225 – 251.

[25] Kunkel, P., and Mehrmann, V. Differential-Algebraic Equations Analysis and Numerical Solution.

European Mathematical Society, 2006.

[26] Maplesoft. MapleSim user’s guide, 2014. http://www.maplesoft.com/documentation_center/

maplesim6/MapleSimUserGuide.pdf.

[27] MathWorks. Simulunk user’s guide, 2016. http://www.mathworks.com/help/pdf_doc/simulink/

sl_using.pdf.

[28] Mattsson, S., Olsson, H., and Elmqvist, H. Dynamic selection of states in DYMOLA. In Modelica

2000 Workshop Proceedings (2000), pp. 61–67.

https://openmodelica.org/svn/OpenModelica/trunk/doc/OpenModelicaUsersGuide.pdf
https://openmodelica.org/svn/OpenModelica/trunk/doc/OpenModelicaUsersGuide.pdf
http://www.tu.kielce.pl/~rokach/instr/mud/UserManual.pdf
http://www.tu.kielce.pl/~rokach/instr/mud/UserManual.pdf
http://www.maplesoft.com/documentation_center/maplesim6/MapleSimUserGuide.pdf
http://www.maplesoft.com/documentation_center/maplesim6/MapleSimUserGuide.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf

BIBLIOGRAPHY 157

[29] Mattsson, S. E., and Söderlind, G. A new technique for solving high-index differential-algebraic

equations using dummy derivatives. In IEEE Symposium on Computer-Aided Control System Design

(Philadelphia, PA, USA, 1992), pp. 218–224.

[30] Mattsson, S. E., and Söderlind, G. Index reduction in differential-algebraic equations using dummy

derivatives. SIAM J. Sci. Comput. 14, 3 (1993), 677–692.

[31] McKenzie, R., Nedialkov, N. S., Pryce, J., and Tan, G. DAESA user guide. Tech. rep., De-

partment of Computing and Software, McMaster University, Hamilton, Ontario, Canada, L8S 4K1,

2013.

[32] McKenzie, R., and Pryce, J. D. Structural analysis and dummy derivatives: Some relations. In

Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science (2015), Springer

International Publishing, pp. 293–301.

[33] McKenzie, R., and Pryce, J. D. Structural analysis based dummy derivative selection for differential

algebraic equations. BIT Numerical Mathematics (2017). To Appear, accepted for publication.

[34] Mehrmann, V. Index concepts for differential-algebraic equations. Tech. rep., Institut für Mathematik,

TU Berlin, 2012.

[35] Mehrmann, V., and Shi, C. Transformation of high order linear differential-algebraic systems to first

order. Numerical Algorithms 42, 3 (2006), 281–307.

[36] Nedialkov, N. S., and Pryce, J. D. Solving differential-algebraic equations by Taylor series (I):

Computing Taylor coefficients. BIT 45 (2005), 561–591.

[37] Nedialkov, N. S., and Pryce, J. D. Solving differential-algebraic equations by Taylor series (II):

Computing the System Jacobian. BIT 47, 1 (March 2007), 121–135.

[38] Nedialkov, N. S., and Pryce, J. D. Solving differential-algebraic equations by Taylor series (III):

The DAETS code. JNAIAM 3, 1–2 (2008), 61–80. ISSN 17908140.

[39] Nedialkov, N. S., and Pryce, J. D. DAETS user guide. Tech. rep., Department of Computing and

Software, McMaster University, Hamilton, Ontario, Canada, L8S 4K1, 2008–2009.

[40] Nedialkov, N. S., Pryce, J. D., and Tan, G. Algorithm 948: DAESA: A Matlab tool for structural

analysis of differential-algebraic equations: Software. ACM Trans. Math. Softw. 41, 2 (Feb. 2015), 12:1–

12:14.

[41] Pantelides, C. C. The consistent initialization of differential-algebraic systems. SIAM. J. Sci. Stat.

Comput. 9 (1988), 213–231.

[42] Petzold, L. Description of DASSL: a differential/algebraic system solver. In Proceedings of IMACS

World Congress (1982).

158 BIBLIOGRAPHY

[43] Process Systems Enterprise Ltd. gPROMS introductory user guide, 2004. http://eng1.jcu.edu.

au/Current%20Students/general/downloads/gPROMS/introductory_guide_231.pdf.

[44] Pryce, J. D. Solving high-index DAEs by Taylor Series. Numerical Algorithms 19 (1998), 195–211.

[45] Pryce, J. D. A simple structural analysis method for DAEs. BIT 41, 2 (2001), 364–394.

[46] Pryce, J. D., and McKenzie, R. A new look at dummy derivatives for differential-algebraic equa-

tions. In Mathematical and Computational Approaches in Advancing Modern Science and Engineering

(2016), Springer International Publishing, pp. 713–723.

[47] Pryce, J. D., Nedialkov, N. S., and Tan, G. Graph theory, irreducibility, and structural analysis of

differential-algebraic equation systems. Cardiff University, McMaster University. In preparation., 2014.

[48] Pryce, J. D., Nedialkov, N. S., and Tan, G. DAESA: A Matlab tool for structural analysis of

differential-algebraic equations: Theory. ACM Trans. Math. Softw. 41, 2 (Feb. 2015), 9:1–9:20.

[49] Pryce, John D. andNedialkov, N. S., Tan, G., and McKenzie, R. Exploiting block triangular

form for solving DAEs: Reducing the number of initial values. In Interdisciplinary Topics in Applied

Mathematics, Modeling and Computational Science (2015), Springer International Publishing, pp. 367–

375.

[50] Reich, S. On a geometrical interpretation of differential-algebraic equations. Circuits, Systems and

Signal Processing 9, 4 (1990), 367–382.

[51] Reissig, G., Martinson, W. S., and Barton, P. I. Differential–algebraic equations of index 1 may

have an arbitrarily high structural index. SIAM J. Sci. Comput. 21, 6 (1999), 1987–1990.

[52] Rheinboldt, W. C. Differential-algebraic systems as differential equations on manifolds. Mathematics

of Computation 43, 168 (1984), 473–482.

[53] Sand, J. On implicit Euler for high-order high-index DAEs. Appl. Numer. Math. 42, 1-3 (Aug. 2002),

411–424.

[54] Scholz, L., and Steinbrecher, A. A combined structural-algebraic approach for the regularization

of coupled systems of DAEs. Tech. rep., Institut für Mathematik, TU Berlin, 2013.

[55] Scholz, L., and Steinbrecher, A. Regularization of DAEs based on the signature method. BIT

Numerical Mathematics 56, 1 (2016), 319–340.

[56] Shampine, L. F. Numerical Solution of Ordinary Differential Equations. Chapman & Hall, New York,

1994.

[57] Shampine, L. F. Solving 0 = F (t, y(t), y′(t)) in Matlab. Journal of Numerical Mathematics 10, 4 (2002),

291–310.

[58] Shampine, L. F., and Gordon, M. K. Computer Solution of Ordinary Differential Equations. The

Initial Value Problem. W. H. Freeman and Company, San Francisco, 1975.

http://eng1.jcu.edu.au/Current%20Students/general/downloads/gPROMS/introductory_guide_231.pdf
http://eng1.jcu.edu.au/Current%20Students/general/downloads/gPROMS/introductory_guide_231.pdf

BIBLIOGRAPHY 159

[59] Shorten, R., Wirth, F., Mason, O., Wulff, K., and King, C. Stability criteria for switched and

hybrid systems. SIAM Review 49, 4 (2007), 545–592.

[60] Tischendorf, C. Regularization of electrical circuits. IFAC-PapersOnLine 48, 1 (2015), 312 – 313.

8th Vienna International Conferenceon Mathematical Modelling, MATHMOD 2015.

[61] Washington, I., and Swartz, C. On the numerical robustness of differential-algebraic distillation

models, October 23–26 2011.

[62] Wunderlich, L. Analysis and Numerical Solution of Structured and Switched Differential-Algebraic

Systems. PhD thesis, Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften,

2008.

	Declaration
	Statement 1
	Statement 2
	Statement 3
	Statement 4: Previously Approved Bar On Access

	Acknowledgements
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Common Issues, A Summary of Notation and Terms
	1.3. Different Index concepts

	Chapter 2. Structural Analysis
	2.1. Introduction to Structural Analysis - The Signature Matrix Method
	2.2. A Brief Overview
	2.3. Linear Assignment Problems
	2.4. Signature Method By Example
	2.5. Signature Method - Basics
	2.6. Standard Solution Scheme
	2.7. Exploiting DAE BTFs
	2.8. Classifying Non-Canonical Offsets

	Chapter 3. Dummy Derivatives
	3.1. Introduction to Dummy Derivatives
	3.2. Original Dummy Derivative Algorithm
	3.3. Reordered Dummy Derivative Algorithm
	3.4. Using Structural Analysis to Simplify Dummy Derivatives
	3.5. Alternative Algorithms
	3.6. Dummy Pivoting

	Chapter 4. Exploiting Non-Canonical Offsets—Universal Dummy Derivatives
	4.1. The Basic Algorithm
	4.2. The Reduced Universal Dummy Derivative Form
	4.3. Numerical Results for Universal Dummy Derivatives

	Chapter 5. Order Reduction Leaving the Structural Index Unchanged
	5.1. Introduction to Order Reduction - Why It's Non-Trivial for DAEs
	5.2. Order Reduction and the Structural Index
	5.3. Invariant DOF Under Order Reduction
	5.4. Order Reduction and Canonical Offsets
	5.5. Invariant Structural Index Under Order Reduction

	Chapter 6. Conclusions and Future Work
	6.1. Conclusions
	6.2. Future Work

	Appendix A. Code for the Simple Pendulum Using the Signature Matrix Method
	Appendix B. Code for the Simple Pendulum Using Universal Dummy Derivatives
	Bibliography

