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The optimal density of cellular solids in axial tension

L. Angela Mihai∗ Khulud Alayyash∗ Hayley Wyatt∗

Abstract

For cellular bodies with uniform cell size, wall thickness, and shape, an important question is
whether the same volume of material has the same effect when arranged as many small cells or
as fewer large cells. To answer this question, for finite element models of periodic structures of
Mooney-type material with different structural geometry and subject to large strain deformations,
we identify a nonlinear elastic modulus as the ratio between the mean effective stress and the mean
effective strain in the solid cell walls, and show that this modulus increases when the thickness of
the walls increases, as well as when the number of cells increases while the volume of solid material
remains fixed. Since, under the specified conditions, this nonlinear elastic modulus increases also
as the corresponding mean stress increases, either the mean modulus or the mean stress can be
employed as indicator when the optimum wall thickness or number of cells is sought.

Keywords: cellular solids; nonlinear hyperelastic material; large strain deformation; micro-structural
behaviour; material density; optimisation.

1 Introduction

In natural structures, the mechanical support system is usually formed through a combination of
increase in the cell number or size and sustained sclerification (thickening and lignification) of the cell
walls. Dicotyledon stems (e.g. magnolia, maple, oak, rose, sycamore, willow) increase their diameter
primarily by cell division which ultimately form the characteristic annual rings. Monocotyledon stems
(e.g. bamboo, corn, lily, orchid, palm, reed) prevent mechanical failure through a combination of
initiation of growth with a stem that is sufficiently wide for future supply and support demands, and
an increase in the stem diameter and strength by cell wall expansion and lignification. Some monocot
plants attain tree stature comparable to that of arborescent dicotyledons and conifers (e.g. palm
trees with maximum heights of 20-40 meters), but their stems are relatively slender [21]. By contrast,
tall dicot trees have bigger stem diameters relative to their height than small trees. (The opposite
behaviours of dicot and monocot stems also inspired La Fontaine’s fable “The oak and the reed”, and
the intriguing story was illustrated in a painting by A.E. Michallon, now at Fitzwilliam Museum).
Although the wood density representing the relative quantity of the cell wall in a given volume of
wood tissue vary significantly among wood species, the composition and strength of the cell wall is
generally the same for all woods [1, 7]. Bone tissue is another example of natural cellular structure
where apposition and resorption of cellular matter is controlled by the magnitude of the stresses, with
bones becoming denser at the point of stress [24,26].

For living cellular structures, there are many physiological and ecological factors that affect their
mechanical properties, and they also change over time [2,18]. Nevertheless, for structures with uniform
cell size, wall thickness, and shape, the fundamental question arises whether the same volume of cell
wall material has the same effect when arranged as many small cells or as fewer large cells (see
Figure 1). To answer this question, in the case of small strain elastic deformations, thresholds on
stiffness or strength can be set as constraints in the mechanical design or when modelling developmental
processes [9, 10]. However, if large strains occur during functional or physiological changes, then
finding suitable criteria to account for the nonlinear elastic properties of the deforming cell walls is
more challenging [15,16].
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Figure 1: Schematic of dicotyledon and monocotyledon stems.

In this study, for cellular bodies of nonlinear elastic material [19, 25], we investigate numerically
the utility of a nonlinear parameter which correlates with the softness and the load-bearing capacity
of these structures, and explore a possible approach for their optimisation process. For finite element
models of periodic structures of Mooney-type material with different structural geometry and subject
to large strain deformations, we identify a nonlinear elastic modulus as the ratio between the mean
effective stress and the mean effective strain in the solid cell walls, and show that this modulus increases
when the thickness of the walls increases, as well as when the number of cells increases while the volume
of solid material remains fixed. Since, under the specified conditions, this nonlinear elastic modulus
increases also as the corresponding mean stress increases, either the mean modulus or the mean stress
can be employed as indicator when the optimum wall thickness or number of cells is sought. Cellular
structures are typically difficult to optimize due to the complex interaction between the geometry
and the nonlinear properties of the constitutive material, and finding a nonlinear parameter that is
monotonic would guarantee at least that the set of acceptable values is non-empty.

Furthermore, while for cellular structures of linearly elastic material, the mean elastic modulus is
known to increase when the ratio between the thickness and the length of the cell wall increases [9,10],
our results show that, for structure made from a nonlinear hyperelastic material, this elastic modulus
increases also when the cell size decreases while both the total material volume and the ratio between
the thickness and the length of the cell walls remain fixed. While different factors may contribute to
this behaviour, in our view, this increase in the elastic modulus is due to the enhanced elasticity of the
cell walls when more material is added or when the same elastic material is distributed more uniformly
throughout the structure. This type of elastic responses was also observed when the cells were filled
with an elastic core, as demonstrated by Mihai et al. [17], and the elasticity of the deforming walls
was further augmented by the contact with the cell core.

Cellular materials are the subject of intensive research efforts in biomedical applications, where
the advent of 3D printing has led to increased interest in the optimal design of tissue scaffolds with
controlled, reproducible geometries. Engineered tissue scaffolds provide an environment for biological
cells to grow and regenerate tissue, and their composition, micro-structure and mechanical properties
play a critical role in the response of biological cells that migrate within them. In highly oriented
tissues, such as nerve, ligament, muscle, and tendon, where tensile strength and stiffness are controlled
by collagen fibers, geometrically well-defined scaffolds also provide guidance cues for cells and fibers
orientation [5, 13, 22]. For these type of structures, the cell density and wall stiffness are key factors
[4, 6, 23,28], which can be independently optimized to improve biological response [3, 8, 27].

2 Periodic cellular structures

In this section, we assess computationally nonlinear elastic deformation effects in periodic cellular
structures of hyperelastic material by defining a nonlinear parameter and then testing its monotonicity
with respect to the wall thickness as well as to the number of cells when the material volume is fixed.
To test the independent influence of mechanical features, such as the cell size and the number of cells,
on the collective behaviour of a group of cells under large strain deformations, we model periodic,
honeycomb-like structures with regular geometry, such as square, diamond-shape, and hexagonal cells.
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The computer models analysed here are formed from a single piece of elastic material which occupies
a thin square domain of (dimensionless) side one in the X-(horizontal) and Y-(vertical) directions, and
0.1 in the Z-(out-of-plane) direction, and the cells are equal in size throughout the structure. Each
structure is deformed by imposing the following boundary conditions: the lower external horizontal
face is fixed in the second/vertical/Y -direction and free to slide in the first/horizontal/X-direction
and in the third/out-of-plane/Z-direction; the upper external horizontal face is subject to a prescribed
vertical stretch of 50% and is free to slide horizontally and out-of-plane; and the remaining external
and internal cell faces deform freely. The numerical results recorded here were obtained by a standard
finite element procedure implemented within the Finite Elements for Biomechanics (FEBio) software
environment [14]. The model structures were created in SolidWorks and imported into the FEBio
software, and a mesh refinement study was performed for each structure, so that the numerical results
are independent of the mesh-size.

For a homogeneous isotropic incompressible elastic wall described by a strain energy density
function W(I1, I2, I3) and subject to finite elastic deformations, the Cauchy stress takes the form:
σ = −pI + β1B + β−1B

−1, where B is the left Cauchy-Green strain tensor, I1, I2, I3 are the principal
strain invariants, β1 = 2∂W/∂I1, β−1 = −2∂W/∂I2 are the material response coefficients, and p is
the arbitrary hydrostatic pressure [19,25]. For the cell wall material, two different hyperelastic models
were chosen, as follows.
(NH) The generalised neo-Hookean model characterised by the strain energy density function:

W(I1, I2, I3) =
µ

2
(I1 − 3− ln I3) +

λ

2

(
ln I

1/2
3

)2
, (2.1)

where µ = E/[2(1 + ν)] > 0 and λ = νE/[(1 + ν)(1 − 2ν)] > 0 are constant parameters. In the
computed examples, we set E = 0.1 MPa and ν = 0.49.
(MR) The generalised Mooney-Rivlin model described by the strain energy density function:

W(I1, I2, I3) =
µ1

2

(
I
−1/3
3 I1 − 3

)
+
µ2

2

(
I
−2/3
3 I2 − 3

)
+
κ

2

(
I

1/2
3 − 1

)2
, (2.2)

where µ1, µ2, κ are constants, such that µ = µ1 + µ2 > 0 and κ > 0. In the numerical models, we set
µ1 = 0.0016 MPa, µ2 = 0.032 MPa, κ = 1.6667 MPa.
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Figure 2: Nonlinear elastic modulus E normalised to E for the NH and MR models.

These models were selected for their different mechanical behaviours under finite tension or com-
pression. Specifically, setting the nonlinear elastic modulus as the ratio between the Cauchy stress
and the logarithmic strain in the direction of the applied tensile or compressive force:

E =
a3 − 1

a2 ln a
(aβ1 − β−1) , (2.3)

where a > 0 is the stretch in the corresponding direction, for the NH material (2.1), this modulus
increases under increasing tension and decreases under increasing compression, while for the MR
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material (2.2), the modulus (2.3) decreases with the increasing tension and increases with the increasing
compression (see Figure 2).

Figure 3: Undeformed model structures with stacked (top row), staggered (middle top row), diamond
(middle bottom row), and hexagon (bottom row) cell geometry, and thin (left column), medium
(middle column), and thick (right column) cell walls.

The undeformed structures with uniform cell size and different wall thickness are represented
in Figure 3. In Figure 4, the deformed structures of NH material are shown. Note that the initially
horizontal walls of the staggered cells bend and the inclined walls of the diamond and hexagon cells are
sheared. Similar deformations were observed in structures of MR material. For the model structures,
the mean values of the effective Cauchy stress vs. those of the effective logarithmic strain lnB1/2 =
ln
√

2E + 1, where B is the left Cauchy-Green strain tensor, E is the corresponding Green-Lagrange
strain tensor, and the logarithmic function is applied component-wise, are indicated in Figures 5-8 (a,
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Figure 4: Deformed structures with stacked (top row), staggered (middle top row), diamond (middle
bottom row), and hexagon (bottom row) cell geometry, and thin (left column), medium (middle
column), and thick (right column) cell walls of NH material subject to 50% stretch in the vertical
direction, showing the non-homogeneous Green-Lagrange strains in the same direction.
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Figure 5: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic modulus (MPa) vs.
mean effective logarithmic strain for stacked cells structures of (a,b) NH and (c,d) MR material with
different wall thickness.
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Figure 6: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic modulus (MPa) vs.
mean effective logarithmic strain for staggered cells of (a,b) NH and (c,d) MR material with different
wall thickness.
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Figure 7: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic modulus (MPa) vs.
mean effective logarithmic strain for diamond cells of (a,b) NH and (c,d) MR material with different
wall thickness.
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Figure 8: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic modulus (MPa) vs.
mean effective logarithmic strain for hexagon cells of (a,b) NH and (c,d) MR material with different
wall thickness.
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Figure 9: Undeformed model structures with stacked (top row), staggered (middle top row), diamond
(middle bottom row), and hexagon (bottom row) cell geometry, and 3× 3 (left column), 5× 5 (middle
column), and 9× 9 (right column) cells.
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Figure 10: Deformed structures with stacked (top row), staggered (middle top row), diamond (middle
bottom row), and hexagon (bottom row) cell geometry, and 3×3 (left column), 5×5 (middle column),
and 9× 9 (right column) cells of NH material subject to 50% stretch in the vertical direction, showing
the non-homogeneous Green-Lagrange strains in the same direction.
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Figure 11: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic modulus (MPa) vs.
mean effective logarithmic strain for stacked cells of (a,b) NH and (c,d) MR material with different
number of cells and fixed material volume.
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Figure 12: (a,c) Mean effective Cauchy stress (MPa) and (b,d) noninear elastic modulus (MPa) vs.
mean effective logarithmic strain for staggered cells of (a,b) NH and (c,d) MR material with different
number of cells and fixed material volume.
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Figure 13: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic modulus (MPa) vs.
mean effective logarithmic strain for diamond cells of (a,b) NH and (c,d) MR material and with
different number of cells and fixed material volume.
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Figure 14: (a,c) Mean effective Cauchy stress (MPa) and (b,d) nonlinear elastic modulus (MPa)
vs. mean effective logarithmic strain for hexagon cells of (a,b) NH and (c,d) MR material and with
different number of cells and fixed material volume.
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c). We recall that the effective value of a symmetric tensor s is defined as [11,12]

seff =

√
3

2

[(
s− 1

3
tr(s)I

)
:

(
s− 1

3
tr(s)I

)]
=
√
s2

11 + s2
22 + s2

33 − s11s22 − s22s33 − s33s11 + 3
(
s2

12 + s2
13 + s2

23

)
.

(2.4)

The mean value was calculated as the sum of the values on all the finite elements divided by the
number of elements. The values of the associated nonlinear elastic modulus defined as the ratio
between the mean effective Cauchy stress and the mean effective logarithmic strain are represented
in Figures 5-8 (b, d), respectively. The numerical results suggest that both the stress and the elastic
modulus increase with the cell wall thickness.

In Figure 9, the undeformed structures with uniform cell size and an increasing number of cells
while the volume of solid material remains unchanged are illustrated. In these models, for the stacked
and diamond cells, the ratio between the thickness and the length of the cell walls is also unchanged as
the number of cells increases, while for the staggered and hexagonal cells, this ratio increases slightly.
The deformed structures of NH material are shown in Figure 10. For the structures with an increasing
number of cells, the mean values of the effective Cauchy stress vs. those of the effective logarithmic
strain are recorded in Figures 11-14 (a, c). The corresponding values of the mean elastic modulus
are indicated in Figures 11-14 (b, d). These results show that both the stress and the mean elastic
modulus increase as the number of cells increases while the volume of material remains unchanged.

The results obtained for the structures with increasing wall thickness and with an increasing
number of cells imply that, for cellular structures with similar cell geometries, if the number of cells
increases while the wall thickness is fixed, then the mean elastic modulus in the walls increases with
the number of cells. This result is consistent with the classical result that the mean elastic modulus
in a cellular structure increases as the ratio between the thickness and the length of the cell walls
increases. However, for cellular structures of nonlinear elastic material, the elastic modulus may also
increase if the ratio between the thickness and the length of the cell walls is fixed while the cell size
decreases and the total material volume remains unchanged, as shown by our computer models with
stacked and diamond cells.

3 Optimisation problem

Due to its monotonic behaviour, the nonlinear mean elastic modulus investigated above can be em-
ployed to determine the minimum wall thickness or the number of cells under the corresponding
deformations by formulating the following optimisation problem:

find d0 = min
d∈V

d, V =
{
d > 0

∣∣ Ē(d) ≥ C
}
,

where d is the wall thickness or the number of cells, Ē is the mean elastic modulus for the chosen
deformation and under the given boundary conditions, and C > 0 is the given target value.

Equivalently, the objective d0 may be characterised as follows:

find d0 = min {d | V 6= ∅} .

Since Ē is an increasing function of its argument, the range of admissible values V is a non-empty set,
and hence the existence of a solution to the optimisation problem is guaranteed. The epigraph of the
associated optimisation function is illustrated graphically in Figure 15.

Cellular structures of nonlinear elastic material are difficult to optimise due to the complex in-
teraction between the geometry and the nonlinear properties of the cell wall material, and finding a
nonlinear parameter that is monotonic will guarantee at least that the feasibility constraints are met,
and hence the set of feasible values is non-empty. Since, under the specified conditions, the mean
elastic modulus increases as the corresponding mean stress increases, either the mean stress or the
mean modulus can be used as indicator when the optimum wall thickness or number of cells is sought.
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Figure 15: Epigraph of function f : V = {d > 0 | g(d) ≥ 0} → R, f(d) = d, g(d) = Ē(d)− C.

4 Conclusion

Cellular bodies are strong, pliable structures made from seemingly fragile materials. Among the best
known mechanical qualities of these structures are their high strength-to-weight ratio and energy
absorption capacity, which arise from the inextricable relation between the geometric architecture
and the nonlinear elastic responses of their constituents. In many natural and engineered cellular
materials, during functional performance, plastic damage or fracture rarely occurs, and the material
recovers completely after large deformations. Such deformations can be reasonably treated within the
theoretical framework of large strain elasticity, which in principle provides a complete description of
the elastic responses of a solid material under loading.

In this paper, for cellular structures of nonlinear hyperelastic material with uniform cell size,
wall thickness, and shape, we showed that the same volume of material leads to different mechanical
behaviours when arranged as many small cells than when organised as fewer large cells, and explored
a possible approach that could be useful in their optimisation process. This approach consists in
identifying a nonlinear parameter which, under certain restrictions (material, geometric, and external
conditions), is monotonic with respect to the wall thickness or the number of walls, and may be useful
as indicator when the optimum wall thickness of number of cells is sought (for example, in soft tissue
scaffolds, where the cell density and the wall stiffness play critical roles in their performance). Far
from claiming the universality of this nonlinear parameter, the general approach developed here may
illuminate certain mechanical behaviour of cellular structures of nonlinear elastic material, which are
typically difficult to optimize.
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