Open Access

Gamal A. El-Hiti*, Bakr F. Abdel-Wahab, Mohammed Baashen, Amany S. Hegazy and Benson M. Kariuki

Crystal structure of (*E*)-5-((4-chlorophenyl) diazenyl)-2-(5-(4-fluorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1*H*-pyrazol-1-yl)-4-methylthiazole, C₂₃H₁₇ClFN₅S₂

Table 1: Data collection and handling.

Crystal:	Orange needle
Size:	$0.31 \times 0.22 \times 0.09~\text{mm}$
Wavelength:	Mo <i>Kα</i> radiation (0.71073 Å)
μ:	3.9 cm^{-1}
Diffractometer, scan mode:	SuperNova, ω -scans
$2\theta_{max}$, completeness:	59.6°, >83% (>99% for
	$2 heta_{\max} = 50^{\circ}$)
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	11261, 5322, 0.022
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \; \sigma(I_{\rm obs})$, 3684
N(param) _{refined} :	327
Programs:	CrysAlis ^{PRO} [8], SHELX [9],
	Platon [10]

DOI 10.1515/ncrs-2016-0208

Received July 5, 2016; accepted November 16, 2016; available online December 10, 2016

Abstract

C₂₃H₁₇ClFN₅S₂, monoclinic, P_{21}/c (no. 14), a = 20.9691(12) Å, b = 11.5316(6) Å, c = 9.2546(4) Å, $\beta = 95.484(4)^{\circ}$, V = 2227.6(2) Å³, Z = 4, $R_{gt}(F) = 0.0468$, $wR_{ref}(F^2) = 0.1126$, T = 296 K.

CCDC no.: 1517483

Mohammed Baashen: Department of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia Amany S. Hegazy and Benson M. Kariuki: School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

The title compound was synthesized by the reaction of 5-(4-fluorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1*H*-pyrazole-1carbothioamide and 1-chloro-1-((4-chlorophenyl)diazenyl) propan-2-one in ethanol containing two drops of triethylamine under reflux for 1.5 h. The solid obtained was filtered, dried and recrystallized from dimethylformamide to give orange crystals of the title compound (Mp 212–213 °C) [1].

Experimental details

The thiophenyl moiety is disordered and was refined with a ratio of 34.1(3)/65.9(3) with restrained geometry. All H atoms were placed in calculated positions and refined using a riding model. For the methyl groups, C—H bonds were fixed at 0.96 Å and $U_{\rm iso}$ set to $1.5U_{\rm eq}(\rm C)$ with free rotation around the C—C bond (HFIX 137 in SHELX [9]). For the rest of the hydrogens, $U_{\rm iso}$ was set to $1.2U_{\rm eq}(\rm C)$ with a distance of 0.93 Å for aromatic C—H. For CH and CH₂ groups, the C—H distances were set to 0.98 and 0.97 Å respectively.

© 2016 Gamal A. El-Hiti et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

^{*}Corresponding author: Gamal A. El-Hiti, Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia, e-mail: gelhiti@ksu.edu.sa

Bakr F. Abdel-Wahab: Department of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia; and Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _{eq}
C1	0.56009(11)	0.2098(2)	-0.0311(2)	0.0600(6)
C2	0.53105(12)	0.1177(2)	-0.1040(3)	0.0651(7)
H2	0.5460	0.0428	-0.0850	0.078*
С3	0.47962(11)	0.1365(2)	-0.2056(2)	0.0590(6)
H3	0.4592	0.0740	-0.2540	0.071*
C4	0.45845(10)	0.24837(19)	-0.2355(2)	0.0465(5)
C5	0.48719(11)	0.3395(2)	-0.1591(2)	0.0579(6)
H5	0.4721	0.4145	-0.1768	0.070*
C6	0.53831(11)	0.3206(2)	-0.0558(3)	0.0663(7)
H6	0.5576	0.3824	-0.0039	0.080*
C7	0.33549(9)	0.21842(18)	-0.5178(2)	0.0430(5)
C8	0.30299(9)	0.13926(18)	-0.6074(2)	0.0431(4)
C9	0.31527(11)	0.01195(19)	-0.6067(3)	0.0584(6)
H9A	0.2752	-0.0288	-0.6211	0.088*
H9B	0.3373	-0.0101	-0.5151	0.088*
H9C	0.3412	-0.0072	-0.6834	0.088*
C10	0.25614(9)	0.29811(17)	-0.6930(2)	0.0403(4)
C11	0.17002(9)	0.31616(17)	-0.8977(2)	0.0427(4)
H11	0.1951	0.2697	-0.9605	0.051*
C12	0.14817(10)	0.42874(18)	-0.9765(2)	0.0472(5)
H12A	0.1592	0.4285	-1.0760	0.057*
H12B	0.1023	0.4397	-0.9765	0.057*
C13	0.18456(10)	0.52095(17)	-0.8887(2)	0.0442(5)
C14	0 11712(9)	0.24294(16)	-0.84667(19)	0.0400(4)
C15	0 10958(11)	0.12884(18)	-0.8897(2)	0.0536(5)
H15	0 1383	0.12004(10)	-0.9483	0.0550(5)
(16	0.05969(13)	0.0630(2)	-0.8464(3)	0.0686(7)
H16	0.0542	-0.0138	-0.8756	0.082*
(17	0.0342	0 1139(2)	-0.7598(3)	0.0680(7)
C18	0.01077(12) 0.02503(12)	0.1137(2) 0.2242(2)	-0.7120(3)	0.0653(6)
H18	_0.02303(12)	0.2242(2)	-0.6512	0.0055(0)
C10	0.0000	0.2550	-0.7565(2)	0.0516(5)
H10	0.07 901(10)	0.20703(17)	_0 72/9	0.0510(5)
S1	0.31014(2)	0.36029(4)	-0.56204(5)	0.002
57a	0.23680(8)	0.50025(4) 0.74034(13)	-0.84240(19)	0.0727(5)
C 20ª	0.18176(10)	0.64294(18)	-0.9238(2)	0.0504(5)
C21a	0.101/0(10)	0.04294(10)	-1.0207(9)	0.0504(5)
H21 ^a	0.1410(4)	0.6578	_1 0794	0.0702(10)
(22ª	0.1000	0.0570	-1.077(11)	0.071
с22 H22a	0.1492(4)	0.0222()	_1.0277(11)	0.0721(10)
(239	0.1255	0.07 54	0.0357(12)	0.007
H23a	0.1330(4)	0.0499(3)	_0.9337(12)	0.0700(18)
S2Ap	0.2100	0.5201	-1.05/3(5)	0.072
	0.1231(2)	0.0910(4)	-1.0343(3)	0.0710(9)
C21Ab	0.101/0(10)	0.04274(10)	-0.7250(2) 0.8785(13)	0.0004(0)
	0.2191(5)	0.7290(8)	0.0703(13)	0.072(2)
(22Ap	0.2310	0.7100	-0.8039	0.000
	0.2082(9)	0.8433(8)	-0.949(2)	0.075(2)
	0.2511	0.9119	-0.9509	0.090**
	0.1577(9)	0.6246(9)	-1.045(2)	0.074(5)
N1	0.1410	0.0040	-1.1000	0.009
	0.40//8(8)	0.2/033(10)	-0.342/3(1/)	0.0477(4)
	0.30302(8)	0.19125(15)	-0.4118/(1/)	0.0461(4)
N 4	0.256/6(8)	0.18466(14)	-0.70601(17)	0.0418(4)
N4 NE	0.21285(8)	0.30295(14)	-0.77020(17)	0.0443(4)
	0.22023(8)	0.48225(14)	-0.77839(18)	0.0460(4)
	-0.03037(9)	0.04929(17)	-0.7155(2)	0.1153(/)
Cl1	0.62511(3)	0.18532(9)	0.09640(8)	0.0954(3)

^aOccupancy: 0.659(3); ^bOccupancy: 0.341(3).

Discussion

Compounds bearing thiazole and pyrazole nuclei are found to have various antimicrobial activities such as antibacterial, antifungal and antitumor [1–7].

The asymmetric unit (*cf.* the figure) of the crystal structure consists of a molecule of $C_{23}H_{17}ClFN_5S_2$ with a disordered thiophenyl fragment. Apart from the fluorobenzene group, the rest of the molecule is essentially planar; the angles between the planes of neighbouring rings are 13° or less. The plane of the fluorobenzene is perpendicular (90.71(5)°) to the plane of the pyrazolinyl group. In the crystal, the molecules stack along [001] with interplanar distances of about 3.5 Å between glide-plane related molecules.

Acknowledgements: The authors extend their appreciation to the College of Applied Medical Sciences Research Centre and the Deanship of Scientific Research at King Saud University for funding and to Cardiff University for continued support.

References

- Abdel-Wahab, B. F.; Sediek, A.; Mohamed, H. A.; Awad, G. E. A.: Novel 2-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Lett. Drug Des. Discov. 10 (2013) 111–118.
- Sinha, S.; Sravanthi, T. V.; Yuvaraj, S.; Manju, S. L.; Doble, M.: 2-Amino-4-aryl thiazole: a promising scaffold identified as a potent 5-LOX inhibitor. RSC Adv. 6 (2016) 19271–19279.
- Naim, M. J.; Alam, O.; Nawaz, F.; Alam, M. J.; Alam, P.: Current status of pyrazole and its biological activities. J. Pharm. Bioallied. Sci. 8 (2016) 2–17.
- Yuan, J.-W.; Wang, S.-F.; Luo, Z.-L.; Qiu, H.-Y.; Wang, P.-F.; Zhang, X.; Yang, Y.-A.; Yin, Y.; Zhang, F.; Zhu, H.-L.: Synthesis and biological evaluation of compounds which contain pyrazole, thiazole and naphthalene ring as antitumor agents. Bioorg. Med. Chem. Lett. **24** (2014) 2324–2328.
- Abdel-Wahab, B. F.; Abdel-Latif, E.; Mohamed, H. A., Awad, G. E. A.: Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur. J. Med. Chem. 52 (2012) 263–268.
- Desai, N. C.; Joshi, V. V.; Rajpara, K. M.; Vaghani, H. V.; Satodiya, H. M.: Facile synthesis of novel fluorine containing pyrazole based thiazole derivatives and evaluation of antimicrobial activity. J. Fluorine Chem. 142 (2012) 67–78.
- Kumar, P.; Chandak, N.; Kaushik, P.; Sharma, C.; Kaushik, D.; Aneja, K. R.; Sharma, P. K.: Synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatoryantibacterial agents. Med. Chem. Res. 21 (2012) 3396–3405.
- Agilent Technologies: CrysAlis^{PRO} Software system, ver. 1.171.37.35, Agilent Technologies UK Ltd, Oxford, UK, 2014.
- 9. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- 10. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. **45** (2012) 849–854.