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Summary

Given a positive integer vector a = (a1, a2 . . . , ak)
t with

1 < a1 < · · · < ak and gcd(a1, . . . , ak) = 1 .

The Frobenius number of the vector a, Fk(a), is the largest positive integer that cannot be

represented as
k∑
i=1

aixi, where x1, . . . , xk are nonnegative integers. We also consider a generalised

Frobenius number, known in the literature as the s-Frobenius number, Fs(a1, a2, . . . , ak), which

is defined to be the largest integer that cannot be represented as
k∑
i=1

aixi in at least s distinct

ways. The classical Frobenius number corresponds to the case s = 1.

The main result of the thesis is the new upper bound for the 2-Frobenius number,

F2(a1, . . . , ak) ≤ F1(a1, . . . , ak) + 2

(
(k − 1)!(2(k−1)
k−1

))1/(k−1)

(a1 · · · ak)1/(k−1) , (0.0.1)

that arises from studying the bounds for the quantity
(
Fs(a)− F1(a)

)
(a1 · · · ak)−1/(k−1) . The

bound (0.0.1) is an improvement, for s = 2, on a bound given by Aliev, Fukshansky and Henk

[2]. Our proofs rely on the geometry of numbers.

By using graph theoretic techniques, we also obtain an explicit formula for the 2-Frobenius

number of the arithmetic progression a, a + d, . . . a + nd (i.e. the ai’s are in an arithmetic

progression) with gcd(a, d) = 1 and 1 ≤ d < a.

F2(a, a+ d, . . . a+ nd) = a
⌊a
n

⌋
+ d(a+ 1) , n ∈ {2, 3}. (0.0.2)

This result generalises Roperts’s result [73] for the Frobenius number of general arithmetic

sequences.

In the course of our investigations we derive a formula for the shortest path and the distance

between any two vertices of a graph associated with the positive integers a1, . . . , ak.

Based on our results, we observe a new pattern for the 2-Frobenius number of general arithmetic

sequences a, a+ d, . . . , a+ nd, gcd(a, d) = 1, which we state as a conjecture.

Part of this work has appeared in [6].
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Chapter 1

Introduction

1.1 A brief history of the Frobenius problem

The Frobenius problem can be formulated as follows: Given a positive integer k-dimensional

vector a = (a1, a2, . . . , ak)
t ∈ Zk>0 with gcd(a) := gcd(a1, a2, . . . , ak) = 1, find the largest integer

F(a) = F(a1, a2, . . . , ak) that cannot be represented as a nonnegative integer linear combination

of the entries of a. We can write this as

F(a) = max{b ∈ Z : b 6= 〈a, z〉 for all z ∈ Zk≥0} ,

where 〈·, ·〉 denotes the standard inner product in Rk. The number F(a) is called the Frobenius

number associated with the vector a. The positive integers a1, a2, . . . , ak are called the basis

of the Frobenius number or the Frobenius basis. Historically this problem is often described

in terms of coins of denominations a1, a2, . . . , ak, so that the Frobenius number is the largest

amount of money which cannot be formed using these coins.

The Frobenius problem is an old problem that was originally considered by Ferdinand Georg

Frobenius (1849-1917)[39]. According to Brauer [25], Frobenius occasionally raised the following

question:“determine (or at least find non-trivial good bounds for) F(a)” in his lectures in the

early 1900s.

The Frobenius problem is known by other names in the literature, such as the money-changing

problem (or the money-changing problem of Frobenius, or the coin-exchange problem of Frobe-

nius) [95, 90, 20, 21, 17], the coin problem (or the Frobenius coin problem) [23, 85, 9, 65] and

17



Chapter 1. Introduction

the Diophantine problem of Frobenius [81, 75, 18, 72].

The Frobenius problem is related to many other mathematical problems, and has applications

in various fields including number theory, algebra, probability, graph theory, counting points in

polytopes, and the geometry of numbers. There is a rich literature on the Frobenius problem

and for a comprehensive survey on the history and different aspects of this problem we refer

the reader to the book of Ramı́rez-Alfonśın [72].

In this present work we are not intending to survey all of the work related to the Frobenius

problem. We aim to give an overview of the key results related to the scope of this thesis. For

k = 2 it is well known (most probably at least to Sylvester [86]) that

F(a1, a2) = a1a2 − (a1 + a2).

Sylvester also found that exactly half of the integers between 1 and (a1 − 1)(a2 − 1) are rep-

resentable (in terms a1 and a2). This result was posted as a mathematical problem in the

Educational Times [86]. About half a century after Sylvester’s result, I. Schur in his last lecture

in Berlin in 1935 gave an upper bound for F(a) in the general case. This bound was published

and later improved by Brauer [25, 26].

Remarkably, no closed formula exists for the Frobenius number with a Frobenius basis consisting

of k > 2 elements, as shown by Curtis [31] in 1990. Johnson [54] was probably the first who

developed an algorithm for computing the Frobenius number of three integers. Later Brauer

and Shockley [27] found a simpler algorithm to compute the value of F(a1, a2, a3). In 1978

Selmer and Beyer [82] developed a general method, based on a continued fractions algorithm,

for determining the Frobenius number in the case k = 3. Their result was later simplified

by Rödseth [75]. The fastest known algorithms for computing F(a1, a2, a3) (according to the

experiments in [19]) were discovered by Greenberg [43] in 1988 and Davison [32] in 1994.

For k > 4, formulas for F(a1, . . . , ak) are known only in some special cases (for instance, where

the ai’s are consecutive integers [25], or where the ai’s form an arithmetic progression [73, 13].

Computing the Frobenius number is NP-hard, as proved by Ramı́rez-Alfonśın [71] in 1996,

who reduced it to the integer knapsack problem. On the other hand, in 1992 Kannan [56]

established a polynomial time algorithm for computing the Frobenius number F(a) for any

fixed k. However, Kannan’s algorithm is known to be hard to implement, as it is based on a

relation between the Frobenius number and the covering radius of a certain polytope. Barvinok

and Woods [12] in 2003 proposed a polynomial time algorithm for computing the Frobenius

number in fixed dimension, using the generating functions.
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1.1. A brief history of the Frobenius problem

In 1962, Brauer & Shockley [27] suggested a method that allows us to determine the Frobenius

number by computing a residue table of a1 words. The method makes use of the following

identity: (see also [71])

F(a) = F(a1, . . . , ak) = max
1≤i≤a1−1

{wi} − a1, (1.1.1)

where wi is the smallest positive integer such that wi ≡ i (mod a1) that is representable as a

nonnegative integer combination of a2, . . . , ak. In other words

wi = min

{
k∑

n=2

xnan : xn ∈ Z≥0 for n = 2, . . . , k,
k∑

n=2

xnan ≡ i (mod a1)

}
.

In 2007, Einstein, Lichtblau, Strzebonski and Wagon [36] presented an algorithm to compute

the Frobenius number of a quadratic sequence of small length. For example, for x ≥ 2,

F(9x, 9x+ 1, 9x+ 4, 9x+ 9) = 9x2 + 18x− 2 .

There exists a number of useful relations between graph theory and the Frobenius numbers. For

instance, Nijenhuis [66] developed an algorithm to determine the Frobenius number, construct-

ing a corresponding graph with weighted edges and determining the path of minimum weight

from one vertex to all the others. Then

F(a) = F(a1, . . . , ak) = diam(Gw(a))− a1 ,

where Gw(a) is a certain graph associated with a vector a and diam(·) stands for the graph

diameter. The correctness of Nijenhuis’ algorithm follows from (1.1.1) (see also [72, p.20]).

Nijenhuis’ algorithm runs in time of order O(kamin log amin) where amin = min
1≤i≤k

{ai}. In this

present work Nijhenius’s formula will be applied to compute out the 2-Frobenius number of

arithmetic progressions.

There is another algorithm constructed by Heap and Lynn [48] to compute F(a1, . . . , ak) by

finding the index of primitivity γ(B) of a nonnegative matrix B = (bi,j) (i.e. bi,j ≥ 0), 1 ≤
i, j ≤ k of order (ak + ak−1 − 1) via graph theory

F(a1, . . . , ak) = γ(B)− 2ak + 1 ,

where γ(B) is the smallest integer such that Bγ(B) > 0.

We note that other methods have been derived, but they will not be discussed here.
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Chapter 1. Introduction

Historically, the problem of computing the Frobenius number for a given Frobenius basis has

proved intractable, leading to considerable interest in obtaining bounds for F(a). For instance,

there are various bounds on the Frobenius number given by Erdös and Graham [38], Selmer

[81], Rödseth [75], Davison [32], Fukshansky and Robins [40], Aliev and Gruber [7], Aliev, Henk

and Hinrichs [4] amongst others.

Beck and Robins [16] defined the s-Frobenius number as follows. Let s be a positive integer.

The s-Frobenius number Fs(a) = Fs(a1, . . . , ak) is the largest integer number that cannot be

represented in at least s different ways as a nonnegative integer linear combination of a1, . . . , ak.

Beck and Robins [16] gave the formula for the case k = 2

Fs(a1, a2) = sa1a2 − a1 − a2.

In particular, this identity generalises the well-known result in the setting of the (classical)

Frobenius number F(a) = F1(a) which corresponding to s = 1.

This natural generalisation of the classical Frobenius number F1(a), has been studied recently

by several authors. For instance, Aliev, Henk and Linke [5] obtained an optimal lower bound

on the s-Frobenius number Fs(a1, . . . , ak) for k ≥ 3.

Aliev, Fukshansky and Henk [2] obtained an upper bound for the s-Frobenius number using the

concept of s-covering radius. In this thesis we derive an upper bound for 2-Frobenius numbers,

that improves on known results.

The next subsection summarise the main results of this thesis, which will be presented in the

following chapters.

1.2 Organisation of the thesis

The present work is concerned with the generalised Frobenius number Fs(a) associated with a

primitive vector a = (a1, a2, . . . , ak)
t ∈ Zk>0. In particular, we give an improved upper bound for

the generalised Frobenius number Fs(a) with s = 2 and k ≥ 3. Also we present a conjecture for

computing the 2-Frobenius number F2(a), when the entries ai’s are in arithmetic progressions.

To give structural overview of this thesis, in Chapter 1 we outline the existing results on the
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1.2. Organisation of the thesis

behaviour of the Frobenius numbers, accompanied by a brief history of the Frobenius problem,

and also a literature review.

The concept of the generalised Frobenius number is then introduced in Chapter 2, where known

results and ideas are discussed. In the end of the chapter, publications related to the discussed

results are supplied for the interested reader.

In Chapter 3, we obtain a new upper bound on the s-Frobenius number when s = 2, using

techniques from the geometry of numbers, which improves upon an upper bound given in [2]

for Fs(a) where s ≥ 1.

Basic graph-theoretic definitions are introduced in Chapter 4, as well as related concepts, lem-

mas and known results that we require for our proofs. The concept of directed circulant graphs

is also introduced, where we note that such graphs are also referred to as Frobenius circulant

graphs. Connection between graph theory and the Frobenius number is then discussed and new

results derived. In particular, we present a new proof for the formula F2(a1, a2) = 2a1a2−a1−a2,
using only graph theoretical methods.

In Chapter 5, we obtain an explicit formula for the shortest path and the minimum distance

between any two vertices of a directed circulant graph Gw(a) associated with a positive integer

3-dimensional primitive vector (a) = (a, a+d, a+2d)t. We also establish a relationship between

representations of nonnegative integers and the shortest paths from one vertex to all other vertex

in Gw(a). This relationship is used to derive an explicit formula for computing the 2-Frobenius

number of the arithmetic progression a, a+ d, a+ 2d with gcd(a, d) = 1.

In Chapter 6, we extend the results of Chapter 5 to include the four term arithmetic progression

(i.e. a, a+d, a+2d, a+3d). This yields an explicit formula for computing F2(a, a+d, a+2d, a+3d).

In particular, we propose a conjecture an explicit formula for the 2-Frobenius number of the

general arithmetic sequences.

In the last chapter, we will summarize the main results in this thesis and future work.
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Chapter 2

The Frobenius problem and its

generalisations

In this chapter we give an overview of the Frobenius problem, introduce the generalised Frobe-

nius number and define the s-covering radius, which plays an important role in subsequent

chapters. In Sections 2.1 and 2.2 we introduce some definitions, accompanied by some exam-

ples of determining the Frobenius number for given Frobenius basis, a1, . . . , ak. In Section 2.3

we discuss a known formula for the Frobenius number F(a1, a2). Some special cases for large

values of k are presented, followed by results concerning the Frobenius number for general k. In

Section 2.4 we examine a relationship between the Frobenius number of k positive integers and

the covering radius of a certain simplex in Rk−1. These results are generalised in Section 2.5, to

encompass the relationship between the s-Frobenius number Fs(a1, . . . , ak) and the s-covering

radius.

2.1 Some preliminaries from number theory

We denote by Z>0 and Z≥0 the sets of all positive and nonnegative integer numbers, respectively.

The Minkowski sum of two sets A,B ⊆ Rn is defined as the set A + B = {a + b : a ∈ A, b ∈
B} ⊆ Rn and λA = {λa : a ∈ A} for λ ∈ R. The cardinality of a set A is denoted #(A). For

any real x, bxc denotes the largest integer not exceeding x.

Let a1, . . . , ak be integers, not all zero. The greatest common divisor of a1, . . . , ak will be denoted
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Chapter 2. The Frobenius problem and its generalisations

by gcd(a1, . . . , ak). If gcd(a1, . . . , ak) = 1 then these integers are said to be relatively prime (or

coprimes).

We will need the following well-known result.

Theorem 2.1.1 (Theorem 5.15 p.172 in [88]). Let a, b, c be integers with not both a and b equal

to 0. Then the linear Diophantine equation

ax+ by = c (2.1.1)

is solvable if and only if gcd(a, b) divides c. Furthermore, if (x0, y0) is any particular solution

to (2.1.1), then all integer solutions of (2.1.1) are given by

x = x0 + tb/ gcd(a, b) ,

y = y0 − ta/ gcd(a, b) ,
(2.1.2)

where t is an arbitrary integer.

Lattice

Let b1, . . . , bk be linearly independent vectors in Rn and let B = [b1, . . . , bk] ∈ Rn×k be the

matrix with columns b1, . . . , bk. The lattice L generated by b1, . . . , bk (or, equivalently, by B)

is the set

L = L(B) =

{
k∑
i=1

xibi : xi ∈ Z

}
=
{
Bx : x ∈ Zk

}
(2.1.3)

of all integer linear combinations of the vectors bi’s.

The vectors b1, . . . , bk (or, equivalently, B) are called a basis for the lattice (or lattice basis).

The integers n and k are called the dimension and the rank of L(B) respectively. When k = n

the lattice L(B) is called a full rank or full dimensional lattice in Rn.

The fundamental parallelepiped associated to B = [b1, . . . , bk] ∈ Rn×k is the set of points

P(B) =

{
k∑
i=0

αibi : αi ∈ R, 0 ≤ αi < 1

}
.

The determinant det(L(B)) of the lattice L(B) is the k-dimensional volume of the fundamental

parallelepiped P(B) associated to B

det(L(B)) = vol k(P(B)) =
√

det(BtB) ,

where Bt is the transpose of B.
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2.2. The Frobenius problem and representable integers

Remark 2.1.2. In this thesis we will mainly consider full rank lattices.

2.2 The Frobenius problem and representable integers

Let k ≥ 2 be an integer and let a1, a2, . . . , ak be positive relatively prime integers. We call

an integer t representable by the vector a = (a1, a2, . . . , ak)
t if there exist nonnegative integers

x1, x2, . . . , xk such that

t =
k∑
i=1

xiai , (2.2.1)

and nonrepresentable otherwise.

We denote by Sg (a) the set of all representable integers in terms of a. Sg (a) is a numerical

semigroup generated by a1, a2, . . . , ak.

The Frobenius problem is an old problem named after the 19th century German mathematician

Ferdinand Georg Frobenius who raised this problem in his lectures (according to Brauer [25]).

Given a positive integer k-dimensional primitive vector a, i.e., a = (a1, . . . , ak)
t ∈ Zk>0 with

gcd(a1, . . . , ak) = 1, the Frobenius problem asks to find the Frobenius number F(a), that is the

largest integer which is nonrepresentable in terms of a. That is

F(a) = F(a1, . . . , ak) = max{b ∈ Z : b 6= 〈a, z〉 for all z ∈ Zk≥0} , (2.2.2)

or, equivlently,

F(a) = max{x ∈ Z≥0 : x /∈ Sg (a)} . (2.2.3)

The theorem below implies that F(a) exists.

Theorem 2.2.1 (Theorem 1.1.5 in [99]). Let a = (a1, a2, . . . , ak)
t be a positive integer k-

dimensional vector. There are only finitely many nonnegative integers that are not in Sg (a) if

and only if gcd(a1, a2, . . . , ak) = 1.

Dozens of papers have been published since then, but no closed formula for Frobenius number

F(a) is known up to now. The first published work on this problem is attributed to Sylvester [86]

who determined that exactly half of the integers between 1 and (a1−1)(a2−1) are representable

in terms a1 and a2, when a1 and a2 are relatively prime. The modern study of the Frobenius

problem began with the 1942 paper of Brauer [25].
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Chapter 2. The Frobenius problem and its generalisations

Example 2.2.2. Let a = (3, 8)t. Then

Sg (a) = {3a+ 8b : a, b ∈ Z≥0} (2.2.4)

and

Z≥0 \ Sg (a) = {1, 2, 4, 5, 7, 10, 13} .

Hence the Frobenius number is F(a) = 13.

A special case of the Frobenius problem is the McNuggets number problem:

Problem 2.2.3. (Chicken McNuggets Problem)[70, 83] At McDonald’s, Chicken McNuggets

are available in packs of either 6, 9, or 20 McNuggets. What is the largest number of McNuggets

that one cannot purchase?

Figure 2.1: McDonald’s Chicken McNuggets in a box of 20

The answer is F(6, 9, 20) = 43. To see that 43 is not representable, observe that we can choose

either 0, 1, or 2 packs of 20. If we choose 0 or 1 or 2 packs, then we have to represent 43 or 23

or 3 as a nonnegative integer linear combination of 6 and 9, which is impossible.
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To see that every larger number representable, note that

44 = 1 · 20 + 0 · 9 + 4 · 6,

45 = 0 · 20 + 3 · 9 + 3 · 6,

46 = 2 · 20 + 0 · 9 + 1 · 6,

47 = 1 · 20 + 3 · 9 + 0 · 6,

48 = 0 · 20 + 0 · 9 + 8 · 6,

49 = 2 · 20 + 1 · 9 + 0 · 6 .

Then all integers greater than 49 can be expressed in the form 6m + n, where m ∈ Z>0 and

n ∈ {44, 45, 46, 47, 48, 49}, so all the integers greater than or equal to 44 are in Sg (6, 9, 20).

Therefore 43 is the largest integer that cannot be expressed in the form 6a + 9b + 20c, with

a, b, c ∈ Z≥0.

A geometric approach to the Frobenius problem is based on considering the so-called knapsack

polytope

P (a, b) = {x ∈ Rk≥0 : 〈a,x〉 = b} .

F(a) is the largest integer b, such that the knapsack polytope P (a, b) does not contain an

integer point. Figure 2.2 shows the geometry behind the knapsack polytope P ((3, 5)t, b) for the

first few values of b. Note that the knapsack polytope corresponding to the Frobenius number

F(3, 5) = 7 is a segment on the red line 3x+ 5y = 7.

Figure 2.2: 3x+ 5y = b , b = 1, 2, 3 . . .

For given positive integers a1, a2, . . . , ak with gcd(a1, . . . , ak) = 1, we also consider a function

27



Chapter 2. The Frobenius problem and its generalisations

closely connected with F(a1, . . . , ak), as observed by Brauer [25]

F+(a1, . . . , ak) = F(a1, . . . , ak) +

k∑
i=1

ai . (2.2.5)

From the definition it follows that F+(a1, . . . , ak) is the largest integer which cannot be repre-

sented as a positive integer linear combination of ai’s. However in this present work we focus

mainly on the property F(a1, . . . , ak).

2.3 Frobenius number research directions

Broadly speaking, research work on the Frobenius problem can be divided into three different

areas:

1. Explicit formulas for the Frobenius number in special cases.

2. Upper or lower bounds for the Frobenius number.

3. Algorithms for computing the Frobenius number.

2.3.1 Frobenius number formulas

There is a simple formula for the Frobenius number F(a1, . . . , ak) when k = 2. But when

k = 3, 4; formulae exist only for some special choices of a1, . . . , ak. The explicit formula for the

case k = 2 is given in the following theorem.

Theorem 2.3.1. [86] Let a1 and a2 be positive relatively prime integers. Then

F(a1, a2) = (a1 − 1)(a2 − 1)− 1 = a1a2 − (a1 + a2) . (2.3.1)

The origin of this famous result is usually attributed to Sylvester [86] although some consider

this to be a “Folklore result”.

In contrast to the case k = 2, it was shown in 1990 by Curtis [31] that closed form expression does

not exist for the Frobenius number when k ≥ 3. For the case k = 3 there are efficient algorithms

to compute F(a1, a2, a3), developed by Selmer and Beyer [82], Rödseth [75], Greenberg [43] and

Davison [32].
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2.3. Frobenius number research directions

In the following we will mention some results on the Frobenius number for special choices of

a1, a2, a3. In 1956, Roberts [74] showed that for any positive integers a, z > 2

F(a, a+ 1, a+ z) =


⌊
a+1
z

⌋
a+ (z − 3)a, if a ≡ −1 (mod z) and a ≥ z2 − 5z + 3 ,

⌊
a+1
z

⌋
(a+ z) + (z − 3)a, if a ≡ −1 (mod z) and a ≥ z2 − 4z + 2 .

In 1960 Johnson [54] show that if a3 ≥ F(a1d ,
a2
d ) where d = gcd(a1, a2) then

F(a1, a2, a3) = d
(
a1a2 − a1 − a2

)
+ (d− 1)a3 .

In 1962, Brauer & Shockley [27] proved that if a1|(a2 + a3), then

F(a1, a2, a3) = −a1 + max
i=2,3

{
ai

⌊
a1a5−i
a2 + a3

⌋}
.

A sequence a1, . . . , ak, is called independent if none of the basis elements can be represented as

a nonnegative integer linear combination of the others.

In 1977, Selmer [81] showed that if a1, a2, a3 are independent and a2 ≥ t(q + 1) then

F(a1, a2, a3) = max {(s− 1)a2 + (q − 1)a3, (r − 1)a2 + qa3} − a1 ,

where s, t, q and r determined by

a3 ≡ sa2 (mod a1), 1 < s < a1,

a3 = sa2 − ta1, t > 0,

and

a1 = qs+ r, 0 < r < s .

In 1987, Hujter [52] has proved for any integer q > 2,

F(q2, q2 + 1, q2 + q) = 2q3 − 2q2 − 1 .

For the case k = 4, the Frobenius number is much more difficult to find then in the case k = 3.

In 1964, Dulmage & Mendelsohn [34] found some interesting formulas for F(a, a+1, a+2, a+K),

when K = 4, 5, 6, by using graphical methods. For instance when K = 4

F(a, a+ 1, a+ 2, a+ 4) = (a+ 1)
⌊a

4

⌋
+

⌊
a+ 1

4

⌋
+ 2

⌊
a+ 2

4

⌋
− 1. (2.3.2)
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Chapter 2. The Frobenius problem and its generalisations

We will discuss the connection between the Frobenius numbers and graph theory in more detail

in Chapter 4.

In the general case, Brauer & Shockley [27] found the following expression for the Frobenius

number.

Theorem 2.3.2. (Brauer and Shockley, 1962) Let a = (a1, . . . , ak)
t be a positive integer vector

with gcd(a1, . . . , ak) = 1. Then

F(a1, . . . , ak) = max
1≤i≤a1−1

{wi} − a1 , (2.3.3)

where wi is the smallest positive integer with wi ≡ i (mod a1), that can represented as a non-

negative integer linear combination of a2, . . . , ak.

In 1979, Nijenhuis [66] applied the above theorem to compute the Frobenius number F(a), using

graph theoretical methods. The graph theory approach employs finding minimum paths in a

certain graph associated with a vector a. We will give more details of this method in Chapter

4.

2.3.2 Bounds on the Frobenius number

Computing Frobenius number is NP-hard as was shown by Ramı́rez-Alfonśın [71]. Hence it is

important to obtain upper and lower bounds for F(a).

First we will mention several upper bounds. Suppose that a1 < · · · < ak. In 1935, Schur proved

in his last lecture (according to Brauer [25]) that

F(a1, a2, . . . , ak) ≤ (a1 − 1)(ak − 1)− 1 . (2.3.4)

In 1942, Brauer [25] improved the bound (2.3.4) as follows:

F(a1, a2, . . . , ak) ≤
k−1∑
i=1

ai+1
di
di+1

−
k∑
i=1

ai , (2.3.5)

where di = gcd(a1, . . . , ai).

Brauer & Seelbinder [26](see also [67]) showed that the bound (2.3.5) is the best possible upper
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bound if and only if each of the integers
aj
dj

, for j = 2, . . . , k, is representable in the form

aj
dj

=

k−1∑
i=1

yji

(
ai
dj−1

)
with yij ≥ 0.

In 1972, Erdös & Graham [38] showed that

F(a1, a2, . . . , ak) ≤ 2ak−1

⌊ak
k

⌋
− ak , (2.3.6)

and in 1977 a similar bound was found by Selmer [81] for the case a1 ≥ k (i.e. each element of

the basis a1, a2, . . . , ak is independent) as follows:

F(a1, a2, . . . , ak) ≤ 2ak

⌊a1
k

⌋
− a1 .

In 1975, Vitek [92] proved another bound for k ≥ 3 (also see Lewin’s work [58]) which says

F(a1, a2, . . . , ak) ≤
⌊

(a2 − 1)(ak − 2)

2

⌋
− 1 .

In 1982, Rödseth [77] improved the bound (2.3.6) when k is odd to

F(a1, a2, . . . , ak) ≤ 2ak

⌊
a1 + 2

k + 1

⌋
− a1.

In 2002, Beck, Diaz and Robins [14] showed that

F(a1, a2 . . . , ak) ≤
1

2

(√
a1a2a3(a1 + a2 + a3) − a1 − a2 − a3

)
.

There are also upper bounds for the small values of k. In 1975, Roberts [74] proved that for the

integers a, b,m with 0 < a < b, gcd(a, b) = 1 and m ≥ 2 we have

F(m,m+ a,m+ b) ≤ m
(
b− 2 +

⌊m
b

⌋)
+ (a− 1)(b− 1).

In 1976, Vitek [93] showed that if a1, a2, a3 are independent (i.e. none of the ai is representable

by the other two) then

F(a1, a2, a3) ≤ a1
⌊a3

2
− 1
⌋
.

A more recent upper bound for the Frobenius number was given by Fukshansky & Robins [40]

and will be discussed in § 2.4.
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There are also some results on lower bounds for the Frobenius number F(a1, . . . , ak). Let

a1, . . . , ak be positive integers with gcd(a1, . . . , ak) = 1. In 1994, Davison [32] established the

following sharp lower bound for k = 3

F(a1, a2, a3) ≥
√

3
√
a1a2a3 − a1 − a2 − a3 ,

where it is known that the constant
√

3 cannot be improved.

In 2000, Killingbergtrø’s [57] proved in the general case that

F(a1, . . . , ak) ≥ ((k − 1)! a1 · · · ak)1/(k−1) −
k∑
i=1

ai . (2.3.7)

More recently, Aliev & Gruber [7] obtained an optimal lower bound for F(a1, a2, . . . , ak) in terms

of the absolute inhomogeneous minimum of the standard simplex in Rk−1. This is discussed

further in § 2.4.

2.3.3 The Frobenius number for particular sequential bases

To date there are four main sequentially approaches to classifying the Frobenius basis a1, a2, . . . , ak.

These consist of arithmetic sequences, almost arithmetic sequences, geometric sequences and

arbitrary sequences.

1. Arithmetic sequences

The sequence of positive integers a1, a2, . . . , ak is called an arithmetic sequence if it satisfies

the conditions.

(i) gcd(a1, a2, . . . , ak) = 1;

(ii) 0 < a1 < · · · < ak and ai = a1 + (i − 1)d for i = 2, 3, . . . , k and d ≥ 1 (i.e., the

integers are in an arithmetic progression with common difference d).

When the ai’s are in arithmetic progressions, a formula for F(a) has been determined by

several authors.

Let a, d and n be positive integers with a > n and gcd(a, d) = 1. (Note that the condition

a > n guarantees that no term ai is dependent on the other ones). Then in 1942, Brauer

[25] (and indepentently, Schur) found the following formula for the Frobenius number of
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n consecutive positive integers

F(a, a+ 1, . . . , a+ n− 1) = a

⌊
a− 2

n− 1

⌋
+ (a− 1) . (2.3.8)

Roberts [73] generalised the formula (2.3.8) in 1965 (alse simpler proofs have later been

given by Bateman [13] and other authors) for general arithmetic sequences such as

F(a, a+ d, . . . , a+ nd) = a

⌊
a− 2

n

⌋
+ d(a− 1) . (2.3.9)

In this thesis, we derive a formula for the 2-Frobenius number of the arithmetic Frobenius

basis a, a + d, . . . , a + nd when n ∈ {2, 3}, using graph-theoretic techniques, which are

discussed later in Chapters 5 and 6.

2. Almost arithmetic sequences

The sequence of positive integers a1, a2, . . . , ak is called an almost arithmetic sequence if

some k − 1 terms of a1, a2, . . . , ak form an arithmetic sequence.

Lewin [60, 59] was the first who studied the Frobenius number of almost arithmetic se-

quences. In 1977, Selmer [81] generalised Robert’s results (2.3.9) for an almost arithmetic

sequence (see also Rödseth’s work [76]) as follows: Let a, h, d, n ∈ Z>0 with gcd(a, d) = 1.

Then,

F(a, ha+ d, ha+ 2d, . . . , ha+ nd) = ha

⌊
a− 2

n

⌋
+ a(h− 1) + d(a− 1) .

3. Geometric sequences

A sequence of k terms of positive integers a1, a2, . . . , ak is called a geometric sequence if

and only if there is a constant r such that ai = rai−1 for each i = 2, 3, . . . , k. It follows

that the nth term of a geometric sequence is given by an = a1r
n−1.

In 2008, Ong & Ponomarenko [68] determined the Frobenius number for geometric se-

quences. Let x, y, n be integers with gcd(x, y) = 1. Then,

F(xn, xn−1y, xn−2y2, . . . , yn) = yn−1(xy − x− y) +
(y − 1)x2(xn−1 − yn−1)

(x− y)
.

4. Mixed types of sequences

In 1966, Hofmeister [50] (see also [81]) considered the shifted geometric sequence defined

for a, d, t are positive integers, a, t > 1 and gcd(a, d) = 1. He obtained the following result

F(a, a+ d, a+ td, . . . , a+ tn−2d) = a

⌊
a− 2

tn−2

⌋
+ d(a− 1) ,
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which holds provided that d exceeds a certain (rather larger) bound.

In 1982, Hujter [51] considered the following sequence and showed for any arbitrary posi-

tive integer q, we have that

F(qn−1, qn−1 + 1, qn−1 + q, . . . , qn−1 + qn−2) = (n− 1)(q − 1)qn−1 − 1 .

2.3.4 Algorithms for computing the Frobenius number

There are several known algorithms to compute F(a1, a2, . . . , ak) for a small fixed k. In 1960,

Johnson [54] obtained an algorithm for computing the Frobenius number for the case k = 3.

Later on, Brauer and Shockley [27] in 1962 provided a similar algorithm for finding the Frobenius

number. In 1978, Selmer and Beyer [82] devised an algorithm for computating Frobenius number

in the case k = 3 based on the continued fractions expansions of a ratio associated with a1, a2, a3.

Rödseth [75] simplified their result later on. Greenberg [43] and Davison [32] independently

discovered a simple and fast algorithm to compute the Frobenius number for k = 3 in 1988 and

1994, respectively. This algorithm is the fastest algorithm in comparison with other algorithms

in which the runtime is O(log a1) and O(log a2), respectively.

In 2000, Killingbergtrø [57] developed an algorithm to compute the Frobenius number for k = 3.

The algorithm works as follows: Let L1 be the be the smallest integer such that L1a1 can be

represent as a nonnegative linear integer combination a2 and a3, i.e.

L1 = min {L1 : L1a1 = a2λ2 + a3λ3 where λ2, λ3 ∈ Z≥0} ,

and similarly

L2 = min {L2 : L2a2 = a1λ1 + a3λ3 : λ1, λ3 ∈ Z≥0} ,

L3 = min {L3 : L3a3 = a1λ1 + a2λ2 : λ1, λ2 ∈ Z≥0} .

Suppose that L1a1 can be written as inner product of (a2, a3) and (λ2, λ3) for some λ2, λ3 ∈ Z>0.

Let [x, y] denote the unit square with vertices at (x, y), (x+ 1, y), (x, y + 1) and (x+ 1, y + 1).

Consider the following sets

C = {[x, y] : x > 0 and y > 0},

C1 = {[x, y] : x > λ2 and y > λ3},

C2 = {[x, y] : x > L2 and y > 0},

and C3 = {[x, y] : x > 0 and y > L3} .
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Let the set R[a1, a2, a3] := C \ {C1 ∪ C2 ∪ C3}. Let B(R) denoted of all points (c1, c2) ∈
R[a1, a2, a3] such that the unit square [c1, c2] is completely contained within R[a1, a2, a3], i.e.

B(R) = {(c1, c2) ∈ R[a1, a2, a3] : [c1, c2] ⊆ R[a1, a2, a3]}.

Then

F(a) = max {c1a2 + c2a3 : (c1, c2) ∈ B(R)} − a1 .

Killingbergtrø proposed that this method could be extended to all cases k ≥ 3 but he has only

demonstrated it for a very particular choice of numbers, namely a1 = 103, a2 = 133, a3 = 165

and a4 = 228.

There exist a variety of algorithms to compute F(a1, a2, . . . , ak) for any fixed k. The main ideas

of these algorithms are based on notions from graph theory, mathematical programming, index

of primitivity of nonnegative matrices, and geometry of numbers. In 1978, Wilf [95] developed

a “circle of lights ”algorithm to compute F(a1, a2, . . . , ak) where 1 < a1 · · · < ak, which employs

a circle of ak lights labelled by l0, l1, . . . , lk−1, moving in a clockwise direction. Suppose the

light l0 is on while all the others are off. Starting from l0 and moving clockwise, consider the k

lights that are at distance a1, . . . , ak away anti-clockwise. If any of them is on, then turn on the

current light, if the light is already on then leave it on and move to the next light. The process

halts until there are a1 consecutive on lights. The Frobenius number is then given by

F(a1, a2, . . . , ak) = r + (s(lr)− 1)ak , (2.3.10)

where s(lr) is the number of times light visited lr during the operation and let lr be the last

visited off light just before ending the process.

In 1980, Greenberg [42] developed an algorithm to compute F(a), by using mathematical pro-

gramming. The correctness of both Wilf’s and Greenberg’s algorithms is based on Theorem

2.3.2 of Brauer and Shockley. In 1979, Nijenhuis [66] establish an algorithm to compute the

Frobenius number F(a) by finding minimum paths in a directed circulant graph (Frobenius

circulant graph). In 1989, Lovász [61] was probably the first who related the Frobenius number

to study of maximal lattice point free convex bodies (i.e. interior does not contain any integral

points). Lovász formulated a conjecture which he shows would imply a polynomial time algo-

rithm for the Frobenius number for fixed k. In 1992, Kannan [56] established an algorithm that

for any fixed k, computes the Frobenius number in polynomial time. His algorithm is based on

the relation between the Frobenius number and the covering radius of a certain simplex. For
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variable k, the runtime of such algorithm has a double exponential dependency on k, and is not

competitive for k ≥ 5. Kannan’s algorithm is very complicated and it’s not easy to implement.

In 2005, Beihoffer et al. [19] developed a fast algorithm that can handle cases for k = 10 and

a1 = 107 to compute the Frobenius number. There is a rich literature on Frobenius numbers,

and for an impressive survey on the history and the different aspects of the problem we refer to

the book [72].

2.4 Frobenius numbers and the covering radius

In this section we will study the behaviour of F(a) by using techniques from the geometry of

numbers.

2.4.1 The covering radius

A convex body is a convex subset K of Rk which is a compact (closed and bounded) and has

nonempty interior. A convex body K is called symmetric if it is centrally symmetric with

respect to the origin (i.e., x ∈ K if and only if −x ∈ K). For this thesis will denote the family

of all convex bodies and symmetric convex bodies in Rk as Kk and Kk0 , respectively.

We denote by Lk the set of all k-dimensional lattices L in Rk, and the lattice of all points with

integer coordinates in Rk is denoted by Zk. The i th coordinate of a point x ∈ Rk is denoted

by xi. Given a matrix B ∈ Rk×k with det(B) 6= 0 and a set Q ⊂ Rk, let

BQ := {Bx : x ∈ Q}

be the image of Q under linear map defined by B. Then we can write Lk as

Lk = {B Zk : B ∈ Rk×k, det(B) 6= 0} .

For L = B Zk ∈ Lk, det(L) = |det(B)|.

A lattice L ∈ Lk is called a covering lattice or packing lattice for a convex body K if K + L

covers Rk or if ∀x,y ∈ L,x 6= y, (x+K) ∩ (y +K) = ∅, respectively. See [63, 24] or [69]).
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The covering radius µ(K,L) (also known as the inhomogeneous minimum) of a convex body K

with respect to the lattice L is defined as the smallest positive number t such that the dilated

body tK covers Rk by translates of the lattice L. This can be formulated as

µ(K,L) = min{t ∈ R>0 : tK + L = Rk} . (2.4.1)

Or equivalently, we can describe it as

µ(K,L) = min{t ∈ R>0 : L is a covering lattice of tK} .

Further, for any arbitrary convex body K, the quantity ϑ1(K) given by

ϑ1(K) = min{µ(K,L) : det(L) = 1} (2.4.2)

is called the absolute inhomogeneous minimum of K.

2.4.2 Kannan’s formula

A number of results on the Frobenius numbers with an arbitrary number of variables have been

found using the methods based in the geometry of numbers for which we refer to the books

[46, 45]. In particular, Kannan [56] established a relation between the covering radius of simplex

and the Frobenius number. More precisely, for a given primitive vector a = (a1, a2, . . . , ak) ∈
Zk>0, let

Sa =

{
x ∈ Rk−1≥0 :

k−1∑
i=1

aixi ≤ 1

}
, (2.4.3)

be the (k− 1)-dimensional simplex with vertices 0, 1
ai
ei where ei is the i th unit vector in Rk−1,

1 ≤ i ≤ k − 1.

Define the lattice Λa in Rk−1 by

Λa =

{
x ∈ Zk−1 :

k−1∑
i=1

aizi ≡ 0 (mod ak)

}
. (2.4.4)

This simplex and lattice were introduced by Kannan in his studies of the Frobenius number

[55, 56] where he proved the following relationship between the covering radius of Sa and the

Frobenius number.
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Theorem 2.4.1 ( Theorem 2.5 in [55]). We have

µ(Sa,Λa) = F(a1, a2, . . . , ak) +
k∑
i=1

ai .

Then from Theorem 2.4.1 one could produce bounds on F(a1, a2, . . . , ak) by bounding µ(Sa,Λa).

Standard techniques for bounding a covering radius only work in the case when the convex body

is centrally symmetric with respect to the origin.

In 2006, Aliev and Gruber [7] found the following optimal lower bound for the Frobenius num-

ber in term of the absolute inhomogeneous minimum of the standard simplex Sk−1; Sk−1 ={
x ∈ Rk−1≥0 :

k−1∑
i=1

xi ≤ 1

}
. Indeed

F(a1, . . . , ak) ≥ ϑ1(Sk−1) (a1 · · · ak)1/(k−1) −
k∑
i=1

ai . (2.4.5)

Here ϑ1(S
k−1) is the absolute inhomogeneous minimum of an (k − 1)-dimensional standard

simplex Sk−1. Since ϑ1(S
k−1) > ((k − 1)!)

1
k−1 , (see [46, Theorem 2, section 21] or [7, (7)]), this

implies that

F(a1, . . . , ak) > ((k − 1)! a1 · · · ak)1/(k−1) −
k∑
i=1

ai .

On the other hand, Fukshansky & Robins [40] in 2007 also used techniques from the geometry

of numbers to obtain the following upper bound for F(a):

F(a1, . . . , ak) ≤

⌊
(k − 1)2/Γ(k2 + 1)

πk/2

k∑
i=1

ai

√
(|a|2)2 − a2i + 1

⌋
, (2.4.6)

where | · |2 denotes the Euclidean norm. See [40] for details.

2.5 A generalisation of the Frobenius numbers

Beck and Robins [16] introduced and studied a generalised Frobenius number, sometimes called

the s-Frobenius number. For a positive integer s, the s-Frobenius number Fs(a1, . . . , ak) asso-

ciated with a vector a is defined to be the largest integer number that cannot be represented

in at least s different ways as a nonnegative integer linear combination of the ai’s. That is

Fs(a) = Fs(a1, . . . , ak) = max{b ∈ Z : #{z ∈ Zk≥0 : 〈a, z〉 = b} < s} . (2.5.1)
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When s = 1 we have the (classical) Frobenius number F(a) = F1(a).

Remark 2.5.1. To avoid any confusion with conflicting notation we remark that the term

”s-Frobenius number”, F∗s = F∗s(a), is also used by some authors to denote the largest positive

integer that has exactly s-representations in terms of ai’s. From herein we will adhere to the

first definition, whereby the s-Frobenius number Fs(a) is the largest positive integer that has

less than s-representations in terms of ai’s.

It has also been proven that F∗s(a1, a2, a3) is not necessarily increasing with s. For example,

Brown et al. [28] indicated that F∗35(4, 7, 19) = 181 while F∗36(4, 7, 19) = 180. Furthermore

Shallit and Stankewicz [84] proved that for any s ≥ 1 and k = 5, the quantity F∗1(a) − F∗s(a)

is unbounded. Furthermore, they provide examples with F∗1(a) > F∗s(a) for k ≥ 6 and F∗1(a) >

F∗2(a) for k ≥ 4.

Remark 2.5.2. It should be noted that other generalisations of the Frobenius number have

been investigated by different authors, including, but not limited, to Chapter 6 of [72], as well

as more recent works in [87, 3].

Beck & Robins [16] showed that for k = 2

Fs(a1, a2) = sa1a2 − (a1 + a2) . (2.5.2)

This identity generalises formula (2.3.1) that corresponds to s = 1. But for general k and s

only bounds on the s-Frobenius number Fs(a) are available. It was recently shown by Aliev,

De Loera and Louveaux [1] that Fs(a) can be computed in polynomial time for fixed dimension

k and parameter s, extending well-known results of Kannan [56] and Barvinok and Woods [12]

for the Frobenius number F1(a).

In 2011, Beck & Curtis [15], presented an argument for computing Fs(a1, . . . , ak), which gener-

alises Theorem 2.3.2 of Brauer and Shockely. We state their result in the following lemma.

Lemma 2.5.3. Let a = (a1, . . . , ak)
t be a positive integer k-dimensional vector with gcd(a) = 1

and let nj,s be the smallest nonnegative integer with nj,s ≡ j (mod a1), that has at least s-

representations as a nonnegative integer linear combination of the given a1, a2, . . . , ak. Then

Fs(a1, . . . , ak) = max
1≤j≤a1−1

{nj,s} − a1 . (2.5.3)
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2.5.1 The s-covering radius

Let s ∈ N, K ∈ Kk and L ∈ Lk. Then the s-covering radius µs(K,L) (also known as the

s-inhomogeneous minimum) of a convex body K with respect a lattice L is defined to be the

smallest positive number µ such that any point t ∈ Rk is covered with multiplicity at least s by

µK + L. This can be formulated as

µs(K,L) = min{µ > 0 : for all t ∈ Rk there exist b1, . . . , bs ∈ L

such that t ∈ bi + µK, 1 ≤ i ≤ s} .
(2.5.4)

Alternatively, the s-covering radius µs(K,L) can be described equivalently as the smallest pos-

itive number µ such that any translate of µK contains at least s lattice points, i.e.,

µs(K,L) = min{µ > 0 : #{(t+ µK) ∩ L} ≥ s for all t ∈ Rk} . (2.5.5)

For s = 1 we get the well-known the covering radius, see e.g. Gruber [45] and Gruber and

Lekkerkerker [46]. These books also serve as excellent sources for further information on lattices

and convex bodies in the context of the geometry of numbers.

Gruber [44, (5)], defined for any convex body K ⊂ Rk the absolute s-inhomogeneous minimum

ϑs(K) as follows:

ϑs(K) = inf
µs(K,L)

det(L)1/k
, (2.5.6)

where the infimum is taken over all k-dimensional lattices L ∈ Rk. For s = 1 the formula reduces

to the classical absolute inhomogeneous minimum used in (2.4.5).

In 2011, Aliev, Fukshansky and Henk [2], generalised Theorem 2.4.1 for the classical Frobenius

number to Fs(a) as follows:

Theorem 2.5.4. [2, Theorem 3.2] Let k ≥ 2, s ≥ 1 and let a1 < · · · < ak. Then

µs(Sa,Λa) = Fs(a1, . . . , ak) +
k∑
i=1

ai .

For s = 1 the formula reduces to that of Kannan’s Theorem 2.4.1.

2.5.2 Bounds on Fs(a) in terms of the s-covering radius

The successive minima of convex bodies with respect to lattice were first defined and investigated

by Minkowski in the context of the geometry of numbers.
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The i th successive minimum λi = λi(K,L) of K ∈ Kk0 with respect to L ∈ Lk is the smallest

positive real number λ such that λK contains at least i linearly independent lattice points of L

(inside or on its boundary). That is

λi = λi(K,L) = min{λ ∈ R>0 : dim(λK ∩ L) ≥ i}, 1 ≤ i ≤ k . (2.5.7)

Obviously, we have 0 < λ1 ≤ λ2 ≤ · · · ≤ λk and the first successive minimum λ1(K,L) is the

smallest dilation factor such that λ1(K,L)K contains a nonzero lattice point of L. There exists

a vast literature on successive minima (for example see [46, 30]).

Minkowski ([64]) proved two fundamental inequalities for the successive minima λi(K,L) and

the volume of K ∈ Kk0 , which can be written in the following way:

Theorem 2.5.5. (Minkowski, 1896):

(λ1(K,L))k vol (K) ≤ 2k det(L) , (2.5.8)

and

2k

k!
det(L) ≤

k∏
i=1

λi(K,L) vol (K) ≤ 2k det(L) . (2.5.9)

Note that the upper bound in the inequality (2.5.9) is a far reaching improvement of the inequal-

ity (2.5.8). The above are known as the first and second Minkowski’s theorems on successive

minima, respectively.

A relation between the covering radius and successive minima is given by Jarnik’s inequalities

[53].

Theorem 2.5.6. Let K be a 0-symmetric convex body, with successive minima λ1, λ2, · · · , λk
and covering radius µ(K,L). Then

1

2
λk ≤ µ(K,L) ≤ 1

2

k∑
i=1

λi.

In [2] bounds for the s-covering radius µs(K,L) of K are given, as described below.

Lemma 2.5.7. [2, Lemma 2.2] Let s ∈ N, s ≥ 1, K ∈ Kk and L ∈ Lk. Then

s
1
k

(
det(L)

vol (K)

) 1
k

≤ µs(K,L) ≤ µ1(K,L) + (s− 1)
1
k

(
det(L)

vol (K)

) 1
k

.
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Aliev, Fukshansky and Henk [2] established an upper bound for the s-Frobenius number using

Theorem 2.5.4 and Lemma 2.5.7 as follows:

Theorem 2.5.8. Let k ≥ 2, s ≥ 1 and let a1 < · · · < ak. Then

Fs(a) ≤ F1(a) + ((s− 1)(k − 1)!)
1

k−1

(
k∏
i=1

ai

) 1
k−1

. (2.5.10)

One of the main results of this thesis, is an improvement of the upper bound (2.5.10) in the

case s = 2, where in Theorem 3.2.1 we show that

F2(a) ≤ F1(a) + 2

(
(k − 1)!(2(k−1)
k−1

)) 1
k−1
(

k∏
i=1

ai

) 1
k−1

.

We also note that Aliev, Henk and Linke [5] obtained an optimal lower bound for the s-Frobenius

number by generalising the optimal lower bound (2.4.5) for classical Frobenius number as fol-

lows:

Theorem 2.5.9. Let k ≥ 3, s ≥ 1. Then

Fs(a1, . . . , ak) ≥ ϑs(Sk−1) (a1 · · · ak)
1

k−1 −
k∑
i=1

ai .

Here ϑs(S
k−1) is the absolute s-inhomogeneous minimum of an (k − 1)-dimensional standard

simplex Sk−1.

Hence from (2.5.6), we have

ϑs(S
k−1) ≥ (s(k − 1)!)

1
k−1 .

This implies that

Fs(a1, . . . , ak) ≥ s
1

k−1
(
(k − 1)! a1 · · · ak

) 1
k−1 −

k∑
i=1

ai . (2.5.11)

For further information see [2].
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Chapter 3

A new upper bound for the

2-Frobenius number

In this chapter we study the quantity(
Fs(a1, . . . , ak)− F1(a1, . . . , ak)

)(
a1 · · · ak

)−1/(k−1)
,

for k ≥ 2, deriving an improved upper bound on the 2-Frobenius number.

Let a = (a1, . . . , ak)
t, be an integer vector with

0 < a1 < · · · < ak , gcd(a1, . . . , ak) = 1 . (3.0.1)

In general setting, when dimension k is a part of input, computing Fs(a) is NP-hard already

for s = 1 due to a result of Ramı́rez-Alfonśın [72]. Thus the upper and lower bounds for Fs(a)

are of special interest.

We have already mentioned in Subsection 2.5.2 that a sharp lower bound for Fs(a) was ob-

tained in [5]. Upper bounds for the s-Frobenius number were established by Fukshansky and

Schürmann [41] and Aliev, Fukshansky and Henk [2]. In particular, it was shown in [2] that

Fs(a) ≤ F1(a) + ((s− 1) (k − 1)!)
1

k−1 Π(a)
1

k−1 , (3.0.2)

where Π(a) = a1 · · · ak. The inequality (3.0.2) allows us to use various upper bounds for the

Frobenius number to estimate Fs(a).
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In view of (3.0.2), to estimate Fs(a) from above it is natural to study the (normalised) distance

τs(a) =
Fs(a)− F1(a)

Π(a)
1

k−1

,

between Fs(a) and F1(a) by considering the constant

c(k, s) = sup
a
τs(a) , (3.0.3)

where the supremum in (3.0.3) is taken over all integer vectors satisfying (3.0.1). It follows that,

(3.0.2) implies the bound

c(k, s) ≤ ((s− 1) (k − 1)!)
1

k−1 . (3.0.4)

As the case k = 2 is covered by (2.5.2), we now focus on the case k ≥ 3.

3.1 A lower bound for c(k, s)

The first result below shows that, roughly speaking, cutting off special families of input vectors

cannot make the order of magnitude of Fs(a)−F1(a) smaller than Π(a)
1

k−1 . This will imply a

lower bound for c(k, s).

Theorem 3.1.1. Let k ≥ 3 and s ≥ 2. For any direction vector α = (α1, . . . , αk−1)
t ∈ Qk−1,

with 0 < α1 < · · · < αk−1 < 1, there exists an infinite sequence of distinct integer vectors

a(t) = (a1(t), . . . , ak(t))
t, satisfying (3.0.1) such that

(i) lim
t→∞

ai(t)

ak(t)
= αi, 1 ≤ i ≤ k − 1,

(ii) lim
t→∞

τs(a(t)) = p(k − 1, s), where p(d, s) = min{m ∈ Z≥0 :
(
m+d
d

)
≥ s}.

It follows that c(k, s) ≥ p(k − 1, s). Since for a fixed dimension k ≥ 3 we have

p(k − 1, s)((s− 1) (k − 1)!)−
1

k−1 → 1 as s→∞,

Theorem 3.1.1 also implies that for large s the upper bound (3.0.4) (and hence (3.0.2)) cannot

be significantly improved.

In order to prove Theorem 3.1.1 we require the following three lemmas.
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Lemma 3.1.2. Let d ≥ 2, s ≥ 1. Then

µs(S
d,Zd) = p(d, s) + d , (3.1.1)

where Sd is the standard simplex in Rd.

Proof. Let F = [0, 1)d be the fundamental cell of the lattice Zd with respect to the standard

basis. It is straightforward to see that

µs(S
d,Zd) = min{µ > 0 : there exist b1, . . . , bs ∈ Zd

such that F ⊂ (bi + µSd) , 1 ≤ i ≤ s} .
(3.1.2)

This implies, in particular, that µk(S
d,Zd) is a positive integer≥ d.

Suppose that F is covered by u+ t̄Sd with u ∈ Zd. Then, u ∈ Zd≤0 and t̄ ≥ d. We observe that

F ⊂ (u+ t̄Sd) ⇐⇒ 0 ∈ (u+ (t̄− d)Sd) ⇐⇒ −u ∈ (t̄− d)Sd .

Hence, F is covered with multiplicity at least s by (m+ d)Sd + Zd if and only if mSd contains

at least s integer points. Therefore, by (3.1.2),

µs(S
d,Zd) = min{m ∈ Z≥0 : #(mSd ∩ Zd) ≥ s}+ d .

Noting that #(mSd ∩ Zd) =
(
m+d
d

)
, we thus obtain (3.1.1).

Following Gruber [44], we say that a sequence St of convex bodies in Rd converges to a convex

body S if the sequence of distance functions of St converges uniformly on the unit ball in Rd

to the distance function of S. For the notion of convergence of a sequence of lattices to a given

lattice we refer the reader to [46, p.178].

Lemma 3.1.3 (see Satz 1 in [44]). Let St be a sequence of convex bodies in Rd which converges

to a convex body S and let Λt be a sequence of lattices in Rd convergent to a lattice Λ. Then

lim
t→∞

µs(St,Λt) = µs(S,Λ) .

The last ingredient required for the proof of Theorem 3.1.1 is the following result from [7] which

is also implicit in Schinzel [80].
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Lemma 3.1.4 (Theorem 1.2 in [7]). For any lattice Λ with basis b1, . . . , bd, bi ∈ Qd, i = 1, . . . , d,

and for all rationals α1, . . . , αd with 0 < α1 < · · · < αd < 1, there exists a sequence

a(t) = (a1(t), . . . , ad(t), ad+1(t))
t ∈ Zd+1 , t = 1, 2, . . . ,

such that gcd(a1(t), . . . , ad(t), ad+1(t)) = 1 and the lattice Λa(t) has a basis b1(t), . . . , bd(t) with

bij(t)

n t
= bij +O

(
1

t

)
, i, j = 1, . . . , d , (3.1.3)

where n ∈ N is such that n bij , n αj bij ∈ Z for all i, j = 1, . . . , d. Moreover,

ad+1(t) = det(Λ)ndtd +O(td−1) , (3.1.4)

and

αi(t) :=
ai(t)

ad+1(t)
= αi +O

(
1

t

)
. (3.1.5)

3.1.1 Proof of Theorem 3.1.1

Let α = (α1, . . . , αk−1)
t be any rational vector in Qk−1 satisfying

0 < α1 < . . . < αk−1 < 1 , (3.1.6)

and let D(α) = diag(α−11 , . . . , α−1k−1). Then Λ(α) = D(α)Zk−1 is the lattice of determinant

det(Λ(α)) = |det(D(α))| = (Π(α))−1,

and S(α) = D(α)Sk−1 is the simplex of volume

vol (S(α)) = |det(D(α))| vol (Sk−1) = (Π(α)(k − 1)!)−1.

Applying Lemma 3.1.4 to the lattice Λ = Λ(α) and the numbers α1, . . . , αk−1, we get a sequence

a(t), satisfying (3.1.3), (3.1.4) and (3.1.5). Furthermore, by (3.1.6) and (3.1.5),

0 < a1(t) < a2(t) < . . . < ak(t) ,

for sufficiently large t.

Now define the simplex St and the lattice Λt such that

St = ak(t)Sa(t) = {(x1, . . . , xk−1)t ∈ Rk−1≥0 :
k−1∑
i=1

αi(t)xi ≤ 1} ,

46



3.2. An upper bound for c(k, s)

Λt = (Π(α)ak(t))
−1/(k−1)Λa(t) .

Then, we have

µs(Sa(t),Λa(t)) = Π(α)1/(k−1)ak(t)
k/(k−1)µs(St,Λt) , (3.1.7)

and by (3.1.3) and (3.1.4), the sequence Λt converges to the lattice Λ(α). Next, the point

p = (1/(2k), . . . , 1/(2k)) is an inner point of the simplex S(α), and also for all the simplicies

St for sufficiently large t. By (3.1.5) and Lemma 3.1.3, the sequence

µs(St − p,Λt) converges to µs(S(α)− p,Λ(α)).

Here we consider the sequence µs(St − p,Λt) instead of µs(St,Λt), because the distance func-

tions of the family of convex bodies in Lemma 3.1.3 need to converge on the unit ball. Now,

since s-covering radii are independent of translation, the sequence µs(St,Λt) converges to

µs(S(α),Λ(α)). It follows that,

µs(S(α),Λ(α)) = µs(D(α)−1S(α), D(α)−1Λ(α)) = µs(S
k−1,Zk−1) .

Therefore, using Lemma 3.1.2, we have

µs(St,Λt)− µ1(St,Λt)→ µs(S
k−1,Zk−1)− µ1(Sk−1,Zk−1)

= p(k − 1, s) ,

as t→∞. Therefore, by Theorem 2.5.4, (3.1.7) and (3.1.5), we obtain

τs(a(t)) =
Fs(a(t))− F1(a(t))

Π(a(t))
1

k−1

=
µs(Sa(t),Λa(t))− µ1(Sa(t),Λa(t))

Π(a(t))
1

k−1

=
Π(α)1/(k−1)ak(t)

k/(k−1)(µs(St,Λt)− µ1(St,Λt))
Π(a(t))

1
k−1

=
Π(α)1/(k−1)(µs(St,Λt)− µ1(St,Λt))(

k−1∏
i=1

αi(t)

) 1
k−1

→ p(k − 1, s) ,

as t → ∞. In conjunction with (3.1.5) this completes the proof of Theorem 3.1.1, and hence

the result.

3.2 An upper bound for c(k, s)

The exact values of the constants c(k, s) remain unknown apart of the case c(2, s) = s−1, which

follows from (2.5.2). In this section we give a new upper bound for the case s = 2. The main

result of this chapter is the following theorem.
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Theorem 3.2.1. Let k ≥ 3. Then

c(k, 2) ≤ 2

(
(k − 1)!(2(k−1)
k−1

)) 1
k−1

. (3.2.1)

Theorem 3.2.1 improves (3.0.4) with the factor

f(k) = 2

(
2(k − 1)

k − 1

)− 1
k−1

.

The asymptotic behavior and bounds for f(k) can be easily derived from results on extensively

studied Catalan numbers Cd = (d+ 1)−1
(
2d
d

)
, see for example [35].

In particular,

f(k) <
1

2
(4π(k − 1)2/(4(k − 1)− 1))1/(2(k−1)) < 0.82 ,

as illustrated in Figure 3.1.

Using Maple we obtain the asymptotic expansion of f(k),

f(k) =
1

2
+

log k

4k
+

log π

4k
+ o

(
1

k

)
, k →∞ .

Figure 3.1: The function f(k) for for k = 3, . . . , k

The proof of Theorem 3.2.1 is based on the geometric approach used in [2], combined with

results on the difference bodies dated back to works of Minkowski (see e.g. Gruber [45], Section

48



3.2. An upper bound for c(k, s)

30.1) and Rogers and Shephard [79]. Let K ∈ Kk. The difference body of K, denoted by DK ,

is the origin-symmetric convex body defined as

DK = K −K = K + (−K) = {x− y : x ∈ K, y ∈ K}.

It is well known that DK can equivalently be described as follows,

DK := {x ∈ Rk : K ∩ (K + x) 6= ∅}.

In 1957 Rogers and Shephard [79] inequality states that, for every k-dimensional convex body,

vol (DK) ≤
(

2k

k

)
vol (K). (3.2.2)

This inequality is sharp; indeed, it becomes an equality if and only if K is a simplex.

The proof of Theorem 3.2.1 is based on a link between lattice coverings with multiplicity at

least two with usual lattice coverings and packings of convex bodies. Following the classical

approach of Minkowski, we will use difference bodies and successive minima in our work with

lattice packings.

Lemma 3.2.2. Let Λ ∈ Lk and K ∈ Kk. Then

µ2(K,Λ) ≤ µ1(K,Λ) + λ1(DK ,Λ).

Proof. By (2.5.7) there exists a nonzero point u ∈ Λ in the set λ1DK , where λ1 = λ1(DK ,Λ).

Then, by the definition of difference body, there exists a point v ∈ Rk in the intersection

λ1K ∩ (u+ λ1K). Indeed, u = u1 − u2 with u1,u2 ∈ λ1K and hence we can take

v := u1 = u+ u2 ∈ λ1K ∩ (u+ λ1K).

Next, given an arbitrary point x ∈ Rk we know by the definition of the covering radius µ1 =

µ1(K,Λ) that there exists a point z ∈ Λ such that x− v ∈ z + µ1K.

Hence x ∈ v + z + µ1K, so that

x ∈ z + (µ1 + λ1)K and

x ∈ z + u+ (µ1 + λ1)K,

and we have that x is covered with multiplicity at least two by (µ1 + λ1)K + Λ.

Therefore

µ2(K,Λ) ≤ µ1 + λ1 ,

as required.
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3.2.1 Proof of Theorem 3.2.1

Let α = (1/a1, . . . , 1/ak−1) and let Γa = D(α)Λa, where in notation of Subsection 3.2.1 we set

D(α) = diag(α−11 , . . . , α−1k−1) = diag(a1, . . . , ak−1). Then Γa is the lattice of determinant

det(Γa) = |det(D(α))| det(Λa) = Π(α)−1(ak) = Π(a)

and since Sk−1 = D(α)Sa is the standard simplex of volume

vol (Sk−1) = |det(D(α))| vol (Sa) = Π(α)−1

(
(k − 1)!

k−1∏
i=1

ai

)−1
= ((k − 1)!)−1,

we have

µs(Sa,Λa) = µs(S
k−1,Γa) . (3.2.3)

Combining Theorem 2.5.4 and Lemma 3.2.2, together with (3.2.3), with s = 2 we obtain

Figure 3.2: Comparison of the constants in the upper bound (3.2.7) (Orange) and in the upper

bound (3.0.2) (Blue) with s = 2 for k = 3, . . . , 70

F2(a)− F1(a)

Π(a)
1

k−1

=
µ2(S

k−1,Γa)− µ1(Sk−1,Γa)

Π(a)
1

k−1

≤ λ1(DSk−1 ,Γa)

Π(a)
1

k−1

. (3.2.4)
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As was shown by Rogers and Shephard [79], the volume of a difference body DSk−1 is,

vol (DSk−1) =

(
2(k − 1)

k − 1

)
vol (Sk−1) =

(
2(k − 1)

k − 1

)/
(k − 1)! . (3.2.5)

Hence, by Minkowski’s second fundamental theorem (2.5.9), we deduce the inequality

λ1(DSk−1 ,Γa) ≤ 2

(
det(Γa)

vol (DSk−1)

) 1
k−1

= 2

(
(k − 1)!(2(k−1)
k−1

)) 1
k−1

Π(a)
1

k−1 , (3.2.6)

and combining (3.2.4), (3.2.5) and (3.2.6), we obtain the bound (3.2.1). See Figure 3.2.

Therefore, we have

F2(a)− F1(a) ≤ 2

(
(k − 1)!(2(k−1)
k−1

)) 1
k−1

Π(a)
1

k−1 . (3.2.7)

Remark 3.2.3. The results contained in this chapter, have been published the paper entitled

“On the distance between Frobenius numbers”, Moscow Journal of Combinatorics and Number

Theory, 5 (2015), No.4, 3− 12.
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Chapter 4

Frobenius numbers and graph theory

In the present chapter we provide an overview of the theory of graphs, and introduce some of

the tools and concepts that will be employed throughout the latter part of the thesis. This

includes the Nijenhuis’s algorithm to determine the Frobenius number and known formula for

the 2-Frobenius number of two coprime positive integers. In Section 4.1 we introduce some

under planning notation and graph theoretic properties relevant to our work. In Section 4.2

we define the graph used in the Nijenhuis model, which we call a directed circulant graph

and describe some of their properties, examining how they relate with the Frobenius numbers.

In particular, we focus on the connectivity and the diameter. In Section 4.3 we apply graph

theoretic techniques developed in order to construct a new proof for the formula of F2(a1, a2)

where gcd(a1, a2) = 1.

4.1 Elements of graph theory

Let us begin by introducing some fundamental concepts and outlining the theory underpinning

weighted directed graphs. The material presented here can be found in many introductory

textbooks on graph theory (for example see [47, 10, 96, 94]).
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Graphs

A graph is a pair G = (V, E), consisting of a nonempty finite set V of elements called vertices

(or points) and a finite subset

E ⊆ V × V = {{u, v} : u and v ∈ V, u 6= v},

of unordered pairs of distinct vertices of V called edges (or lines). Graphs are so named since

they can be viewed graphically, and this graphical representation helps us to understand and

investigate many of their properties. An edge {u, v} is said to join the vertices u and v, and is

commonly abbreviated to uv or vu. The vertices u and v are called the endvertices of the edge

uv. If ε = uv ∈ E(G), then u and v are said to be adjacent (or neighbours) vertices of G and

the edge ε is said to be incident with the vertices u and v. Two edges are said to be adjacent if

they have exactly one common endvertex. Graphs can have weights or other values associated

with different properties of either the vertices or the edges, or both of these.

Directed graphs

A directed graph (sometimes referred to as digraph) is a pairG = (V,E), consisting of a nonempty

finite set V of vertices and a finite subset E ⊆ V × V = {(u, v) : u and v ∈ V, u 6= v}, of ordered

pairs of distinct vertices of V called arcs (or directed edges). The vertex set of a digraph G is

referred to as V (G), its arc set as E(G).

The order of G is defined to be the cardinality of its vertex set, #(V (G)), whereas the size of

G is defined to be the cardinality of its arc set, #(E(G)).

We write u → v, or (u, v), for the arc directed from u to v. Here u is the initial vertex and v

is the terminal vertex of e. Moreover, u is said to be adjacent to v and v is said to be adjacent

from u.

For a vertex v ∈ V (G), the out-neighbourhood N+
G (v) of v is the set of out-neighbours of v in G;

N+
G (v) = {u ∈ V : (v, u) ∈ E} and the in-neighbourhood N−G (v) of v is the set of in-neighbours

of v in G; N−G (v) = {u ∈ V : (u, v) ∈ E}. The neighbourhood NG(v) of a vertex v is given by

NG(v) = N+
G (v) ∪N−G (v).

The out-degree deg+G(v) and the in-degree deg−G(v) of a vertex v ∈ V (G) are defined to be the
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cardinality of N+
G (v) and N−G (v), respectively. The degree degG(v) of a vertex v is the cardinality

of NG(v) and is given by

degG(v) = deg+G(v) + deg−G(v).

A u− v directed path in a directed G is a finite sequence

u = v0, e1, v1, e2, . . . , en, vn = v,

of vertices and arcs, beginning with u and ending with v such that ei = (vi−1, vi) ∈ E(G) for

i = 1, 2, . . . , n. The vertices u and v are called its endvertices. Note that a path may consist

of a single vertex, in which case both endvertices are the same. The length of the path is the

number arcs it contains, that is a u − v path of length n. The path v0, e1, v1, e2, . . . , en, vn is

said to be simple if there are no repeated vertices in the path, (except possibly that the initial

vertex v0 can be equal to the terminal vertex vn).

A directed graph G is said to be strongly connected (resp. connected) if, for any two vertices v

and w of G, there is a directed path (resp. path) from v to w. Consequently one finds that every

strongly connected digraph is connected, but not all connected digraphs are strongly connected.

Weighted directed graphs

A weighted directed graph (or weighted digraph) Gw = (V,E;w) is a directed graph (V,E)

associated with a weight function w : E → R+ that assigns a positive real value w(e) with each

arc e ∈ E, called its weight (or length). Weights can represent costs, times or capacities, etc.,

depending on the problem. Figure 4.1 shows an example of a weighted digraph.

Figure 4.1: A weighted digraph with positive integer weights
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The length (or weight) w(p) of the v0− vk path p = v0, e1, v1, e2, · · · , ek, vk in Gw, is the sum of

the weights on its arcs. That is

w(p) =
k∑
i=1

w(ei) . (4.1.1)

For any two vertices u, v ∈ V , the shortest (or minimum) u−v path in Gw is a path whose weight

is minimum among all u−v paths. For example, Figure 4.2 shows the minimum (shortest) path

from vertex s to vertex t.

Figure 4.2: The shortest path from vertex s to vertex t

The distance (or minimum distance) dGw(u, v) between two vertices u and v in a connected

graph Gw is defined to be the weight of a shortest u− v path. That is

dGw(u, v) =

min{w(p)} if there is a u− v path p,

∞ otherwise.

The diameter diam(Gw) of a connected graph Gw is defined to be the longest distance between

any pair of vertices in Gw, so that

diam(Gw) = max
i,j∈V (Gw)

dGw(i, j).

4.2 The Frobenius numbers and directed circulant graphs

In this section we consider properties of directed circulant graphs and we describe the rela-

tionship that exists between the Frobenius numbers and the diameters of directed circulant

graphs.

The circulant graph is a natural generalisation of the double-loop network, which was first intro-

duced by C.K. Wong and Don Coppersmith [97] in 1974, for organizing multimodule memory
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services. The term directed circulant graph was proposed by Elspas and Turner [37] with the

weight function defined on the edges as described above. A directed circulant graph can be

constructed as follows. Given a positive integer vector a = (a1, . . . , ak)
t with 1 < a1 < · · · < ak,

the directed circulant graph (circulant digraph for short), Gw(a), is defined to be a weighted

directed graph with a1 vertices labelled by 0, 1, . . . , a1−1 corresponding to the residue classes of

integers modulo a1, where for each vertex i, (0 ≤ i ≤ a1−1), there is an arc i→ i+aj (mod a1)

with weight wj = aj , for all j = 2, . . . , k. That is a directed circulant graph Gw(a) is a graph

with the vertex set

V (Gw(a)) = Za1 = {0, 1 . . . , a1 − 1},

and the arc set

E(Gw(a)) = {(x, y) : ∃ aj , 2 ≤ j ≤ k such that x+ aj ≡ y (mod a1)}.

Figure 4.3 shows two examples of the circulant digraphs Gw(6, 8) and Gw(11, 13, 14).

Figure 4.3: The circulant digraphs Gw(6, 8) (left) and Gw(11, 13, 14) (right)

The circulant digraphs Gw(a1, . . . , ak) are the Cayley digraphs [89] over the cyclic group Za1
with respect to the generating set {a2, . . . , ak}. Circulant digraphs, also known as Frobenius

circulant graphs in the literature [19].

In the literature [8, 33, 11] on circulant digraphs, the following definition and notation are also

commonly used. Let S = {s1, . . . , sk} be a set of integers such that 0 < s1 < · · · < sk < n.

Then the circulant digraph Cn(S) is defined to be the weighted digraph of order n with vertex

set V (Cn(S)) = Zn and edge set

E(Cn(S)) = {(x, x+ si (mod n)), x ∈ V (Cn(S)), 1 ≤ i ≤ k} .
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The set {s1, s2, . . . , sk} is called a connection set of the graph Cn(S).

The graph-theoretical properties of these graphs have been studied in several papers, e.g. in

[8, 49, 62] and [91].

In 1974, Boesch and Tindell [22] obtained the following proposition, which gives a sufficient

condition for circulant digraphs to be strongly connected.

Proposition 4.2.1. If gcd(a1, . . . , ak) = d then Gw(a1, . . . , ak) has d components. In particular,

Gw(a1, . . . , ak) is strongly connected if and only if gcd(a1, . . . , ak) = 1.

We refer to Boesch and Tindell [22] for further results concerning connectivity of circulant

graphs. (See also [100, 98]).

Henceforth in this work we assume that our directed circulant graphs are strongly connected.

Furthermore, it follows that every vertex of the circulant digraph Gw(a1, . . . , ak) has precisely

(k − 1) out-neighbours and (k − 1) in-neighbours. Here the neighbourhood of any vertex i of

Gw(a) is given by

{i± aj (mod a1) : for j = 2, 3, . . . , k}.

As we can observe from Figure 4.3, the neighbourhood of the vertex 4 of Gw(11, 13, 14) is the

set {1, 2, 6, 7} of vertices.

An important concept employed is that given any two vertices r and s, an r− s path in Gw(a),

can be associated with the integer vector (σ2, σ3, . . . , σk)
t ∈ Zk−1≥0 , such that

k∑
j=2

ajσj ≡ s− r (mod a1) , (4.2.1)

(see for example [29, 19]).

In other words, σj is the number of arcs of weight aj in a path from r to s. For each vertex v,

the path that starts from vertex 0 to vertex v is called a minimum path (or shortest path) to

vertex v if the weight of the path is minimum among all paths from 0 to v. This means that,

from (4.2.1) we can determine the endvertex v for any path that starts at vertex 0 such that

k∑
j=2

ajσj ≡ v (mod a1) . (4.2.2)

It can be seen that, the total weight w of the path in Gw(a) that starts at vertex 0 to vertex v
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is given by

w =
k∑
j=2

ajσj ≡ v (mod a1) . (4.2.3)

Let Sv be the minimum weight of any path (or weight of any minimum path) from vertex 0 to

v in Gw(a). Then (4.2.3) gives us

Sv =
k∑
j=2

ajσj ≡ v (mod a1) . (4.2.4)

Nijenhuis [66] showed that there exists a relation between a solution (x1, . . . , xk) in nonnegative

integers to (2.2.1) and a path in a circulant digraph G+
w(a) related to Gw(a) from vertex 0 to

any other vertex v in G+
w(a). From this, Nijenhuis [66] established an algorithm to compute

F(a), by constructing for all vertices v in G+
w(a), a path from vertex 0 to v of minimum weight

Sv. Indeed

F(a) = max
v∈V (G+

w(a))
{Sv} − a1. (4.2.5)

In 2005, Beihoffer at el [19] used the approach of Nijenhuis [66] on the circulant digraph Gw(a)

to established a link between the Frobenius number F(a) and the diameter of Gw(a). The

following lemma is implicit in [19], Section two.

Lemma 4.2.2. For any vertex v of Gw(a) there is a positive integer M such that

M ≡ v (mod a1) .

Then M is representable in terms of a = (a1, . . . , ak)
t if and only if M ≥ Sv.

Proof. Suppose that M ≥ Sv. We need to show that M can be representable in terms a1, . . . , ak.

Since Sv is the minimum weight of a path from vertex 0 to vertex v in Gw(a), then (4.2.4) gives

us

v ≡ Sv (mod a1) .

Thus we have

M ≡ v ≡ Sv (mod a1), and M ≥ Sv .
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It follows that there exist a nonnegative integer t such that

M = Sv + ta1 .

Hence, M is representable in terms of a1, . . . , ak.

Conversely, now let M is representable in terms of a1, . . . , ak. Then there exist nonnegative

integers x1, . . . , xk such that

M =
k∑
j=1

ajxj . (4.2.6)

Hence

M ≡
k∑
j=2

ajxj (mod a1) . (4.2.7)

Since M ≡ v (mod a1), from (4.2.7) we have

M ≡
k∑
j=2

ajxj ≡ v (mod a1) .

Then it follows from (4.2.3) that we have a path from 0 to v of weight
k∑
j=2

ajxj . Thus

k∑
j=2

ajxj ≥ Sv .

From (4.2.6), M = a1x1 + a2x2 + . . . , akxk, we get

M ≥
k∑
j=2

ajxj ≥ Sv ,

as required.

Therefore, we have shown that the largest integer M ≡ v (mod a1), for any v of Gw(a), that is

nonrepresentable as a nonnegative integer linear combination of a1, . . . , ak is given by

M = Sv − a1 .

We know that the diameter of the circulant digraphs Gw(a) is given by

diam(Gw(a)) = max
v∈V (Gw(a))

{Sv}, (4.2.8)

for example see [29] or [78].

From formula (4.2.8) and applying Lemma 4.2.2, we obtain the following result [19, 78].
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Corollary 4.2.3. We have

F(a1, . . . , ak) = diam(Gw(a))− a1. (4.2.9)

In the next chapter we will use the same approach of Beihoffer at el [19] to establish a link

between the 2-Frobenius number for the arithmetic progression a, a+d, a+2d with gcd(a, d) = 1

and shortest paths from vertex 0 to any other vertex v in the circulant digraph (Frobenius

circulant graph) associated with the positive integers a, a+ d,a+ 2d.

4.3 Diameters of 2-circulant digraphs and the 2-Frobenius num-

bers

In view of (4.2.9), one can ask does these exits a relationship between the generalised Frobenius

number Fs(a) and diameters of certain graphs.

At the time of writing this thesis the existence of an analogue for (4.2.9) in the generalised

setting is still an open question. In this chapter we explore a link between F2(a) for k = 2 and

diameters of special graphs, which we call 2-circulant digraphs.

Our starting point is the formula Fs(a1, a2) = sa1a2 − (a1 + a2). In the classical setting when

s = 1, the circulant digraph has a1 vertices, so it is natural to extend it to a circulant digraph

with 2a1 vertices when s = 2.

We note that the ideas developed in the course of this work have been further utilised in

Chapters 5 and 6, where new results on 2-Frobenius numbers of vectors with entries in arithmetic

sequences are established.

4.3.1 2-circulant digraphs

Consider two positive integers a1, a2 such that a1 > 1, and a2 ≡ 1 (mod 2). A 2-circulant

digraph, denoted Circ(a1, a2), is defined to be a weighted digraph with 2a1 vertices labelled by

0, 1, . . . , 2a1 − 1, corresponding to the residue classes of integers modulo 2a1. For each vertex

i, (0 ≤ i ≤ 2a1 − 1), there is an arc i→ i+ a2 (mod 2a1) with weight a2. That is a 2-circulant

61



Chapter 4. Frobenius numbers and graph theory

digraph Circ(a1, a2) is a graph with the vertex set

V (Circ(a1, a2)) = Z2a1 = {0, 1 . . . , 2a1 − 1},

and the arc set

E(Circ(a1, a2)) =

{
(i, (i+ a2) (mod 2a1)) : i ∈ V (Circ(a1, a2))

}
.

Example 4.3.1. Figure 4.4 shows the 2-circulant digraphs Circ(5, 3) and Circ(5, 2).

Figure 4.4: The 2-circulant digraphs Circ(5,3)(left) and Circ(5,2)(right) with arcs of weight 3

and 2, respectively

Moreover the neighbourhood for each vertex i in Circ(a1, a2) is the set {i ± a2 (mod 2a1)} of

vertices.

Lemma 4.3.2. A graph Circ(a1, a2) is strongly connected if and only if gcd(2a1, a2) = 1.

Proof. The proof immediately follows from Proposition 4.2.1.

Given any two vertices r and s of Circ(a1, a2), we denote by y = y(p) the number of arcs in a

r − s path p of weight a2, such that from (4.2.1), we have

a2 y(p) ≡ s− r (mod 2a1) .

Then by (4.1.1) and (4.2.3) it follows that the weight w of a r − s path p is given by

w = a2 y(p) ≡ s− r (mod 2a1) . (4.3.1)
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Then in particular, one can determine the endvertex v for any path p that starts at vertex 0,

w = a2 y(p) ≡ v (mod 2a1) . (4.3.2)

Let us assume that gcd(2a1, a2) = 1, so that the graph Circ(a1, a2) is connected. This condition

ensures that a2 is odd. For example as shown in Figure 4.4, since a1 = 5 and a2 = 2 such that

gcd(10, 2) 6= 1, then the graph Circ(5, 2) will be disconnected. In such cases we will consider

the graph with a1 and a2 swapped, namely Circ(2, 5) as shown in Figure 4.5, thus covering this

all possible cases for F2(a1, a2). We can do this because the ordering of the positive integers in

the Frobenius basis does not effect the s-Frobenius number Fs(a1, . . . , ak) in general.

Figure 4.5: A swapped Frobenius basis for the two 2-circulant digraphs Circ(5,2) (left) and

Circ(2,5) (right)

The connectedness property enables us to order the vertices of the 2-circulant digraph Circ(a1, a2)

in the order v0, v1, . . . , v2a1−1, moving in an anti-clockwise direction around the graph Circ(a1, a2),

as shown in Figure 4.6. Here we have

vj ≡ ja2 (mod 2a1) , for 0 ≤ j ≤ 2a1 − 1. (4.3.3)

And, the minimum weight Svj of any path from 0 to vj in Circ(a1, a2) with 0 ≤ j ≤ 2a1 − 1 is

defined by

Svj = ja2 . (4.3.4)

Hence from (4.3.2) and (4.3.3), we find that

Svj ≡ vj (mod a1) . (4.3.5)
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It can be seen that by (4.2.8) and (4.3.4), the diameter of Circ(a1, a2) is given by

diam(Circ(a1, a2)) = max
0≤ j≤ 2a1−1

Svj = Sv2a1−1

= (2a1 − 1)a2 .

(4.3.6)

Figure 4.6: Circ(7,3) with 14 arcs of weight 3

The condition gcd(a1, a2) = 1, imply that the minimum weight Svj of a path from 0 to vj given

by (4.3.4), can be represented exactly one way as a nonnegative integer linear combination of

a1, a2 when 0 ≤ j ≤ a1 − 1.

With regard the remaining vertices vj with a1 ≤ j ≤ 2a1− 1, we consider the vertex va1+h with

0 ≤ h ≤ a1 − 1. In this instance, the minimum weight Sva1+h of a path from 0 to vj , can be

represented in exactly two distinct ways as a nonnegative integer linear combination of a1, a2

such that

Sva1+h = (a1 + h)a2 = a2a1 + ha2 . (4.3.7)

4.3.2 An expression for 2-Frobenius numbers

Here, we obtain a formula for the 2-Frobenius number by using the diameter of (Circ(a1, a2)).

We note that a general formula for the 2-Frobenius number F2(a1, a2) is well known. The
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main challenge in this part of our work is to understand the relationship that exists between

representations of nonnegative integer in terms a1, a2 and the shortest path in Circ(a1, a2).

From this we establish the formula F2(a1, a2) = 2a1a2 − a1 − a2, using only the properties of

the graph Circ(a1, a2).

Theorem 4.3.3. Let a1, a2 be positive integers with a2 ≡ 1 (mod 2) and gcd(2a1, a2) = 1. Then

F2(a1, a2) = diam(Circ(a1, a2))− a1. (4.3.8)

Proof. Let vj be any vertex of Circ(a1, a2) with 0 ≤ j ≤ 2a1−1 and let M be a positive integer,

such that

M ≡ vj − a1 (mod 2a1). (4.3.9)

To prove Theorem 4.3.3 we need the following two lemmas.

Lemma 4.3.4. Let 0 ≤ j ≤ a1 − 1. Then the positive integer M ≡ vj − a1 (mod 2a1) is

representable in at least two distinct ways as a nonnegative integer linear combination of a1 and

a2 if and only if M ≥ Svj+a1 .

Proof. Suppose that M ≥ Svj+a1 . We have to show that M is represented in at least two distinct

ways.

First, we will show that

M ≡ Svj+a1 (mod 2a1) .

By (4.3.5) we have vj ≡ Svj (mod 2a1) so that vj − 2a1 ≡ Svj (mod 2a1). Hence, there is a

nonnegative integer t such that

vj − a1 = ja2 + a1 + t(2a1)

and adding 0 = a1a2 − a1a2 to the right hand side of the above equation, gives us

vj − a1 = a2(j − a1) + a1(a2 + 1) + t(2a1).

Since a2 is odd, we can write a2 + 1 = 2b for some positive integer b. Hence

vj − a1 = a2(j − a1) + a1(2b) + t(2a1) ,
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and so

vj − a1 ≡ a2(j − a1) ≡ a2(j + a1) ≡ Svj+a1 (mod 2a1). (4.3.10)

Thus, we have

M ≡ vj − a1 ≡ Svj+a1 (mod 2a1) and M ≥ Svj+a1 .

Consequently, there exists a nonnegative integer t such that

M = Svj+a1 + t(2a1) = (j + a1)a2 + t(2a1) .

By (4.3.7), we deduce that M is represented in at least two distinct ways as a nonnegative

integer linear combination of a1 and a2.

Conversely, now suppose that M has at least two distinct representations in terms of a1, a2.

Then there exists nonnegative integers x1, y1, x2, y2 with x1 6= x2, y1 6= y2 such that

M = a1x1 + a2y1 = a1x2 + a2y2 . (4.3.11)

Now we consider the cases when x1 and x2 both odd, both even and when x1 and x2 are of

opposite parity.

If x1 and x2 are both odd, then we may write x1 = 2X1 + 1 and x2 = 2X2 + 1, to obtain

M = a1(2X1 + 1) + a2y1 = a1(2X2 + 1) + a2y2 ,

for some nonnegative integers X1 and X2. We have

M ≡ a1 + a2y1 ≡ a1 + a2y2 (mod 2a1),

which implies

y1 ≡ y2 (mod 2a1) .

Without loss of generality, we may assume that y2 > y1. Then there exists t ∈ Z>0 such that

y2 = y1 + t(2a1) and thus y2 ≥ 2a1. By (4.3.11), M = a1x2 + a2y2, we have

M ≥ a1 + 2a1a2 > Svj+a1 ,

as required.
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Alternatively, if x1 and x2 are both even, then we may write x1 = 2X1 and x2 = 2X2, to

obtain

M = a1(2X1) + a2y1 = a1(2X2) + a2y2 ,

for some nonnegative integers X1 and X2. We have

M ≡ a2y1 ≡ a2y2 (mod 2a1) ,

and hence

y1 ≡ y2 (mod 2a1) .

Without loss of generality, we may therefore assume that y2 > y1, so that y2 = y1 + t(2a1), for

some t ∈ Z>0. Thus, similar to the previous case, y2 ≥ 2a1 and

M ≥ 2a1a2 > Svj+a1 ,

as required.

If x1 is even and x2 is odd, then we can write x1 = 2X1 and x2 = 2X2 + 1, to obtain

M = a1(2X1) + a2y1 = a1(2X2 + 1) + a2y2 ,

for some nonnegative integers X1 and X2. So that by (4.3.9),

M ≡ a2y1 ≡ a1 + a2y2 ≡ vj − a1 ≡ ja2 − a1 (mod 2a1) . (4.3.12)

Since a2 is odd, we find that

y1 ≡ j − a1 (mod 2a1) (4.3.13)

is the solution to (4.3.12).

Since 0 ≤ j ≤ a− 1 and y1 ∈ Z≥0, we must have y1 > j − a1 in (4.3.13). Therefore there exist

a positive integer k such that

y1 = j − a1 + k(2a1) .

and, consequently

y1 ≥ j + a1 .

Since M = a1x1 + a2y1, we have

M ≥ a2y1 ≥ a2(j + a1) = Svj+a1 .

The case when x1 is odd and x2 is even then follows by symmetry.
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Lemma 4.3.4 implies that the largest integer M ≡ vj − a1 (mod 2a1) with 0 ≤ j ≤ a1 − 1, that

is nonrepresentable in at least two distinct ways as a nonnegative integer linear combination of

a1 and a2 is given by

M = Svj+a1 − 2a1 = (j + a1)a2 − 2a1 .

Since in this case, jmax = a1 − 1, we find that

(j + a1)a2 − 2a1 ≤ (jmax + a1)a2 − 2a1 = (2a1 − 1)a2 − 2a1 .

Then using formula (4.3.6), we get

Svj+a1 − 2a1 ≤ diam(Circ(a1, a2))− 2a1 .

Lemma 4.3.5. Let a1 ≤ j ≤ 2a1 − 1. Then the positive integer M ≡ vj − a1 (mod 2a1) is

representable in at least two distinct ways as a nonnegative integer linear combination of a1 and

a2 if and only if M ≥ Svj−a1 + a1(a2 + 1).

Proof. Suppose that M ≥ Svj−a1 + a1(a2 + 1). We need to show that M can be represented in

at least two distinct ways. Recall that

vj ≡ Svj (mod 2a1) .

Then using (4.3.10), we have

vj − a1 ≡ Svj−a1 (mod 2a1) .

Since a2 + 1 is always even, we can write the above congruence as follows:

vj − a1 ≡ Svj−a1 ≡ Svj−a1 + a1(a2 + 1) (mod 2a1) .

Thus we have

M ≡ vj − a1 ≡ Svj−a1 + a1(a2 + 1) (mod 2a1) and M ≥ Svj−a1 + a1(a2 + 1) .

It follow that there exist a nonnegative integer t such that

M = Svj−a1 + a1(a2 + 1) + t(2a1) = ja2 + a1 + t(2a1) .

Since a1 ≤ j ≤ 2a1 − 1, then it follows that M is represented in at least two distinct ways as a

nonnegative integer linear combination of a1 and a2.
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Conversely, now suppose that M has at least two distinct representations in terms of a1 and

a2. Then there exists nonnegative integers x1, y1, x2, y2 with x1 6= x2, y1 6= y2 such that

M = a1x1 + a2y1 = a1x2 + a2y2 . (4.3.14)

We again consider the cases when x1 and x2 both odd, both even and when x1 and x2 are of

opposite parity.

If x1 and x2 both are odd, then we may write x1 = 2X1 + 1 and x2 = 2X2 + 1, to obtain

M = a1(2X1 + 1) + a2y1 = a1(2X2 + 1) + a2y2 ,

for some nonnegative integers X1 and X2. Then

M ≡ a1 + a2y1 ≡ a1 + a2y2 (mod 2a1) ,

and hence

y1 ≡ y2 (mod 2a1) .

Without loss of generality, we can assume that y1 > y2, so that there is a positive integer k

such that

y1 = y2 + k(2a1).

This implies that y1 ≥ 2a1. Since x1 and x2 are odd, from (4.3.14), M = a1x1 + a2y1, we have

M ≥ a1 + 2a1a2 > Svj−a1 + a1(a2 + 1) for a1 ≤ j ≤ 2a1 − 1,

as required.

If x1 and x2 both are even, then we may write x1 = 2X1 and x2 = 2X2, to obtain

M = a1(2X1) + a2y1 = a1(2X2) + a2y2 ,

for some nonnegative integers X1 and X2. Then (4.3.9) gives

M ≡ a2y1 ≡ a2y2 ≡ ja2 − a1 (mod 2a1) .

Since a2 is odd, we have

y1 ≡ y2 ≡ j − a1 (mod 2a1) . (4.3.15)
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Assume without loss of generality that y1 > y2. Since a1 ≤ j ≤ 2a1 − 1 and y1, y1 ∈ Z≥0, then

by a simple argument it can be seen that y1 > j−a1 in (4.3.15). Therefore there exits a positive

integer t such that

y1 = j − a1 + t(2a1) .

Thus, similarly to the previous case, we find that y1 ≥ j + a1 and

M ≥ (j + a1)a2 ≥ Svj−a1 + a1(a2 + 1). (4.3.16)

If x1 is odd and x2 is even, then by (4.3.9) we have

M ≡ a1 + a2y1 ≡ a2y2 ≡ a2(j − a1) (mod 2a1) .

Hence

y2 ≡ j − a1 (mod 2a1) .

We will first consider the case y2 = j−a1, where we observe that since a1(x1−x2) = a2(y2−y1)
gcd(a1, a2) = 1, we have

x1 − x2 = ta2 ,

y2 − y1 = ta1 ,
(4.3.17)

with t ∈ Z, t 6= 0 .

Therefore, according to our assumption we have j − a1 − y1 = ta1 and then y1 = j − a1(1 + t).

This implies that, t ∈ Z<0, so that

t = −q; q ∈ Z>0 .

Consequently, by (4.3.17),

x2 ≥ 1 + qa2 ≥ 1 + a2 .

From (4.3.14), M = a1x2 + a2y2, we obtain

M ≥ a1(1 + a2) + a2(j − a1) = Svj−a1 + a1(a2 + 1) .

Next, if y2 > j − a1, then there exist a positive integer s such that

y2 = j − a1 + s(2a1) ,
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which implies

y1 ≥ j + a1 .

By (4.3.16), we deduce that

M > Svj−a1 + a1(a2 + 1) .

Finally, the case when x1 is even and x2 is odd follows by symmetry.

Lemma 4.3.5 implies that the largest integer M ≡ vj−a1 (mod 2a1) with a1 ≤ j ≤ 2a1−1, that

is nonrepresentable in at least two distinct ways as a nonnegative integer linear combination of

a1 and a2 is given by

M =
(
Svj−a1 + a1(a2 + 1)

)
− 2a1 = Svj−a1 + a1(a2 − 1) .

Since in this case, jmax = 2a1 − 1, we have

Svj−a1 + a1(a2 − 1) = ja2 − a1 ≤ jmax a2 − a1 = (2a1 − 1)a2 − a1 .

Hence from formula (4.3.6), we get

Svj−a1 + a1(a2 − 1) ≤ diam(Circ(a1, a2))− a1 .

Proof of Theorem 4.3.3. Combining Lemmas 4.3.4 with 4.3.5, we conclude that the largest in-

teger M ≡ vj − a1 (mod 2a1) with 0 ≤ j ≤ 2a1 − 1, that is nonrepresentable in at least two

distinct ways as a nonnegative integer linear combination of a1 and a2 is given by

M = max

(
diam(Circ(a1, a2))− 2a1,diam(Circ(a1, a2))− a1

)
= diam(Circ(a1, a2))− a1 .

Thus the 2-Frobenius number of the positive integers a1 and a1, is given by

F2(a1, a2) = diam(Circ(a1, a2))− a1 .

This completes the proof of Theorem 4.3.3.

Remark: Lemma 4.3.5 shows that the largest M ≡ vj−a1 (mod 2a1) with 0 ≤ j ≤ 2a1−1, that

is nonrepresentable in at least two distinct ways corresponds to the vertex v2a1−1 in Circ(a1, a2)

(i.e., j = 2a1 − 1).
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Chapter 5

The 2-Frobenius numbers of

a = (a, a + d, a + 2d)t

Its was shown by Roberts [73] in 1956 that the Frobenius number for the general arithmetic

sequence a, a+ d, . . . , a+ nd, with gcd(a, d) = 1, is given by

F(a, a+ d, . . . , a+ nd) = a

⌊
a− 2

n

⌋
+ d(a− 1) .

In this chapter, we extend Roberts’s result to encompass the 2-Frobenius number F2(a, a +

d, a+ 2d) for three integers in an arithmetic progression. Our main result here says that

F2(a, a+ d, a+ 2d) = a
⌊a

2

⌋
+ d(a+ 1) .

In order to prove this relation we first need to set up some notation.

Remark 5.0.6. Note that the notation in this chapter is quite different from the previous chap-

ters. For instance, K here means number of shifts and L is the number of jumps, respectively,

which will be introduced shortly.

Let Gw(a) be the circulant digraph of the positive integer vector a = (a, a + d, a + 2d)t with

1 ≤ d < a and gcd(a, d) = 1. We will establish a relation between the minimum weight Svj

of paths from the initial vertex v0 to the terminal vertex vj in Gw(a, a + d, a + 2d), where

vj ≡ jd (mod a), and representations of nonnegative integers in terms of a, a + d and a + 2d,

(or the solutions of (2.2.1) in nonnegative integers).
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Any arc on the graph Gw(a) of weight a+ 2d will be called a jump step, or jump. Any arc on

the graph Gw(a) of weight a + d will be called a shift step or shift. We will say that any path

T in Gw(a) that consists of L jumps and K shifts has the form

T = LJ +KS ,

where J and S stand for jumps and shifts, respectively.

Furthermore, since deg+Gw(a)(vj) = 2, for 0 ≤ j ≤ a − 1, we have one shift S (i.e. an arc of

weight a+ d), namely

vj + S ≡ vj+1 (mod a) .

An one jump J (i.e. an arc of weight a+ 2d), namely

vj + J ≡ vj + 2S ≡ vj+2 (mod a) . (5.0.1)

It follows from (5.0.1) that J ≡ 2S , (see Figure 5.1).

Thus, one can easily see that any path from vj to vj+2 in Gw(a) contains either one jump or

Figure 5.1: Two paths from vertex vj to vertex vj+2

two shifts and since a+ 2d < 2(a+ d). Hence, the minimum weight of any path from vj to vj+2

is given by a+ 2d, (as illustrate in Figure 5.1).

Example 5.0.7. Let a = 10, d = 3 so that a = (10, 13, 16)t. Figure 5.5 shows the circulant

digraph of a.

As we can observe from Figure 5.2, that gcd(10, 13) = 1 and the arcs of weight 13 connect all the

vertices of Gw(10, 13, 16) together. On other hand, as gcd(10, 16) = 2 then the arcs of weight

16 partition Gw(10, 13, 16) into two complements with vertex set {0, 2, 4, 6, 8} and {1, 3, 5, 7, 9},
which can be connected by arcs of weight 13.
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Figure 5.2: The circulant digraphs for the vector (10, 13, 16)t. There are 10 red arcs of weight

13 and 10 green arcs of weight 16

Figure 5.2 shows the minimum path v2−→ v4 −→ v6 −→ v7 from vertex v2 to vertex v7 contains

two jumps and one shift. That is the minimum v2 − v7 path can be written in form

2J + S .

There are other equivalent minimum v2 − v7 paths (for example v2−→ v3 −→ v5 −→ v7),

consisting of the same edge weights but in a different order.

In the next section we presented an explicit formula for minimum weight Svj of a path from v0

to vj in the circulant digraph Gw(a), for 0 ≤ j ≤ a− 1, (defined in Section 4.3).

5.1 The shortest path method

In the following theorem we give a formula for the shortest path and the distance between any

two vertices of Gw(a), moving in an anti-clockwise direction around the graph.

Theorem 5.1.1 (Minimum Path Theorem). The minimum path from vertex vi to vertex vj in

Gw(a), with 0 ≤ i < j ≤ a− 1, consists of exactly
(
j−i−δ

2

)
jumps and δ shifts,

where δ ≡ j − i (mod 2), with δ ∈ {0, 1}.

The proof of Theorem 5.1.1, follow immediately from the next two lemmas.
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Lemma 5.1.2. Let a ≡ 0 (mod 2). Then The minimum path from vertex vi to vertex vj in

Gw(a), with 0 ≤ i < j ≤ a− 1, consists of exactly
(
j−i−δ

2

)
jumps and δ shifts,

where δ ≡ j − i (mod 2), with δ ∈ {0, 1}.

Proof. Let vi and vj be any two distinct vertices in the circulant digraph Gw(a). To find the

minimum vi − vj path, we have to consider two cases:

Case 1: Let us suppose that j−i ≡ 1 (mod 2), (i.e. δ = 1), and let N be the maximum number

of jumps in a path from vertex vi to vertex vj that does not contains vj as an intermediate

vertex and where no arc is repeated.

Then any path from vi to vj can be written as

(N −M)J +K S , (5.1.1)

where N = a+j−i−1
2 , 0 ≤M ≤ N , K = 2M + 1 (mod a).

Substituting the weight for the jump steps and shift steps into (5.1.1) gives us

(N −M)(a+ 2d) +K(a+ d) . (5.1.2)

Since 2M + 1 can take the values 1, 3, . . . , a − 1, a + 1, . . . , 2N + 1. So we will consider two

possibilities:

2M + 1 < a and 2M + 1 > a .

1. Suppose that 1 ≤ 2M + 1 ≤ a − 1. Since 2M + 1 < a, we have K = 2M + 1. Hence

expression (5.1.2) becomes

(N −M)(a+ 2d) + (2M + 1)(a+ d) = N(a+ 2d) + (a+ d) +Ma .

Now let c(M) be a weight function in terms of M defined by

c(M) = N(a+ 2d) + (a+ d) +Ma

for

0 ≤M ≤ a− 2

2
.

Since N , a and d all positive, the minimum weight occurs when M = 0. Therefore the

weight of the minimum path (distance) from vi to vj in Gw(a), is given by

min
0≤M≤(a−2)/2

c(M) = c(0) = N(a+ 2d) + (a+ d) . (5.1.3)
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2. Suppose that a+ 1 ≤ 2M + 1 ≤ 2N + 1 < 2a. Since 2M + 1 > a, so

K = 2M + 1 (mod a) = 2M + 1− a.

Hence expression (5.1.2) becomes

(N −M)(a+ 2d) + (2M + 1− a)(a+ d) = N(a+ 2d) + (1− a)(a+ d) +Ma .

Now let

c(M) = N(a+ 2d) + (1− a)(a+ d) +Ma

for

a

2
≤M ≤ N .

As we know that N , a and d are positive integers. Then the minimum weight occurs when

M = a
2 . Therefore the weight of the minimum path from vi to vj in Gw(a), is given by

min
a/2≤M≤N

c(M) = c(a/2) = N(a+ 2d) + (a+ d)− a

2
(a+ 2d) . (5.1.4)

From (5.1.3) and (5.1.4), we deduce that the weight of the minimum vi − vj path with

0 ≤M ≤ N corresponds to the choice M = a
2 . So we have

min
0≤M≤N

c(M) = c(a/2) = N(a+ 2d) + (a+ d)− a

2
(a+ 2d) . (5.1.5)

Substituting N into (5.1.5) gives

min
0≤M≤N

c(M) = c(a/2) =
j − i− 1

2
(a+ 2d) + (a+ d) .

It follows that, the distance from vertex vi to vertex vj in Gw(a) with 0 ≤ i < j ≤ a− 1

and j − i ≡ 1 (mod 2), is given by

j − i− 1

2
(a+ 2d) + (a+ d) . (5.1.6)

Thus, the minimum path Q from vi to vj in Gw(a) when j − i ≡ 1 (mod 2), consists of exactly
j−i−1

2 jump steps and one shift step. That is

Q =
j − i− 1

2
J + S .

Case 2: Let us suppose that j − i ≡ 0 (mod 2), (i.e. δ = 0). Then any path from vertex vi to

vertex vj in Gw(a) can be written as

(N −M)J +K S , (5.1.7)
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where N = a+j−i−2
2 , 0 ≤M ≤ N and K = 2M + 2 (mod a).

Substituting the weight for the jumps and shifts into (5.1.7) gives us

(N −M)(a+ 2d) +K(a+ d) . (5.1.8)

Since 2M+2 can take the values 2, 4, . . . , a−2, a, . . . , 2N+2. So we will consider two possibilities:

2M + 2 < a and 2M + 2 ≥ a .

1. Let 2 ≤ 2M + 2 ≤ a− 2. Since 2M + 2 < a, we have K = 2M + 2. Hence (5.1.8) becomes

(N −M)(a+ 2d) + (2M + 2)(a+ d) = N(a+ 2d) + 2(a+ d) +Ma .

Now let c(M) be the weight function in term of M defined by

c(M) = N(a+ 2d) + 2(a+ d) +Ma

for

0 ≤M ≤ a− 4

2
.

Since N, a and d are all positive, the minimum weight occurs when M = 0. Then the

weight of the minimum vi − vj path, is given by

min
0≤M≤(a−4)/2

c(M) = c(0) = N(a+ 2d) + 2(a+ d) . (5.1.9)

2. Let a ≤ 2M + 2 ≤ 2N + 2 < 2a. Then K = 2M + 2− a and (5.1.8) becomes

(N −M)(a+ 2d) + (2M + 2− a)(a+ d) = N(a+ 2d) + (2− a)(a+ d) +Ma .

Now let

c(M) = N(a+ 2d) + (2− a)(a+ d) +Ma

for

a− 2

2
≤M ≤ N .

According to N, a and d are all positive integers, the minimum weight occurs when M =
a−2
2 . Thus the weight of the minimum path from vi to vj is given by

min
(a−2)/2≤M≤N

c(M) = c((a− 2)/2) = N(a+ 2d) + 2(a+ d)− a
(
a+ 2

2
+ d

)
. (5.1.10)
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From (5.1.9) and (5.1.10), we can see the weight of the minimum path from vi to vj in

Gw(a) with 0 ≤M ≤ N corresponds to the choice M = a−2
2 . Therefore we have

min
0≤M≤N

c(M) = c((a− 2)/2) = N(a+ 2d) + 2(a+ d)− a
(
a+ 2

2
+ d

)
. (5.1.11)

Substituting N into (5.1.11) gives

min
0≤M≤N

c(M) = c((a− 2)/2) =
j − i

2
(a+ 2d) .

This implies that, the distance from vi to vj in Gw(a) with 0 ≤ i < j ≤ a − 1 and

j − i ≡ 0 (mod 2), is

j − i
2

(a+ 2d) . (5.1.12)

Hence, the minimum path Q from vi to vj in Gw(a) when j − i ≡ 0 (mod 2), consists of

exactly j−i
2 jump steps. That is

Q =
j − i

2
J .

Combining the above cases, we deduce that the minimum vi− vj path Q in Gw(a, a+ d, a+ 2d)

with 0 ≤ i < j ≤ a−1 and a ≡ 0 (mod 2), consists of exactly
(
j−i−δ

2

)
jumps and δ shifts. That

is

Q =

(
j − i− δ

2

)
J + δ S ,

where δ ≡ j − i (mod 2), with δ ∈ {0, 1}.

We now consider the case where a is odd.

Lemma 5.1.3. Let a ≡ 1 (mod 2). Then the minimum path from vertex vi to vertex vj in

Gw(a), with 0 ≤ i < j ≤ a− 1, consists of exactly
(
j−i−δ

2

)
jumps and δ shifts,

where δ ≡ j − i (mod 2), with δ ∈ {0, 1}.

The proof will follow the same strategy as in the proof of Lemma 5.1.2.

Proof. Let vi and vj be any two distinct vertices of Gw(a). To find the minimum vi − vj path.

Again we need to consider two cases:
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Case 1: Assume j− i ≡ 1 (mod 2), (i.e. δ = 1). Let N be the maximum number of jumps in a

path from vertex vi to vertex vj that does not contains vj as an intermediate vertex and where

no arc is repeated. Then any path from vi to vj can be written as

(N −M)J +K S, (5.1.13)

where N = a+j−i
2 , 0 ≤M ≤ N and K = 2M (mod a).

Substituting the weight for the jump steps and shift steps into expression (5.1.13) gives us

(N −M)(a+ 2d) +K(a+ d) . (5.1.14)

Since 2M can take the values 0, 2, . . . , a−1, a+1, . . . , 2N . We have to consider two possibilities

according to whether

2M < a or 2M > a .

1. Let 0 ≤ 2M ≤ a − 1. Since 2M ≤ a − 1, we have K = 2M . Hence expression (5.1.14)

becomes

(N −M)(a+ 2d) + 2M(a+ d) = N(a+ 2d) +Ma .

Now let c(M) be the weight function in terms of M defined by

c(M) = N(a+ 2d) +Ma

for

0 ≤M ≤ a− 1

2
.

Since N , a and d are all positive, the minimum weight occurs when M = 0. So that the

weight of the minimum path (distance) from vi to vj , is given by

min
0≤M≤(a−1)/2

c(M) = c(0) = N(a+ 2d) . (5.1.15)

2. Let a+ 1 ≤ 2M ≤ 2N < 2a. Then K = 2M − a and expression (5.1.14) gives us

(N −M)(a+ 2d) + (2M − a)(a+ d) = N(a+ 2d)− a(a+ d) +Ma .

Now let

c(M) = N(a+ 2d)− a(a+ d) +Ma
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for

a+ 1

2
≤M ≤ N .

Since N , a and d are all positive, the minimum weight occurs when M = a+1
2 . Therefore

the weight of the minimum path from vi to vj in Gw(a), is given by

min
(a+1)/2≤M≤N

c(M) = c ((a+ 1)/2) = N(a+ 2d) + (a+ d)− a+ 1

2
(a+ 2d) . (5.1.16)

From (5.1.15) and (5.1.16), we can see that the weight of the minimum vi − vj path in

Gw(a) with 0 ≤M ≤ N corresponds to the choice M = a+1
2 . Thus

min
0≤M≤N

c(M) = c

(
a+ 1

2

)
= N(a+ 2d) + (a+ d)− a+ 1

2
(a+ 2d) . (5.1.17)

Substituting N into (5.1.17), we get

min
0≤M≤N

c(M) = c((a+ 1)/2) =
j − i− 1

2
(a+ 2d) + (a+ d) .

This means that, the distance from vi to vj in Gw(a) with 0 ≤ i < j ≤ a − 1 and

j − i ≡ 1 (mod 2), is

j − i− 1

2
(a+ 2d) + (a+ d) . (5.1.18)

Therefore, the minimum path Q from vi to vj in Gw(a) when j − i ≡ 0 (mod 2), consists

of exactly j−i−1
2 jump steps and one shift step. That is

Q =
j − i− 1

2
J + S .

Case 2: Here assume j − i ≡ 0 (mod 2), (i.e. δ = 0). Then any path from vi to vj can be

written as

(N −M)J +K S , (5.1.19)

where N = a+j−i−1
2 , 0 ≤M ≤ N and K = (2M + 1) (mod a).

Substituting the weight for the jump steps and shift steps into (5.1.19) gives us

(N −M)(a+ 2d) +K(a+ d) . (5.1.20)

Since 2M + 1 can take the values 1, 3, . . . , a− 2, a, . . . , 2N + 1. Now let us consider two possi-

bilities:

2M + 1 < a and 2M + 1 ≥ a .
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1. Let 1 ≤ 2M + 1 ≤ a− 2. Then K = 2M + 1, so that (5.1.20) becomes

(N −M)(a+ 2d) + (2M + 1)(a+ d) = N(a+ 2d) + (a+ d) +Ma .

Now let

c(M) = N(a+ 2d) + (a+ d) +Ma

for

0 ≤M ≤ a− 3

2
.

Since N , a and d are all positive, the minimum weight occurs when M = 0. Hence the

weight of the minimum path from vi to vj , is given by

min
0≤M≤(a−3)/2

c(M) = c(0) = N(a+ 2d) + (a+ d) . (5.1.21)

2. Let a ≤ 2M + 1 ≤ 2N + 1 < 2a. Then K = 2M + 1− a. Thus (5.1.20) becomes

(N −M)(a+ 2d) + (2M + 1− a)(a+ d) = N(a+ 2d) + (1− a)(a+ d) +Ma .

Now let

c(M) = N(a+ 2d) + (1− a)(a+ d) +Ma

for

a− 1

2
≤M ≤ N .

Since N , a and d are all positive, the minimum weight occurs when M = a−1
2 . So the

weight of the minimum path from vi to vj is

min
(a−1)/2≤M≤N

c(M) = c ((a− 1)/2) = N(a+ 2d)− a− 1

2
(a+ 2d) . (5.1.22)

Then from (5.1.21) and (5.1.22), we deduce that the weight of the minimum path from vi to vj

with 0 ≤M ≤ N occurs when M = a−1
2 . Then

min
0≤M≤N

c(M) = c ((a− 1)/2) = N(a+ 2d)− a− 1

2
(a+ 2d) . (5.1.23)

Consequently, the distance from vi to vj in Gw(a) with 0 ≤ i < j ≤ a−1 and j− i ≡ 0 (mod 2),

is

j − i
2

(a+ 2d) . (5.1.24)
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Thus, the minimum path Q from vi to vj in Gw(a) when j − i ≡ 0 (mod 2), consists of exactly
j−i
2 jump steps. That is

Q =
j − i

2
J .

By considering the above cases, we have shown that the minimum path Q from vi to vj in

Gw(a, a + d, a + 2d) with 0 ≤ i < j ≤ a − 1 and a ≡ 1 (mod 2) consists of exactly
(
j−i−δ

2

)
jumps and δ shifts. That is

Q =

(
j − i− δ

2

)
J + δ S ,

where δ ≡ j − i (mod 2), with δ ∈ {0, 1}.

Proof of Theorem 5.1.1. , Combining Lemmas 5.1.2 and 5.1.3 we deduce Theorem 5.1.1.

We now give an example to illustrate Theorem 5.1.1 as follows:

Example 5.1.4. Let a = 9 and d = 2, then a = (9, 11, 13)t. To find the shortest v2 − v7 path

in Gw(9, 11, 13), we need to find all possible paths from v2 to v7 with different weights.

Then we will use the notation
a+d7−−→ for the arc of weight a+ d and

a+2d7−−−→ for the arc of weight

a+ 2d in Gw(9, 11, 13). We have the following possibilities:

1. A v2 − v7 path T1 of weight 7(a+ 2d), has the form

T1 = v2
a+2d7−−−→ v4

a+2d7−−−→ v6
a+2d7−−−→ v8

a+2d7−−−→ v1
a+2d7−−−→ v3

a+2d7−−−→ v5
a+2d7−−−→ v7 .

2. A v2 − v7 path T2 of weight 6(a+ 2d) + 2(a+ d), has the form

T2 = v2
a+2d7−−−→ v4

a+2d7−−−→ v6
a+2d7−−−→ v8

a+2d7−−−→ v1
a+2d7−−−→ v3

a+2d7−−−→ v5
a+d7−−→ v6

a+d7−−→ v7 .

3. A v2 − v7 path T3 of weight 5(a+ 2d) + 4(a+ d), has the form

T3 = v2
a+2d7−−−→ v4

a+2d7−−−→ v6
a+2d7−−−→ v8

a+2d7−−−→ v1
a+2d7−−−→ v3

a+d7−−→ v4
a+d7−−→ v5

a+d7−−→ v6
a+d7−−→ v7 .

4. A v2 − v7 path T4 of weight 4(a+ 2d) + 6(a+ d), has the form

T4 = v2
a+2d7−−−→ v4

a+2d7−−−→ v6
a+2d7−−−→ v8

a+2d7−−−→ v1
a+d7−−→ v2

a+d7−−→ v3
a+d7−−→ v4

a+d7−−→ v5
a+d7−−→ v6

a+d7−−→ v7 .
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Figure 5.3: The shortest v2 − v7 path in Gw(9, 11, 13)

5. A v2 − v7 path T5 of weight 3(a+ 2d) + 8(a+ d), has the form

T5 = v2
a+2d7−−−→ v4

a+2d7−−−→ v6
a+2d7−−−→ v8

a+d7−−→ v0
a+d7−−→ v1

a+d7−−→ v2
a+d7−−→ v3

a+d7−−→ v4
a+d7−−→ v5

a+d7−−→ v6
a+d7−−→ v7 .

6. A v2 − v7 path T6 of weight 2(a+ 2d) + (a+ d), has the form

T6 = v2
a+2d7−−−→ v4

a+2d7−−−→ v6
a+d7−−→ v7 .

7. A v2 − v7 path T7 of weight (a+ 2d) + 3(a+ d), has the form

T7 = v2
a+2d7−−−→ v4

a+d7−−→ v5
a+d7−−→ v6

a+d7−−→ v7 .

8. A v2 − v7 path T8 of weight 5(a+ d), has the form

T8 = v2
a+d7−−→ v3

a+d7−−→ v4
a+d7−−→ v5

a+d7−−→ v6
a+d7−−→ v7 .

We can clearly see that, path T6 is the shortest v2 − v7 path, that consists of exactly

2J + 1S .

Consequently, the distance from v2 to v7 in Gw(9, 11, 13) will be

2(13) + 11 = 37 .

In the following theorem we consider the alternative case when 0 ≤ j < i ≤ a− 1.
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Theorem 5.1.5. The minimum path from vi to vj, with 0 ≤ j < i ≤ a−1, in Gw(a, a+d, a+2d)

consists of exactly
(
a+j−i−δ

2

)
jump steps and δ shift steps, where δ ≡ (a + j − i) (mod 2),

δ ∈ {0, 1}.

Proof. The graph Gw(a) is a symmetric graph. Let R be the function that maps vertex vi to

vertex v0 = 0 for all 1 ≤ i ≤ a−1, so that R(vi) = v0, and R(vj) = vj+(a−i) (from the geometric

viewpoint we rotates vi anti-clockwise by (a−ia )2π on the graph). Setting j′ = j + (a− i) gives

R(vj) = vj′ and R(vi) = 0. By applying Theorem 5.1.1, we obtain the defined result.

From Theorems 5.1.1 and 5.1.5 we immediately obtain the following corollary.

Theorem 5.1.6. Let a
′ ≡ a (mod 2), with a

′ ∈ {0, 1}. For 0 ≤ j ≤ a − 1 the minimum

(nontrivial) path T from vertex vj back to itself in Gw(a), consists of exactly a−a′
2 jump steps

and a
′

shift steps. That is

T =
a− a′

2
J + a

′ S . (5.1.25)

Proof. Let vj be any vertex of the circulant digraph Gw(a). We need to show that the minimum

weight of a (nontrivial) vj − vj path T is

a− a′

2
(a+ 2d) + a

′
(a+ d) ,

where a
′ ≡ a (mod 2) . Observe that deg−Gw(vj) = 2, and

vj−1 + S ≡ jd ≡ vj (mod a) , and

vj−2 + J ≡ jd ≡ vj (mod a).

where S and J are arcs of weight a+ d and a+ 2d, respectively.

Then, in order to take any (nontrivial) path from vj back to vj in Gw(a). We have consider

two possibilities, according to the in-neighborhood NGw(vj) of the vertex vj .

1. A vj − vj path W has the form

W = P ∪ S ,

where P is any vj − vj−1 path and S is an arc from vj−1 to vj of weight a+ d. Therefore,

using Theorems 5.1.5 and 5.1.1, the minimum weight v of the path W is given by
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v =



(
a−2
2 (a+ 2d) + (a+ d)

)
+ (a+ d), if a ≡ 0 (mod 2) ,

(
a−1
2 (a+ 2d)

)
+ (a+ d), if a ≡ 1 (mod 2) .

(5.1.26)

2. A vj − vj path U has the form

U = Q ∪ J ,

where Q is any vj − vj−2 path and J is an arc from vj−2 to vj of weight a + 2d. By

Theorems 5.1.5 and 5.1.1, the minimum weight y of the path U is given by

y =



(
a−2
2 (a+ 2d)

)
+ (a+ 2d), if a ≡ 0 (mod 2) ,

(
a−3
2 (a+ 2d) + (a+ d)

)
+ (a+ 2d), if a ≡ 1 (mod 2) .

(5.1.27)

Figure 5.4: The shortest (nontrivial) path from v3 back to v3 in Gw(8, 13, 18) consisting of

exactly 4 jumps

From (5.1.26) and (5.1.27), it can be argued that the weight y is less than or equal to the weight

v, since

v = (1− a′)a+ y .
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where a
′ ≡ a (mod 2), a

′ ∈ {0, 1}.
Thus we can write the weight y as

y =
a− a′

2
(a+ 2d) + a

′
(a+ d) .

Consequently, the minimum weight of a (nontrivial) path T (distance) from vj back to vj will

be

a− a′

2
(a+ 2d) + a

′
(a+ d) .

Hence, the minimum path T from vj back to vj in Gw(a), consisting of exactly a−a′
2 jumps and

a
′

shifts. That is

T =
a− a′

2
J + a

′ S .

The theorem is proved.

This corollary is important for establishing our main result of this chapter.

Corollary 5.1.7 (To Theorems 5.1.1 and 5.1.5). For any 0 ≤ j ≤ a−1, let Svj be the minimum

weight of the (nontrivial) path from v0 = 0 to vj in Gw(a). Then

Svj =



a−a′
2 (a+ 2d) + a

′
(a+ d) , if j = 0 ,

j−1
2 (a+ 2d) + (a+ d) , if j ≡ 1 (mod 2) ,

j
2(a+ 2d) , if j ≡ 0 (mod 2), j 6= 0 ,

where a
′ ≡ a (mod 2), a

′ ∈ {0, 1}.

Proof. The proof follows from Theorems 5.1.1 and 5.1.5.

Corollary 5.1.8. The minimum weight Svj of a (nontrivial) path from v0 = 0 to vj, given in

Corollary 5.1.7, has two distinct representations in terms of a, a+ d and a+ 2d when j = 0.

Proof. Let Sv0 be the minimum weight of a (nontrivial) v0 − v0 path in Gw(a). We have to

show that Sv0 can be presented in two distinct ways.

From Corollary 5.1.7

Sv0 =
a− a′

2
(a+ 2d) + a

′
(a+ d) ,
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where a
′ ≡ a (mod 2), a

′ ∈ {0, 1}.
Since gcd(a, d) = 1, we can write Sv0 as

Sv0 =
a− a′

2
(a+ 2d) + a

′
(a+ d) , and

Sv0 = a (
a+ a

′

2
+ d) .

This implies that, Sv0 has two distinct representations in terms of a, a+ d and a+ 2d.

The corollary is proved.

The following is a fundamental step in the proof of the main result in this chapter.

Theorem 5.1.9 (Unique Representation of Svj ). With 1 ≤ j ≤ a− 1, the minimum weight Svj

of a path from v0 = 0 to vj, given in Corollary 5.1.7, has exactly one representation in terms

of a, a+ d and a+ 2d.

Proof. Suppose, on the contrary, that Svj for 1 ≤ j ≤ a− 1, can be represented in at least two

distinct ways. There exists nonnegative integers x1, x2, x3, y1, y2, y3 with xj 6= yj such that

Svj = ax1 + (a+ d)x2 + (a+ 2d)x3,

Svj = ay1 + (a+ d)y2 + (a+ 2d)y3 .

We will consider two cases: j ≡ 0 (mod 2), j 6= 0 and j ≡ 1 (mod 2).

Case 1: Suppose that j ≡ 0 (mod 2), j 6= 0. Then by Corollary 5.1.7

Svj =
j

2
(a+ 2d).

Thus by assumption Svj can be represented in at least two distinct ways, as

Svj =
j

2
(a+ 2d) = ay1 + (a+ d)y2 + (a+ 2d)y3 . (5.1.28)

If y3 = j/2 then as gcd(a, d) = 1 and y1, y2 ≥ 0 we must have y1 = y2 = 0. Consequently if

there exists a second representation then we must have y3 < j/2 and at least one of y1, y2 has

to be nonzero. Set k = j/2− y3 ∈ Z>0. Then (5.1.28) gives

(k − y1 − y2)a = (y2 − 2k)d .
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Now as gcd(a, d) = 1 we must have

k − y1 − y2 = dt , (5.1.29a)

y2 − 2k = at , (5.1.29b)

with t ∈ Z. We now have three choices for t. If t = 0, then (5.1.29b) and (5.1.29a) gives us

y1 = −k.

Which is a contradiction as y1 and k are both nonnegative integers. If t > 0, then from (5.1.29b)

we obtain y2 = at+ 2k. Substituting y2 in (5.1.29a) gives

dt = −(k + y1 + at),

which also contradicts the fact that d > 0. Finally, if t < 0, then t = −h, where h is a positive

integer. From (5.1.29b) we have y2 + ah = 2k, implying

2k ≥ ah . (5.1.30)

However, we know that j = 2y3+2k, and hence 2k < a (that contradicts (5.1.30)) (as 1 ≤ j < a).

Thus, we conclude that Svj can be represented in exactly one way in terms of a, a+d and a+2d

when j ≡ 0 (mod 2), j 6= 0.

Case 2: Suppose that j ≡ 1 (mod 2). Then by Corollary 5.1.7

Svj = (a+ d) +
j − 1

2
(a+ 2d).

Since Svj can be represented in at least two distinct ways, we have

Svj = (a+ d) +
j − 1

2

(
a+ 2d

)
= ay1 + (a+ d)y2 + (a+ 2d)y3 . (5.1.31)

Therefore, (
j + 1

2
− y1 − y2 − y3

)
a = (y2 + 2y3 − j)d .

Now as gcd(a, d) = 1 we must have

(j + 1)− 2(y1 + y2 + y3) = 2dt , (5.1.32a)

y2 + 2y3 − j = at , (5.1.32b)

with t ∈ Z. Again there are three choices for t. If t = 0, then from (5.1.32b) and (5.1.32a) we

have

2y1 + y2 = 1 ,
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it follows that y1 = 0 and y2 = 1. Then from (5.1.31) implies that y3 = j−1
2 , and so the

representations of Svj in (5.1.31) are the same. If t > 0, then (5.1.32a) and (5.1.32b) gives us

2dt+ at+ y2 + 2y1 = 1 .

Which contradicts the fact that a > 1 and d ≥ 1. Finally, if t < 0, then t = −h, where h ∈ Z>0.

Hence by (5.1.32b) we deduce that

y2 + 2y3 + ah = j .

This implies j ≥ ah, which is a contradiction to our strategy that 1 ≤ j ≤ a− 1.

Thus, Svj can be represented in exactly one way in terms of a, a + d and a + 2d when j ≡
1 (mod 2).

Combining the above arguments, we get the minimum weight Svj of a path from v0 to vj in

Gw(a), for 1 ≤ j ≤ a− 1, has exactly one representation in terms of a, a+ d and a+ 2d.

5.2 The 2-Frobenius number of a = (a, a + d, a + 2d)t when a is

even

In this section we obtain a formula for determining the 2-Frobenius number of three integers a,

a+ d and a+ 2d with a ≡ 0 (mod 2) and gcd(a, d) = 1 as follows:

Proposition 5.2.1. Let a = (a, a+ d, a+ 2d)t be a positive integer vector with a ≡ 0 (mod 2),

1 ≤ d < a and gcd(a, d) = 1. Then

F2(a, a+ d, a+ 2d) = a
(a

2

)
+ d(a+ 1) . (5.2.1)

Proof. Let vj be any vertex of Gw(a) with 0 ≤ j ≤ a− 1 and M be a positive integer. Then

M ≡ vj (mod a). (5.2.2)

To prove Proposition 5.2.1, we need the following four lemmas.

Lemma 5.2.2. Let 2 ≤ j ≤ a−2 and j ≡ 0 (mod 2). Then the positive integer M ≡ vj (mod a)

is representable in at least two distinct ways as a nonnegative integer linear combination of a,

a+ d and a+ 2d if and only if M ≥ Svj + a.
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Proof. Let M ≥ Svj + a. We need to show that M can be represented in at least two distinct

ways. By (4.2.4), vj ≡ Svj (mod a) so that vj ≡ (Svj + a) (mod a). Thus we have

M ≡ (Svj + a) (mod a) and M ≥ Svj + a .

It follows that there is a nonnegative integer t such that

M = (Svj + a) + ta .

By Corollary 5.1.7

Svj =
j

2
(a+ 2d) .

Therefore we can write M as

M = (t+ 1)a+
j

2
(a+ 2d) ,

and M = ta+ 2(a+ d) +

(
j − 2

2

)
(a+ 2d) .

Hence, M is represented in at least two distinct ways as a nonnegative integer linear combination

of a, a+ d and a+ 2d.

Conversely, let us assume that M has at least two distinct representations, then there exist

nonnegative integers x1, y1, z1, x2, y2, z2 such that

M = ax1 + (a+ d)y1 + (a+ 2d)z1 = ax2 + (a+ d)y2 + (a+ 2d)z2 . (5.2.3)

We are required to prove that

M ≥ Svj + a .

Since M ≡ vj (mod a), (5.2.3) gives us

M ≡ (a+ d)y1 + (a+ 2d)z1 ≡ (a+ d)y2 + (a+ 2d)z2 ≡ vj ≡ Svj (mod a) . (5.2.4)

Since j ≡ 0 (mod 2), both y1 and y2 are even numbers. We observe that Svj is maximum when

j = jmax = a− 2. Then

Svjmax
=
a− 2

2
(a+ 2d) .

We now consider four cases according to the value of yi and zi, for i = 1, 2.
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Case 1: Suppose that y1 = y2 = 2t, where t ∈ Z≥0. Then z1 6= z2, and we may assume w.l.o.g.

that z1 > z2 (as we may swap z1 with z2). This implies that

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .

Next, (5.2.3) gives

((x2 − x1) + (z2 − z1)) a = 2(z1 − z2)d .

This means that either gcd(a, d) 6= 1, which contradicts our assumptions, or

(x2 − x1) + (z2 − z1) = dk ,

2(z1 − z2) = ak ,
(5.2.5)

where k ∈ Z>0. Then, from (5.2.5) we get

z1 ≥
ak

2
.

By (5.2.3), M = ax1 + (a+ d)y1 + (a+ 2d)z1, which gives us

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d)y1 + (a+ 2d)
ak

2
≥ (a+ 2d)

ak

2
.

Thus

M ≥ a

2
(a+ 2d) > Svjmax

+ a ≥ Svj + a , (5.2.6)

as required.

Case 2: Suppose that z1 = z2 = t, where t ∈ Z≥0. Then y1 6= y2, and we may assume w. l. o.

g. that y1 > y2 (as we may swap y1 with y2), hence

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .

By (5.2.3), we have

((x2 − x1) + (y2 − y1)) a = (y1 − y2)d .

Now as gcd(a, d) = 1 we must have

(x2 − x1) + (y2 − y1) = dk ,

y1 − y2 = ak ,
(5.2.7)
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where k ∈ Z>0. Therefore (5.2.7) gives

y1 ≥ ak .

Since M = ax1 + (a+ d)y1 + (a+ 2d)z1, we get

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d)ak + (a+ 2d)z1 ≥ (a+ d)ak

and, consequently

M ≥ a(a+ d) > Svjmax
+ a ≥ Svj + a . (5.2.8)

Case 3: Suppose that y1 > y2 and z1 > z2. Then

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 . (5.2.9)

By (5.2.4) and (4.2.3), both the left and right hand sides of (5.2.9) represent two different paths

from v0 = 0 to vj in Gw(a) of weights (a + d)y1 + (a + 2d)z1 and (a + d)y1 + (a + 2d)z1. The

weight (a + d)y2 + (a + 2d)z2 has to be at least minimum weight Svj of the path from 0 to vj

in Gw(a). Then by (5.2.4), there exists a positive integer h such that

(a+ d)y1 + (a+ 2d)z1 = (a+ d)y2 + (a+ 2d)z2 + ha ≥ Svj + ha

≥ Svj + a .

By (5.2.3), it follows that

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ Svj + a . (5.2.10)

Case 4: Suppose that y1 > y2 and z1 < z2. Then (5.2.3) gives

((x1 − x2) + (y1 − y2)− (z2 − z1)) a = (2(z2 − z1)− (y1 − y2)) d .

Now as gcd(a, d) = 1 we must have

(x1 − x2) + (y1 − y2)− (z2 − z1) = dk ,

2(z2 − z1)− (y1 − y2) = ak ,
(5.2.11)

where k ∈ Z. To solve (5.2.11), we will consider two possibilities:

z2 − z1 ≥ y1 − y2 or z2 − z1 < y1 − y2 .
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1: If z2 − z1 ≥ y1 − y2, then from (5.2.11), k ∈ Z>0. Hence

x1 > x2 and z2 − z1 >
ak

2
.

The latter implies z2 >
ak
2 . By (5.2.6) we have

M > Svjmax
+ a ≥ Svj + a .

2: If z2 − z1 < y1 − y2. We again consider two subcases:

Firstly, let us assume x1 = x2. Then from (5.2.11) we havey1 − y2 = (a+ 2d)k, and

z2 − z1 = (a+ d)k,

where k ∈ Z>0. This implies that,

y1 ≥ (a+ 2d)k > ak and z2 ≥ (a+ d)k >
ak

2
.

Then from (5.2.8) or (5.2.6), we obtain

M > Svjmax
+ a ≥ Svj + a ,

as required.

Secondly, let us assume x1 6= x2. In this subcase, we have three options for k.

(i) Let y1 − y2 > 2(z2 − z1). Then from (5.2.11), k ∈ Z<0, so that

k = −q , where q ∈ Z>0 .

Thus

y1 − y2 = 2(z2 − z1) + aq,

and, consequently

y1 > aq .

So (5.2.8) gives

M > Svjmax
+ a ≥ Svj + a .
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(ii) Now, let y1 − y2 < 2(z2 − z1). Then by (5.2.11), k ∈ Z>0, and we have

2(z2 − z1) = ak + y1 − y2 ,

which implies

z2 − z1 >
ak

2
,

and hence

z2 >
ak

2
.

Using (5.2.6) we deduce that

M > Svjmax
+ a ≥ Svj + a .

(iii) Finally, let y1 − y2 = 2(z2 − z1). By (5.2.11), k = 0 and w.l.o.g. we may assume

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2. (5.2.12)

Then from (5.2.10) we obtain

M ≥ Svj + a ,

as required.

Collectively all the above cases show that the largest integer M ≡ vj (mod a), with 2 ≤ j ≤ a−2

and j ≡ 0 (mod 2), that is nonrepresentable in at least two distinct ways as a nonnegative integer

combination of a, a+ d and a+ 2d is given by

M = (Svj + a)− a = Svj .

Lemma 5.2.3. Let 3 ≤ j ≤ a−1 and j ≡ 1 (mod 2). Then the positive integer M ≡ vj (mod a)

is representable in at least two distinct ways as a nonnegative integer linear combination of a,

a+ d and a+ 2d if and only if M ≥ Svj + a.

Proof. Suppose M ≥ Svj + a. We have to prove that M can be represented in at least two

distinct ways. By (4.2.4), vj ≡ Svj (mod a) so that vj ≡ (Svj + a) (mod a). Thus

M ≡ (Svj + a) (mod a) and M ≥ Svj + a .

95



Chapter 5. The 2-Frobenius numbers of a = (a, a+ d, a+ 2d)t

It follows that there is a nonnegative integer t such that

M = (Svj + a) + ta .

By Corollary 5.1.7

Svj = (a+ d) +

(
j − 1

2

)
(a+ 2d) .

Therefore we can write M as

M = (t+ 1)a+ (a+ d) +

(
j − 1

2

)
(a+ 2d) ,

and M = ta+ 3(a+ d) +

(
j − 3

2

)
(a+ 2d) .

Consequently, M is represented in at least two distinct ways as a nonnegative integer linear

combination of a, a+ d and a+ 2d.

Conversely, now assume that M has at least two distinct representations, then by (5.2.3)

M = ax1 + (a+ d)y1 + (a+ 2d)z1 = ax2 + (a+ d)y2 + (a+ 2d)z2 .

We have to show that

M ≥ Svj + a .

Since M ≡ vj (mod a), then (5.2.4) gives

M ≡ (a+ d)y1 + (a+ 2d)z1 ≡ (a+ d)y2 + (a+ 2d)z2 ≡ vj (mod a) .

In view of j ≡ 1 (mod 2) and gcd(a, d) = 1, both y1 and y2 are odd numbers. We observe that

Svj is maximum when j = jmax = a− 1. Then

Svjmax
= (a+ d) +

a− 2

2
(a+ 2d) .

As with Lemma 5.2.2 we will consider four cases:

Case 1: Suppose that y1 = y2 = 2t + 1, where t ∈ Z≥0. Then z1 6= z2, and we may assume

w.l.o.g. that z1 > z2 (as we may swap z1 with z2), implying

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .
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Next, (5.2.3) gives (
(x2 − x1) + (z2 − z1)

)
a = 2(z1 − z2)d .

This means that either gcd(a, d) 6= 1, which contradicts our assumptions, or

(x2 − x1) + (z2 − z1) = dk ,

2(z1 − z2) = ak ,
(5.2.13)

where k ∈ Z>0. By (5.2.13),

z1 ≥
ak

2
.

Then (5.2.3), M = ax1 + (a+ d)y1 + (a+ 2d)z1, which gives us

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d) + (a+ 2d)
ak

2
,

thus

M ≥ (a+ d) +
a

2
(a+ 2d) > Svjmax

+ a ≥ Svj + a . (5.2.14)

Case 2: Suppose that z1 = z2 = t ∈ Z≥0. Then y1 6= y2, and we may assume w. l. o. g. that

y1 > y2 (as we may swap y1 with y2) and hence

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .

Next, (5.2.3) gives (
(x2 − x1) + (y2 − y1)

)
a = (y1 − y2)d .

Now as gcd(a, d) = 1 we must have

(x2 − x1) + (y2 − y1) = dk ,

y1 − y2 = ak ,
(5.2.15)

where k ∈ Z>0. Since y1 and y2 are both odd numbers and a is an even number, from (5.2.15)

we obtain

y1 ≥ ak + 1 .

Using (5.2.3), we deduce that

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d)(ak + 1) + (a+ 2d)z1 ≥ (a+ d)(a+ 1) .
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Therefore,

M > (a+ d) +
a

2
(a+ 2d) > Svjmax

+ a ≥ Svj + a . (5.2.16)

Case 3: Suppose that y1 > y2 and z1 > z2. Then we have

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .

Hence, by (5.2.4) and (4.2.3), we have two different paths from v0 to vj in Gw(a) of weights

(a+ d)y1 + (a+ 2d)z1 and (a+ d)y2 + (a+ 2d)z2. The weight (a+ d)y2 + (a+ 2d)z2 has to be

at least minimum weight Svj of the path from v0 to vj in Gw(a). Therefore by (5.2.4),

(a+ d)y1 + (a+ 2d)z1 ≡ (a+ d)y2 + (a+ 2d)z2 (mod a) ,

and there exists a positive integer h such that

(a+ d)y1 + (a+ 2d)z1 = (a+ d)y2 + (a+ 2d)z2 + ha ≥ Svj + ha

≥ Svj + a .

From (5.2.3), it follows that

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ Svj + a . (5.2.17)

Case 4: Suppose that y1 > y2 and z1 < z2. Then from (5.2.3), we have

((x1 − x2) + (y1 − y2)− (z2 − z1)) a = (2(z2 − z1)− (y1 − y2)) d .

Now as gcd(a, d) = 1 we must have

(x1 − x2) + (y1 − y2)− (z2 − z1) = dk ,

2(z2 − z1)− (y1 − y2) = ak ,
(5.2.18)

where k ∈ Z. To solve (5.2.18) we have to consider two possibilities:

z2 − z1 ≥ y1 − y2 or z2 − z1 < y1 − y2 .

1: If z2 − z1 ≥ y1 − y2, then by (5.2.18), k ∈ Z>0. Thus

x1 > x2 and z2 − z1 >
ak

2
,

This implies z2 >
ak
2 . Hence (5.2.14) gives

M > Svjmax
+ a ≥ Svj + a .
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2: If z2 − z1 < y1 − y2. Here we will consider two subcases:

Firstly, let x1 = x2. Then from (5.2.18) we find thaty1 − y2 = (a+ 2d)k, and

z2 − z1 = (a+ d)k,

where k ∈ Z>0. This implies that

y1 > (a+ 2d)k and z2 ≥ (a+ d)k ,

and using (5.2.3), M = ax1 + (a+ d)y1 + (a+ 2d)z1, we have

M ≥ (a+ d)y1 + (a+ 2d)z1 > (a+ d)(a+ 2d) + (a+ 2d)z1 > (a+ d)(a+ 2) .

Thus

M > 2(a+ d) +
a

2
(a+ 2d) > Svjmax

+ a ≥ Svj + a . (5.2.19)

Secondly, let x1 6= x2. In this subcase we have three choices for k.

(i) Assume now that y1 − y2 > 2(z2 − z1). Therefore by (5.2.18), k ∈ Z<0, so that

k = −q, where q ∈ Z>0. Then

y1 − y2 = 2(z2 − z1) + aq ,

which implies

y1 > aq ,

so that by (5.2.16),

M > Svjmax
+ a ≥ Svj + a .

(ii) Here we assume that y1 − y2 < 2(z2 − z1). By (5.2.18), k ∈ Z>0 and we have

2(z2 − z1) = ak + (y1 − y2) ,

yields

z2 − z1 >
ak

2
.

Thus

z2 >
ak

2
.

From (5.2.14) we get

M > Svjmax
+ a ≥ Svj + a .

99



Chapter 5. The 2-Frobenius numbers of a = (a, a+ d, a+ 2d)t

(iii) Finally, let y1−y2 = 2(z2−z1). Then from (5.2.18) k = 0, so w.l.o.g. we may assume

that

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2. (5.2.20)

Therefore, from (5.2.17) we deduce that

M ≥ Svj + a .

Collectively, the above cases imply that the largest integer M ≡ vj (mod a), with 3 ≤ j ≤ a− 1

and j ≡ 1 (mod 2), that is nonrepresentable in at least two distinct ways as a nonnegative

integer combination of a, a+ d and a+ 2d, is

M = (Svj + a)− a = Svj .

Lemma 5.2.4. For j = 1, the positive integer M ≡ vj (mod a) is representable in at least two

distinct ways as a nonnegative integer linear combination of a, a+ d and a+ 2d if and only if

M ≥ Sv1 + a
(
a
2 + d

)
.

Proof. Assume that M ≥ Sv1 + a(a2 + d). We need to show that M can be represented in at

least two distinct ways. By the definition of vj in Gw(a) we have v1 ≡ Sv1 (mod a) and then

v1 ≡ Sv1 + a(a2 + d) (mod a). Thus we have

M ≡ v1 ≡ Sv1 + a
(a

2
+ d
)

(mod a) and M ≥ Sv1 + a
(a

2
+ d
)
.

It follows that there is a nonnegative integer t such that

M =
(
Sv1 + a(

a

2
+ d)

)
+ ta.

By Corollary 5.1.7

Sv1 = a+ d .

Hence

M = a
(a

2
+ d+ t

)
+ (a+ d) ,

and M = at+ (a+ d) +
a

2
(a+ 2d).
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Consequently, M is represented in at least two distinct ways as a nonnegative integer linear

combination of a, a+ d and a+ 2d.

Conversely, suppose M has at least two distinct representations. Then by (5.2.3),

M = ax1 + (a+ d)y1 + (a+ 2d)z1 = ax2 + (a+ d)y2 + (a+ 2d)z2 .

Since M ≡ v1 (mod a), (5.2.4) gives us

M ≡ (a+ d)y1 + (a+ 2d)z1 ≡ (a+ d)y2 + (a+ 2d)z2 ≡ v1 (mod a) . (5.2.21)

We are required to prove

M ≥ Sv1 + a
(a

2
+ d
)
.

In view of j = 1 and a ≡ 0 (mod 2), both positive integers y1, y2 are odd numbers.

Again we examine four cases:

Case 1: Suppose that y1 = y2 = 2t+ 1, where t ∈ Z≥0. Then z1 6= z2, and we may assume w.

l. o. g. that z1 > z2 (as we may swap z1 with z2), hence

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .

Next, (5.2.3) gives (
(x2 − x1) + (z2 − z1)

)
a = 2(z1 − z2)d .

This means that either gcd(a, d) 6= 1, which contradicts our assumptions, or

(x2 − x1) + (z2 − z1) = dk ,

2(z1 − z2) = ak ,
(5.2.22)

where k ∈ Z>0. By (5.2.22),

z1 ≥
ak

2
.

From (5.2.3), M = ax1(a+ d)y1 + (a+ 2d)z1, it follows that

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d) + (a+ 2d)
ak

2
.

Therefore,

M ≥ (a+ d) +
a

2
(a+ 2d) = (a+ d) + a

(a
2

+ d
)

= Sv1 + a
(a

2
+ d
)
. (5.2.23)
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Case 2: Suppose that z1 = z2 = t ∈ Z≥0. Then y1 6= y2, and we may assume w. l. o. g. that

y1 > y2 (as we may swap y1 with y2). This implies

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .

Next, (5.2.3) gives (
(x2 − x1) + (y2 − y1)

)
a = (y1 − y2)d .

Now as gcd(a, d) = 1 we must have

(x2 − x1) + (y2 − y1) = dk ,

y1 − y2 = ak ,
(5.2.24)

where k ∈ Z>0. Since y1, y2 are both odd numbers and a is an even number, from (5.2.24) we

have

y1 ≥ ak + 1.

Using (5.2.3) we find that

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d)(ak + 1) + (a+ 2d)z1 ≥ (a+ d)(a+ 1) ,

thus

M > (a+ d) + a(
a

2
+ d) = Sv1 + a

(a
2

+ d
)
, (5.2.25)

as required.

Case 3: Suppose that y1 > y2 and z1 > z2, then we have

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 . (5.2.26)

By (5.2.21) and (4.2.3), we have two different paths from v0 to v1 in Gw(a) of weights (a +

d)y1 + (a + 2d)z1 and (a + d)y2 + (a + 2d)z2. The weight (a + d)y2 + (a + 2d)z2 has to be at

least minimum weight Sv1 of the path from v0 to v1 in Gw(a). Therefore from (5.2.21),

(a+ d)y1 + (a+ 2d)z1 ≡ (a+ d)y2 + (a+ 2d)z2 (mod a),

and there is a positive integer k such that

(a+ d)y1 + (a+ 2d)z1 = (a+ d)y2 + (a+ 2d)z2 + ak ≥ Sv1 + ak . (5.2.27)

102



5.2. The 2-Frobenius number of a = (a, a+ d, a+ 2d)t when a is even

Since M = ax1 + (a+ d)y1 + (a+ 2d)z1, we have

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ Sv1 + ak . (5.2.28)

So to prove M ≥ Sv1 + a
(
a
2 + d

)
, we need only to show that

k ≥ a

2
+ d .

Since deg−Gw(a)(v1) = 2 then in order to take any path from v0 to v1 in Gw(a), we have to

consider four possibilities:

(i) v0 − v1 path P of weight a+ d.

(ii) A v0 − v1 path W has the form

W = R ∪D ,

where R is a (nontrivial) v0− v0 path (or full cycle) in Gw(a) and D is an arc from v0 to

v1 of weight a + d. From Theorem 5.1.6, the minimum weight m of the path W is given

by

m =
a

2
(a+ 2d) + (a+ d) = a

(a
2

+ d
)

+ (a+ d) , (5.2.29)

as the weight of R is a
2 (a+ 2d) and the weight of D is a+ d.

(iii) A v0 − v1 path V has the form

V = S ∪N ∪D ,

where S is a v0−va−1 path in Gw(a) and N is an arc from va−1 to v0 = 0 of weight a+d.

So, from Theorem 5.1.1, the minimum weight n of the path V will be

n =

(
(a+ d) +

a− 2

2
(a+ 2d)

)
+ 2(a+ d) , (5.2.30)

as the weight of S is
(
(a+ d) + a−2

2 (a+ 2d)
)
, the weight of N is a+ d and the weight of

D is a+ d.

(iv) A v0 − v1 path U has the form

U = S ∪ J ,

where S is a v0 − va−1 path in Gw(a) and J is an arc from va−1 to v1 of weight a + 2d.

Hence, by Theorem 5.1.1, the minimum weight z of the path U is

z =

(
(a+ d) +

a− 2

2
(a+ 2d)

)
+ (a+ 2d) = (a+ d) +

a

2
(a+ 2d) , (5.2.31)

which agrees with the given in (5.2.29).
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Comparing (5.2.29) and (5.2.30), we see that the minimum weight m is less than the minimum

weight n, where

m = n− a .

Hence, the minimum weight of the path from v0 to v1 in Gw(a) around the full cycle will be

(a+ d) + a
(a

2
+ d
)

= Sv1 + a
(a

2
+ d
)
.

Consequently, the value of ak in (5.2.27) has to be at least a(a2 + d), which implies

k ≥ a

2
+ d .

Then (5.2.28) gives us

M ≥ Sv1 + ak ≥ Sv1 + a
(a

2
+ d
)
, (5.2.32)

as required.

Case 4: Suppose that y1 > y2 and z1 < z2. Then from (5.2.3), we have(
(x1 − x2) + (y1 − y2)− (z2 − z1)

)
a =

(
2(z2 − z1)− (y1 − y2)

)
d .

This means that either gcd(a, d) 6= 1, which is contradicts our assumptions, or

(x1 − x2) + (y1 − y2)− (z2 − z1) = dk ,

2(z2 − z1)− (y1 − y2) = ak ,
(5.2.33)

where k ∈ Z. To solve (5.2.33) we have to consider two possibilities:

z2 − z1 ≥ y1 − y2 or z2 − z1 < y1 − y2 .

1: Let z2 − z1 ≥ y1 − y2. Then by (5.2.33), k ∈ Z>0. Hence

x1 > x2 and z2 − z1 >
ak

2
,

which implies

z2 >
ak

2
.

From (5.2.23) we get

M ≥ Sv1 + a
(a

2
+ d
)
.
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2: Let z2 − z1 < y1 − y2. We again consider two subcases:

Firstly, if x1 = x2 then (5.2.33) givesy1 − y2 = (a+ 2d)k, and

z2 − z1 = (a+ d)k,

where k ∈ Z>0. This implies that

y1 > (a+ 2d)k and z2 ≥ (a+ d)k .

Then by (5.2.3), M = ax1 + (a+ d)y1 + (a+ 2d)z1, we find that

M ≥ (a+ d)y1 + (a+ 2d)z1 > (a+ d)(a+ 2d)k + (a+ 2d)z1 > (a+ d)(a+ 2d) .

Thus

M > 2(a+ d) +
a

2
(a+ 2d) > Sv1 + a

(a
2

+ d
)
, (5.2.34)

as required.

Secondly, if x1 6= x2, so in this subcase we have three options for k.

(i) Let y1 − y2 > 2(z2 − z1). Then k ∈ Z<0 in (5.2.33), and so

k = −q; q ∈ Z>0 .

Therefore, we get

y1 − y2 = 2(z2 − z1) + aq ,

which implies

y1 ≥ aq + 2 .

Hence from (5.2.34) we have

M > Sv1 + a
(a

2
+ d
)
.

(ii) Let y1 − y2 < 2(z2 − z1). Then k ∈ Z>0 in (5.2.33), thus

2(z2 − z1) = ak + (y1 − y2) ,

and consequently

z2 >
ak

2
.

By (5.2.23), we therefore have

M ≥ Sv1 + a
(a

2
+ d
)
.
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(iii) Finally, let y1− y2 = 2(z2− z1). Then by (5.2.33), k = 0 and w.l.o.g. we can assume

that

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 . (5.2.35)

Therefore, (5.2.32) gives us

M ≥ Sv1 + a
(a

2
+ d
)
.

Collectively considering the above cases, we have shown that the largest integer M ≡ v1 (mod a),

that is nonrepresentable in at least two distinct ways as a nonnegative integer combination of

a, a+ d and a+ 2d is given by

M =
(
Sv1 + a(

a

2
+ d)

)
− a = Sv1 + a

(a
2

+ d− 1
)
.

Lemma 5.2.5. For j = 0, the number M ≡ v0 (mod a) is representable in at least two distinct

ways as a nonnegative integer linear combination of a, a+d and a+ 2d if and only if M ≥ Sv0.

Proof. Using the same techniques as in Lemmas 5.2.2 and 5.2.3, we immediately obtain the

proof of Lemma 5.2.5.

Combining Lemmas 5.2.2, 5.2.3, 5.2.4 and 5.2.5, we conclude that the largest integer M ≡
vj (mod a) with 0 ≤ j ≤ a − 1, that is nonrepresentable in at least two distinct ways as a

nonnegative integer combination of a , a+ d and a+ 2d is equal to

Sv1 + a
(a

2
+ d− 1

)
= (a+ d) + a

(a
2

+ d− 1
)

= a
(a

2

)
+ d(a+ 1) .

Thus, the 2-Frobenius number of the Frobenius basis a, a + d, a + 2d when a ≡ 0 (mod 2),

1 ≤ d < a and gcd(a, d) = 1, is given by

F2(a, a+ d, a+ 2d) = a
(a

2

)
+ d(a+ 1) ,

and hence Proposition 5.2.1.
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Remark: Lemma 5.2.4 shows that the largest integer number M ≡ vj (mod a) with 0 ≤ j ≤
a− 1, that is nonrepresented in at least two distinct ways always corresponds to the vertex v1

in Gw(a) (i.e. j = 1).

We now illustrate Proposition 5.2.1 on the following example.

Example 5.2.6. To determine the 2-Frobenius number of the arithmetic progression 10, 13, 16,

we begin by finding the largest positive integer number

Mj ≡ vj ≡ jd (mod 10) , for 0 ≤ j ≤ 9 .

for all vertices in the circulant digraphGw(10, 13, 16) (see Figure 5.5), that cannot be represented

in least two distinct ways. This means that for each vertex vj we can associate a corresponding

positive integer Mj which cannot be represented in least two distinct ways as a nonnegative

integer linear combination of the Frobenius basis 10, 13, 16.

We give the calculations for the three cases, when j ∈ {0, 1, 2}, as follows:

Figure 5.5: The circulant digraph for the arithmetic progression 10, 13, 16

Let j = 0, we have to find a largest integer number

M0 ≡ v0 ≡ 0 (mod 10) ,

that cannot represented in at least two distinct ways as a nonnegative integer linear combination

of 10, 13, 16. Therefore by Lemma 5.2.5 and Corollary 5.1.7,

M0 = Sv0 − 10 = 5(16)− 10

= 70 .
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Then from Lemma 5.2.5, it follows that, any positive integer M0 > 70 is represented in at least

two distinct ways in terms of 10, 13 and 16.

As, 80 ≡ 0 (mod 10) and 80 has at least two distinct representations in terms of 10, 13 and 16,

as follows:

80 = 10(8) = 16(5) .

Let j = 1, a largest integer number

M1 ≡ v1 ≡ 3 (mod 10) ,

that cannot represented in at least two distinct ways as a nonnegative integer linear combination

of 10, 13, 16 is given by Lemma 5.2.4 and Corollary 5.1.7, as follows

M1 = Sv1 + 10(5 + 3− 1)

13 + 70 = 83 .

Thus Lemma 5.2.4, gives us any positive integer M1 > 83 is represented in at least two distinct

ways in terms of 10, 13 and 16.

As, 93 ≡ 3 (mod 10) and 93 has at least two distinct representations in terms of 10, 13 and 16,

as follows:

93 = 13 + 10(8) = 13 + 16(5) .

Let j = 2. Therefore by Lemma 5.2.2 and Corollary 5.1.7, a largest integer number

M2 ≡ v2 ≡ 6 (mod 10) ,

will be

M2 = Sv2 = 16 .

Hence Lemma 5.2.2, yields any positive integer M2 > 16 is represented in at least two distinct

ways in terms of 10, 13, 16.

As we observe that 36 ≡ 6 (mod 10) and 36 has at least two distinct representations in terms

of 10, 13, 16 as follows:

36 = 10(2) + 16 = 10 + 13(2) .

Thus, by the same way we can find the others Mj , j = 3, 4, . . . , 9, as shown in the Table 5.1.
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Table 5.1: A largest number Mj ≡ vj (mod 10) with 0 ≤ j ≤ 9, that cannot represented in at

least two distinct ways as a nonnegative integer linear combination of 10, 13, 16.

vertices of Gw(10, 13, 16)

j v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

vj 0 3 6 9 2 5 8 1 4 7

Mj 70 83 16 29 32 45 48 61 64 77

Therefore Proposition (5.2.1) implies

F2(10, 13, 16) = max
0≤j≤9

{Mj} = max{70, 83, 16, 29, 32, 45, 48, 61, 64, 77} = 83 .

Note that by (5.2.1), F2(10, 13, 16) = 10

(
10
2

)
+ 3(10 + 1) = 83 .

We will now present two additional examples to compute the formula for F2(a, a + d, a + 2d)

when a ≡ 0 (mod 2), using the MATLAB programming software package.

Example 5.2.7. Let a = (200, 207, 214)t, the largest integer number which connot represented

in at least two distinct ways in terms of a, is

21407 = 200(106) + 207 .

Thus F2(200, 204, 214) = 21407 .

Note that by Proposition 5.2.1,

F2(200, 204, 214) = 200

(
200

2

)
+ 7(200 + 1) = 21407 .

Example 5.2.8. Let a = (350, 359, 368)t, then the largest integer number which connot repre-

sented in at least two distinct ways in terms of 350, 359, 368 is

64409 = 350(183) + 359 ,

which implies F2(350, 359, 368) = 64409 .

Note by Proposition 5.2.1,

F2(350, 359, 368) = 350

(
350

2

)
+ 9(350 + 1) = 64409 .
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5.3 The 2-Frobenius number of a = (a, a + d, a + 2d)t when a is

odd

In this section we also obtain a formula for determining F2(a, a + d, a + 2d) for three integers

in an arithmetic sequence with a ≡ 1 (mod 2) and gcd(a, d) = 1 as follows:

Proposition 5.3.1. Let a = (a, a+ d, a+ 2d)t be a positive integer vector with a ≡ 1 (mod 2),

1 ≤ d < a and gcd(a, d) = 1. Then

F2(a, a+ d, a+ 2d) = a

(
a− 1

2

)
+ d(a+ 1) . (5.3.1)

We will follow the same strategy as in the proof of Proposition 5.2.1.

Proof. Let vj be any vertex of Gw(a) with 0 ≤ j ≤ a− 1 and let M be a positive integer. Then

M ≡ vj (mod a). (5.3.2)

To prove Proposition 5.3.1, we need the following three lemmas.

Lemma 5.3.2. For 2 ≤ j ≤ a − 1, j ≡ 0, 1 (mod 2) , j 6= 0, the positive integer number

M ≡ vj (mod a) is representable in at least two distinct ways as a nonnegative integer linear

combination of a, a+ d and a+ 2d if and only if M ≥ Svj + a.

Proof. Let M ≥ Svj + a. We need to prove that M can be represented in at least two distinct

ways. By (4.2.4), vj ≡ Svj (mod a) and then vj ≡ (Svj + a) (mod a). Thus

M ≡ (Svj + a) (mod a) and M ≥ Svj + a .

It follows that there is a nonnegative integer t such that

M = (Svj + a) + ta .

By Corollary 5.1.7

Svj =


j
2(a+ 2d) , if j ≡ 0 (mod 2), j 6= 0 ,

j−1
2 (a+ 2d) + (a+ d) , if j ≡ 1 (mod 2) .
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Therefore, for j ≡ 0 (mod 2), we can write M as

M = a(t+ 1) +
j

2
(a+ 2d) , and

M = at+ 2(a+ d) +

(
j − 2

2

)
(a+ 2d) .

For j ≡ 1 (mod 2), we can write M as

M = a(t+ 1) + (a+ d) +

(
j − 1

2

)
(a+ 2d) , and

M = at+ 3(a+ d) +

(
j − 3

2

)
(a+ 2d) .

Consequently, M is represented in at least two distinct ways as a nonnegative integer linear

combination of a, a+ d and a+ 2d when j ≡ 0, 1 (mod 2) , j 6= 0.

Conversely, now let us assume that M has at least two distinct representations, then there

exist nonnegative integers x1, y1, z1, x2, y2, z2 such that

M = ax1 + (a+ d)y1 + (a+ 2d)z1 = ax2 + (a+ d)y2 + (a+ 2d)z2 . (5.3.3)

We need to show that

M ≥ Svj + a .

Since M ≡ vj (mod a), then (5.3.3) gives

M ≡ (a+ d)y1 + (a+ 2d)z1 ≡ (a+ d)y2 + (a+ 2d)z2 ≡ vj ≡ Svj (mod a) . (5.3.4)

We observe that Svj has maximum weight when j = jmax. Then

Svjmax
=


a−1
2 (a+ 2d) , if j ≡ 0 (mod 2), j 6= 0 ,

a−3
2 (a+ 2d) + (a+ d) , if j ≡ 1 (mod 2) .

We now consider four cases:

Case 1: Suppose that y1 = y2 = t ∈ Z≥0. Then z1 6= z2, and we may assume w. l. o. g. that

z1 > z2 (as we may swap z1 with z2). Thus

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .
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Next, (5.3.3) gives

((x2 − x1) + (z2 − z1)) a = 2(z1 − z2)d .

This means that either gcd(a, d) 6= 1, which contradicts our assumptions, or

(x2 − x1) + (z2 − z1) = 2dk ,

z1 − z2 = ak ,
(5.3.5)

where k ∈ Z>0. So by (5.3.5) we obtain

z1 ≥ ak.

From (5.3.3), M = ax1 + (a+ d)y1 + (a+ 2d)z1, we find that

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d)y1 + (a+ 2d)ak ≥ (a+ 2d)ak .

Hence

M ≥ a(a+ 2d) > Svjmax
+ a ≥ Svj + a . (5.3.6)

Case 2: Suppose that z1 = z2 = t ∈ Z≥0. Then y1 6= y2, and we may assume w. l. o. g. that

y1 > y2 (as we may swap y1 with y2), yields

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .

Using (5.3.3) we get

((x2 − x1) + (y2 − y1)) a = (y1 − y2)d .

Now as gcd(a, d) = 1 we must have

(x2 − x1) + (y2 − y1) = dk ,

y1 − y2 = ak ,
(5.3.7)

where k ∈ Z>0. By (5.3.7),

y1 ≥ ak .

Since M = ax1 + (a+ d)y1 + (a+ 2d)z1, we have

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d)ak + (a+ 2d)z1 ≥ (a+ d)ak ,
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which implies

M ≥ a(a+ d) > Svjmax
+ a ≥ Svj + a , (5.3.8)

as required.

Case 3: Suppose that y1 > y2 and z1 > z2. Then we have

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 . (5.3.9)

By (5.3.4) and (4.2.3), both the left and right hand sides of (5.3.9) represent two different paths

from v0 to vj in Gw(a) of weights (a+ d)y1 + (a+ 2d)z1 and (a+ d)y2 + (a+ 2d)z2. The weight

(a+d)y2 +(a+2d)z2 has to be at least minimum weight Svj of the path from v0 to vj in Gw(a).

Then by (5.3.4),

(a+ d)y1 + (a+ 2d)z1 ≡ (a+ d)y2 + (a+ 2d)z2,

and there exists a positive integer h such that

(a+ d)y1 + (a+ 2d)z1 = (a+ d)y2 + (a+ 2d)z2 + ha ≥ Svj + ha

≥ Svj + a .

Hence from (5.3.3), we get

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ Svj + a . (5.3.10)

Case 4: Suppose that y1 > y2 and z1 < z2. Then from (5.3.3), we have

((x1 − x2) + (y1 − y2)− (z2 − z1)) a = (2(z2 − z1)− (y1 − y2)) d .

Now as gcd(a, d) 6= 1 we must have

(x1 − x2) + (y1 − y2)− (z2 − z1) = dk ,

2(z2 − z1)− (y1 − y2) = ak ,
(5.3.11)

where k ∈ Z. To solve (5.3.11), we will consider two possibilities:

z2 − z1 ≥ y1 − y2 or z2 − z1 < y1 − y2.

1: If z2 − z1 ≥ y1 − y2. Then from (5.3.11), k ∈ Z>0. Thus

x1 > x2 and z2 − z1 ≥
ak + 1

2
,
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which implies

z2 ≥
ak + 1

2
.

Therefore by (5.3.3),

M ≥ (a+ d)y2 + (a+ 2d)z2 ≥ (a+ d)y2 + (a+ 2d)
ak + 1

2
,

and hence

M ≥
(
a+ 1

2

)
(a+ 2d) > Svjmax

+ a ≥ Svj + a . (5.3.12)

2: If z2 − z1 < y1 − y2. Here again we consider two subcases:

Firstly, let x1 = x2. Then (5.3.11) gives usy1 − y2 = (a+ 2d)k, and

z2 − z1 = (a+ d)k,

where k ∈ Z>0. This implies that

y1 ≥ (a+ 2d)k and z2 ≥ (a+ d)k.

Then by (5.3.8) or by (5.3.6) we get

M > Svjmax
+ a ≥ Svj + a .

Secondly, let x1 6= x2. In this subcase we have three options for k.

(i) Let y1 − y2 > 2(z2 − z1). Then k ∈ Z<0 in (5.3.11), and it follows that

k = −q; q ∈ Z>0.

Thus

y1 − y2 = 2(z2 − z1) + aq

and, consequently,

y1 > aq .

Therefore, by (5.3.8),

M > Svjmax
+ a ≥ Svj + a .
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(ii) Let y1 − y2 < 2(z2 − z1). Then k ∈ Z>0 in (5.3.11), implies

2(z2 − z1) = ak + (y1 − y2) .

Hence

z2 ≥
ak + 1

2
.

From (5.3.12) we deduce that

M > Svjmax
+ a ≥ Svj + a .

(iii) Finally, let y1 − y2 = 2(z2 − z1). Then k = 0 in (5.3.11), so w.l.o.g. we may assume

that

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2. (5.3.13)

Therefore, from (5.3.10) we get

M ≥ Svj + a .

As a result, we have shown that the largest integer M ≡ vj (mod a), with 2 ≤ j ≤ a − 1, and

j ≡ 0 (mod 2) or j ≡ 1 (mod 2), that is nonrepresentable in at least two distinct ways as a

nonnegative integer combination of a, a+ d and a+ 2d is given by

M = (Svj + a)− a = Svj .

Lemma 5.3.3. For j = 1, the number M ≡ vj (mod a) is representable in at least two distinct

ways as a nonnegative integer linear combination of a, a + d and a + 2d if and only if M ≥
Sv1 + a

(
a−1
2 + d

)
.

Proof. Assume M ≥ Sv1 + a(a−12 + d). We have to show that M can be represented in at least

two distinct ways. By (4.2.4), v1 ≡ Sv1 (mod a) so that v1 ≡ Sv1 + a(a−12 + d) (mod a). Thus

M ≡ v1 ≡ Sv1 + a

(
a− 1

2
+ d

)
(mod a) and M ≥ Sv1 + a

(
a− 1

2
+ d

)
.

It follows that there is a nonnegative integer t such that

M = Sv1 + a

(
a− 1

2
+ d

)
+ ta .
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By Corollary 5.1.7

Sv1 = a+ d .

Therefore,

M = a

(
a− 1

2
+ d+ t

)
+ (a+ d) ,

and M = at+

(
a+ 1

2

)
(a+ 2d).

Thus, M is represented in at least two distinct ways as a nonnegative integer linear combination

of a, a+ d and a+ 2d.

Conversely, let us assume M has at least two distinct representations, then (5.3.3) gives

M = ax1 + (a+ d)y1 + (a+ 2d)z1 = ax2 + (a+ d)y2 + (a+ 2d)z2 .

Since M ≡ v1 (mod a), hence from (5.3.3), we have

M ≡ (a+ d)y1 + (a+ 2d)z1 ≡ (a+ d)y2 + (a+ 2d)z2 ≡ v1 ≡ d (mod a) . (5.3.14)

We are required to show that

M ≥ Sv1 + a

(
a− 1

2
+ d

)
.

Again, we have to consider four cases here:

Case 1: Suppose that y1 = y2 = t ∈ Z>0. Then z1 6= z2, and we may assume w.l.o.g. that

z1 > z2 (as we may swap z1 with z2) and hence

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .

Next (5.3.3) gives (
(x2 − x1) + (z2 − z1)

)
a = 2(z1 − z2)d .

Now as gcd(a, d) = 1 we must have

(x2 − x1) + (z2 − z1) = 2dk ,

z1 − z2 = ak ,
(5.3.15)

where k ∈ Z>0. By (5.3.15),

z1 ≥ ak.
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Then from expression (5.3.3), M = ax1 + (a+ d)y1 + (a+ 2d)z1, we have

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d)y1 + (a+ 2d)ak .

Therefore,

M ≥ (a+ 2d)a > Sv1 + a

(
a− 1

2
+ d

)
. (5.3.16)

Case 2: Suppose that z1 = z2 = t ∈ Z≥0. Then y1 6= y2, we and may assume w. l. o. g. that

y1 > y2 (as we may else swap y1 with y2), implying that

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 .

Next (5.3.3) gives

(
(x2 − x1) + (y2 − y1)

)
a = (y1 − y2)d .

This means that either gcd(a, d) 6= 1, which contradicts our assumptions, or

(x2 − x1) + (y2 − y1) = dk ,

y1 − y2 = ak ,
(5.3.17)

where k ∈ Z>0. Then from (5.3.17) it follows that,

y1 ≥ a+ y2 . (5.3.18)

Hence by (5.3.14) and (5.3.18) we have

(a+ d)(a+ y2) + (a+ 2d)t ≡ (a+ d)y2 + (a+ 2d)t ≡ v1 ≡ d (mod a).

This implies that

y2 = (sa+ 1)− 2t, s ∈ Z≥0 . (5.3.19)

In particular,

y2 = 0 if t =
sa+ 1

2
.

Therefore, from (5.3.3), M = ax1 + (a+ d)y1 + (a+ 2d)z1, (5.3.19) and (5.3.18) we find that

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d)(ak + 1) ≥ (a+ d)(a+ 1) .
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Thus

M >
a+ 1

2
(a+ 2d) = Sv1 + a

(
a− 1

2
+ d

)
, (5.3.20)

as required.

Case 3: Suppose that y1 > y2 and z1 > z2. Then we have

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 . (5.3.21)

Hence by (5.3.14) and (4.2.3), we have two different paths from v0 to v1 in Gw(a) of weights

(a+ d)y1 + (a+ 2d)z1 and (a+ d)y2 + (a+ 2d)z2. The weight (a+ d)y2 + (a+ 2d)z2 has to be

at least minimum weight Sv1 of the path from v0 to v1 in Gw(a). Therefore by (5.3.14),

(a+ d)y1 + (a+ 2d)z1 ≡ (a+ d)y2 + (a+ 2d)z2 (mod a),

and there is a positive integer k such that

(a+ d)y1 + (a+ 2d)z1 = (a+ d)y2 + (a+ 2d)z2 + ak ≥ Sv1 + ak . (5.3.22)

Since M = ax1 + (a+ d)y1 + (a+ 2d)z1, we have

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ Sv1 + ak . (5.3.23)

In order to prove M ≥ Sv1 + a
(
a−1
2 + d

)
, we therefore only need to show that

k ≥ a− 1

2
+ d .

In order to take any path from v0 to v1 in Gw(a, a+ d, a+ 2d) with a ≡ 1 (mod 2), we have to

consider four possibilities:

1. A v0 to v1 path P of weight a+ d.

2. A v0 − v1 path W has the form

W = R ∪D ,

where R is a (nontrivial) v0 − v0 path (or a full cycle) in Gw(a) and D is an arc from v0

to v1 of weight a + d. Therefore, by Theorem 5.1.6, the minimum weight m of the path

W is

m =
a− 1

2
(a+ 2d) + 2(a+ d) , (5.3.24)

as the weight of R is

(
a−1
2 (a+ 2d) + (a+ d)

)
and the weight of D is a+ d.
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3. A v0 − v1 path U has the form

U = S ∪ J ,

where S is a v0 − va−1 path in Gw(a) and J is an arc from va−1 to v1 of weight a + 2d.

Hence, by Theorem 5.1.1, the minimum weight n of the path U is

n =
a− 1

2
(a+ 2d) + (a+ 2d) =

a+ 1

2
(a+ 2d) , (5.3.25)

as the weight of S is a−1
2 (a+ 2d) and the weight of J is a+ 2d.

4. A v0 − v1 path V has the form

V = S ∪N ∪D ,

where S is a v0−va−1 path in Gw(a) and N is an arc from va−1 to v0 = 0 of weight a+d.

So, from Theorem 5.1.1, the minimum weight z of the path V is

z =

(
a− 1

2
(a+ 2d)

)
+ 2(a+ d) , (5.3.26)

which agrees with weight given in (5.3.24).

By comparing (5.3.24) with (5.3.25), we can easily find that the minimum weight n is less than

the minimum weight m, where

n = m− a .

We can rewrite the weight n as follows

n = (a+ d) + a

(
a− 1

2
+ d

)
= Sv1 + a

(
a− 1

2
+ d

)
.

Thus, the minimum weight of a v0 − v1 path in Gw(a) around the full cycle will be

Sv1 + a

(
a− 1

2
+ d

)
.

This implies that, the value of a positive integer ak in (5.3.22) has to be at least a
(
a−1
2 + d

)
and consequently

k ≥ a− 1

2
+ d .
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Therefore, from (5.3.23) we deduce that

M ≥ Sv1 + ak ≥ Sv1 + a

(
a− 1

2
+ d

)
, (5.3.27)

as required.

Case 4: Suppose that y1 > y2 and z1 < z2. Then from (5.3.3), we have

((x1 − x2) + (y1 − y2)− (z2 − z1)) a = (2(z2 − z1)− (y1 − y2)) d .

Now as know gcd(a, d) = 1 we must have

(x1 − x2) + (y1 − y2)− (z2 − z1) = dk ,

2(z2 − z1)− (y1 − y2) = ak ,
(5.3.28)

where k ∈ Z. To solve (5.3.28) we will consider two possibilities:

z2 − z1 ≥ y1 − y2 or z2 − z1 < y1 − y2.

1: Let z2 − z1 ≥ y1 − y2. Then from (5.3.28), k ∈ Z>0 and hence

z2 − z1 ≥
ak + 1

2

which implies that

z2 ≥
ak + 1

2
.

From (5.3.3), M = ax1 + (a+ d)y1 + (a+ 2d)z1, we get

M ≥ (a+ d)y1 + (a+ 2d)z1 ≥ (a+ d)y1 + (a+ 2d)
ak + 1

2
.

Therefore,

M ≥ a+ 1

2
(a+ 2d) = Sv1 + a

(
a− 1

2
+ d

)
. (5.3.29)

2: Let z2 − z1 < y1 − y2. Again we consider two subcases:

Firstly, if x1 = x2. Then from (5.3.28) we find thaty1 − y2 = (a+ 2d)k, and

z2 − z1 = (a+ d)k,

where k ∈ Z>0. Thus we have

y1 ≥ (a+ 2d)k and z2 ≥ (a+ d)k >
ak + 1

2
.
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Therefore by (5.3.29),

M ≥ Sv1 + a

(
a− 1

2
+ d

)
.

Secondly, if x1 6= x2. In this subcase we have three options for k.

(i) Let y1 − y2 > 2(z2 − z1). Then k ∈ Z<0 in (5.3.28) and so

k = −q; q ∈ Z>0.

Therefore we have

y1 − y2 = 2(z2 − z1) + aq ,

which implies

y1 ≥ aq + 2 .

Hence by (5.3.20),

M > Sv1 + a

(
a− 1

2
+ d

)
.

(ii) Let y1 − y2 < 2(z2 − z1). Then k ∈ Z>0 in (5.3.28), thus

2(z2 − z1) = ak + (y1 − y2)

implies

z2 − z1 >
ak + 1

2
,

and hence

z2 >
ak + 1

2
.

Using (5.3.29), we get

M ≥ Sv1 + a

(
a− 1

2
+ d

)
.

(iii) Finally, let y1− y2 = 2(z2− z1). Then by (5.3.28), k = 0 and we can assume w.l.o.g.,

that

(a+ d)y1 + (a+ 2d)z1 > (a+ d)y2 + (a+ 2d)z2 . (5.3.30)

Hence (5.3.27), yields

M ≥ Sv1 + a

(
a− 1

2
+ d

)
.
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Therefore by considering all above cases, we have proved that the largest integerM ≡ v1 (mod a),

that is nonrepresentable in at least two distinct ways as a nonnegative integer combination of

a, a+ d and a+ 2d is given by

M =

(
Sv1 + a

(
a− 1

2
+ d

))
− a = Sv1 + a

(
a− 1

2
+ d− 1

)
.

Lemma 5.3.4. For j = 0, the number M ≡ vj (mod a) is representable in at least two distinct

ways as a nonnegative integer linear combination of a, a+d and a+ 2d if and only if M ≥ Sv0.

Proof. Using the same techniques as in Lemma 5.3.2 and 5.3.3, we immediately get the proof

of Lemma 5.3.4.

By combining Lemmas 5.3.2, 5.3.3, and 5.3.4, we conclude that the largest integer M ≡
vj (mod a), with 0 ≤ j ≤ a − 1, that is nonrepresentable in at least two distinct ways as

a nonnegative integer combination of a, a+ d and a+ 2d is equal to

Sv1 + a

(
a− 1

2
+ d− 1

)
= (a+ d) + a

(
a− 1

2
+ d− 1

)
= a

(
a− 1

2

)
+ d(a+ 1) .

Thus, the 2-Frobenius number of the Frobenuis basis a, a + d, a + 2d when a ≡ 1 (mod 2),

1 ≤ d < a and gcd(a, d) = 1 will be

F2(a, a+ d, a+ 2d) = a

(
a− 1

2

)
+ d(a+ 1) .

This completes the proof of Proposition 5.3.1.

Furthermore, Lemma 5.3.3 shows that the largest integer number M ≡ vj (mod a), with

0 ≤ j ≤ a − 1, that is nonrepresented in at least two distinct ways always corresponds to

the vertex v1 in Gw(a) (i.e. j = 1).

We now illustrate Proposition 5.3.1 by the following example.
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Example 5.3.5. To compute the 2-Frobenius number of the arithmetic sequence 9, 13, 17, we

begin by finding the largest integer number

Mj ≡ vj (mod 9) 0 ≤ j ≤ 8 .

that cannot be represented in at least two distinct ways. This means that, for each vertex

vj of Gw(9, 13, 17) (as shown in Figure 5.6) we can associate a corresponding positive integer

Mj which cannot be represented in least two distinct ways as a nonnegative integer linear

combination of 9, 13 and 17.

We give the calculations for the three cases, when j ∈ {0, 3, 8}, as follows:

Figure 5.6: The circulant digraph of the arithmetic progression 9, 13, 17

Let j = 0, we have to find the largest integer number

M0 ≡ v0 ≡ 0 (mod 9) ,

that cannot represented in at least two distinct ways as a nonnegative integer linear combination

of 9, 13, 17. Therefore by Lemma 5.3.4 and Corollary 5.1.7,

M0 = Sv0 − 9 = (4(17) + 13)− 9

= 72 .

From Lemma 5.3.4, it follows that any positive integer M0 > 72 is represented in at least two

distinct ways in terms of 9, 13, 17.

As, 81 ≡ 0 (mod 9) and 81 has at least two distinct representations in terms of 9, 13, 17 as
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follows:

81 = 13 + 17(4) = 9(9) .

Let j = 1. Then by Lemma 5.3.3 and Corollary 5.1.7, we deduce that largest integer number

M1 ≡ v1 ≡ 4 (mod 9) ,

will be

M1 =

(
Sv1 + 9(

8

2
+ 4)

)
− 9

= 13 + 63 = 76 .

Using Lemma 5.3.3 we obtain that, any positive integer M1 > 76 is represented in at least two

distinct ways in terms of 9, 13, 17.

As, 85 ≡ 4 (mod 9) and 85 has at least two distinct representations in terms of 9, 13, 17, as

follows:

85 = 9(8) + 13 = 17(5) .

Let j = 8. Then from Lemma 5.3.2 and Corollary 5.1.7 we get, the largest integer number

M8 ≡ v8 ≡ 5 (mod 9) ,

is given by

M8 = Sv8 = 17(4) = 68 .

Hence Lemma 5.2.2 gives us, any positive integer M8 > 68 is represented in at least two distinct

ways in terms of 9, 13, 17.

As see 95 ≡ 5 (mod 9) and 95 has at least two distinct representations terms of 9, 13, 17, as

follows:

95 = 9 + 13(4) + 17 = 13(6) + 17 = 9(3) + 17(4) .

Then by the same way we can find the others Mj , j = 2, 3, . . . , 7 as shown in the Table 5.2.

Hence from Proposition 5.3.1, 2-Frobenius number of the arithmetic progression 9, 13, 17 is

therefore

F2(9, 13, 17) = max
0≤j≤8

{Mj} = max{72, 76, 17, 30, 34, 47, 51, 64, 68} = 76 .
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Table 5.2: The largest number Mj ≡ vj (mod 9) with 0 ≤ j ≤ 8, that cannot represented in at

least two distinct ways as a nonnegative integer linear combination of 9, 13 and 17

vertices of Gw(9, 13, 17)

j v0 v1 v2 v3 v4 v5 v6 v7 v8

vj 0 4 8 3 7 2 6 1 5

Mj 72 76 17 30 34 47 51 64 68

Note that by (5.3.1),

F2(9, 13, 17) = 9

(
8

2

)
+ 4(9 + 1) = 76 .

In addition, let us present another two examples to compute the formula for F2(a), using

MATLAB.

Example 5.3.6. Let a = (357, 362, 367)t. The largest integer number which connot represented

in at least two distinct ways in terms of a is

65336 = 182(357) + 362 .

Hence the 2-Frobenius number will be

F2(357, 362, 367) = 65336 .

Note that by Proposition 5.3.1

F2(357, 362, 367) = 357

(
357− 1

2

)
+ 5(357 + 1) = 65336 .

Example 5.3.7. For a = (215, 221, 227)t, the largest integer number which connot represented

in at least two distinct ways in terms of 215, 221, 227 is

24301 = (112)215 + 221 .

This implies that

F2(215, 221, 227) = 24301 .

Note that by Proposition 5.3.1

F2(215, 221, 227) = 215

(
214

2

)
+ 6(215 + 1) = 24301 .
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Now we are in a position to present the main result of this chapter.

Theorem 5.3.8. Let a and d be coprime positive integers such that 1 ≤ d < a. Then

F2(a, a+ d, a+ 2d) = a
⌊a

2

⌋
+ d(a+ 1) . (5.3.31)

Proof. The proof its follows immediately from Propositions 5.2.1 and 5.3.1.

5.3.1 Conclusion for F2(a, a + d, a + 2d)

Let a, a+ d, a+ 2d be positive integers with 1 ≤ d < a and gcd(a, d) = 1. Then we have

F2(a, a+ d, a+ 2d) = F1(a, a+ d, a+ 2d) + (a+ 2d) . (5.3.32)

126



Chapter 6

The 2-Frobenius numbers of

a = (a, a + d, a + 2d, a + 3d)t

In this chapter we extend the results of Chapter 5 by introducing the positive integer a+ 3d to

the arithmetic sequence a, a+ d, a+ 2d which used in Chapter 5 to be the 4 th term of it. This

yields an explicit formula for computing the 2-Frobenius number F2(a, a+ d, a+ 2d, a+ 3d) for

four integers in an arithmetic sequence.

We give a sketch of the proof of this formula omitting some technical details due to the size

limitation. The method of proof employed here slightly different compared with that used in

Chapter 5.

In order to simplify the argument, we first need to set up some notation. Let Gw(a) be the

circulant digraph associated with a positive integer vector a = (a, a + d, a + 2d, a + 3d)t with

1 ≤ d < a and gcd(a, d) = 1.

Recall that any arc on the graph Gw(a) of weight a+ 2d is the jump step, or jump and any arc

of weight a+d on the graph Gw(a) is shift step or shift. Moreover, any arc on the graph Gw(a)

of weight a+ 3d will be called a long jump step, or long jump. Then any path T in Gw(a) that

consists of K long jumps, L jumps and N shifts has the form

T = KJl + LJ +NS ,

where Jl, J and S stand for long jumps, jumps and shifts, respectively.
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Figure 6.1: The Frobenius circulant graph of the arithmetic progression 13, 18, 23, 28

For example Figure 6.1 shows the circulant digraph of the arithmetic progression 13, 18, 23, 28.

Furthermore, deg+Gw(a)(vj) = 3, for 0 ≤ j ≤ a − 1, we have one shift S (i.e. an arc of weight

a+ d), namely

vj + S ≡ vj+1 (mod a) .

An one jump J (i.e. an arc of weight a+ 2d), namely

vj + J ≡ vj + 2S ≡ vj+2 (mod a) .

This implies that J ≡ 2S .
An one long jump Jl (i.e. an arc of weight a+ 3d), namely

vj + Jl ≡ vj + J + S ≡ vj + 3S ≡ vj+3 (mod a) . (6.0.1)

Hence, Jl ≡ J + S ≡ 3S , (see Figure 6.1).

Form (6.0.1), it can be seen that any path from vj to vj+3 in Gw(a, a+d, a+2d, a+3d) contains

either a long jump or one jump and one shift or three shifts and since

a+ 3d < (a+ 2d) + (a+ d) < 3(a+ d) .

Consequently, minimum weight of a path from vj to vj+3 in Gw(a, a+ d, a+ 2d, a+ 3d) will be

a+ 3d.
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6.1 The shortest path method

The following theorem gives an explicit formula for the shortest path and the distance between

any two distinct vertices of Gw(a, a+ d, a+ 2d, a+ 3d).

Theorem 6.1.1 (Minimum Path Theorem). The minimum path from vertex vi to vertex vj in

Gw(a), with 0 ≤ i < j ≤ a− 1, consists of exactly
(
j−i−δ

3

)
long jump steps, δ(2− δ) shift steps

and δ(δ−1)
2 jump steps. That is the minimum path from vertex vi to vertex vj is given by(

j − i− δ
3

)
Jl + δ(2− δ)S +

δ(δ − 1)

2
J ,

where δ ≡ j − i (mod 3), with δ ∈ {0, 1, 2}.

Proof. Let vi and vj be any two distinct vertices of Gw(a, a + d, a + 2d, a + 3d). To find the

minimum vi − vj path, we have to consider three cases:

Case 1: Let us suppose that j − i ≡ 0 (mod 3), (i.e. δ = 0) and let K be the maximum number of

long jumps in a path from vi to vj that does not pass the vertex vj and where no vertex

and no arc is repeated (i.e. vi +K Jl ≡ vj (mod a)). Then any path from vi to vj can be

written as

(K −M)Jl + (3M − 2N)S +N J . (6.1.1)

where K = j−i
3 . Since M and N must be positive integers then from (6.1.1) we get

0 ≤M ≤ K and 0 ≤ N ≤
⌊

3

2
M

⌋
.

Substituting the weight for the long jump steps, shift steps and jump steps into (6.1.1),

gives us

(K −M) (a+ 3d) + (3M − 2N) (a+ d) +N (a+ 2d)

= K(a+ 3d) + 2Ma−Na .

Now let c(M,N) be the weight function in terms of M and N defined by

c(M,N) = K(a+ 3d) + 2Ma−Na .
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Since K,M,N, a, d are all positive integers and N ≤ 2M , the minimum weight occurs

when N = 2M . In particular, N = 2M when M = 0 such that N = 0. Therefore we have

min
0≤M≤K, 0≤N≤b 3M2 c

c(M,N) = c(0, 0) = K(a+ 3d) . (6.1.2)

Substituting K into (6.1.2) we find that, the minimum weight of the path (distance) from

vi to vj in Gw(a), with 0 ≤ i < j ≤ a− 1 and j − i ≡ 0 (mod 3), is given by

j − i
3

(a+ 3d) .

Consequently, the shortest path Q from vi to vj in Gw(a), when j−i ≡ 0 (mod 3), consists

of exactly j−i
3 long jump steps. That is

Q =
j − i

3
Jl .

Case 2: Let us suppose that j − i ≡ 1 (mod 3), (i.e. δ = 1) and let K be the maximum number of

long jumps in a path from vi to vj−1 that does not pass the vertex vj and where no vertex

and no arc is repeated (i.e. vi +K Jl + S ≡ vj (mod a)). Then any path from vertex vi

to vertex vj in Gw(a) can be written as

(K −M)Jl + (3M − 2N + 1)S +N J , (6.1.3)

where K = j−i−1
3 . Since M and N must be positive integers then from (6.1.3) we find

that

0 ≤M ≤ K and 0 ≤ N ≤
⌊

3M + 1

2

⌋
.

Substituting the weight for the long jump steps, shift steps and jump steps into (6.1.3)

gives us

(K −M) (a+ 3d) + (3M − 2N + 1) (a+ d) +N (a+ 2d)

= K(a+ 3d) + (a+ d) + 2Ma−Na .

Now let

c(M,N) = K(a+ 3d) + (a+ d) + 2Ma−Na .

Since K,M,N, a, d are all positive integers and 0 ≤ N ≤
⌊
3M+1

2

⌋
≤ 2M , the minimum

weight occurs when N = 2M . In particular N = 2M if either M = 0 such that N = 0 or

M = 1 such that N = 2. Thus

min
0≤M≤K, 0≤N≤b 3M+1

2 c
c(M,N) = c(0, 0) = c(1, 2) = K(a+ 3d) + (a+ d) . (6.1.4)
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Substituting K into (6.1.4) yields the distance from vi to vj in Gw(a), with 0 ≤ i < j ≤
a− 1 and j − i ≡ 1 (mod 3), is

j − i− 1

3
(a+ 3d) + (a+ d) .

Then, the minimum path Q from vi to vj in Gw(a), when j − i ≡ 1 (mod 3), consists of

exactly j−i−1
3 long jump steps and one shift step. That is

Q =
j − i− 1

3
Jl + S .

Case 3: Let us suppose that j − i ≡ 2 (mod 3), (i.e. δ = 2) and let K be the maximum number

of long jumps in a path from vi to vj−2 that does not pass the vertex vj and where no

vertex and no arc is repeated (i.e. vi +K Jl + 2S ≡ vi +K Jl + J ≡ vj (mod a)). Then

any path from vi to vj in Gw(a) can be written as

(K −M)Jl + (3M − 2N + 2)S +N J , (6.1.5)

where K = j−i−2
3 , 0 ≤M ≤ K and 0 ≤ N ≤

⌊
3M+2

2

⌋
.

Substituting the weight for the long jump steps, shift steps and jump steps into expression

(6.1.5), gives us

(K −M) (a+ 3d) + (3M − 2N + 2) (a+ d) +N (a+ 2d)

= K(a+ 3d) + 2(a+ d) + 2Ma−Na .

Now let

c(M,N) = K(a+ 3d) + 2(a+ d) + 2Ma−Na .

As we know that K,M,N, a, d are all positive integers and 0 ≤ N ≤
⌊
3M+2

2

⌋
, the minimum

weight occurs when N > 2M . In particular N > 2M when M = 0 and consequently

N = 1. Hence we have

min
0≤M≤K, 0≤N≤b 3M+2

2 c
c(M,N) = c(0, 1) = K(a+ 3d) + (a+ 2d) . (6.1.6)

Substituting K into (6.1.6), we get the distance from vi to vj in Gw(a), with 0 ≤ i < j ≤
a− 1 and j − i ≡ 2 (mod 3) is

j − i− 2

3
(a+ 3d) + (a+ 2d) .

Therefore, the minimum path Q from vi to vj when j − i ≡ 2 (mod 3), consists of exactly
j−i−2

3 long jump steps and one jump step. That is

Q =
j − i− 2

3
Jl + J .
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Combining the results in the three cases given above, we see that the weight of any path from

vi to vj in Gw(a), for 0 ≤ i < j ≤ a− 1, can be written as

(K −M) (a+ 3d) + (3M − 2N + δ) (a+ d) +N (a+ 2d)

= K (a+ 3d) + δ(a+ d) + 2Ma−Na .

where

δ ≡ (j − i) (mod 3),with δ ∈ {0, 1, 2},

K =
j − i− δ

3
;

(i.e. K be the maximum number of long jumps in a path from vi to vj−δ that does not pass the

vertex vj and where no vertex and no arc is repeated) ,

0 ≤M ≤ K , and

0 ≤ N ≤
⌊

3M + δ

2

⌋
.

Now let

c(M,N) = K (a+ 3d) + δ(a+ d) + 2Ma−Na .

Since the path needs to be minimum, then the value of M has to be minimum (i.e. M = 0),

and the value of N has to be maximum (i.e. N =
⌊
δ
2

⌋
). So for our purpose it can easily shown

that

N =

⌊
δ

2

⌋
=
δ(δ − 1)

2
,

since δ can only take the values 0, 1, 2. Then the minimum weight of the path (distance) from

vi to vj occurs when M = 0, and consequently N = δ(δ−1)
2 . That is

132



6.1. The shortest path method

min
0≤M≤K, 0≤N≤b 3M+δ

2
c
c(M,N) = K(a+ 3d) + δ(a+ d)−

⌊
δ

2

⌋
a

= K(a+ 3d) + δ(a+ d)− δ(δ − 1)

2
a

= K(a+ 3d) + 2δ(a+ d)− δ(a+ d)− δ(δ − 1)

2
a

= K(a+ 3d) + 2δ(a+ d)− 1

2
δa− δd− 1

2
δ2a

= K(a+ 3d) + 2δ(a+ d)− 1

2
δ(a+ 2d)− 1

2
δ2a

= K(a+ 3d) + 2δ(a+ d)− δ2(a+ d) + δ(δ − 1)d+
δ(δ − 1)

2
a

= K(a+ 3d) + δ(2− δ)(a+ d) +
δ(δ − 1)

2
(a+ 2d).

(6.1.7)

Substituting the value of K into (6.1.7) we obtain the distance from vi to vj in Gw(a), with

0 ≤ i < j ≤ a− 1, is given by(
j − i− δ

3

)
(a+ 3d) + δ(2− δ)(a+ d) +

δ(δ − 1)

2
(a+ 2d) .

This implies that, the minimum path from vi to vj in Gw(a) with 0 ≤ i < j ≤ a − 1, consists

of exactly
(
j−i−δ

3

)
long jump steps, δ(2− δ) shift steps and δ(δ−1)

2 jump steps.

This completes the proof of Theorem 6.1.1.

In the next theorem we give also a formula of the shortest path between any two vertices vi and

vj in Gw(a), that has opposite direction of the shortest path, that defined in Theorem 6.1.1

(i.e., in this case i > j).

Theorem 6.1.2. The minimum path T from vertex vi to vertex vj in Gw(a), with 0 ≤ j < i ≤
a− 1, consists of exactly

(
a+j−i−δ

3

)
long jump steps, δ(2− δ) shift steps and δ(δ−1)

2 jump steps.

That is

T =

(
a+ j − i− δ

3

)
Jl + δ(2− δ)S +

δ(δ − 1)

2
J ,

where δ ≡ a+ j − i (mod 3), δ ∈ {0, 1, 2}.

Proof. The graph Gw(a) is a symmetric. Let R be the function that maps vertex vi to vertex

v0 = 0 for all 1 ≤ i ≤ a − 1, so that R(vi) = v0 and R(vj) = vj+(a−i) (from the geometry
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viewpoint we rotates vi anti-clockwise by a−i
a 2π on the graph). Setting j′ = j + (a − i) gives

R(vj) = vj′ and R(vi) = v0. Now we can apply Theorem 6.1.1 to deduce the result.

Combining Theorems 6.1.1 and 6.1.2, we immediately obtain the following theorem.

Theorem 6.1.3. Let a
′ ≡ a (mod 3), with a

′ ∈ {0, 1, 2}. For 0 ≤ j ≤ a − 1 the minimum

(nontrivial) path Q from vertex vj back to itself in Gw(a), consists of exactly a−a′
3 long jump

steps, a
′
(2 − a′) shift steps and a

′
(a
′−1)
2 jump steps. That is the minimum (nontrivial) vj − vj

path Q is given by

Q =
a− a′

3
Jl + a

′
(2− a′)S +

a
′
(a
′ − 1)

2
J .

Proof. Let vj be any vertex of Gw(a, a+ d, a+ 2d, a+ 3d). We need to show that the minimum

weight of a (nontrivial) path Q (or distance) from vj back to vj in Gw(a), is

a− a′

3
(a+ 3d) + a

′
(2− a′)(a+ d) +

a
′
(a
′ − 1)

2
(a+ 2d) ,

where a
′ ≡ a (mod 3), a

′ ∈ {0, 1, 2} .

Since deg−Gw(vj) = 3, we have

vj−1 + S ≡ vj (mod a) ,

vj−2 + J ≡ vj (mod a) , and

vj−3 + Jl ≡ vj (mod a) ,

where S, J and Jl are arcs in Gw(a, a + d, a + 2d, a + 3d) of weight a + d, a + 2d and a + 3d,

respectively.

Then, in order to take any (nontrivial) path from vj back to vj in Gw(a). We will consider

three possibilities according to the in-neighborhood NGw(vj) of the vertex vj , (as illustrate in

Figure 6.2).

1. A vj − vj path P1 has the form

P1 = R ∪ S ,

where R is any vj − vj−1 path and S is an arc from vj−1 to vj of weight a+ d. By using

Theorems 6.1.2 and 6.1.1, the minimum weight x of the path P1 is given by
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Figure 6.2: Three paths from vertex vj−3 to vertex vj

x =



(
a−3
3 (a+ 3d) + (a+ 2d)

)
+ (a+ d), if a ≡ 0 (mod 3) ,

(
a−1
3 (a+ 3d)

)
+ (a+ d), if a ≡ 1 (mod 3) ,

(
a−2
3 (a+ 3d) + (a+ d)

)
+ (a+ d), if a ≡ 2 (mod 3) .

(6.1.8)

2. A vj − vj path P2 has the form

P2 = U ∪ J ,

where U is any vj − vj−2 path and J is an arc from vj−2 to vj of weight a+ 2d. Therefore

from Theorems 6.1.2 and 6.1.1, the minimum weight y of the path P2 will be

y =



(
a−3
3 (a+ 3d) + (a+ d)

)
+ (a+ 2d), if a ≡ 0 (mod 3) ,

(
a−4
3 (a+ 3d) + (a+ 2d)

)
+ (a+ 2d), if a ≡ 1 (mod 3) ,

(
a−2
3 (a+ 3d)

)
+ (a+ 2d), if a ≡ 2 (mod 3) .

(6.1.9)

3. A vj − vj path P3 has form

P3 = V ∪ Jl ,

135



Chapter 6. The 2-Frobenius numbers of a = (a, a+ d, a+ 2d, a+ 3d)t

where V is any vj − vj−3 path and Jl is an arc from vj−3 to vj of weight a + 3d. Then

again from Theorems 6.1.2 and 6.1.1, the minimum weight z of the path P3 is given by

z =



(
a−3
3 (a+ 3d)

)
+ (a+ 3d), if a ≡ 0 (mod 3) ,

(
a−4
3 (a+ 3d) + (a+ d)

)
+ (a+ 3d), if a ≡ 1 (mod 3),

(
a−5
3 (a+ 3d) + (a+ 2d)

)
+ (a+ 3d), if a ≡ 2 (mod 3) .

(6.1.10)

For example, Figure 6.3 shows the shortest path from v2 back to itself in Gw(11, 15, 19, 23).

Figure 6.3: The shortest (nontrivial) path from v2 back to v2 in Gw(11, 15, 19, 23) consists of

exactly 3 long jumps and one jump

Therefore, by comparing (6.1.8), (6.1.9) and (6.1.10), we conclude that the minimum weight of

a (nontrivial) path from vj back to vj , will be the weight z. We can rewrite the weight z as

follows

z =
a− a′

3
(a+ 3d) + a

′
(2− a′)(a+ d) +

a
′
(a
′ − 1)

2
(a+ 2d) ,

where a
′ ≡ a (mod 3), a

′ ∈ {0, 1, 2} .

Consequently, the minimum weight of a (nontrivial) path (distance) from vj back to itself, is

given by

a− a′

3
(a+ 3d) + a

′
(2− a′)(a+ d) +

a
′
(a
′ − 1)

2
(a+ 2d) .
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Thus, the minimum (nontrivial) path Q from vj back to itself, consists of exactly a−a′
3 long

jumps, a
′
(2− a′) shifts and a

′
(a
′−1)
2 jumps. That is

Q =
a− a′

3
Jl + a

′
(2− a′)S +

a
′
(a
′ − 1)

2
J .

The theorem is proved.

Corollary 6.1.4 (To Theorems 6.1.1 and 6.1.2). For any 0 ≤ j ≤ a−1, let Svj be the minimum

weight of the path from 0 to vj in Gw(a, a+ d, a+ 2d, a+ 3d). Then

Svj =



a−a′
3 (a+ 3d) + a

′
(a
′−1)
2 (a+ 2d) + a

′
(2− a′)(a+ d) , if j = 0 ,

j−1
3 (a+ 3d) + (a+ d) , if j ≡ 1 (mod 3) ,

j−2
3 (a+ 3d) + (a+ 2d) , if j ≡ 2 (mod 3) ,

j
3(a+ 3d) , if j ≡ 0 (mod 3), j 6= 0 ,

where a
′ ≡ a (mod 3), a

′ ∈ {0, 1, 2}.

Proof. The proof follows directly from Theorems 6.1.1 and 6.1.2.

More generally, according to Corollaries 5.1.7 and 6.1.4, we propose the following conjecture.

Conjecture 1. For any 0 < j ≤ a− 1, let Svj be the minimum weight of the path from v0 = 0

to vj in Gw(a, a+ d, a+ 2d, . . . , a+ nd). Then

Svj =


j−t
n (a+ nd) + (a+ td) , if j ≡ t (mod n) , 1 ≤ t < n

j
n(a+ nd) , if j ≡ 0 (mod n), j 6= 0 .

An important step in the proof of the main result in this chapter is the following theorem.

Theorem 6.1.5 (Unique Representation of Svj ). With 1 ≤ j ≤ a− 1, the minimum weight Svj

of the path from 0 to vj, given in Corollary 6.1.4, has exactly one representation in terms of

a, a+ d, a+ 2d and a+ 3d when j ≡ 0 (mod 3), j 6= 0 or j ≡ 2 (mod 3) or j = 1.
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Proof. Assume, to the contrary, that Svj for 1 < j ≤ a − 1, can be represented in at least two

distinct ways. There exits nonnegative integers x1, x2, x3, x4, y1, y2, y3, y4 with xj 6= yj such that

Svj = ax1 + (a+ d)x2 + (a+ 2d)x3 + (a+ 3d)x4 , and

Svj = ay1 + (a+ d)y2 + (a+ 2d)y3 + (a+ 3d)y4 .

we will consider three cases, according as j ≡ 0 (mod 3), j 6= 0 or j ≡ 2 (mod 3) or j = 1.

Case 1: Suppose that j ≡ 0 (mod 3), j 6= 0. Then by Corollary 6.1.4

Svj =
j

3
(a+ 3d) .

By assumption, Svj can be represented in at least two distinct ways, as

Svj =
j

3
(a+ 3d) = ay1 + (a+ d)y2 + (a+ 2d)y3 + (a+ 3d)y4 . (6.1.11)

Hence (
j

3
− y1 − y2 − y3 − y4

)
a =

(
y2 + 2y3 + 3y4 − j

)
d .

This means that either gcd(a, d) 6= 1, which contradicts our assumption, or

j − 3(y1 + y2 + y3 + y4) = 3dt , (6.1.12a)

y2 + 2y3 + 3y4 − j = at , (6.1.12b)

with t ∈ Z. We now have three options for t. If t = 0, then from (6.1.12a) and (6.1.12b) we

have

3y1 + 2y2 + y3 = 0.

It follows that y3 = y1 = y2 = 0 and from (6.1.11), implying

y4 =
j

3
.

Thus, the representations of Svj in (6.1.11) are the same. If t > 0, therefore (6.1.12a) and

(6.1.12b) gives us

3dt+ at+ 3y1 + 2y2 + y3 = 0,

contradicting the fact that a > 1 and d ≥ 1.

Finally, if t < 0, then t = −h, where h is a positive integer number. Substituting t into (6.1.12b)

we obtain

y2 + 2y3 + 3y4 + ah = j.
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This implies that j ≥ ah, which again contradicts our assumption, that j ≤ a− 1.

Therefore, we have shown that Svj , is represented in exactly one way in terms of a, a+d, a+2d

and a+ 3d, when j ≡ 0 (mod 3), j 6= 0.

Case 2: Suppose that j ≡ 2 (mod 3). Then by Corollary 6.1.4

Svj =
j − 2

3
(a+ 3d) + (a+ 2d) .

Since Svj is represented in at least two distinct ways, we have

Svj =
j − 2

3
(a+ 3d) + (a+ 2d) = ay1 + (a+ d)y2 + (a+ 2d)y3 + (a+ 3d)y4 (6.1.13)

and, consequently(
j + 1

3
− y1 − y2 − y3 − y4

)
a =

(
− j + y2 + 2y3 + 3y4

)
d .

Now as gcd(a, d) = 1 we must have

(j + 1)− 3(y1 + y2 + y3 + y4) = 3dt , (6.1.14a)

y2 + 2y3 + 3y4 − j = at , (6.1.14b)

with t ∈ Z. Again there are three options for t. If t = 0, then we deduce from (6.1.14a) and

(6.1.14b) that

3y1 + 2y2 + y3 = 1.

This implies y3 = 1 and y1 = y2 = 0. Hence by (6.1.13),

y4 =
j − 2

3
.

Hence, the two representations of Svj in (6.1.13) are the same. If t > 0 then by (6.1.14a) and

(6.1.14b) we obtain

3dt+ at+ 3y1 + 2y2 + y3 = 1.

Which contradicts the fact that a > 1 and d ≥ 1. Finally, if t < 0, then t = −h, where h is a

positive integer. Substituting t into (6.1.14b), yields

y2 + 2y3 + 3y4 + ah = j.

It follows that, j ≥ ah, which contradicts 0 ≤ j ≤ a− 1.
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Thus, we have proved that Svj , is represented in exactly one way in terms of a, a + d, a + 2d

and a+ 3d when j ≡ 2 (mod 3).

Case 3: Suppose that j = 1. Then by Corollary 6.1.4

Sv1 = a+ d .

By combining the above three cases, we deduce that minimum weight Svj of the path from v0

to vj , in Gw(a, a+ d, a+ 2d, a+ 3d), for 1 < j ≤ a− 1, has exactly one representation in terms

of a, a+ d, a+ 2d and a+ 3d when j ≡ 0 (mod 3), j 6= 0 or j ≡ 2 (mod 3) or j = 1.

Corollary 6.1.6. For 0 ≤ j ≤ a− 1, the minimum weight Svj of the (nontrivial) path given in

Corollary 6.1.4, has two distinct representations in terms of a, a+ d, a+ 2d and a+ 3d when

j ≡ 1 (mod 3), j 6= 1 or j = 0.

Proof. Let Svj be the minimum weight of the (nontrivial) v0 to vj path in Gw(a, a+d, a+2d, a+

3d). We need to show that Svj can be represented in at least two distinct ways as a nonnegative

integer linear combination of a, a+ d, a+ 2d and a+ 3d, when j ≡ 1 (mod 3), j 6= 1 or j = 0.

Case 1: Let j ≡ 1 (mod 3), j 6= 1. Then by Corollary 6.1.4

Svj =
j − 1

3
(a+ 3d) + (a+ d).

Since gcd(a, d) = 1, we can write Svj as

Svj =
j − 1

3
(a+ 3d) + (a+ d) ,

and Svj =
j − 4

3
(a+ 3d) + 2(a+ 2d) .

Hence, Svj for 0 ≤ j ≤ a− 1 can be represented in two distinct ways in terms of a, a+ d, a+ 2d

and a+ 3d, when j ≡ 1 (mod 3), j 6= 1.

Case 2: Let j = 0. Then by Corollary 6.1.4

Sv0 =
a− a′

3
(a+ 3d) +

a
′
(a
′ − 1)

2
(a+ 2d) + a

′
(2− a′)(a+ d) ,

where a
′ ≡ a (mod 3), a

′ ∈ {0, 1, 2}.

140



6.2. The 2-Frobenius number of a = (a, a+ d, a+ 2d, a+ 3d)t

Therefore, we can write Sv0 as

Sv0 =
a− a′

3
(a+ 3d) +

a
′
(a
′ − 1)

2
(a+ 2d) + a

′
(2− a′)(a+ d) ,

Sv0 =

(
a
′
(2− a′)(a− a′ − 3)

3

)
(a+ 3d) +

(
2a
′
(2− a′)

)
(a+ 2d) ,

and Sv0 =

(
a− a′

3
+
a
′
(3− a′)

2
+ d

)
a .

This implies that, Sv0 can be represented in at least two distinct ways in terms of a, a + d,

a+ 2d and a+ 3d.

By combining results of the above two cases, we complete the proof.

We now state a conjecture, based on the result and other empirical result observed.

Conjecture 2. Let 0 < j ≤ a − 1. Then the minimum weight Svj of the path from v0 to vj,

given in Conjecture 1, has exactly one representation in terms of a, a + d, . . . , a + nd, when

j ≡ 0 (mod n), j 6= 0 or j ≡ n− 1 (mod n) or j = 1, and otherwise Svj has at least two distinct

representations in terms of a, a+ d, . . . , a+ nd.

6.2 The 2-Frobenius number of a = (a, a + d, a + 2d, a + 3d)t

In this section we give an explicit formula for F2(a, a+ d, a+ 2d, a+ 3d) of a 4-terms arithmetic

progression with gcd(a, d) = 1.

We are now ready to sketch a proof of the main theorem of this chapter.

Theorem 6.2.1 (Main Theorem). Let a = (a, a+d, a+ 2d, a+ 3d)t be a positive integer vector

with 1 ≤ d < a and gcd(a, d) = 1. Then

F2(a, a+ d, a+ 2d, a+ 3d) =
⌊a

3

⌋
+ d(a+ 1) . (6.2.1)

Proof. Let vj by any vertex of Gw(a) with 0 ≤ j ≤ a− 1 and let M ∈ Z>0. Then

M ≡ vj (mod a). (6.2.2)

In order to prove Theorem 6.2.1, we need three lemmas.
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Lemma 6.2.2. For 1 ≤ j ≤ a − 1, j ≡ 0, 2 (mod 3) the positive integer M ≡ vj (mod a)

is representable in at least two distinct ways as a nonnegative integer linear combination of

a, a+ d, a+ 2d and a+ 3d if and only if M ≥ Svj + a.

Proof. First, we assume that M ≥ Svj + a. We need to show that M can be represented in at

least two distinct ways.

By (4.2.4), vj ≡ Svj (mod a) so that vj ≡ (Svj + a) (mod a). Thus we have

M ≡ (Svj + a) (mod a) and M ≥ Svj + a .

It follows that there is a nonnegative integer t such that

M = (Svj + a) + ta .

By Corollary 6.1.4

Svj =


j
3(a+ 3d) , if j ≡ 0 (mod 3), j 6= 0,

j−2
3 (a+ 3d) + (a+ 2d) , if j ≡ 2 (mod 3) .

Therefore, for j ≡ 0 (mod 3), we can write M as

M = a(t+ 1) +
j

3
(a+ 3d) , and

M = at+ (a+ d) + (a+ 2d) +

(
j − 3

3

)
(a+ 3d) .

For j ≡ 2 (mod 3), we can write M as

M = a(t+ 1) + (a+ 2d) +

(
j − 2

3

)
(a+ 3d) , and

M = at+ 2(a+ d) +

(
j − 2

3

)
(a+ 3d) .

Consequently, M is represented in at least two distinct ways as a nonnegative integer linear

combination of a, a+ d, a+ 2d and a+ 3d, when j ≡ 0, 2 (mod 3).

Conversely, assume that M has at least two distinct representations, so that there exist

nonnegative integers x1, y1, z1, w1, x2, y2, z2, w2 such that

M = ax1 + (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = ax2 + (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 .

(6.2.3)
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We have to prove that

M ≥ Svj + a .

Since M ≡ vj (mod a), (6.2.3) gives us

M ≡ (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 ≡ (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2

≡ vj ≡ Svj (mod a) .
(6.2.4)

Therefore, it follows from (4.2.3) that we have two paths from vertex v0 = 0 to vj in Gw(a) of

weights

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 and (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 .

Hence, we have three possibilities for the minimum weight Svj of a path from vertex 0 to vj :

1. Assume that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 = Svj .

This implies that, the minimum weight Svj of a path vertex 0 to vj in Gw(a), can be

represented in two distinct ways as a nonnegative integer linear combination of a+d, a+2d

and a+ 3d, when j ≡ 0 (mod 3), j 6= 0 or j ≡ 2 (mod 3). This contradicts Theorem 6.1.5.

2. Assume that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 > Svj .

Then from (6.2.4) there exist a positive integer h such that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2

= Svj + ah ≥ Svj + a .

Using (6.2.3), M = ax1 + (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1, we deduce that

M ≥ (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 ≥ Svj + a .

3. W.l.o.g. we may assume that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 > (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 ≥ Svj .
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Thus, the weight (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2, has to be at least minimum weight

Svj of a path from vertex 0 to vj in Gw(a). From (6.2.4), there exist a positive integer h

such that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 + ah

≥ Svj + ah ≥ Svj + a .

Since M = ax1 + (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1, we find that that

M ≥ (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 ≥ Svj + a ,

as required.

Collectively considering the above cases, we have shown that the largest integer M ≡ vj (mod a)

with 1 ≤ j ≤ a − 1 and j ≡ 0 (mod 3), j 6= 0 or j ≡ 2 (mod 3), that is nonrepresentable in

at least two distinct ways as a nonnegative integer linear combination of a, a + d, a + 2d and

a+ 3d, is given by

M =
(
Svj + a

)
− a = Svj .

Lemma 6.2.3. Let 0 ≤ j ≤ a− 1, j ≡ 1, 0 (mod 3), j 6= 1 the positive integer M ≡ vj (mod a)

is representable in at least two distinct ways as a nonnegative integer linear combination of

a, a+ d, a+ 2d and a+ 3d if and only if M ≥ Svj .

Proof. Let us assume that M ≥ Svj . We have to show that M can be represented in at least

two distinct ways. (4.2.4), vj ≡ Svj (mod a). Thus we have

M ≡ Svj (mod a) and M ≥ Svj .

It follows that there is a nonnegative integer t such that

M = Svj + ta .

From Corollary 5.1.7

Svj =


j−1
3 (a+ 3d) + (a+ d) , if j ≡ 1 (mod 3) ,

a−a′
3 (a+ 3d) + a

′
(2− a′)(a+ d) + a

′
(a
′−1)
2 (a+ 2d) , if j = 0 ,
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where a
′

= a (mod 3), with a
′ ∈ {0, 1, 2}.

Then, for j ≡ 1 (mod 3), we can write M as

M = at+ (a+ d) +

(
j − 1

3

)
(a+ 3d) , and

M = at+ 2(a+ 2d) +

(
j − 4

3

)
(a+ 3d) .

For j = 0, we can write M as

M = at+ (
a− a′

3
)(a+ 3d) + a

′
(2− a′)(a+ d) +

a
′
(a
′ − 1)

2
(a+ 2d) ,

M = at+

(
a
′
(2− a′)(a− a′ − 3)

3

)
(a+ 3d) +

(
2a
′
(2− a′)

)
(a+ 2d)+ , and

M = a

(
t+

a− a′

3
+
a
′
(3− a′)

2
+ d

)
.

Hence, M is represented in at least two distinct ways as a nonnegative integer linear combination

of a, a+ d, a+ 2d and a+ 3d, when j ≡ 1, 0 (mod 3), j 6= 1.

Conversely, now let M has at least two different representations, so that there exist nonneg-

ative integers x1, y1, z1, w1, x2, y2, z2, w2 such that

M = ax1 + (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = ax2 + (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 .

(6.2.5)

We have to prove that

M ≥ Svj .

Since M ≡ vj (mod a), then (6.2.5) gives us

M ≡ (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 ≡ (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 ≡ vj (mod a) .

(6.2.6)

Thus from (6.2.6) and (4.2.3) implies we have two paths from v0 to vj in Gw(a) of weights

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 and (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 .

Thus w.l .o.g. we can assume

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 ≥ (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 .
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So by applying Corollary 6.1.6, the minimum weight Svj of a path from v0 to vj can be repre-

sented in two distinct ways when j ≡ 1 (mod 3), j 6= 1 or j = 0, we deduce that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 ≥ (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 ≥ Svj .

Thus from (6.2.6), there exist a nonnegative integer h such that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 + ah

≥ Svj + ah ≥ Svj .
(6.2.7)

Since, M = ax1 + (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1, we get

M ≥ (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 ≥ Svj ,

as required.

Therefore we have proved that the largest integer M ≡ vj (mod a) with 0 ≤ j ≤ a − 1 and

j ≡ 1 (mod 3), j 6= 1 or j = 0, that is nonrepresentable in at least two distinct ways as a

nonnegative integer linear combination of a, a+ d, a+ 2d and a+ 3d is

M = Svj − a .

Lemma 6.2.4. For j = 1, the number M ≡ vj (mod a) is representable in at least two distinct

ways as a nonnegative integer linear combination of a, a + d, a + 2d and a + 3d if and only if

M ≥ Sv1 + a
(⌊

a
3

⌋
+ d
)
.

Proof. Let M ≥ Sv1 + a
(⌊

a
3

⌋
+ d
)
. We need to show that M can be represented in at least two

distinct ways. By (4.2.4), v1 ≡ Sv1 (mod a) so that v1 ≡ Sv1 + a
(⌊

a
3

⌋
+ d
)

(mod a). Thus, we

have

M ≡ Sv1 + a
(⌊a

3

⌋
+ d
)

(mod a) and M ≥ Sv1 + a
(⌊a

3

⌋
+ d
)
.

Consequently, there is a nonnegative integer t such that

M = Sv1 + a
(⌊a

3

⌋
+ d
)

+ ta ,

by Corollary 5.1.7

Sv1 = a+ d .

146



6.2. The 2-Frobenius number of a = (a, a+ d, a+ 2d, a+ 3d)t

Observe that

⌊a
3

⌋
=


a
3 , if a ≡ 0 (mod 3) ,
a−1
3 , if a ≡ 1 (mod 3) ,

a−2
3 , if a ≡ 2 (mod 3) .

Therefore, for a ≡ 0 (mod 3), we can write M as

M = a
(a

3
+ d+ t

)
+ (a+ d) ,

M = at+ (a+ d) +
a

3
(a+ 3d) , and

M = at+ 2(a+ 2d) +

(
a− 3

3

)
(a+ 3d) .

For a ≡ 1 (mod 3), we can write M as

M = a

(
a− 1

3
+ d+ t

)
+ (a+ d) , and

M = at+ (a+ 2d) +

(
a− 1

3

)
(a+ 3d) .

For a ≡ 2 (mod 3),

M = a

(
a− 2

3
+ d+ t

)
+ (a+ d) , and

M = at+

(
a+ 1

3

)
(a+ 3d) .

Hence, M is represented in at least two distinct ways as a nonnegative integer linear combination

of a, a+ d, a+ 2d and a+ 3d when j = 1.

Conversely, let us assume that M has at least two distinct representations, so that there exist

nonnegative integers x1, y1, z1, w1, x2, y2, z2, w2 such that

M = ax1+(a+d)y1+(a+2d)z1+(a+3d)w1 = ax2+(a+d)y2+(a+2d)z2+(a+3d)w2 . (6.2.8)

We are required to prove that

M ≥ Sv1 + a
(⌊a

3

⌋
+ d
)

= Sv1 + a

(
a− a′

3
+ d

)
,
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where a
′ ≡ a (mod 3), a

′ ∈ {0, 1, 2}.
Using (6.2.2), M ≡ v1 (mod a), and (6.2.8), we get

M ≡ (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 ≡ (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2

≡ v1 ≡ Sv1 (mod a) .
(6.2.9)

Then from (4.2.3) implies, we have two paths from v0 to v1 in Gw(a) of weights

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 and (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 .

So there are three possibilities to consider according to minimum weight Sv1 of a v0 − v1 path.

1. Assume that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 = Sv1 .

This implies that, Sv1 has two distinct representations in terms of a, a+ d, a+ 2d, a+ 3d.

This contradicts that Sv1 = a+ d is represented in exactly one way.

2. Assume that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 > Sv1 .

Hence by (6.2.9), there exist a positive integer h such that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2

= Sv1 + ah .
(6.2.10)

3. W.l.o.g. we may assume that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 > (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 ≥ Sv1 .

This implies that, the weight (a+d)y2+(a+2d)z2+(a+3d)w2 has to be at least minimum

weight Sv1 of a v0 − v1 path in Gw(a). Then by (6.2.9), there exist a positive integer h

such that

(a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 = (a+ d)y2 + (a+ 2d)z2 + (a+ 3d)w2 + ah

≥ Sv1 + ah .

(6.2.11)
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Then from (6.2.8), M = ax1 + (a + d)y1 + (a + 2d)z1 + (a + 3d)w1, (6.2.10) and (6.2.11), we

have

M ≥ (a+ d)y1 + (a+ 2d)z1 + (a+ 3d)w1 ≥ Sv1 + ah . (6.2.12)

In order to prove M ≥ Sv1 + a
(
a−a′
3 + d

)
, we only need to show that

h ≥ a− a′

3
+ d

Since deg−Gw(a)(v) = 3, for all vertex v in Gw(a), then in order to take any v0 − v1 path in

Gw(a), we have to consider five options, shown as in Figure 6.4.

1. A v0 − v1 path P0 of weight a+ d.

2. A v0 − v1 path P1 has the form

P1 = R ∪D ,

where R is a (nontrivial) v0 − v0 path in Gw(a) (or full cycle) and D is an arc from v0 to

v1 of weight a+ d. Hence by Theorem 6.1.3, the minimum weight w1 of the path P1, is

w1 =



(
a
3 (a+ 3d)

)
+ (a+ d) , if a ≡ 0 (mod 3) ,

(
a−1
3 (a+ 3d) + (a+ d)

)
+ (a+ d) , if a ≡ 1 (mod 3) ,

(
a−2
3 (a+ 3d) + (a+ 2d)

)
+ (a+ d) , if a ≡ 2 (mod 3) .

(6.2.13)

3. A v0 − v1 path P2 has the form

P2 = S ∪N ∪D ,

where S is a v0 − va−1 path in Gw(a) and N is an arc from va−1 to v0 of weight a + d.

From Theorem 6.1.1, the minimum weight w2 of the path P2, is given by

w2 =



(
a−3
3 (a+ 3d) + (a+ 2d)

)
+ 2(a+ d) , if a ≡ 0 (mod 3) ,

(
a−1
3 (a+ 3d)

)
+ 2(a+ d) , if a ≡ 1 (mod 3) ,

(
a−2
3 (a+ 3d) + (a+ d)

)
+ 2(a+ d) , if a ≡ 2 (mod 3) .

(6.2.14)
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Figure 6.4: Number of paths from v0 to v1 in Gw(a) around the full cycle

4. A v0 − v1 path P3 has the form

P3 = S ∪ J ,

where S is a v0 − va−1 path in Gw(a) and J is an arc from va−1 to v1 of weight a + 2d.

Similar by Theorem 6.1.1, the minimum weight w3 of the path P3 is

w3 =



(
a−3
3 (a+ 3d) + (a+ 2d)

)
+ (a+ 2d) , if a ≡ 0 (mod 3) ,

(
a−1
3 (a+ 3d)

)
+ (a+ 2d) , if a ≡ 1 (mod 3) ,

(
a−2
3 (a+ 3d) + (a+ d)

)
+ (a+ 2d) , if a ≡ 2 (mod 3) .

(6.2.15)

5. A v0 − v1 path P4 has the form

P4 = V ∪ T ,

where V is a path from v0 − va−2 and T is an arc from va−2 to v1 of weight a + 3d in

Gw(a). Similar by using Theorem 6.1.1, the minimum weight w4 of the path P4 is given
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by

w4 =



(
a−3
3 (a+ 3d) + (a+ d)

)
+ (a+ 3d) , if a ≡ 0 (mod 3) ,

(
a−4
3 (a+ 3d) + (a+ 2d)

)
+ (a+ 3d) , if a ≡ 1 (mod 3) ,

(
a−2
3 (a+ 3d)

)
+ (a+ 3d) , if a ≡ 2 (mod 3) .

(6.2.16)

By comparing (6.2.13), (6.2.14), (6.2.15) and (6.2.16) we conclude that

w4 ≤ w3 ≤ w1 ≤ w2 .

Then it immediately follows that the minimum weight of a v0 − v1 path around the full cycle

will be the weight w4. We can the minimum weight w4 as

w4 = (a+ d) + a

(
a− a′

3
+ d

)

= Sv1 + a

(
a− a′

3
+ d

)
,

where a
′ ≡ a (mod 3), with a

′ ∈ {0, 1, 2}.

Consequently, minimum value of a positive integer ah in (6.2.10) and (6.2.11) has to be at least

a(a−a
′

3 + d). This implies that

h ≥ a− a′

3
+ d.

Using (6.2.12) we get

M ≥ Sv1 + a

(
a− a′

3
+ d

)
= Sv1 + a

(⌊a
3

⌋
+ d
)
.

as required.

Therefore, we have shown that the largest integer M ≡ vj (mod a) with j = 1 , that is

nonrepresentable in at least two distinct ways as a nonnegative integer linear combination of a,

a+ d, a+ 2d and a+ 3d, is given by

M =
(
Sv1 + a

(⌊a
3

⌋
+ d
))
− a = Sv1 + a

(⌊a
3

⌋
+ d− 1

)
.
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Combining Lemmas 6.2.2, 6.2.3 and 6.2.4, we conclude that the largest integer M ≡ vj (mod a)

with 0 ≤ j ≤ a − 1, nonrepresentable in at least two distinct ways as a nonnegative integer

combination of a, a+ d, a+ 2d and a+ 3d, is given by

Sv1 + a
(⌊a

3

⌋
+ d
)
− a = (a+ d) + a

(⌊a
3

⌋
+ d− 1

)
= a

⌊a
3

⌋
+ d(a+ 1) .

Thus, the 2-Frobenius number of the arithmetic progression a, a+d, a+2d, a+3d with 1 ≤ d < a

will be

F2(a, a+ d, a+ 2d, a+ 3d) = a
⌊a

3

⌋
+ d(a+ 1) .

This completes the proof of Theorem 6.2.1.

Furthermore, Lemma 6.2.4 shows that the largest integer M ≡ vj (mod a) with 0 ≤ j ≤ a− 1,

that is nonrepresented in at least two distinct ways always corresponds to the vertex v1 in Gw(a)

(i.e. j = 1).

In the following example we apply Theorem 6.2.1, to determine F2(13, 18, 23, 28).

Example 6.2.5. To compute F2(13, 18, 23, 28) of a 4 terms arithmetic progression, all we need

to find the largest positive integer

Mj ≡ vj ≡ jd (mod 13) , 0 ≤ j ≤ 12 ,

for all vertex vj in Gw(13, 18, 23, 28) (as shown in Figure 6.5), that cannot be represented in

least two distinct ways as a nonnegative integer linear combination of 13, 18, 23 and 28. We give

the calculations for the three cases when j ∈ {0, 7, 11}.

Let j = 0, we have to find the largest integer number

M0 ≡ v0 ≡ 0 (mod 13) ,

that cannot represented in at least two distinct ways as a nonnegative integer linear combination

of 13, 18, 23 and 28. Therefore by Lemma 6.2.3 and Corollary 6.1.4, we get

M0 = Sv0 − 13 = (4(28) + 18)− 13 = 117 .

And from Lemma 6.2.3, we deduce that any positive integer M0 > 117 is represented in terms

of 13, 18, 23, 28.
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Figure 6.5: The Frobenius circulant graph of the arthmetic progression 13, 18, 23, 28

Observe that, 130 ≡ 0 (mod 13) and 130 has at least two distinct representations in terms of

13, 18, 23, 28, as follows:

130 = 18 + 4 · 28 = 2(23) + 3(28) = 10(13) .

Let j = 7. Then by Lemma 6.2.3 and Corollary 6.1.4, we deduce the largest integer

M7 ≡ v7 ≡ 9 (mod 13) .

that cannot represented in at least two distinct ways as a nonnegative integer linear combination

of 13, 18, 23 and 28 is given by

M7 = Sv7 − 13 = (2(28) + 18)− 13 = 61 .

Hence from Lemma 6.2.3, we find that any positive integer M7 > 61 is represented in terms of

13, 18, 23, 28.

As we observe that 74 ≡ 9 (mod 13) and 74 has at least two distinct representations in terms

of 13, 18, 23, 28 as follows:

74 = 18 + 2(28) = 2(23) + 28 .

Let j = 11, then we have

M11 ≡ v11 ≡ 3 (mod 13) .

Therefore by Lemma 6.2.2 and Corollary 6.1.4,

M11 = Sv11 = 3(28) + 23 = 107 .
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Using Lemma 6.2.2 yields any positive integer M11 > 107 can be represented in terms of

13, 18, 23, 28.

observe that 120 ≡ 3 (mod 13) and 120 has at least two distinct representations in terms of

13, 18, 23, 28 as follows:

120 = 4(23) + 28 = 18 + 2(23) + 2(28) = 2(18) + 3(28) = 13 + 23 + 3(28) .

In exactly the same way, we can determine the others Mj , as shown in the table 6.1.

Table 6.1: A largest number Mj ≡ vj (mod 13) with 0 ≤ j ≤ 12, that cannot represented in at

least two distinct ways as a nonnegative integer linear combination of 13, 18, 23, 28.

vertices of Gw(13, 18, 23, 28)

j v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

vj 0 5 10 2 7 12 4 9 1 6 11 3 8

Mj 117 122 23 28 33 51 56 61 79 84 89 107 112

Therefore by Theorem 6.2.1, the 2-Frobenius number of the arithmetic progression 13, 18, 23, 28,

is

F2(13, 18, 23, 28) = max
0≤j≤12

{Mj} = max{117, 122, 23, 28, 33, 51, 56, 61, 79, 84, 89, 107, 112} = 122 .

Note that by (6.2.1),

F2(13, 18, 23, 28) = 13

(
12

3

)
+ 5(13 + 1) = 122 .

6.2.1 Conclusion for F2(a, a + d, a + 2d, a + 3d)

Let a, a+ d, a+ 2d, a+ 3d be positive integers with 1 ≤ d < a and gcd(a, d) = 1. Then we have

F2(a, a+ d, a+ 2d, a+ 3d) =


F1(a, a+ d, a+ 2d, a+ 3d) + 2d , if a ≡ 2 (mod 3) ,

F1(a, a+ d, a+ 2d, a+ 3d) + (a+ 2d) , otherwise .

(6.2.17)
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We propose the following conjecture as a generalisation of Theorems 5.3.8 and 6.2.1.

Conjecture 3. Let n ≥ 2 be an integer and let a and d be coprime positive integers such that

1 ≤ d < a. Then

F2(a, a+ d, . . . , a+ nd) = a
⌊a
n

⌋
+ d(a+ 1) .

We checked numerical examples to verify Conjecture 3 up to a = 105, d < a = a−1 and n = 15,

using MATLAB. For instance,

F2(24, 29, 34, 39, 44, 49, 54, 59, 64) = 24

⌊
24

8

⌋
+ 5(25) = 197 .

F2(34, 41, 48, 55, 62, 69) = 34

⌊
34

5

⌋
+ 7(35) = 449 .

F2(500, 990, 1480, 1970, 2460, 2950, 3440) = 500

⌊
500

6

⌋
+ 490(501) = 286990 .

From (5.3.32) and (6.2.17) we propose the following conjecture.

Conjecture 4. Let n ≥ 2 be an integer and let a and d be coprime positive integers such that

1 ≤ d < a. Then

F2(a, a+ d, . . . , a+ nd) =


F1(a, a+ d, . . . , a+ nd) + 2d , if a ≡ t (mod n) ; 1 < t ≤ (n− 1)

F1(a, a+ d, . . . , a+ nd) + (a+ 2d) , otherwise .

(6.2.18)

Let us present two numerical examples using MATLAB to explain Conjecture 4.

• To determine F2(27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79), we begin by finding t

such that

27 ≡ t (mod 13), t ∈ Z≥0 .

As we observe 27 ≡ 1 (mod 13), we have

F2(27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79)

= F1(27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79) + 35

= 131 + 35 = 166 .
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• To find F2(24, 29, 34, 39, 44, 49, 54, 59, 64, 69) we notice that

24 ≡ 6 (mod 9) .

Then

F2(24, 29, 34, 39, 44, 49, 54, 59, 64, 69) = F1(24, 29, 34, 39, 44, 49, 54, 59, 64, 69) + 10

= 163 + 10 = 164 .
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Chapter 7

Conclusion and future work

In this final chapter, we conclude the results of this dissertation, and discuss the future work.

7.1 Conclusion

In Chapter 3 we studied the (normalised) distance between generalised Frobenius number Fs(a)

and F1(a) and covering radius of a difference body. We obtained a new upper bound for the

generalised Frobenius number Fs(a), associated with a primitive vector a = (a1, . . . , ak)
t ∈ Zk>0

when s = 2 and k ≥ 3. This research is based on several results from geometry of numbers. We

obtain an improvement on a result given by Aliev, Fukshansky, and Henk [2]. This part of the

thesis has been published in [6].

In Chapter 4 we presented a special graph (Circ(a1, a2)), which we call 2-circulant graph and

we given a new proof for the formula F2(a1, a2) = 2a1a2−a1−a2 by using only graph theoretical

methods.

In Chapters 5 and 6, we considered a directed circulant graph (sometimes referred to as

Frobenius circulant graph) Gw(a) associated with a positive integer primitive vector a =

(a1, . . . , ak)
t in dimensions k = 3 and 4, respectively. Here ai’s are in the arithmetic progression

a, a + d, . . . , a + nd. We presented an explicit formula for the shortest path and the minimum

distance between any two vertices of Gw(a). Then we used Nijenhuis [66] approach to derive a

relationship between the minimum weight Svj of paths from the initial vertex v0 to the terminal
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vertex vj in Gw(a) and the representations of nonnegative integers in terms of a. From this we

obtained an explicit formula for computing the 2-Frobenius number F2(a, a+ d, . . . , a+ nd) for

three or four integers in an arithmetic sequence (n ∈ {2, 3}) with 1 ≤ d < a and gcd(a, d) = 1,

F2(a, a+ d, . . . , a+ nd) = a
⌊a
n

⌋
+ d(a+ 1) ,

which is a generalisation on a result given by Roberts [73]. Based on these results, we state

a conjecture on the behaviour of the 2-Frobenius numbers of a general arithmetic sequence

a, a+ d, . . . , a+ nd.

We also obtained a relationship between the 2-Frobenius number and the (classical) Frobenius

number of the arithmetic sequence a, a+ d, . . . , a+ nd, when n ∈ {2, 3}.

7.2 Future work

In future work, we plan to prove (or disprove) Conjecture 3 and obtain a formula for the s-

Frobenius number for arithmetic sequences of a given length. Using graph theoretic techniques,

we expect to obtain an explicit formula for the minimum weight Svj of the path from an initial

vertex v0 to a terminal vertex vj in Gw(a, a+d, . . . , a+nd), n > 3 and to analyse the relationship

between Svj and the s-representations of a nonnegative integer in terms of a, a+ d, . . . , a+ nd.

We are aiming to use the same strategies as for the proof of Theorems 5.3.8 and 6.2.1, applying

the approach of Nijenhuis [66]. We are also aiming to prove (or disprove) Conjecture 4.
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