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The synthesis of some new thiophenyl-derivatized and furanyl-derivatized phenothiazine and 
phenoxazine dyestuffs is described. This was achieved by two methods after the synthesis of 6-chloro-5H-
benzo[a]phenothiazin-5-one, 6-chloro-5H-benzo[a]phenoxazin-5-one, and 6-chloro-5H-naphtho[2,1-b] 
pyrido[2,3-e][1,4]oxazin-5-one intermediates via anhydrous base condensation reaction of 2,3-dichloro-
1,4-naphthoquinone with 2-aminothiophenol, 2-aminophenol, and 2-aminopyridinol, respectively. The first 
method involved treatment of tributyl(thien-2-yl) or tributyl(furan-2-yl) stannane with chlorophe 
nothiazine/chlorophenoxazine under mild basic chemical formula (CsF) and 1,4-dioxane or toluene solvent 
at 80°C to supply dazzling yellow solid in high yields. In the second method, the catalytic system was pre-

activated in acetonitrile, followed by addition of coupling partners and K3PO4 to obtain high melting and 
variety of highly colored products in moderate to high yields. The reaction conditions were compatible 
with unprotected N–H and carbonyl functional groups. The intense colors of these dyes and their ease of 

re-oxidation of Na2S2O4-reduced derivatives make them suitable as vat dyes. Also, they were found to be 
good colorants for textiles, papers, paint, ink, soap, polish, candle, and plastic materials. 

 

 

 
INTRODUCTION 

 
The plethora industrial applications of phenothiazine 

and phenoxazine and their derivatives stimulated our 

inter-est in synthesizing new derivatives of the parent 

rings 1 and 2 that may be useful as dyestuffs [1,2].  
Compounds 1 and 2 were first prepared by Bernthsen 

in 1883 and 1887 by thionation of diphenylamine and 

thermal condensation of o-aminophenol with catechol (2-

hydroxyphenol), respectively [3,4]. 
 
 
 
 
 

 
Originally, these compounds and their derivatives were 

mainly applied as dyes and pigments [5] in industries, but 

with time, they found wider applications as antioxidant in lu-

bricants and fuel [6–9], polymerization stabilizers [10–12], 

pesticides/insecticides [13–15], biological stains or label-

ings [16–19], acid–base indicators [20], and as drugs [21]. 

Some phenothiazine derivatives, especially Lauth’s violet 3 

and Methylene blue 4, were known to be commer-cial 

dyestuffs even before the first synthesis of the parent 

 
 

 
phenothiazine [1]. On the other hand, Meldola [22] had 

synthesized large numbers of phenoxazine derived dyes in 

the last quarter of the last century. Notable among them 

was Meldola’s blue 5 which is a textile, paper and paint 

colorant. 
 
 
 
 
 

Besides their well-known physiological activity profile, 

[23,24] because of their reversible oxidative reactions, 

which give rise to characteristic, deep colored radical cat-

ion absorptions, more recently, phenothiazine derivatives 

have become attractive spectroscopic probes in molecular 

arrangements for photoinduced electron transfer studies 

and as scientific motif materials [25,26]. Also, recent re-

ports revealed that phenoxazine derivatives are widely ap-

plied as organic light emitting diodes [27,28].  
Previously, derivatizations of these compounds were 

achieved by employing classical reactions, which are gen-

erally harsh and unamenable to sensitive functional groups. 

Burgess [29] noted in his review of benzophenoxazine-based 

dyes for labeling biomolecules that most of the syn-thetic 

protocols involved elevated temperature and were 

 
 



 

based on procedure that are now over a century old and no 

contemporary synthetic methods were employed. How-ever, 

in the recent time, a considerable variety of phenothiazine 

derivatives had been synthesized from iodo-substituted 

and/or bromo-substituted phenothiazine precursor via metal 

catalyzed cross-coupling reactions [30–34]. Grosu et al. [32] 

reported multistep synthesis of 3,7,10-substituted 

phenothiazine derivatives in which one of the steps involved 

Pd-catalyzed Suzuki–Miyaura cross-coupling of 

bromophenothiazines. Kramer [31] employed the Suzuki–

Miyaura cross-coupling of bromophenothiazine in the 

synthesis of (hetero) aryl bridged and directly linked active 

phenothiazinyl dyads and triads.  
In a similar reaction, bromophenothiazines were used as 

starting materials in the synthesis of phenothiazinyl acid 

derivatives via halogen–metal exchange and electrophilic 

borylation route [34] and synthesis of functionalized 

oligophenothiazines via one-pot bromine–lithium exchange-

borylation-Suzuki coupling [33]. Muller [35,36] and his co-

workers reported the synthesis of luminescent, redox-active 

diphenothiazine dumb-bells expanded by conjugated arenes 

and heteroarenes and 3-acceptor-substituted and 3,7-

bisacceptor-substituted phenothiazine via Pd-catalyzed cross-

coupling of bromophenothiazines. In our previous pa-pers, 

we have reported the synthesis of new nonlinear polycy-clic 

aza phenothiazine dyestuffs [37,38]. We have also recently 

reported the functionalization of phenothiazine and 

phenoxazine ring systems via Pd-catalyzed Suzuki–Miyaura 

cross-coupling reaction [39]. In continuation of our avid 

inter-est in developing new dyestuffs, we now report a 

convenient synthesis of new phenothiazine-derivatized and 

phenoxazine-derivatized dyestuffs employing Pd-catalyzed 

Stille cross-coupling protocols. 

 

 

RESULTS AND DISCUSSION 

 
Besides 2-chloro-10H-phenothiazine 6 that is commer-

cially available for the palladium(0)/XPhos-mediated Stille 

cross-coupling, 6-chloro-5H-benzo[a]phenothiazin-5-one 9, 

6-chloro-5H-benzo[a]phenoxazin-5-one 10, and 6-chloro-

5H-naphtho[2,1-b]pyrido[2,3-e][1,4]oxazin-5-one 11 were 

synthesized by employing the traditional [40,41] 

 

anhydrous base-catalyzed reaction of 2,3-dichloro-1,4-

naphthoquinone 8 with 2-aminothiophenol, 2-

aminophenol, and 2-aminopyridin-3-ol 7 (Scheme 1).  
Influenced particularly by the work of Buchwald and co-

workers [42] who applied pre-milled palladium acetate and 

XPhos catalytic system in successful cross-coupling of ste-

rically and electronically diverse aryl chlorides with organo 

tin reagents, their protocol was adapted in this work. How-

ever, unlike Buchwald reaction protocol, the catalytic sys-

tem was not pre-milled. Test experiments were conducted by 

reacting 2-chloro-10H-phenothiazine (1 mmol) with tributyl-

(2-thienyl)stannane (1.2 mmol) in order to obtain 2-

(thiophen-2-yl)-10H-phenothiazine 16 under a variety of 

conditions. Applying catalytic loadings of 4 mol% Pd 

(OAc)2 and 7 mol% XPhos four experiments were set up 

using 3 mmol of Tetrabutylammoniumfluoride (TBAF), CsF, 

K3PO4, and K2CO3 respectively and 3 mL of 1,4-dioxane 

under N2 atmosphere at the temperature of 80°C and reaction 

progress monitored with thin-layer chroma-tography. Full 

conversion of starting materials was ob-served within 4 h 

with CsF, about 50% conversion with K3PO4 and K2CO3 

and none were recorded for TBAF even when reaction time 

was extended to 8 h. Yellow solid was isolated in 80% yield 

after reaction work-up and purifica-tion by flash column 

chromatography on silica gel using 20% dichloromethane–

80% petroleum ether solvents. Spectroscopic and elemental 

analysis data correspond to molecular structure of compound 

and formula, C16H11NS2. The proton nuclear magnetic 

spectra integra-tion traces were consistent with 11 protons 

and in harmony with carbon signals supplied by carbon-13 

nuclear mag-netic resonance spectroscopy. This was further 

validated by molecular ion peak with m/z 281.0339 [(100), 

M
+
], found in mass spectrum. There was no significant 

differ-ence in product yield when toluene and tertiary 

butanol sol-vents were used with CsF instead of 1,4-dioxane. 

The reaction scope was also expanded by coupling 2-chloro-

10H-phenothiazine (1 mmol) with tributylfuranylstannane 

13 to obtain 77% isolated yield of 2-(2-furanyl)-10H-phe-

nothiazine 20. Compound 20 is a shiny yellow powdery 

solid. It was believed the use of CsF enhanced the reaction 

rate as well the corresponding yields of the product be-cause 

recent findings have associated increased reactivity 

 

 
Scheme 1. Synthesis of reaction intermediates. 

 
 
 
 
 
 
 
 
 
 
 
 



 

in Stille reactions to fluoride additive [43]. This was attributed to 

the formation of hypervalent fluorostannane anions 14, which 

undergo labile transmetalation reactions (Scheme 2).  
Buchwald practically recorded greatest enhancement with 

CsF [42]. Encouraged by these procedural develop-ments, 

we applied them as a general protocol for the cou-pling of 

chlorophenothiazine and chlorophenoxazine substrates with 

organotin, but the reaction failed with the angular-fused 

chlorophenothiazines and chlorophe noxazines (9–11), 

generating only trace conversions. Ini-tially, the failure of the 

reaction protocol to couple nonlin-ear chlorophenothiazine 

and chlorophenoxazine substrates with organotin was 

attributed to the inability of the cata-lytic system to activate 

the aryl halide toward oxidative ad-dition, which is generally 

known to be a crucial stage in the catalytic cycle. Hence, a 

modified protocol was sought. In this procedure, the catalyst 

and ligand was charged in a 10 mL round bottom (RB) flask 

and corked with rubber septum followed by air evacuation 

and corresponding back filling with N2 gas four times before 

addition of predegassed solvent followed by warming to 

50°C within 10 min. The rubber septum was immediately 

removed from flask to add ArCl and CsF and replaced again. 

This was followed by injection of 1.2 mmol of 

organostannane, and the reaction temperature was 

maintained under inert atmo-sphere for 30 min before 

increasing to 80°C. The isolated 

 
 
Scheme 2. Formation and reaction of hypervalent fluoro-(2-thienyl) 
stannane anion. 

 

products at the completion of the reaction gave over 70% 

yields dehalogenated product instead of 6-thiophenyl or 

6-furanyl substituted products. For example, the reaction 

of 6-chloro-5H-benzo[a]phenothiazin-5-one 9 with 

tributylthienylstannane 12 gave 5H-

benzo[a]phenothiazin-5-one 15 (Scheme 3). The proton 

nuclear resonance spec-trum integrated accurately for 

nine aromatic protons with the proton in position 6 of the 

compound 15 found unusu-ally upfield at 6.75 ppm 

probably due to the additive shielding effects conferred on 

it by the ring current and the carbonyl functional group.  
The failure of the reaction to provide desired products 

compelled us to search for an alternative protocol to couple 

organostannanes to 6-chlorobenzo[a]phenothiazines and 6-

chlorobenzo[a]phenoxazines 9–11 (Scheme 3). Reasoning 

C–Sn bond is more polar than C–B, we expected an en-

hanced transmetalation step for cross-coupling organos 

tannanes over organoboranes. With this hypothesis, we 

invoked earlier reaction protocol [39] employed in cross-

coupling of angular phenothiazine/phenoxazine chlorides 

with organoboranes to afford moderate isolated yields of 

derivatized products. The yield was further improved by first 

preactivating the catalyst-ligand system by warming in aque-

ous acetonitrile to 50°C before adding K2CO3, ArCl, and 

organostannane, and the reaction continued until satisfactory 

consumption of starting materials was observed (Scheme 4).  
Encouraged by the result of this tested procedure, it 

was extended to the coupling of angular chloropheno 

thiazine/chlorophenoxazines with organostannane, and 

the results are presented in Table 1. The results show that 

moderate to high yields of derivatized products were ob-

tained applying the developed procedure to five coupling 

reactions. The coupling of 2-chloro-10H-phenothiazine 

substrate with organostannanes gave the highest yields of 

products in shorter time and this may be attributed to 

higher electrophilicity as well as freer access to the 

reaction site of the substrate. The proton nuclear magnetic 

reso-nance spectroscopic chemical shifts for the aromatic 

protons of products 16–22 appeared in the range of 8.88– 

6.54 ppm with the integration traces in agreement with 
 

 
Scheme 3. Pd(0)/XPhos-catalyzed Stille cross-coupling under various conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Scheme 4. Pd(0)/XPhos catalyzed Stille preactivated reaction. 

 
 
 
 
 
 
 
 
 
 

Table 1  
Stille cross-coupling of chlorophenothiazines and chlorophenoxazinesa. 

 

Entry Aryl chloride Organotin Product Time (h) Yieldb (%) 
      

1    4 81 

2  12  6 53 

3  12  6 73 

4  12  6 78 

5    5 77 

6  13  6 67 

7  13  6 70 

 
 
 
 
 

 
aReaction conditions: chlorophenothiazine/chlorophenoxazine (1.0 equiv), organotin (1.5 equiv.), K3PO4 (3 equiv), CH3CN (3 mL), Pd(OAc)2 (4 

mol%), and XPhos (7 mol%). Entries 1 and 5: CsF (3 equiv) was used instead of K3PO4. 
bIsolated yield after purification by flash column chromatography. 

 

 



 
 
 

Scheme 5. Proposed mechanism for Pd(0)/XPhos catalyzed Stille cross-coupling reactions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

the number of protons in the respective compounds. 

These results were nicely substantiated by carbon nuclear 

mag-netic spectroscopic data, which furnished the number 

of peaks corresponding to the number of carbons in each 

compound in the range of 181.98–109.49 ppm. The car-

bonyl carbon of each compound were distinguishable 

from the rest and were found in 178.47, 181.91, 181.02, 

and 180.98 ppm at higher frequency than other sp
2
 

hybridized carbons, indicating that the carbonyl groups 

were well tolerated.  
The prepared compounds were all colored and have 

strong absorptions in the visible region of the electromag-

netic spectra (400–800 nm). They also exhibit slight red 

shifts due to their extended conjugations. Phenothiazine 

derivatives with extended π-conjugated substituents often 

display intense luminescence upon UV/vis excitation with 

Stokes shifts that might be due to solvent relaxation and, 

in part, to geometry changes in the excited state [25]. The 

electronic properties of these compounds have led to their 

applications as electrophore probes in supramolecular as-

semblies for photoinduced electron transfer and sensor 

studies and as electron-donor components in material 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

scientific investigations such as electrically conducting 

charge-transfer composites, polymers, Do-Acc arrange-

ments, and also as chromophores in dye-sensitized photo-

voltaic cells [26]. Furthermore, derivatives 16–22 were 

found to be good colorants for textiles, papers, paint, ink, 

soap, polish, candle, and plastic and cosmetic products.  
By using 6-chloro-5H-benzo[a]phenothiazine 9 electro-

philic substrate, we propose a general plausible 

mechanism for the syntheses of derivatives 17–19, 21, 

and 22 (Scheme 5).  
The reduction of compounds 17–19, 21, and 22 to their 

corresponding angular phenothiazinols/phenoxazinols was 

accomplished by using sodium dithionite. For example, 17 

easily loses its reddish color on refluxing in sodium 

dithionite due to the formation of 6-(thiophen-2-yl)-12H-

benzo[a]phenothiazin-5-ol compound 23 (Scheme 6). 

However, the reduced yellowish compound was too un-

stable to be isolated in their pure forms as they easily 

reverted under atmospheric condition to the intensely reddish 

colored oxidized iminoquinoid compound. This property 

makes the synthesized derivatives applicable as vat dyes. 

 

 
Scheme 6. Reduction of thiophenylbenzophenothiazinone to thiophenylbenzophenothiazinol. 

 
 
 
 
 
 
 
 
 
 



 

CONCLUSION 

 

New and highly colored phenothiazine and phenoxazine 

dyes were prepared from Pd(0)/XPhos-catalyzed cross-

coupling of chlorophenothiazines/chlorophenoxazines with 

organotins in moderate to high yields at relatively mild 

temperature. These dyestuffs were found to be good 

colorants for textiles, papers, paint, ink, soap, polish, can-dle, 

plastic and cosmetic materials. 

 

EXPERIMENTAL 

 

General information. All chemicals were purchased 

from Aldrich Chemical Company, UK, and were used 

without further purification. Otherwise stated, all 

compounds were synthesized and characterized in the 

School of Chemistry of Cardiff University, UK. Melting 

points were determined with a Fischer-Johns apparatus. 
1
H and 

13
C-NMR data were recorded with Brucker DPX 

400 MHz spectrometers relative to tetramethylsilane as 

internal standard. All chemical shifts are reported in ppm 

(δ), and coupling constants (J) are reported in hertz. 

Multiplicity is indicated using the following 

abbreviations: br for broad, s for singlet, d for doublet, t 

for triplet, dd for doublet of doublets, and m for multiplet. 

The mass spectra data were obtained on a Varian 1200 

Quadruple Mass and Micromass Quadro II spectrometers. 

Elemental analysis was carried out with Thermo Quest 

Flash 1112 series (CHNS) Elemental Analyzer. UV-

Visible spectra were recorded on Cecil 7500 Aquarius 

7000 Series Spectrometer at Chemistry Advance 

Laboratory, Sheda Science and Technology Complex 

(Shestco) Abuja, Nigeria, using matched 1 cm quartz cells 

and methanol as solvent. The absorption maxima are 

recorded in nanometers (nm) and figures in parenthesis 

are log ε. 
 

Synthesis  of  angular  phenothiazine  and  phenoxazine 
 

intermediates. 6-Chloro-5H-benzo[a]phenothiazin-5-one (9). 
 

To a suspension of 2-aminothiophenol (2.5 g, 20 mmol) 

in chloroform (50 mL) was added Na2CO3 (2.12 g, 20 

mmol) and the mixture warmed to boiling before addition 
of 2,3-dichloro-1,4-naphthoquinone (4.54 g, 20 mmol), 
and the entire mixture refluxed for 3 h while stirring with 
magnetic bar. The reaction mixture was cooled to room 
temperature, and solvent was distilled off in vacuum. 
Water (25 mL) was added to the dark solid stirred and 
filtered to remove inorganic salts and air-dried. The solid 
was recrystallized from benzene-toluene after treatment 
with activated charcoal to obtain reddish brown shiny 

solid (5.01 g, 84%), mp 228–230°C (Lit.
44

 232°C). δH 

(400 MHz CDCl3): 8.87–8.84 (1H, m); 8.33–8.31 (1H, 

m); 7.97–7.94 (1H, m), 7.74–7.72 (2H, m); 7.54–7.42 

(3H, m). δc (150 MHz CDCl3): 173.85 (carbonyl carbon), 

143.80, 138.41, 135.20, 134.10, 133.29, 132.00, 131.62, 

 

130.21, 128.34, 126.53, 125.97, 125.33, 125.18, 123.55. 

UV-Visible λmax (MeOH): 381.5 (4.06); 479 (3.21); 

747.5 (3.97). IR (νmax, cm 
1
): 1640, 1593, 1578, 1510, 

1290, 1155, 1090, 905, 855, 828, 777, 721, 681, 644. 
Found: C, 64.57; H, 2.74; N, 4.72; S, 10.79%. Molecular 

formula C16H8ClNOS requires C, 64.54; H, 2.71; N, 
4.70; S, 10.77%. 

6-Chloro-5H-benzo[a]phenoxazin-5-one (10). A mixture 
of 2-aminophenol (2.18 g, 20 mmol) and KOH (2.24 g, 

20 mmol) was stirred at room temperature for 0.5 h in 
 

methanol (100 mL) followed by addition of 2,3-dichloro-

1,4-naphthoquinone (4.54 g, 20 mmol), and the entire 

reaction mixture was stirred at room temperature for 6 h. 

The solvent was distilled off in vacuum, and water (50 

mL) was added to the yellowish brown solid, stirred, and 

filtered and solid further wash with 25 mL of 5% HCl and 

air-dried. The crude product was recrystallized from 

benzene-toluene after treatment with activated charcoal to 

give yellow-orange colored solid, yield 4.85 g (86%), mp 

199–201°C (Lit.
45

 203°C). δH (400 MHz, CDCl3): 8.68–

8.66 (1H, m); 8.31–8.29 (1H, m); 7.81– 7.79 (1H, dd, J = 

7.80, 7.81); 7.76–7.68 (2H, m); 7.49– 7.46 (1H, m); 

7.41–7.33 (2H, m). δc (150 MHz CDCl3): 177.46 (C¼O), 

146.89, 146.15, 143.80, 132.63, 132.41, 132.09, 131.85, 

131.44, 130.27, 129.93, 126.63, 125.85, 124.94, 116.19. 

UV-Vis λmax (MeOH): 354.5 (3.88); 440 (3.54); 747 

(4.01). IR (νmax, cm 
1
): 1640, 1570, 1330, 1310, 1280, 

1250, 1150, 1100, 1010, 920, 840, 780, 760, 690. (Found: 

C, 68.92; H, 2.77; N, 4.78. Molecular formula 

C16H8ClNO2 requires C, 68.22; H, 2.86; N, 4.97%). 
 

6-Chloro-5H-naphtho[2,1-b]pyrido[2,3-e][1,4]oxazin-5-one 
 

(11). By a similar method to the synthesis of 4, 6-chloro-5H-
naphtho[2,1-b]pyrido[2,3-e]oxazin-5-one was prepared from 

2-aminopyridin-3-ol (2.20 g, 20 mmol), 2,3-dichloro-1,4-

naphthoquinone (4.54 g, 20 mmol), and KOH (2.24 g, 20 

mmol) in methanol (100 mL) as a yellow-orange solid, 

recrystallized from acetone after treatment with activated 

carbon (yields 4.47 g, 81%), mp 207–208°C. δH (400 MHz 

CDCl3): 8.84–8.82 (1H, m); 8.62–8.61 (1H, dd, J = 8.61, 

8.64); 8.32–8.30 (1H, m); 7.79–7.76 (3H, m), 7.45–7.43 

(1H, d, J = 7.45). δc (150 MHz CDCl3): 177.27 (carbonyl 

carbon), 150.23, 147.27, 146.09, 144.37, 140.68, 133.11, 
132.93, 131.37, 129.83, 126.82, 126.21, 125.95, 124.59, 

115.90. UV-Visible λmax (MeOH): 350.5 (3.38); 441.0 

(3.47); 746 (4.03). IR (νmax, cm 
1
): 1650, 1565, 1560, 1555, 

1420, 1330, 1900, 1270, 1230, 1120, 1100, 1030, 920, 870, 

810, 775, 710, 690. (Found: C, 68.31; H, 2.89; N, 5.01%. 

Molecular formula C16H8ClNO2 requires C, 

68.22; H, 2.86; N, 4.97). 

To an  

oven-dried 10 mL RB flask was added Pd(OAc)2 (8.92 mg, 4 

mol%), XPhos (32.5 mg, 7 mol%), chlorophenothiazine (234 

mg, 1 mmol%), and CsF (459 mg, 3 mmol), and the vessel 

was covered with a rubber septum. The flask was 
 

 

 

General procedures for Stille reactions: Method 1. 



                   

evacuated and backfilled with N2 thrice before injection of chromatography employing 10% EtOAc/90% pet. ether as 
degassed dioxane or toluene (3 mL) and, as temperature of eluent gave analytically pure dark brown solid product, 

reaction mixture was gradually heated to 50°C tributyl-(2- yield 183 mg (53%),  mp  >200°C  (dec).  NMR:  δH 

thienyl)stannane (1.2 mmol), was injected into the flask. (400 MHz, CDCl3): 8.88–8.85 (1H, m); 8.31–8.29 (1H, 

The  temperature  was  maintained  for  30 min before m); 7.91–7.89 (1H, d, J = 7.90); 7.76–7.67 (2H, m); 7.56– 
increasing to 80°C. The reaction was terminated  in 4 h 7.54 (1H, dd, J = 7.55, 7.51); 7.44–7.40 (1H, m); 7.37– 

and cooled to room temperature. Reaction mixture was 7.32 (1H, dd, J = 7.28, 7.18); 7.18–7.17 (3H, m). δC 

diluted with DCM (3 mL) and extracted from  water (150 MHz, CDCl3): 178.47, 144.77,  138.41, 136.95, 

(5 mL) with 5 mL of DCM four times. The combined 134.61, 134.34, 132.17, 131.77, 131.38, 129.87, 129.04, 

128.41, 127.88, 126.84, 125.65, 125.07, 124.88, 124.88, organic extract was dried with MgSO4 and concentrated 
123.67. HRMS (EI), m/z (% relative intensity): 83.9667 

in vacuum. The crude product was purified by flash 
(100), 149.0583 (3), 207.0481 (3), 284.0637 (4), 316.0423 

chromatography on silica gel using petroleum  ether-  

(7), 345.0280 [(30), M
+
]. UV-Visible λmax (MeOH): 369.0 ethyl acetate.              

            

An (3.11); 484.5 (4.04); 743.5 (3.77). (Found: C, 69.61; H, General procedures for Stille reactions: Method 2. 

oven-dried 10 mL RB flask was charged with Pd(OAc)2 3.19; N, 4.01; S, 18.59%. Molecular formula C20H11NOS2 

requires C, 69.54; H, 3.21; N, 4.05; S, 18.56.) 
   

(8.92 mg, 4 mol%) and XPhos (32.5 mg, 7 mol%)  and    

6-(Thiophen-2-yl)-5H-benzo[a]phenoxazin-5-one 
  

(18) 
covered with rubber septum. The vessel was evacuated and   

(Table 1, entry 3). Method 2 was used to prepare the 
backfilled with N2 thrice before injecting CH3CN (2 mL) 

title product from the cross-coupling of tributyl 2-thienyl 
and H2O (1 mL) (both solvents degassed for 30 min), and 

stannane with 6-chloro-5H-benzo[a]phenoxazin-5-one in 
the reaction mixture warmed to 50°C within 10 min. Rubber 

6 h. Purification by flash chromatography applying 10% septum  was quickly  removed to  charge  with 
    

EtOAc/90% pet. ether as eluent provided the analytically 
chlorophenothiazine 

 
(1 mmol) and K3PO4 (318 mg,  

pure dark brown solid product, yield 240 mg (73%), mp 
1.5 mmol) and replaced before injecting  tributyl thienyl  

203–204°C.  NMR:  δH (400 MHz, CDCl3): 8.57–8.65 \stannane or tributyl furanyl stannane (1.2 mmol). The 

(1H, m); 8.33–8.31 (1H, m); 8.22–8.20 (1H, dd, J = 8.21, 
temperature was maintained for 30 min before increasing 

8.21); 7.79–7.77 (1H, dd, J = 7.74, 7.74); 7.72–7.68 (2H, 
to 80°C. The reaction was terminated in 5 h and diluted 

m); 7.52–7.50 (1H, dd, J = 7.51–7.47); 7.47–7.39 (2H, with DCM (5 mL), and the crude product was extracted 
m); 7.34–7.30 (1H, m); 7.19–7.16 (1H, m). δc (150 MHz, from water (5 mL) four times with DCM. The combined 
CDCl3): 181.91 (C¼O), 146.85, 145.05, 143.85, 132.89, organic extract was dried with MgSO4 and concentrated 

in vacuum. The crude product was purified by flash 132.09, 131.81, 131.78, 131.67, 131.35, 130.07, 129.60, 

128.63, 126.62, 126.22, 125.55, 124.43, 115.85, 112.73. chromatography on silica gel using petroleum ether-ethyl 
UV-Visible λmax  (MeOH): 364.5 (4.08); 493.0 (3.64); acetate eluent.              

             

750.0 (4.02). HRMS (EI), m/z  (% relative intensity): 2-(Thiophen-2-yl)-10H-phenothiazine  (16)  (Table  1, 

entry 1). Method 1 was applied to convert tributyl 2- 83.9533 (100), 142.5381 (8), 174.0802 (3), 240.0802 (3), 

thienyl stannane and 2-chloro-10H-phenothiazine into the 272.0522  (10),  301.0556  (12),  329.0512  [(93),  M
+
]. 

title product in 4 h. Purification by flash chromatography (Found: C, 72.98; H, 3.40; N, 4.31%. Molecular formula 

(5% EtOAc/ 95% pet. ether eluent) supplied the analytically C20H11NO2S requires C, 72.93; H, 3.37; N, 4.25; S, 9.73.) 

pure yellow solid product (227.61 mg, 81%), mp 188–189°C. 6-(Thiophen-2-yl)-5H-naphtho[2,1-b]pyrido[2,3-e][1,4]oxazin- 

NMR: δH (400 MHz, acetone-d6): 7.80 (1H, br, s); 7.28–7.27 5-one (19) (Table 1, entry 4). Method 2 was used to cross- 

(1H, dd, J = 7.27, 7.27); 7.22–7.20 (1H, d, J = 7.21); couple tributyl 2-thienyl stannane with 6-chloro-5H- 

naphtho[2,1-b]pyrido[2,3-e][1,4]oxazin-5-one to afford the 6.99–6.94 (2H, m); 6.89–6.86 (4H, m); 6.69–6.59 (2H, m). 

title product within 6 h. 
 

Purification by flash δc  (150 MHz, acetone-d6): 144.35, 143.78,  142.90, 134.65,  

129.01, 128.41, 128.28, 127.64, 127.20,  125.63, 123.95, chromatography (45% EtOAc/ 55% pet. ether eluent) gave 
 

the  analytically pure  dark brown  solid 
 

product, yield 123.06,  120.20,  118.40,  118.17,  115.58,  112.37.  UV-  

257 mg (78%), mp >210°C (dec). NMR: δH  (400 MHz, Visible λmax  (MeOH): 492.5 (4.03); 747.5 (3.99). HRMS 

(EI), m/z (% relative intensity): 83.0773  (2.0), 118.5283 CDCl3): 8.76–8.74 (1H, m); 8.55–8.53 (1H, dd, J = 8.54, 

(3.0), 140.5161 (7.0), 167.0773 (2.0), 191.0729 (3.0), 8.54); 8.26–8.24 (1H, m); 8.14–8.13 (1H, dd, J = 8.14); 

7.72–7.67 (2H, m); 7.51–7.49 (1H, dd, J = 7.50, 7.50); 204.0827 (13.0), 217.0921 (5.0), 236.0547 (23), 266.0150 
7.38–7.35 (1H, dd, J = 7.37, 7.30); 7.13–7.11 (1H, dd,        +          

(2.0), 281.0339 [(100), M ]. (Found: C, 68.37; H, 4.03; N, 

J = 7.12, 7.10). δc (600 MHz, CDCl3): 
 

181.95(C¼O), 5.01; S, 22.86%. Molecular formula C16H11NS2 requires C,  

68.30; H, 3.94; N, 4.98; S, 22.79.)         151.08, 146.95, 144.74, 144.01, 140.63, 132.81, 132.60, 
6-(Thiophen-2-yl)-5H-benzo[a]phenothiazin-5-one   (17) 131.58, 131.21, 130.77, 130.27, 129.52, 126.76, 126.41, 

(Table 1, entry 2).   Method 2 was used to convert tributyl 125.73,  125.41,  124.12,  113.81.  UV-Visible  λmax 

2-thienyl stannane and 6-chloro-5H-benzo[a]phenothiazin- (MeOH): 370.0 (3.81); 506.0 (3.24); 745.0 (3.87). HRMS 



5-one into the title product within 6 h. Purification by flash (EI), m/z (% relative intensity): 71.0840 (2), 83.9540 
 
 



 

 

(100), 301.0420 (2), 330.0464 [(100), M
+
]. (Found: C, 

69.11; H, 3.07; N, 8.51; S, 9.74%. Molecular formula 

C19H10N2O2S requires C, 69.08; H, 3.05; N, 8.48; S, 
9.70%.) 

2-(Furan-2-yl)-10H-phenothiazine (20) (Table 1, 
 

Method 1 was used to convert tributyl furan-2- 
 

yl stannane and 2-chloro-10H-phenothiazine into the title 
product in 5 h. Analytically pure product obtained by flash 
chromatography (5% EtOAc/95% pet. ether eluent) as 

yellow solid, yield 204 mg (77%), mp 174–176°C. NMR: δH 

(400 MHz, acetone-d6): 7.83 (1H, br, s); 7.43–7.43 (1H, dd, 

J = 7.43, 7.43); 7.01–6.98 (1H, dd, J = 7.00, 7.00); 6.87–6.78 
(3H, m); 6.67–6.56 (3H, m); 6.37–6.35 (1H, dd, 6.36, 6.36). 

δc (150 MHz, acetone-d6): 154.19, 143.66, 143.39, 143.13, 

142.98, 131.18, 128.39, 127.20, 123.02, 118.40, 118.20, 

117.71, 115.57, 112.64, 110.33, 106.02. UV-Visible λmax 

(MeOH): 747.0 (4.10). (Found: C, 72.47; H, 4.22; N, 5.21; S, 

12.06%. Molecular formula C16H11NOS requires C, 72.43; 

H, 4.18; N, 5.28; S, 12.08.) 
6-(Furan-2-yl)-5H-benzo[a]phenoxazin-5-one (21) (Table 1,  

Method 2 was used to convert tributyl furanyl 
 

stannane and 6-chloro-5H-benzo[a]phenoxazin-5-one into 
the title product in 6 h. Analytically pure product was 
provided by flash chromatography (10% EtOAc/90% pet. 
ether eluent) as a dark brown solid, yield 210 mg (67%), 

mp 140–142°C. NMR: δH (400 MHz, CDCl3) 8.62–8.60 
(1H, m); 8.27–8.24 (1H, m); 7.72–7.63 (3H, m); 7.59– 
7.58 (1H, dd, J = 7.58, 7.58); 7.41–7.37 (1H, m); 7.30– 

7.24 (3H, m); 6.55–6.54 (1H, dd, J = 6.55). δc (150 MHz, 

CDCl3): 181.02 (C¼O), 146. 91, 146.11, 145.53, 144.06, 

142. 61, 132.96, 131.99, 131.78, 131.32, 130.73, 129.54, 
126.42, 125.34, 124.45, 116.13, 114.89, 111.40, 109.49. 

UV-Visible λmax (MeOH): 447 (4.02). (Found: C, 72.62; 

H, 4.22; N, 5.19%. Molecular formula C16H11NO2 

requires C, 72.43; H, 4.18; N, 5.23.)  

6-(Furan-2-yl)-5H-naphtho[2,1-b]pyrido[2,3-e][1,4]oxazin-  

5-one (22) (Table 1, entry 7). Method 2 was used to convert 

tributyl furanyl stannane and 6-chloro-5H-naphtho [2,1-

b]pyrido[2,3-e][1,4]oxazin-5-one to the title product within 6 

h. Analytically pure product obtained by flash 

chromatography employing 50% EtOAc/50% pet. ether 

eluent as a dark brown solid, yield 220 mg (70%), mp 210–

212°C. NMR: δH (400 MHz, CDCl3): 8.84–8.82 (1H, m); 

8.57– 8.56 (1H, dd, J = 8.56, 8.56); 8.31–8.29 (1H, m); 

7.77–7.69 (3H, m); 7.62–7.61 (1H, dd, J = 7.61, 7.61); 7.40–

7.34 (2H, m); 6.59–6.58 (1H, dd, J = 6.58, 6.58). δc (150 

MHz, CDCl3): 180.98 (C¼O), 151.89, 145.71, 145.66, 

144.10, 143.26, 141.06, 133.07, 132.66, 131.88, 130.17, 

126.62, 125.77, 125.70, 125.20, 116.44, 111.86, 110.72. UV-

Visible λmax (MeOH): 321.0 (4.05); 459.5 (3.87). (Found: C, 

72.83; H, 3.17; N, 8.78%. Molecular 

formula C19H10N2O3 requires C, 72.61; H, 3.21; N, 8.91.)  

Reduction of compounds 17–19, 21, and 22. In a typical 

experiment, compound 17 (345 mg, 1 mmol) was placed in a 

reaction flask containing water (2 mL) and acetone 

 

 

(40 mL). Sodium dithionite (0.5 g) was added, and the 

mixture was refluxed in a water bath for 1.5 h. During the 

refluxing period, the color changed from red to yellow. 

The entire mixture was poured into a solution containing 

0.5 g of dithionite in 100 mL of ice-cold water and stirred. 

This was quickly filtered by suction, but before the 

product could be collected from the filter paper, it had 

turned reddish. Analysis of the product confirmed it to be 

the starting iminoquinoid compound 17. This shows the 

reduced compound was auto-oxidized under this 

condition. Similar observations were seen in the case of 

compounds 18, 19, 21, and 22. 
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