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Abstract 14 

The crayfish plague pathogen (Aphanomyces astaci) causes mass mortalities of European 15 

crayfish when transmitted from its original North American crayfish hosts. Little is known, 16 

however, about interspecific transmission of the pathogen between different American 17 

crayfish species, although evidence from trade of ornamental crayfish suggests this may 18 

happen in captivity. We screened signal and virile crayfish for A. astaci at allopatric and 19 

sympatric sites in a UK river. Whilst the pathogen was detected in signal crayfish from both 20 

sites, infected virile crayfish were only found in sympatry. Genotyping of A. astaci from 21 

virile crayfish suggested the presence of a strain related to one infecting British signal 22 

crayfish. We conclude that virile crayfish likely contracted A. astaci interspecifically from 23 

infected signal crayfish. Interspecific transmission of A. astaci strains differing in virulence 24 
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between American carrier species may influence the spread of this pathogen in open waters 25 

with potential exacerbated effects on native European crayfish. 26 

 27 
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pathways. 29 

 30 

1. Introduction 31 

The crayfish plague agent, Aphanomyces astaci, is arguably one of the most devastating 32 

invasive parasites in European freshwaters (Lowe, 2004; DAISIE, 2009). Since its first 33 

introduction in the mid-19th century (Alderman, 1996; Holdich, 2003), the pathogen has 34 

spread throughout Europe, facilitated in recent decades by movements of invasive North 35 

American (henceforth referred to as American) crayfish (Souty-Grosset et al., 2006; Holdich 36 

et al., 2014; James et al., 2014). Whilst American crayfish are often asymptomatic carriers of 37 

A. astaci infection, the disease is usually lethal in European species (Unestam & Weiss, 1970; 38 

Diéguez-Uribeondo et al., 1997; Bohman, et al., 2006; Kozubíková et al., 2008). Once 39 

introduced, A. astaci can spread rapidly, transmitted through zoospores that are released into 40 

water (Oidtmann et al., 2002) and can survive for at least 14 days (CEFAS, 2000). Spores are 41 

mainly released during host moulting or death (Svoboda et al., 2013), and within a cadaver A. 42 

astaci can remain viable for several days (Oidtmann et al., 2002). Therefore, the movement 43 

of infected carcasses by predators could facilitate pathogen dispersal. If fish ingest infected 44 

tissue, the pathogen can even survive passage through the gastro-intestinal tract, providing an 45 

additional transmission pathway (Oidtmann et al., 2002). 46 

 Whilst the transmission of A. astaci from non-native American to European crayfish 47 

has been widely documented (e.g. Alderman et al., 1990; Diéguez-Uribeondo, Temiño & 48 

Múzquiz, 1997; Vennerström et al., 1998; Bohman et al., 2006), little is known about 49 
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interspecific pathogen transmission between these invasive carriers. Until now, four different 50 

A. astaci genotype groups have been isolated in Europe; group A was obtained from infected 51 

native European crayfish (Astacus astacus and A. leptodactylus) and groups B, D and E from 52 

different American crayfish species (Pacifastacus leniusculus, Procambarus clarkii and 53 

Orconectes limosus, respectively) (Svoboda et al., 2017). The genotype groups infecting 54 

additional A. astaci carriers known from European waters, calico (Orconectes immunis), 55 

marbled (Procambarus fallax f. virginalis) and virile (Orconectes cf. virilis) crayfish 56 

(Filipova et al., 2013; Schrimpf et al., 2013; Keller et al., 2014; Tilmans et al., 2014), are so 57 

far unknown. Existing data suggest that A. astaci genotype groups are host-specific among 58 

American crayfish (Grandjean et al., 2014). There is no evidence of strains transmitting 59 

between these crayfish in the wild, although it seems to occur in the aquarium trade (Mrugała 60 

et al., 2015). 61 

Here, we investigate interspecific transmission of A. astaci upon contact of two 62 

potential carrier species. Signal crayfish are widespread across the UK (James et al., 2014) 63 

and were initially stocked into the River Lea during the mid-1970s (Almeida et al., 2014). 64 

Conversely, virile crayfish are only found in the Lea catchment in the UK (James et al., 65 

2014), possibly unintentionally introduced there around 2004 (Ahern et al., 2008). The two 66 

species have been co-existing since at least 2011 (James et al., 2015). Virile crayfish in this 67 

river, as well as in a population from the Netherlands, have been reported to carry A. astaci 68 

(Tilmans et al., 2014), and it was suggested that these crayfish were already infected prior to 69 

introduction. Here, we tested this hypothesis, the alternative hypothesis that virile crayfish 70 

contracted A. astaci from co-existing signal crayfish, by evaluating the distribution of the 71 

pathogen at allopatric and sympatric sites within the River Lea and an adjacent lake in 72 

London, and by genotyping the pathogen from infected host specimens.  73 

 74 
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 75 

2. Methods 76 

Invasive signal crayfish and virile crayfish were collected from the River Lea and an adjacent 77 

lake in London, UK, during September 2014. Using baited traps employed over two 78 

consecutive nights and checked daily, animals were caught from allopatric (Lat/Long: 79 

51°45′14″N/ 000°00′16″E, 51°42′29″N/ 000°01′16″W for signal and virile crayfish 80 

respectively, n = 30 for each species) and a sympatric site (Lat/Long: 51°42′24″N/ 81 

000°01′04″W, n = 9 signal and 30 virile crayfish) (Fig. 1). Upon capture, animals were 82 

transported individually to Cardiff University (UK), humanely euthanized by freezing at -83 

80oC and stored in ca. 95% molecular grade ethanol before transport to Charles University in 84 

Prague for further processing. For A. astaci screening, we harvested from each animal a 85 

section of tail fan, soft abdominal cuticle, two limb joints, and any melanised cuticle (as in 86 

Svoboda et al., 2014). Tissue samples from each individual (40-50 mg) were ground together 87 

in liquid nitrogen from which DNA was extracted using a DNeasy tissue kit (Qiagen) as per 88 

manufacturer’s guidelines.  89 

 All samples were screened for A. astaci presence using TaqMan MGB quantitative 90 

PCR (qPCR) on the iQ5 BioRad thermal cycler according to Vrålstad et al., (2009), slightly 91 

modified to increase assay specificity (Strand et al., 2011; Svoboda et al., 2014). To check 92 

for potential inhibition (as in Kozubíková et al., 2011; Svoboda et al., 2014) each DNA 93 

isolate was analysed by qPCR at two concentrations (undiluted and 1:10 dilution). Negative 94 

controls were included at each step of the protocol, and in all cases these remained negative. 95 

Based on the estimated amount of A. astaci DNA in the isolates (expressed in PCR-forming 96 

units, PFU), the extent of the infection was expressed in semi-quantitative agent levels (A0-97 

A7; according to Vrålstad et al., 2009; Kozubíková et al., 2011). Samples with agent levels of 98 

A2 or higher were considered positive for A. astaci.  99 
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 For A. astaci genotype group identification, we analysed A. astaci-positive samples 100 

using nine A. astaci-specific microsatellite markers (Grandjean et al., 2014). As amplification 101 

success depends on the amount of pathogen DNA in the sample, genotyping was only 102 

attempted for those with agent level A3 and higher (as in Grandjean et al., 2014) and was 103 

repeated three times for each sample. In case of an initial lack of amplification, DNA isolates 104 

were concentrated on the Concentrator Plus 5305 (Eppendorf). The results of successful 105 

genotyping were compared with the A. astaci reference strains described by Grandjean et al., 106 

2014 and an A. astaci-positive DNA isolate from signal crayfish in Lake Mochdre 107 

(Newtown) Wales, UK (James et al., 2017). 108 

 109 

3. Results  110 

Within allopatric sites on the River Lea, Aphanomyces astaci was detected in 83% (25 out of 111 

30) signal crayfish but was not detected in any virile crayfish (n = 30). From the sympatric 112 

site, 44% (4 out of 9) signal crayfish and 23% (7 out of 30) virile crayfish tested positive for 113 

A. astaci infection. All A. astaci-positive samples yielded low levels of infection (A2-A3; 114 

Vrålstad et al., 2009). Of the A. astaci infected animals from the allopatric signal crayfish site 115 

A3 level infections were detected in four animals (estimated PFUs: 51, 71, 106 and 111). 116 

Within the sympatric site, A3 level infections were detected in three virile (estimated PFUs: 117 

85, 167 and 1000) and two signal (estimated PFUs: 52 and 57) crayfish.  118 

Due to low amount of A. astaci DNA, reliable amplification and scoring of the 119 

microsatellites were only possible for two specimen of virile crayfish. Of the nine 120 

microsatellite loci, amplification was achieved for seven loci for the first virile crayfish 121 

specimen, and for six loci for the second one. For the first virile crayfish specimen the 122 

multilocus genotype corresponded at five loci to the reference axenic culture of the genotype 123 

group B (Table 1). Differences were observed at the Aast9 and Aast12 loci, where 124 
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homozygotes rather than heterozygotes were scored. Such variation at the Aast9 locus has 125 

been also observed in the A. astaci-positive DNA isolate from signal crayfish in Wales, UK 126 

(Table 1; James et al. 2017). For the second virile crayfish specimen the multilocus genotype 127 

corresponded at five loci to the reference axenic culture of genotype group B (Table 1). A 128 

difference was observed at the Aast9 locus, where a homozygote rather than a heterozygote 129 

was scored. All six of the amplified loci for this second specimen matched the A. astaci 130 

positive DNA isolate from signal crayfish in Wales (Table 1).  131 

 132 

4. Discussion  133 

Here we present two lines of evidence suggesting the interspecific transmission of 134 

Aphanomyces astaci between two invasive American crayfish species from the UK. Firstly, 135 

virile crayfish were infected at a site in the River Lea where they coexisted with signal 136 

crayfish, but were not found to be infected at an allopatric site. In contrast, signal crayfish 137 

were infected with A. astaci both in regions of sympatry and allopatry. Secondly, the A. 138 

astaci multilocus genotype identified in virile crayfish was similar, although not identical, to 139 

the reference strain of the genotype group B, isolated in Europe from infected signal crayfish 140 

(Huang et al., 1994; Grandjean et al., 2014), and closely matched the multilocus genotype 141 

detected in a UK signal crayfish population (Table 1). Therefore, the current study may 142 

represent the first report of A. astaci being interspecifically transmitted within a wild, mixed 143 

species population of American crayfish in their invasive range. 144 

 Whilst the multilocus gentotypes obtained for the A. astaci-positive DNA isolates 145 

from virile crayfish in the River Lea were not an identical match to the reference strain of the 146 

group B from Europe, such within group variation has already been reported (Grandjean et 147 

al., 2014; Maguire et al. 2016; Mrugała et al., 2016). This, combined with the fact that the A. 148 

astaci genotype obtained from infected virile crayfish was not similar to any of the other four 149 
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genotype groups currently described (Grandjean et al., 2014), make it a likely assumption 150 

that the virile crayfish in this study harboured an A. astaci strain from the genotype group B 151 

pathogen. Of all American crayfish species, this genotype group has only previously been 152 

recorded from wild signal crayfish. In addition, the multilocus genotypes obtained from both 153 

virile crayfish specimens closely matched that isolated from signal crayfish elsewhere in the 154 

UK. Variation detected at the locus Aast 12 may have resulted inefficient amplification of 155 

low concentration DNA template). Both virile crayfish specimens also shared a homozygote 156 

pattern at locus Aast 9 in contrast to the heterozygote reported in the original reference 157 

sequence (James et al., 2017). Combined these data add to the evidence that virile crayfish 158 

likely contracted A. astaci from infected signal crayfish within the UK.  159 

Possessing a wide host range is one of the key factors in determining the success of an 160 

introduced parasite (Kennedy 1994). It has been speculated that the interspecific transmission 161 

of A. astaci genotypes between American crayfish species may be limited by host-pathogen 162 

incompatibilities (Tilmans et al., 2014).  Our findings cast doubt on this hypothesis, and 163 

highlight the need for greater investigation into the host range of different A. astaci genotype 164 

groups. Given that A. astaci genotypes different in their virulence (Makkonen et al., 2012, 165 

2014; Viljamaa-Dirks et al., 2013) and climate requirements (Diéguez-Uribeondo et al., 166 

1995; Rezinciuc et al., 2014) interspecific transmission may influence the spread of the 167 

pathogen across Europe. This is likely to have implications for native crayfish conservation 168 

given that A. astaci affords American crayfish species an even greater competitive advantage 169 

over their susceptible European counterparts. Interspecific transmission may also result in 170 

complex mixed genotype group infections with unknown consequences for both American 171 

carrier crayfish and native European crayfish hosts. Ultimately, this may also influence 172 

pathogen evolution.  173 
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This study provides the first indication of A. astaci being transmitted between 174 

American carrier crayfish species in a wild population. We do, however, acknowledge the 175 

limitations of our study in terms of incomplete genotyping and low sample size. Studies of A. 176 

astaci interspecific transmission are particularly relevant given that many European countries 177 

now harbour multiple non-native American crayfish species (Kouba et al., 2014). With 178 

microsatellite markers allowing the characterization of A. astaci genotypes from host tissue 179 

samples, increased effort should be focused into genotyping the pathogen strains infecting 180 

American carrier crayfish species. Characterising the strain(s) of A. astaci responsible for a 181 

crayfish plague outbreak may also help identify the source of an epidemic and monitor the 182 

spread of infection (see Kozubíková et al., 2014, Vrålstad et al., 2014).  183 

 184 
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Figure 1. Sample sites along the River Lea (UK) and an adjacent lake for invasive signal 332 
(Pacifastacus leniusculus) and virile (Orconectes cf. virilis) crayfish. River flow direction is 333 
indicated by the black arrow. Allopatric sites shown for signal () and virile crayfish () 334 
respectively, and the sympatric site (). Note: the location of the allopatric virile crayfish site 335 
is a lake adjacent to the river. More details about virile and signal crayfish distribution in this 336 
region can be found in James et al., (2016). Image courtesy of Maps data 2016 @Google. 337 
 338 
 339 
 340 
 341 
 342 
 343 
 344 
 345 
 346 
 347 
 348 
 349 
 350 
 351 
 352 
 353 
 354 
 355 
 356 
 357 
 358 
 359 
 360 
 361 
 362 
 363 
 364 
 365 
 366 
 367 
  368 



 17 

Table 1. Comparison of allele sizes of nine microsatellite loci from the original European 369 
reference strain of Aphanomyces astaci genotype group B (Grandjean et al., 2014), a 370 
reference strain from Pacifastacus leniusculus from Wales, UK (James et al., 2017) and A. 371 
astaci-positive samples of Orconectes cf. virilis examined in the current study. 372 
 373 
 
Locus 

 
Original European 
reference strain  
VI03555  
(P. leniusculus) 

 
UK population 
(P. leniusculus) 

 
UK population 
(O. cf. virilis) 
specimen 1 
 

 
UK population 
(O. cf. virilis) 
specimen 2 
 

 
Aast 2 
 

 
142 

 
142 

 
142 

 
142 
 

Aast 4 
 

87 87 87 n/a 

Aast 6 
 

148 148 n/a 148 

Aast 7 
 

215 215 215 n/a 

Aast 9 
 

164/182 164 164 164 

Aast 10 
 

132 132 n/a 132 

Aast 12 
 

226/240 226/240 240 226/240* 

Aast 13 
 

202 202 202 202 

Aast 14 248 
 

248 248 n/a 

*both alleles were scored but respective peaks were observed in separate PCR runs. n/a – loci 374 
with no amplification, likely due to low concentration of A. astaci DNA in the isolate. 375 


